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Flood Algorithm-Tuned PID-F
Controller with a Modified
Objective Function for Robust and
Noise-resilient Speed Control of
Nonlinear Sparkignition Engines
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This study presents a novel control strategy for the regulation of engine speed in nonlinear four-
cylinder spark ignition (SI) engines by integrating a proportional-integral-derivative controller with a
filter (PID-F) tuned using the flood algorithm (FLA). The approach leverages the dual-phase exploration
and exploitation mechanism of FLA to determine optimal controller parameters efficiently, addressing
the nonlinear and time-varying behavior of Sl engines. A modified objective function is formulated to
penalize overshoot and cumulative tracking error simultaneously, ensuring rapid transient response
and precise steady-state accuracy. The proposed control framework is modeled and validated in
MATLAB/Simulink and benchmarked against existing tuning techniques, including the Simulink PID
tuner and selected metaheuristic optimizers such as the whale optimization algorithm, sinh-cosh
optimizer, and cuckoo search. Comparative analyses demonstrate the superiority of the FLA-optimized
PID-F controller in achieving stable, robust, and noise-resilient speed regulation under varying load and
disturbance conditions. The findings establish the FLA as an efficient and scalable optimization tool for
real-time controller tuning in automotive applications, contributing to a practical and computationally
efficient solution for advanced engine control systems.

Keywords Automotive engine speed control, Disturbance rejection, Engine speed control, Flood algorithm,
Metaheuristic optimization, PID-F controller, Reference tracking, Spark ignition engine

List of symbols

St Position vector of the i-th solution (candidate)

St Updated position of the i-th solution after movement or flooding
Shest Current best (minimum-cost) solution in the population

S Randomly selected solution distinct from ( S')

rand Uniform random number in the range [0, 1]

randn Normally distributed random variable (mean =0, variance = 1) introducing stochasticity
Smax, Smin Upper and lower bounds of the search space

Py Water depletion coefficient controlling disturbance intensity
Prfiood Flood probability derived from cost-function values

Tter Current iteration number

Iterman Maximum number of iterations allowed
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f (S 1) Cost-function value of the i-th solution

fmin, fmaz>  Bestand worst cost-function values in the population
Tair Air mass flow rate through the throttle (kg/s)

Atn Effective throttle area (function of throttle angle, m?)
Pas Ta Ambient pressure (Pa) and temperature (K)

R Specific gas constant for air (J/kg-K)

P T Intake manifold pressure (Pa) and temperature (K)
Vin Manifold volume (m?)

Tintake Air mass flow rate entering the cylinders (kg/s)

TMomix Air-fuel mixture mass flow rate (kg/s)

Mo Volumetric efficiency (dimensionless)

Vay Engine displacement volume (m?)

Weng Engine angular speed (rad/s)

P Equivalence ratio (actual-to-stoichiometric fuel-air ratio)
(F/A), Stoichiometric fuel-air ratio (dimensionless)

SA Spark advance angle (°)

Tengine Generated engine torque (N-m)

Tload Load torque (N-m)

J Engine moment of inertia (kg-m?)

Spark ignition (SI) engines remain an integral part of various industries due to their versatility, reliability, and
cost-effectiveness!. Predominantly used in automobiles, motorcycles, power tools, small aircraft, boats, and lawn
equipment, SI engines offer a high power-to-weight ratio, faster acceleration, and smoother operation compared
to their diesel counterparts!. The widespread availability of gasoline and the relative simplicity of the engine
design also make them the preferred option for light-duty applications®. With the growing demand for efficiency
and lower emissions, optimizing the performance of SI engines has become increasingly important.

A key aspect of SI engine performance is speed control. Maintaining a stable engine speed ensures fuel
efficiency, reduces emissions, and prevents engine wear. However, SI engine speed control is a challenging
task due to the nonlinear behavior of the engine dynamics, time-varying parameters, and sensitivity to load
disturbances®. These challenges make it difficult to design a robust control system that can adapt to various
operating conditions. Poor speed control can lead to engine instability, excessive fuel consumption, and
suboptimal performance, making it critical to develop optimized control strategies®.

Literature review

Numerous control strategies have been developed to address the complexity of spark ignition (SI) engine
speed control, given the nonlinearities, uncertainties, and dynamic behaviors inherent in these systems. In
the literature, advanced robust control methods such as H-infinity control®, linear quadratic regulator (LQR)S,
and model predictive control (MPC)” have been explored extensively. These methods are recognized for
their ability to handle system uncertainties, disturbances, and nonlinear characteristics, which are crucial for
maintaining optimal engine performance. H-infinity control offers a systematic approach to manage system
robustness, while LQR provides an optimal feedback mechanism to minimize a cost function related to engine
dynamics. Meanwhile, MPC has gained prominence due to its predictive capability and constraint-handling
features, making it particularly useful for applications where precise control is required. Despite their robustness
and adaptability, these advanced controllers often involve complex mathematical formulations and significant
computational overhead, posing challenges in real-time implementation. In addition, sliding mode control
(SMC) and adaptive control techniques have also been utilized to address the nonlinearities and time-varying
behaviors characteristic of SI engines®. SMC, with its inherent robustness, can effectively mitigate disturbances
and maintain stability. However, the chattering phenomenon, which is prevalent in SMC, can lead to excessive
wear in mechanical components. Similarly, adaptive control methods, which adjust controller parameters in real
time based on system feedback, are adept at handling time-varying system dynamics. Nonetheless, the real-time
computational burden associated with these adaptive strategies can complicate their practical deployment in
resource-constrained environments.

In contrast, proportional-integral-derivative (PID) controllers™'” and their variants, such as fuzzy adaptive
PID!':12, fractional order PID (FOPID)" and PID with filters!*, multi resolution (MRPID)!>!¢ are widely
adopted in industrial applications due to their simplicity, ease of implementation, and low computational
requirements'”!8. PID controllers are valued for their ability to provide balanced performance across a wide
range of operating conditions. While variants such as FOPID extend the capabilities of traditional PID controllers
by introducing fractional calculus, they also come with added complexity in both design and implementation.
The FOPID controller requires the determination of additional parameters (the fractional orders of the integral
and derivative actions), making the tuning process more intricate. Furthermore, the computational load
associated with fractional-order control can become significant, especially in real-time applications where rapid
responses are crucial. These limitations often hinder the practical application of FOPID in systems with stringent
performance and computational constraints. In contrast, the PID with filters, as proposed in this study, offers
an effective balance between enhanced noise attenuation and computational simplicity, making it particularly
suitable for spark ignition engine speed control. However, their effectiveness heavily depends on the precise
tuning of the proportional, integral, and derivative gains. Improper tuning can result in undesired outcomes
such as excessive overshoot, persistent steady-state error, and slow transient responses. Therefore, the challenge
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lies in determining the optimal PID parameters to meet the specific dynamic requirements of complex systems
like SI engines.

