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Hybrid XGBoost-RF-MLP model
and PSO optimization for
performance and emissions of
Cl engine using waste cooking
biodiesel blends

M. S. Gad**, M. Sami Soliman? & Emad B. Helal??

Transesterification was used to create methyl ester from waste cooking oil (WCO). Diesel oil and
biodiesel blends in 25, 50, 75, and 100% were developed and authorized by ASTM. The primary
contribution of this study lies in integrating experimental WCO biodiesel data with a novel hybrid
machine learning and Particle Swarm Optimization (PSO) framework. A hybrid model, combining
XGBoost, Random Forest, and MLP, was developed to predict engine performance and emissions. The
core novelty is the use of base model predictions as meta-features for a final meta-learner, createing a
superior stacked ensemble. This hybrid model was then coupled with PSO to identify optimal engine
operating conditions. Key experimental results revealed that pure biodiesel (B100) reduced CO, HC,
and smoke emissions by 25%, 43%, and 45%, respectively. However, increased NOx emissions by 23%
and brake-specific fuel consumption by 22% were shown compared to diesel at full load. Crucially,

the hybrid model demonstrated exceptional predictive accuracy, achieving a significantly lower Mean
Squared Error (MSE in the order of 10-7) across all 13 output parameters compared to the individual
MLP (MSE ~10-3), RF (MSE ~10-%), and XGBoost (MSE ~10-6) models. The PSO algorithm successfully
converged to an optimal solution of 86% engine load and 26% biodiesel blend (B26), maximizing

the defined fitness function that balanced performance and emissions. The results unequivocally
demonstrate that the proposed hybrid modeling approach offers a robust and highly accurate
framework for engine optimization, establishing WCO biodiesel as a viable alternative fuel when used
in optimal blends.
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The Earth suffers from the negative environmental effects of fossil fuels use. The release of greenhouse gases,
such carbon dioxide, contributes to major environmental problems, including climate change and adverse effects
on the economy and ecology. By reducing carbon emissions, the Sustainable Development Goals (SDGs) aim
to save the environment and advance the development of sustainable alternative fuels as biodiesel!. However, it
is challenging to promote biodiesel as a fuel despite its advantages, with production costs, fuel properties, and
feedstock availability being vital obstacles to decreasing the demand for pure diesel. Hybrid intelligent models
have played a crucial role in enhancing the prediction accuracy of engine performance and emissions. Singh
et al.? combined Adaptive Neuro-Fuzzy Inference System (ANFIS) with Genetic Algorithm (GA), showing
improved estimations of brake thermal efficiency (BTE), hydrocarbons (HC), and nitrogen oxides (NOx).
While this hybridization improved accuracy, it required careful GA tuning, and limiting scalability. Extending
this work, Singh et al.? applied the Grasshopper Optimization Algorithm (GOA) to optimize diesel-biodiesel-
ethanol blends, confirming its effectiveness at specific blend ratios but exposing sensitivity to input composition.
Veza et al.* and Shirneshan et al.> employed response surface methodology (RSM) and Box-Behnken design
(BBD), identifying optimal parameters with < 7% error. These statistical approaches offered interpretability but
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were restricted to fixed operating ranges. Collectively, these early studies reveal the trade-off between algorithmic
accuracy and model adaptability.

Recent work has integrated optimization with neural networks. Samuel et al.® developed an improved particle
swarm optimization with back propagation neural network (IMPSO-BPNN) for hydrogen—natural gas mixtures,
achieving a mean absolute percentage error (MAPE) of 0.771%, significantly outperforming GA-BPNN, GA-
SVM, and PSO-SVM. However, its complexity raised concerns over computational feasibility. Ramachander
et al.” applied Gaussian regression to diesel injection systems, reporting correlation coefficients near unity
but requiring high-quality datasets. Simsek et al.® confirmed that kernel-based extreme learning machine
(K-ELM) provided more stable and generalizable results compared to LS-SVM and PSO, though interpretability
was limited. Similar efforts by Bitire and Jen® and Said et al.!® using GRNN-PSO achieved accurate emission
predictions, but remained highly parameter-sensitive. Statistical design methods persisted in parallel, with
Ardebili et al.!! and Manimaran et al.'? applied RSM and CCD to biodiesel blends, offered accurate yet narrow-
scope predictions. Together, these studies underscore the contrast between high-accuracy, complex Al models
and interpretable but rigid statistical methods.