Several methodologies have been developed for PID tuning. Traditional methods such as Ziegler-Nichols'?,
Cohen-Coon?® and internal model control?! provide initial estimates for PID parameters. However, these
methods often fall short in addressing the complexities of nonlinear systems such as spark ignition engines.
For example, Ziegler-Nichols assumes a linear system response, which is rarely valid in highly nonlinear
environments. This oversimplification can lead to excessive overshoot, poor transient responses, and inadequate
disturbance rejection under dynamic operating conditions. Similarly, the Cohen-Coon method, while more
robust in certain cases, struggles to handle time-varying dynamics and external disturbances, necessitating
frequent manual recalibration. Techniques like root locus*? and Lyapunov stability?> have been applied to
ensure system stability, but these are limited in handling nonlinearity and time-varying conditions. In addition,
the design and optimization of PID controllers within Simulink environments have been greatly improved by
leveraging automated tools and techniques, offering a strong foundation for the implementation of the proposed
methodology?!. Nonetheless, despite these advancements, various methods may still face constraints when
applied to complex or time-sensitive systems, where both rapid convergence and precise accuracy are essential.

With the growing demand for optimized performance, metaheuristic algorithms have gained prominence
in tuning PID controllers due to their ability to efficiently navigate complex solution spaces and address
nonlinearities. Methods such as the whale optimization algorithm (WOA)*-?’, cuckoo search algorithm
(CS)?, sinh-cosh optimizer (SCHO)?, electric eel foraging optimizer (EEFO)*, and the grey wolf optimizer
(GWO)?! provide flexible approaches for finding near-optimal control parameters in complex systems like
spark ignition engines. These algorithms are widely adopted because they balance exploration and exploitation,
often leading to superior performance compared to traditional tuning methods. However, these metaheuristic
algorithms are not without their limitations. For example, metaheuristic algorithms such as WOA and GWO
have shown significant promise in addressing nonlinearities and complexities in PID tuning. However, WOA
often experiences slower convergence in intricate solution spaces due to its heavy reliance on exploitation in
later stages of optimization. This can result in suboptimal solutions, especially when the search space is highly
complex®2. GWO, while effective in balancing exploration and exploitation, can suffer from local optima trapping
and lacks the robustness required for real-time applications in highly dynamic environments. Both methods
also involve computational overheads, particularly when applied to systems requiring rapid adaptability, which
limits their practical use in real-time spark ignition engine speed control®. Similarly, CS and SCHO, while
effective in certain contexts, may lack the precision needed for fine-tuning control parameters, often requiring
substantial computational resources to reach an optimal solution?®. Although EEFO has shown robustness in
some applications, it occasionally suffers from premature convergence and a lack of diversity in the solution
space, limiting its adaptability in dynamic, nonlinear systems™.

Given these challenges, the proposed study focuses on the flood algorithm (FLA) for optimizing the
controller parameters. Unlike the aforementioned algorithms, FLA has shown particular effectiveness in
avoiding local optima by maintaining a balanced search mechanism between exploration and exploitation™.
This approach allows FLA to systematically explore the solution space, ensuring rapid convergence without
falling into premature stagnation. Moreover, FLA's computational efficiency makes it particularly suited for real-
time control applications where resource constraints are critical®. In practical applications such as spark ignition
engine control, the optimization process must not only be efficient but also capable of providing solutions within
strict time limits. To ensure this, FLAs computational efficiency can be enhanced by using techniques such as
reducing the search space to focus on the most influential parameters, minimizing the number of iterations
through adaptive stopping criteria, and utilizing parallel computing. These strategies ensure that the optimization
process can meet real-time response requirements while maintaining solution quality. Additionally, since the
objective function has been modified in this study, the computational cost per iteration may vary depending on
the complexity of the modified function. While the number of iterations remains consistent, the computational
burden could increase as the problem size or the complexity of the objective function increases. Future studies
could investigate how this modified FLA performs with larger problem sizes to assess its scalability in more
complex systems.

Research gap and motivation

Various studies have explored different control strategies for spark ignition engine speed control, focusing on
robustness, stability, and optimization techniques. However, the following gaps are identified in the existing
literature:

« While robust controllers like H-infinity and MPC have been extensively studied, many approaches have fo-
cused on a specific subset of operating conditions rather than a comprehensive analysis across varying loads
and environmental conditions.

« Comparative analyses of the results obtained from different controller designs and optimization techniques
are limited in scope, making it difficult to assess their relative effectiveness under diverse conditions.

o Tuning methodologies for PID controllers have been widely explored, but there is a lack of focus on applying
metaheuristic algorithms like the flood algorithm to spark ignition engines. Most studies rely on traditional
methods that may not provide optimal performance in complex, nonlinear systems.

o The effect of overshoot and steady-state error in SI engine speed control has not been extensively addressed.
Many existing approaches focus on system stability but overlook critical performance metrics such as over-
shoot minimization and damping speed.
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« There is limited exploration of the potential of combining modified objective functions with advanced opti-
mization techniques to improve the transient response and steady-state behavior of SI engine speed control
systems.

Motivated by these gaps, we propose a novel approach that incorporates the flood algorithm for the optimal
tuning of PID controllers in spark ignition engine speed control. By employing a modified objective function,
we aim to minimize overshoot, reduce steady-state errors, and achieve rapid damping, ensuring superior
performance under varying load and environmental conditions.

Contribution and paper organization

The novelty of this research lies in the introduction of the FLA for the optimal tuning of a PID-F controller
applied to the nonlinear spark-ignition engine speed control problem which is an area where FLA has not
previously been employed. In addition, a customized objective function has been formulated to penalize both
overshoot and cumulative tracking error, ensuring a well-balanced transient and steady-state response. This
formulation differs from traditional integral error-based indices by directly incorporating an overshoot term
that improves dynamic smoothness and damping. The proposed combination of the FLA optimizer with the
PID-F architecture thus represents a novel and computationally efficient framework for achieving noise-resilient
and robust speed regulation in spark ignition engines. The contributions of this paper can be summarized as
follows:

« A novel performance-optimized controller design is proposed for PID with a filter for spark ignition engine
speed control, utilizing the FLA for the first time.

o The application of FLA with a modified objective function in this study allows for significant improvements
in performance, including minimized overshoot, reduced steady-state errors, and enhanced system damp-
ing. These attributes make FLA especially advantageous for complex, nonlinear systems like spark ignition
engines, where traditional methods and other metaheuristic algorithms often struggle to provide consistently
optimal results.

« The proposed controller design is validated through simulations and compared with other optimization tech-
niques such as SCHO, WOA, CS and Simulink PID Tuner.

« The paper presents a comprehensive analysis of the controller’s robustness across varying operating condi-
tions.

The remainder of this paper is organized as follows: Sect. 2 provides an overview of the FLA, detailing its
structure and optimization process. Section 3 covers the design of the PID with filter controller, explaining its
role in system stability and control. Section 4 focuses on the modeling of the four-cylinder spark ignition engine
speed control system, outlining the key parameters and system dynamics. Section 5 introduces the novel control
methodology proposed in this study. Section 6 verifies the statistical performance of the FLA. Section 7 presents
the comparative nonlinear simulation results, highlighting the effectiveness of the proposed controller. Finally,
Sect. 8 concludes the paper, summarizing the key findings and suggesting directions for future research.

Overview of flood algorithm

The flood algorithm is a novel meta-heuristic optimization algorithm inspired by the natural phenomena of
flooding and water flow in river basins. It simulates the dynamic, often chaotic, behavior of water during flood
events to address complex optimization problems. This approach is particularly effective in solving nonlinear and
multi-modal problems, such as tuning the parameters of PID controllers in systems requiring high precision and
adaptability. By mimicking the unpredictable but systematic movements of water masses, FLA provides a robust
framework for both global exploration and local exploitation, leading to the discovery of optimal solutions.

Mathematical modeling of FLA

FLA operates through two primary phases: the regular movement phase and the flooding phase®*. These phases
are mathematically modeled to guide the search for optimal solutions effectively. Firstly, in the regular movement
phase for phase 1, the population of potential solutions is directed toward the best-known solution at each
iteration, similar to how water naturally flows toward the lowest point in a landscape. The position update rule
for each solution is described by the following equation:

Shew = Sbest +rand x ($7 - §") (1)

where Sflw represents the updated position of the it solution, Sies¢ denotes the best solution discovered thus
far, S” refers to a randomly chosen solution and rand is a random number ranging from 0 to 1. This formulation
directs the solutions toward the current optimal solution while preserving diversity within the population.

Secondly, in the flooding phase for phase 2, random disturbances are introduced to escape local optima
and explore new regions of the search space. The likelihood of a flood event is governed by the water depletion
coefficient, P, which gradually decreases over time as the algorithm approaches convergence. The water
depletion coeflicient is expressed as:

—2/3
P = \/Ite'f'ma:z x Iter? +14+ —————— x In <\/Ite7"ma1 % Iter2+1+L> @)
Iter (“”%) x Iter 4
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where Iter represents the current iteration number and Itermq. is the maximum number of iterations allowed.
During a flood, the positions of the solutions are updated to simulate the turbulent movement of water masses,
as shown in the following equation:

S:Lew = SL + (Plzandn/lter> X [Tand X (Smaz - szn) + szn] (3)

where randn represents a normally distributed random number that introduces stochasticity into the search
process, Py controls the intensity of the disturbance based on the current iteration. This phase introduces
randomness into the search, allowing for a broader exploration of the solution space and helping the algorithm
escape local optima.

As the algorithm progresses, it models the effect of soil permeability, which influences the likelihood of
a flood. The flood probability Priooq is calculated based on the cost function values, with better solutions
corresponding to lower permeability and thus reducing water loss. This relationship is expressed as:

£(S) = fonin |

4
fmaz 7fmin ( )

Pflood =

where frin is the best cost function value found so far, fima. is the worst cost function value found so far.
The flood probability reflects the algorithm’s ability to maintain diversity while converging toward the global
optimum.

FLA continuously alternates between the regular movement and flooding phases, striking a balance between
exploration (searching for new solutions) and exploitation (refining existing solutions). Weaker solutions are
discarded over time, while stronger solutions are retained and new ones are introduced, mimicking the natural
rise and fall of water levels in a river basin. This iterative process enables FLA to efficiently navigate the search
space, ensuring that the algorithm does not become trapped in local optima and that it converges toward global
solutions. To provide better appreciation, related notations of FLA, an additional table can be found under
notations section.

PID with filter controller

The PID controller is a fundamental control strategy extensively utilized in various industrial and engineering
applications due to its simplicity and effectiveness in handling different dynamic systems*!. However, in real-
world scenarios, the derivative action in a conventional PID controller can be highly sensitive to high-frequency
noise, which may result in instability and oscillations. To address this issue, a PID with filter (PID-F) controller
is employed, where a low-pass filter is incorporated into the derivative term*. This filtering reduces noise
sensitivity, enhancing the controller’s performance and stability. The transfer function of the PID with filter
controller can be expressed in Eq. (5).

7S
s+

K
Cpip-r(s) = Kp + ?I + Kp (5)

where K p is the proportional gain, influencing the system’s responsiveness to errors, K7 is the integral gain,
which eliminates steady-state errors by accounting for the accumulation of past errors, Kp is the derivative
gain, improving system stability by predicting future errors, n is the filter coefficient, which controls the
high-frequency noise attenuation in the derivative action, s is the Laplace variable. By integrating the filter
term 1 s/ (s+ n ) into the derivative component, the controller effectively suppresses high-frequency noise,
enhancing system performance. This modification maintains the beneficial effects of derivative control in
improving transient response while mitigating issues related to noise amplification and instability. As can be
seen in Fig. 1, it is presented the block diagram of a feedback control system utilizing a PID-F controller. In this
control loop, the system’s objective is to minimize the error between the desired setpoint (reference input) and
the actual system output. The PID-F controller processes this error and generates a control signal to drive the
system toward the setpoint. By using the PID-F controller, the feedback system achieves a more stable and robust
performance, especially in environments with high noise levels or rapid fluctuations. The incorporation of the
filter within the derivative term allows for improved noise rejection and a more reliable control response, leading
to faster convergence to the desired setpoint while minimizing oscillations as shown in Sect. 6.