Kumar and Pal'? refined RSM-based optimization for algal biodiesel with fuel additives, achievied < 6.5%
error but with limited adaptability. ANN applications gained prominence with Can et al.'* and Hosamani et
al.’®, who confirmed ANN’s predictive reliability (R? near 1) while emphasized its black-box nature. Advanced
integrations by Esonye et al.!® and Zheng et al.!” with optimization algorithms improved predictive strength
but demanded high computational resources. Earlier work by Shivakumar et al.!® validated ANN’s adaptability
in variable compression ratio engines, though calibration dependency persisted. Rajkumar et al.!® combined
ANN with genetic algorithms and combustion modeling, offered a balance of accuracy and interpretability.
Duan et al.?® developed IMPSO-BPNN with near-perfect correlation coefficients, but its tuning complexity
raised concerns about transferability. These works collectively mark a shift from statistical models to ANN-based
hybrids, improving accuracy but exacerbating transparency and data dependency issues.

To overcome these, Zandie et al.?! developed multi-input, multi-output ML models for diesel-gasoline-
biodiesel blends, demonstrating robustness under variable loads but requiring dense experimental data.
Maheshwari et al.?2 emphasized nonlinear regression for multi-objective optimization, reliable but functionally
rigid. Tosun et al.® showed ANN outperforming linear regression for biodiesel-alcohol blends, though
interpretability remained problematic. Bendu et al.?* applied GRNN-PSO with ethanol-fueled HCCI engines,
achieving accuracy but with parameter sensitivity. Wong et al.?>2 confirmed the value of quadratic prediction
models in scarce datasets, highlighting efficiency but also overfitting risks. Newer algorithms such as Extreme
Learning Machine (ELM) were tested by Santhosh et al.?’, who achieved rapid convergence with ZnO
nanoparticle blends, though stability under noisy data was questioned. Sebayang et al.”® compared ANN and
ELM for Sterculia foetida biodiesel, finding ELM superior in emission prediction yet less robust across blends.
Collectively these references 21-28, highlight the rise of faster, more efficient ML methods (ELM, GRNN-PSO,
hybrid ANN), but emphasize persistent interpretability and robustness challenges.

Aghbashlo et al.? integrated ELM with wavelet transforms (ELM-WT), enhancing accuracy with low RMSE.
Wong et al.*® and Silitonga et al3! confirmed K-ELM’s superiority over RBFNN and LS-SVM, though with
increased complexity. Kusumo et al.*? and Ghanbari et al.** used kernel-based methods and genetic programming
(GP), achieving high R but facing reproducibility challenges. Alrugi et al.>* applied Bayesian-optimized Gaussian
processes, improving reliability but at computational cost. Sharma et al.** leveraged Taguchi and utility theory for
biodiesel-diesel blends, offering straightforward optimization but limited treatment of nonlinear interactions.
Together with literature 2%-%, reveal a turn toward kernel and probabilistic models that trade interpretability for
accuracy and generalizability. Ensemble methods also gained traction. Poompipatpong?® validated quadratic
models in marine engines, cost-effective but narrow in scope. Sharma and Sahoo%” demonstrated that boosted
regression trees (BRT) outperform ANN in both precision and interpretability, signaling the potential of
ensemble learning. Ghanbari et al.*® reinforced the utility of RSM for nanoparticle-diesel blends, though again
limited in scope. Foundational works by Huang et al.*® and Ding et al.*® outlined ELM’s theoretical advantages
but warned against instability under real-world uncertainty. These findings suggest ensemble and kernel-based
methods as emerging alternatives to ANN dominance.

Comparative assessments strengthened this narrative. Sahin*! found ANN superior for BTE and NOx
prediction, SVM for exhaust temperature, and extreme gradient boosting best for CO, and HC. Viswanathan et
al.*> and Tan et al.** confirmed ANN’s superiority over RSM, though both remained reliable. Chaki and Biswas**
enhanced ANN with entropy-FA optimization, reducing errors to ~ 1.75% but retaining interpretability
concerns. Wang et al.*> integrated GA-SVM with NSGA-III, delivering strong generalization at the expense of
computational simplicity. Said et al.*® validated Gaussian regression for dual-fuel diesel-biogas engines, reporting
near-perfect R%. Hasanzadeh et al.*’ showed RSM reliable with ~ 5% error. Broader reviews by Sharma*® and
Aliramezani et al.*® positioned Al-based prognostic modeling as the future of CI engine optimization, noting
that ensemble and hybrid ML methods outperform conventional approaches but remain constrained by dataset
dependency and interpretability.