Modeling of four-cylinder spark ignition engine speed control system

The speed control system of a nonlinear four-cylinder spark ignition engine can be effectively modeled by
considering the rotational dynamics of the engine, air-fuel mixture dynamics, and throttle response?*¢. These
components are key to accurately representing the engine’s behavior and designing an appropriate control
strategy. The system is modeled and simulated in MATLAB/Simulink to evaluate its dynamic behavior under
the control of the PID-F controller. The air mass flow through the throttle is modeled using the choked flow
equation as shown in Eq. (6).

Pa

i air — Ath————
m T (6)

Scientific Reports |

(2025) 15:45481 | https://doi.org/10.1038/s41598-025-29231-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

reference
input

r(t) e(t) - 1
+<§/ error | |

proportional gain

disturbance

d(t)

» Kp

integral gain integrator

t
System y® » output

control
signal

signal

Y

derivative gain

integrator
PID-F controller

Fig. 1. Block diagram of feedback control system with PID-F controller.

where 7114 is the air mass flow rate, Ay is the effective throttle area (nonlinear function of throttle
position), R is the gas constant. p, and T, are the ambient pressure and temperature, respectively. Assuming
the isothermal conditions, the dynamics of the intake manifold pressure can be expressed in Eq. (7).

P, RT. .
F* Vi (mazr mzntake) (7)

where T, is the manifold temperature, V, is the manifold volume and mMintqke is the air mass flow rate
entering the engine. Then, the mean value of the fuel-air mixture entering the engine cylinders is approximated
as:

. Va P,
Mmiz = 1 4 Ew eng RT (8)

where 7, is the volumetric efficiency, Vy engine displacement volume and w eng is the engine speed in
rad/s. Mintake = Mmiz/(1 + @ (F + A),), where (F + A), represents the stoichiometric fuel to air ratio
and @ is the fuel to air ratio normalized by the stoichiometric fuel to air ratio, also known as the equivalence
ratio. Typically, the generated engine torque ( 7enginc) depends nonlinearly on the engine speed, the mass flow
rate into the cylinders, the equivalence ratio and the spark advance as shown in Eq. (9).

Tengine = f (va eng, ® 7SA) (9)

Lastly, the rotational dynamics of the engine’ speed are modeled as shown in Eq. (10).

dw eng (t)

J dt

- Tengine (t) - Tload (t) (10)

where J is the engine’s moment of inertia, w eng (¢) is the angular velocity (engine speed), Tengine (t) is
the engine torque, and Tjoqq (t) is the load torque. This equation describes how the engine speed changes in
response to the difference between the engine’s generated torque and the load torque, considering the rotational
inertia and frictional effects. By integrating the equations for engine speed dynamics, air-fuel torque generation
and throttle dynamics, a comprehensive model of the engine speed control system can be formulated.

The above mathematical model forms the basis of the Simulink model depicted in Fig. 2, which integrates the
engine dynamics with the PID-F controller optimized through FLA. As shown within the respective figure, the
system begins with a speed reference input, which defines the desired engine speed. The error signal, calculated
as the difference between the actual engine speed and the reference, is processed by the PID-F controller to
generate a control signal (U (s)). This signal adjusts the throttle area, directly influencing the airflow into the
engine manifold and the air charge. The air charge is then delayed during the induction to power stroke process,
after which it contributes to the combustion stage, where the engine torque is generated based on the engine
speed ( N) and air charge. The generated torque is then combined with load and engine torque in the vehicle
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Fig. 2. Simulink model of the system with PID-F controller.

dynamics block to model the rotational behavior of the engine. External disturbances and noise are introduced
to the system to simulate real-world operational challenges and evaluate the controller’s robustness.

The feedback loop ensures continuous adjustment of the control signal to minimize the error and maintain
the desired speed, ensuring stability and adaptability across varying conditions. This diagram comprehensively
depicts the interactions between the control and physical subsystems, emphasizing the PID-F controller’s role
in achieving accurate and robust speed regulation. The initial design of the control system was carried out using
the Simulink PID tuner. This tuning process provided a set of preliminary control parameters to analyze the
system’s response.

Figure 3 shows the time response of the engine speed obtained with the Simulink PID tuner. In the figure,
the red dashed line represents the reference speed, while the blue line depicts the engine’s speed response under
the PID-F controller designed by the tuner. The response analysis reveals that the system exhibits a normalized
percent overshoot of 12.3712% and a normalized settling time of 3.9817 s. Although these results indicate that
the system achieves a reasonable level of performance, there remains room for enhancement in terms of both
reducing the overshoot and shortening the settling time. To further optimize the system’s dynamic performance,
the next phase of this study aims to develop an improved control strategy. By refining the PID-F controller
design, the objective is to achieve a more responsive and stable engine speed control system, thereby minimizing
deviations from the desired speed reference and enhancing overall performance.

Novel control methodology

A novel control methodology is proposed to enhance the dynamic performance of the four-cylinder spark
ignition engine speed control system. The new approach involves optimizing the controller parameters using a
customized objective function designed to minimize both overshoot and steady-state errors, thereby achieving
rapid damping and improved system stability. The proposed objective function is defined in Eq. (11) below.

tf'inal
OF = (1— ) Now + ¢ / le(t)] dt (1)

0

where tfina1=50s, Nos represents the normalized percent overshoot, ¢ is the balancing coefficient, set to

0.02 in this study, e (¢) denotes the error between the reference input and the system output over time. This

objective function effectively balances the trade-off between minimizing overshoot ( Nos) and reducing the
tfinal

total error ([ |e(¢)]dt), ensuring a more stable and efficient control response. The coefficient ¢ allows for

0

flexibility in emphasizing either the overshoot minimization or the error reduction, depending on the system’s
requirements. The parameter tuning for the PID-F controller is carried out under the following constraints:
0.001 < Kp < 0.1, 0.001 < K7 < 0.1, 0.0005 < Kp < 0.005 and 100 < n < 2000. The upper
and lower bounds for the PID controller parameters were chosen based on the system’s dynamic behavior,
particularly the spark ignition engine’s response characteristics. Wider bounds were chosen to allow the
algorithm sufficient flexibility in exploring a range of possible solutions and to avoid local optima; however, this
choice increases the computational burden, as the larger search space requires more iterations to converge to an
optimal solution. Narrower bounds would speed up the optimization process but could limit the system’s ability
to find an optimal set of parameters, especially in complex systems with nonlinear behavior. Therefore, the
current bounds represent a compromise between ensuring accurate optimization and keeping the computational
cost manageable for real-time applications. Unlike conventional indices such as the integral of time-weighted
absolute error (ITAE) or the integral of squared error (ISE), the proposed objective function explicitly
incorporates both the normalized overshoot and the cumulative absolute error terms to control the transient
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Fig. 3. Time response of engine speed designed with Simulink PID tuner.

and steady-state behaviors simultaneously. This formulation allows the optimizer to directly minimize overshoot
while ensuring sustained error reduction throughout the response. The balancing coeflicient was selected after
empirical evaluation to achieve an optimal trade-off between response speed and stability. Larger values of ¢
were observed to accelerate convergence but introduced slight oscillations, whereas smaller values improved
damping at the cost of slower response. Therefore, the chosen weighting ensures a smooth transient performance
with minimal overshoot and negligible steady-state deviation, aligning with the nonlinear and time-varying
characteristics of spark-ignition engine dynamics.

The optimization process utilizes the FLA mechanism, with a flood swarm size ( Npop) of 30, performing
25 runs and a maximum iteration number ( Itermaqa) of 50 to ensure a comprehensive search for the optimal
controller parameters. Figure 4 illustrates the comprehensive workflow of the FLA applied to optimize the
PID-F controller parameters for the spark ignition engine speed control system. The process begins with the
initialization of the swarm and its parameters, where candidate solutions (representing PID-F parameters) are
assigned randomly within predefined bounds. The engine speed control system, modeled as a four-cylinder
spark ignition engine, receives these parameters and computes the control signal based on the error between the
speed reference and the actual engine speed. The generated control signal adjusts the throttle angle, influencing
the engine dynamics and generating an objective function value for each candidate.

The core of the FLA optimization process is depicted in the loop, where the swarm members are iteratively
updated. Each candidate solution is evaluated based on the objective function, aiming to minimize key
performance metrics such as overshoot, rise time, and steady-state error. The FLA mechanism updates the
swarm by comparing the costs (objective function values) of the current and newly generated members. If a
newly added member outperforms an existing one or even the best-performing member, their positions are
exchanged to refine the solution space. This dynamic adjustment helps the algorithm balance exploration and
exploitation, avoiding local optima. The process continues until the stopping criterion is met, such as reaching
the maximum number of iterations or achieving a satisfactory convergence rate. Once the loop ends, the best-
performing solution and its corresponding PID-F parameters are reported. This flowchart highlights how the
FLA systematically optimizes the controller’s parameters through iterative refinement and adaptive exploration,
ensuring robust performance in the engine speed control system.

Scientific Reports|  (2025) 15:45481 | https://doi.org/10.1038/s41598-025-29231-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

| Initialization of swarm and parameters |<— Start

(Assign new parametcrs):

torque

Speed v Throttle l Engine

reference ] angle i i speed
() .| PID-F gic | Throttle & Induction to power Combustion Vehicle P >

+ )2 | controller Manifold stroke delay dynamics

A

\/

<¢—— Four-cylinder spark ignition engine

:I Calculate objective function I:
Minimize

) 4
Update the swarm using the FLA mechanism

|

Is the new member's cost lower no
than that of the previous member?

l yes

Exchange the position of the previous
member with that of the new member

&
<

WSTUBYOIW VI

Is there a newly added member that no
costs less than the best member?

l yes

Exchange the positions of the newly added
member and the best-performing member

<&
<

Y

Is stop
condition
met?

Report the best solution | yes
and parameters N

End )Je—

Fig. 4. Flowchart of the proposed novel control strategy.

Verification of the statistical performance of FLA

This section provides a detailed statistical analysis of the proposed FLA by comparing its performance with
other optimization algorithms, namely the SCHO, WOA, and CS. The evaluation is conducted through various
statistical metrics and non-parametric tests to demonstrate the effectiveness of the FLA in achieving optimal

control performance.

Compared algorithms
To verify the effectiveness of FLA, a comparative analysis is performed against SCHO, WOA, and CS algorithms.

Table 1 outlines the parameter settings for each algorithm used in the comparison. In all cases, the maximum
number of iterations ( [termaz) is set to 50, and the population size ( Npop) is fixed at 30. These parameters
were chosen based on extensive simulations to ensure a balance between computational efficiency and solution
quality. It is worth noting that reducing the population size or the number of iterations could shorten the
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Algorithm | Parameter

FLA Itermaa = 50, Npop = 30, Ne =5

SCHO Itermax = 50, Npop = 30, p =10, ¢ = 9, n = 0.5, m = 0.45, u = 0.388, ¢t = 3.6, ¢ = 0.003, « = 4.6, B = 1.55
WOA Itermax = 50, Npop =30, b=1, a = [0, 2], az = [-2, —1]

CS Itermaa = 50, Npop = 30, p, = 0.25

Table 1. The parameter settings of FLA, SCHO, WOA and CS.

Algorithm | Best | Worst | Average | SD Median
FLA 4.5017 | 5.0707 | 4.7083 0.1583 | 4.6876
SCHO 4.6266 | 5.2299 | 4.8734 0.1676 | 4.8186
WOA 4.6878 | 5.2531 | 4.8906 0.1588 | 4.8542
CS 4.9603 | 5.6121 | 5.2082 0.1910 | 5.1900

Table 2. Statistical test results.

FLA versus
FLA versus SCHO WOA FLA versus CS
p-value Winner | p-value | Winner | p-value Winner
4.9316E-04 | FLA 0.0023 | FLA 1.2290E-05 | FLA

Table 3. Non-parametric statistical analysis.

computation time. However, this would likely result in a decrease in the quality of the solution, potentially
leading to suboptimal control performance. Therefore, the selected settings represent a trade-off that was found
to provide optimal parameter tuning for the PID-F controller within the simulated environment.

The SCHO, WOA, and CS were selected as benchmark algorithms based on their proven efficiency, stable
convergence, and successful implementation across a wide range of control-engineering and optimization
problems. Although several newer metaheuristics exist, these methods remain among the most reliable and
computationally efficient frameworks for fair benchmarking. Their inclusion ensures a balanced comparison,
highlighting the advantages of the proposed FLA in terms of convergence behavior, robustness, and solution
accuracy within a similar computational budget.

Statistical metrics and wilcoxon'’s test

To thoroughly assess the performance of the algorithms, several statistical metrics, including the best, worst,
average, standard deviation (SD), and median values of the objective function, are calculated and presented
in Table 2. The results indicate that FLA achieves the lowest values for all metrics, highlighting its superior
optimization capability. Furthermore, to determine the statistical significance of the performance differences,
the non-parametric Wilcoxon signed-rank test is employed. This test is used to compare paired samples and
identify whether there is a significant difference in their distributions. It is particularly useful when the data do
not necessarily follow a normal distribution, making it ideal for the performance comparison of optimization
algorithms™.

Table 3 presents the p-values obtained from the comparison of FLA with SCHO, WOA, and CS. The results
indicate that FLA outperforms the other algorithms with statistically significant differences. The p-values are less
than 0.05, which is the commonly accepted threshold for statistical significance®. This implies that the observed
differences in performance are unlikely to have occurred by chance, confirming that FLA is the most effective
algorithm in this study.

Boxplot analysis

The box-plot comparison of objective function values obtained using the FLA, SCHO, WOA, and CS are
shown in Fig. 5. The boxplots illustrate the distribution of objective function values across multiple runs for
each algorithm, providing a visual comparison of their performance and robustness. The red line in each
box indicates the median value, representing the central tendency of the results, while the blue box spans the
interquartile range, capturing the variability of the middle 50% of the data. The whiskers extend to the minimum
and maximum values within 1.5 times the interquartile range, highlighting the spread and consistency of the
solutions. The lower median and narrower interquartile range observed for the FLA in Fig. 5 can be attributed to
its robust optimization mechanism. FLAs dual-phase approach (combining directed search during the regular
movement phase and stochastic exploration during the flooding phase) allows the algorithm to consistently
identify near-optimal solutions while avoiding local optima. This balance between exploration and exploitation
reduces variability in the optimization results across multiple runs. Furthermore, FLA’s adaptive strategies, such
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Fig. 5. Boxplot of different algorithms for objective function value.

as the use of a convergence-based stopping criterion, ensure that the algorithm efficiently terminates once the
solution stabilizes. These features collectively contribute to the narrower interquartile range, indicating high
consistency in the objective function values, and a lower median, reflecting superior optimization performance.
By contrast, other algorithms, such as WOA and CS, often exhibit wider interquartile ranges due to their reliance
on less adaptive exploration strategies, which may lead to suboptimal convergence in some runs. These statistical
metrics collectively highlight the robustness of FLA in consistently identifying optimal or near-optimal solutions
across diverse problem instances, reinforcing its suitability for dynamic and complex optimization tasks.

Convergence analysis

The convergence curves behavior of each algorithm is analyzed to assess their optimization efficiency over
iterations. Figure 6 displays the convergence curves of FLA, SCHO, WOA, and CS, plotting the objective
function value against the iteration number. The respective plot demonstrates a rapid initial decline in the
objective function, followed by gradual stabilization as the algorithm approaches the optimal solution.

The adaptive stopping criterion effectively identifies this stabilization phase and terminates the optimization
process early, as indicated by the plateau in the convergence curve. This reduces computational overhead while
preserving the quality of the obtained solution. It is evident from the figure that FLA converges to the lowest
objective function value compared to the other algorithms, demonstrating its ability to find the better optimal
solution.

Computational runtime and real-time feasibility

To assess the computational efficiency of the compared algorithms, average runtimes were measured across 25
independent executions under identical simulation conditions. The average computation times were 639.43 s for
FLA, 880.15 s for SCHO, 767.80 s for WOA, and 949.49 s for CS. These results demonstrate that the proposed
FLA achieves the shortest computation time, operating approximately 27% faster than SCHO, 17% faster than
WOA, and 33% faster than CS. The efficiency gain primarily arises from FLA’s dual-phase search structure and
adaptive flood probability, which prevent unnecessary function evaluations and facilitate rapid convergence.
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In practical terms, the optimization is performed offline to determine the optimal controller gains, while
the online control stage relies solely on the tuned PID-F structure. Consequently, the computational demand
during real-time execution is minimal and equivalent to that of a conventional PID controller. This ensures full
compatibility with existing automotive electronic control units (ECUs), which typically operate with control-
loop sampling times on the order of milliseconds. Given its low-complexity implementation and potential for
parallelization, the proposed FLA-based tuning framework is thus entirely feasible for real-time deployment in
embedded engine-control systems.

Comparative nonlinear simulation results

This section presents a comprehensive comparison of the nonlinear simulation results obtained using various
optimization algorithms, including the FLA, SCHO, WOA, CS and the Simulink PID tuner. The performance
is evaluated in terms of closed-loop response, steady-state error, reference tracking, disturbance rejection, noise
attenuation and error-integral performance metrics.

Closed-loop response

The parameters obtained through different optimization algorithms are summarized in Table 4. The table lists the
proportional ( Kp), integral ( K7), derivative ( Kp), and filter (7 ) parameters for each method: FLA, SCHO,
WOA, CS, and the Simulink PID tuner. On the other hand, Fig. 7 shows the time response of the engine speed for
the different algorithms with a reference speed of 3000 rpm. Among the results, the FLA-based control provides
the best response, closely tracking the reference speed with minimal deviation. In contrast, the Simulink PID
tuner yields the worst performance, with significant deviations from the desired speed. To provide a clearer
comparison, Fig. 8 offers a zoomed view of the time response around critical points, highlighting the differences
in performance between the algorithms.

It is important to note that the parameters obtained from the Simulink PID Tuner were derived directly from
the automatic tuning process without any additional user-assisted adjustments. The tuner’s built-in algorithm
first linearizes the system model and then automatically computes the proportional, integral, derivative, and
filter coefficients. To maintain reproducibility and objectivity, no manual fine-tuning or heuristic correction was
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Algorithm Kp Kr Kp n

FLA 0.093047 | 0.013054 | 0.0044766 | 102.36
SCHO 0.068562 | 0.012825 | 0.0045724 | 234.44
WOA 0.060311 | 0.012749 | 0.0042848 | 227.67
CS 0.045274 | 0.01237 | 0.0041093 | 304.82
Simulink PID tuner | 0.0060933 | 0.01384 | 0.00062623 | 418.36

Table 4. Obtained parameters via different algorithms.

| — — Simulink PID tuner
Speed reference

1 2 3 4 5 6 7 8
Time (s)

Fig. 7. Time response of engine speed designed with various methods.

applied to these parameters. Although several user-assisted trials were conducted for verification, the resulting
performance did not surpass the default auto-tuned configuration. Therefore, the results presented in this study
correspond strictly to the default parameters provided by the Simulink PID Tuner, ensuring a transparent and
fair comparison with the proposed FLA-based PID-F controller.

As can be seen in Table 5, it is compared the normalized overshoot percent ( Nos (%)), normalized rise
time ( Nrise (s)) and normalized settling time ( Nse¢ (s)) (within a£2% tolerance band) for each method.
The FLA-based control is the only approach that achieves zero overshoot, indicating a highly stable response.
Additionally, the rise time and settling time for FLA are considerably lower than those of the other algorithms,
further demonstrating its superior dynamic performance.

It should be noted that the overshoot, rise-time, and settling-time metrics presented in Table 5 are reported
in normalized percentage form for consistency across all comparative methods. The corresponding actual peak
engine speeds were 3000.0000 rpm (FLA), 3000.1355 rpm (SCHO), 3000.2579 rpm (WOA), and 3000.7962 rpm
(CS) for a 3000 rpm reference. These values confirm that the small percentage overshoots are genuine results of
the controller precision and not artifacts of normalization. The use of a high-resolution simulation environment
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Algorithm Nos (%) | Nyise(s) | Nack
FLA 0 0.3156 2.4362
SCHO 0.0135 0.3304 2.4856
WOA 0.0258 0.3367 2.5013
CS 0.0796 0.3648 2.5708
Simulink PID tuner | 12.3712 0.5160 3.9817

Table 5. Overshoot, rise time and settling time performances.

and precise solver configuration further ensured that the computed performance indices accurately reflect the
system’s transient dynamics.

Steady-state error

The steady-state error is a critical parameter for evaluating the accuracy of a control system in tracking a reference
input over time. Figure 9 illustrates the engine speed response for different control algorithms over a 50-second
simulation, compared to the reference speed of 3000 rpm. The figure highlights how each algorithm performs
in minimizing the steady-state error, especially as the system settles. At the end of the simulation (% finai = 50
second), the steady-state errors for each control method are calculated as follows FLA: 9.3439 X 10°7 rpm,
SCHO: 2.6014 x 10™° rpm, WOA: 1.6640 x 10~° rpm, CS: 3.2858 x 10™° rpm and Simulink PID Tuner:
0.1839 rpm.

The results indicate that the FLA-based controller achieves the smallest steady-state error, almost reaching
zero, which demonstrates its exceptional precision in maintaining the desired engine speed. In contrast, the
Simulink PID tuner exhibits a significantly larger steady-state error, as evidenced by the noticeable oscillations
in its response in Fig. 9. These oscillations around the reference speed highlight the inability of the PID tuner
to consistently track the target value. The markedly lower steady-state error produced by the FLA-based

Scientific Reports |

(2025) 15:45481

| https://doi.org/10.1038/s41598-025-29231-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

3000.4

3000.2

Engine speed (rpm)

2999.2

3000

2999.8

2999.6

2999.4

2999

T

T

T

T

— — —
— —

| e — L

—
— —

— — Simulink PID tuner
Speed reference

| | | | | I |

15 20 25 30 35 40 45 50
Time (s)

Fig. 9. Steady-state error of engine speed.

controller underscores its superior capability in ensuring accurate speed regulation. This finding emphasizes
the effectiveness of using FLA for parameter optimization in PID-F control, enabling the system to maintain the
desired speed with minimal deviation.

Reference tracking

Figure 10 presents the reference-tracking performance of the proposed FLA-based PID-F controller when
subjected to multiple step-wise changes in the engine speed reference. The simulation evaluates how effectively
the controller adapts to different operational points, reflecting realistic variations in driver demand or load
conditions. As seen in the figure, the controller output (solid blue line) closely follows the desired reference
trajectory (dashed red line) across all transitions. During the initial acceleration phase, the engine speed rapidly
rises from 2000 rpm to 3000 rpm with a smooth transient and no observable overshoot, indicating well-damped
system behavior. When the reference decreases sharply to 1500 rpm at around 10 s, the controller promptly
adjusts without oscillation or delay, maintaining stable convergence toward the new setpoint. A subsequent
increase to 2500 rpm at 20 s is also tracked accurately, demonstrating consistent performance across both
acceleration and deceleration phases.

This behavior confirms the strong adaptability and robustness of the FLA-tuned controller in handling abrupt
reference variations while preserving smooth and precise control. The absence of overshoot and steady-state error
across all reference levels reflects the controller’s ability to maintain dynamic balance between responsiveness
and stability. Such characteristics are essential for real-world engine management systems, where the control
input must continuously adapt to rapid changes in throttle position, load, and environmental conditions without
compromising efficiency or smoothness.

Disturbance rejection and noise attenuation

Figure 11 illustrates the disturbance-rejection and noise-attenuation capability of the proposed FLA-based
PID-F controller through four subplots, each highlighting a specific aspect of the system’s dynamic response
under realistic operating perturbations. In the first subplot, the overall engine-speed response is shown under
the combined influence of disturbances and noise. The controlled output follows the reference command closely,
exhibiting a smooth transient behavior and negligible steady-state error. Even after the introduction of external
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Fig. 10. Performance of tracking a reference signal.

disturbances, the engine speed quickly returns to the reference value, confirming the controller’s strong resilience
and effective rejection of undesired deviations.

The second subplot depicts the reference input profile, where the desired engine speed transitions from
2000 rpm to 3000 rpm. This step-wise change represents a typical acceleration phase in real driving conditions.
The FLA-based control strategy responds promptly to this change, maintaining stable convergence and ensuring
that the actual engine speed aligns with the reference trajectory throughout the transient period. The third
subplot displays the disturbance signal applied at approximately 10 s, representing a sudden torque disturbance
equivalent to 5-10% of the nominal operating range (0 to —200 rpm). Following this injection, only minor and
short-lived fluctuations are observed in the engine speed response. The controller swiftly compensates for the
disturbance and re-establishes the reference speed without overshoot or oscillation. This behavior highlights the
algorithm’s strong disturbance-rejection ability and its capability to sustain smooth operation even under abrupt
load variations. The fourth subplot presents the noise input, varying randomly between -1 rpm and +1 rpm
to emulate sensor and measurement noise. Despite these continuous fluctuations, the control output remains
exceptionally stable, indicating that the incorporated derivative filter and optimized gain structure effectively
suppress noise propagation into the system output. This noise-attenuation characteristic is particularly valuable
in practical engine-control applications, where sensor imperfections and electrical interference are unavoidable.
Overall, Fig. 11 demonstrates that the proposed FLA-tuned PID-F controller possesses a high degree of
robustness against both transient disturbances and persistent noise. Its ability to maintain smooth, accurate, and
stable performance under such conditions underscores its suitability for real-world engine-speed regulation,
where operating environments are frequently affected by unpredictable external and internal perturbations.

Error-based performance indexes

To comprehensively evaluate the control performance of the proposed FLA optimized PID-F controller, four
error-integral performance indexes are employed: Integral Absolute Error (IAE), Integral Squared Error (ISE),
Integral Time Absolute Error (ITAE), and Integral Time Squared Error (ITSE). These metrics provide insights
into how effectively the control system minimizes errors over time**4%. The equation for IAE performance index
is defined in Eq. (12).
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Fig. 11. Disturbance rejection ability of FLA-based control method.

tfinal

TAE = / le( )| dt (12)

IAE measures the total absolute error over the duration of the simulation. Lower IAE values indicate better
overall performance in minimizing errors throughout the control process. The equation for ISE performance
index is defined in Eq. (13).

tfinal
ISE = / e (t)dt (13)

0

ISE emphasizes larger errors due to the squaring term, making it useful for identifying systems that can
effectively reduce significant deviations from the setpoint. A smaller ISE value signifies better control accuracy
and robustness. The equation for ITAE performance index is defined in Eq. (14).

t final
ITAE = / tle(t)|dt (14)
0
ITAE gives more weight to errors occurring later in the process, penalizing slower responses. Lower ITAE values

reflect faster error correction and improved system response over time. The equation for ITSE performance
index is defined in Eq. (15).
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Algorithm IAE | ISE ITAE | ITSE

FLA 225.0871 | 1.5806E +05 32.1633 | 1.6949E + 04
SCHO 230.6659 | 1.5875E+05 | 39.1018 | 1.7219E +04
WOA 233.1276 | 1.5913E+05 | 42.5692 | 1.7360E+04
CS 2441127 | 1.6129E+05 54.5219 | 1.8113E+04
Simulink PID tuner | 429.0889 | 2.1589E+05 | 468.6359 | 4.2765E+04

Table 6. Obtained values for different performance metrics.

tfinal
ITSE = / te (t)dt (15)

0

Similar to ITAE, ITSE places greater emphasis on errors that persist over time, but it focuses more on larger
errors due to the squared term. A smaller ITSE value indicates the controller’s effectiveness in rapidly reducing
both the magnitude and duration of errors. Table 6 presents the values of these performance indexes obtained
for the FLA-optimized controller, as well as the other algorithms (SCHO, WOA, CS, and Simulink PID tuner).
The results clearly show that the FLA-based control method achieves the lowest values across all four metrics,
highlighting its superior ability to minimize error, respond promptly, and maintain system stability.

Conclusion and future work

This study presented a comprehensive control framework for regulating the speed of a nonlinear four-cylinder
spark ignition engine using a FLA-optimized PID-E The proposed methodology introduced the FLA as a novel
metaheuristic optimizer for PID-F tuning, enabling effective parameter adjustment under nonlinear and time-
varying engine dynamics. A modified objective function was formulated to simultaneously penalize overshoot
and cumulative tracking error, ensuring a rapid transient response with minimal steady-state deviation. Through
extensive MATLAB/Simulink simulations, the FLA-optimized PID-F controller demonstrated superior dynamic
performance compared to benchmark algorithms such as the SCHO, WOA, CS, and the Simulink PID tuner. The
FLA-based design achieved zero overshoot, the fastest rise and settling times, and minimal steady-state error,
while maintaining robustness under noise and disturbance conditions. The findings were supported by non-
parametric statistical tests (Wilcoxon’s signed-rank test) and error-integral indices (IAE, ISE, ITAE, and ITSE),
which consistently confirmed the algorithm’s superiority in convergence stability, precision, and consistency.
Moreover, the disturbance rejection and reference tracking analyses validated the controller’s adaptability to
variable operating conditions, further emphasizing its robustness and reliability.

Beyond its simulation success, the proposed approach has strong practical relevance to automotive control
systems. The PID-F architecture ensures full compatibility with existing electronic control units (ECUs),
allowing seamless implementation without hardware modifications. Its inherent noise attenuation capability
contributes to smoother torque generation and improved fuel efficiency—key factors in reducing emissions
and extending engine life. Due to its algorithmic simplicity and model-independent tuning mechanism, the
developed framework can also be extended to other powertrain systems, including hybrid and electric vehicles,
for tasks such as motor-speed control, regenerative braking, and energy-management optimization.

For future studies, several promising directions are identified. First, hardware-in-the-loop (HIL)
implementation and real-time validation will be pursued to assess the controller’s feasibility under realistic
operating conditions. Next, broader experimental evaluations involving varying load disturbances, ambient
temperatures, and fuel characteristics will be conducted to confirm robustness and stability. The integration
of adaptive or self-learning mechanisms within the FLA may further enhance responsiveness to rapidly
changing engine dynamics, ensuring consistently low overshoot and fast recovery. Additionally, the extension
of this framework to advanced engine models such as variable valve timing or turbocharged systems, as well as
the inclusion of disturbance observers and data-driven compensation strategies, could significantly improve
accuracy and resilience. In addition, future studies may also examine the robustness of the proposed controller
under broader and more realistic operating conditions, including variations in ambient temperature, fuel quality,
and long-term component aging. Such analyses will provide deeper insight into the controller’s long-term
stability and adaptability for real automotive environments.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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