The performance and exhaust emissions of a diesel engine powered by a blend of diesel fuel and waste oil
biodiesel were anticipated and optimized using model structures created with Artificial Neural Networks (ANN)
and Response Surface Methodology (RSM). The correlation coefficient (R?) for each response in the developed
model ranged from 0.9785 to 0.9997. An ANN model with a maximum mean absolute error of 1.723% and
R > 0.99 was employed to predict all responses. The RSM approach returned a desirability value of 0.750,
indicating satisfactory performance. To analyze RSM regression equations, we employed the Actor Critic with
the Kronecker-Factored Trust Region-Differential Evolution (ACKTR-DE) and Harris Hawks Optimization
(HHO) algorithms™®. An artificial neural network (ANN) model was provided to estimate the emissions and
performance of various biodiesel percentages as engine speed varies. All variables had correlation coefficients

Scientific Reports |

(2025) 15:43832 | https://doi.org/10.1038/541598-025-29269-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

greater than 0.99 and R2 values higher than 0.98. MSE, MAPE, and MSLE values were low but had a substantial
predictive ability’!. Two mathematical models as extreme learning machine (ELM) and quadratic regression
were used to forecast engine characteristics and emissions at varying engine speeds and biodiesel concentrations.
Quadratic regression outperformed ELM in forecasting engine performance and emissions for the majority of
factors, resulting in reduced root-mean square and mean absolute percentage errors™.

Particle toxicity and tiny particles (less than 23 nm are more damaging). This effect is particularly obvious
during vehicle cold-start operation, which is an unavoidable daily driving scenario in which after-treatment
systems malfunction. The data showed that as the engine warms up, PN increases for all fuels while particle
size decreases. The PN concentration in a fully warmed-up engine was up to 132% higher than in a cold start.
Particles of 23 nm accounted for a substantial proportion of PN (9%) but only 0.1% of PM. During cold start,
a fuel blend containing 5% lubricating oil boosted PN concentration while decreasing particle size®. Most
automobiles require a cold start as part of their normal operation. The engine warm-up time was divided into
seven parts: formal hot-start and cold-start, as well as intervals that are not classed as cold-start or hot-start under
regulations. The results showed that as the engine warmed up, the fuel exergy, exhaust heat losses, and exergy
destruction were decreased by 2.3, 34.1, and 34.1%, respectively, while the exhaust exergy loss was increased by
43.5%. As the engine warmed up, the FMEP and BSFC were decreased by 56.7% and 14.9%, respectively, while
the BTE and exergetic efficiency was increased by 5.6% and 5.3%°*.

Random Forests were used to choose input variables, while PSO and GA were used to establish the optimal
model hyperparameters. Hybrid models perform well in both training and validation datasets, with R values
greater than 0.980 and 0.937, respectively. All R? values are greater than 0.930, indicating excellent generalization.
Hybrid models effectively address the limitations of single algorithms and are the best approach for applying
machine learning to emission prediction®. Six machine learning regression models, Decision Tree (DT),
Random Forest (RF), Gradient Boosting (GB), Extra Trees (ET), Extreme Gradient Boosting (XGB), and Light
GBM, were trained to forecast five critical outputs: brake thermal efficiency, brake specific fuel consumption,
carbon dioxide, particulate matter, and nitrogen oxides. GB outperformed RF and XGB in terms of predictive
performance, with average R? values of 0.999 (train) and 0.9586 (test) and MAPE of 2.58%°. Engine behavior
was modeled and predicted using artificial neural network (ANN) and machine learning (ML) approaches. The
R? values of the model showed exceptional agreement with experimental data, exceeding 0.93 for BSFC, 0.97 for
EGT, and 0.98 for NOx and HC, indicating outstanding predictive capacity across all parameters®”.

While numerous studies have applied individual or hybrid models, there is a distinct lack of research that
employs a stacked ensemble framework which uses the predictions of multiple, diverse base models as inputs
to a superior meta-learner specifically for modeling engines fueled with Waste Cooking Oil (WCO) biodiesel.
Furthermore, a truly integrated approach that uses such a high-fidelity model as a digital twin for PSO to discover
optimal engine settings remains unexplored for this application. Previously, studies used a single machine
learning model (e.g., ANN, RSM, ANFIS) or compared models side by side. Some investigations use simple
model averaging. This model demonstrates a stacked hybrid modeling architecture. A two-level stacked ensemble
was built. At the outset, three fundamentally different models (MLP, XGBoost, and Random Forest) were trained
separately. XGBoost can handle complex feature interactions. Random Forest is used for robustness and low over
fitting. MLP captures deep nonlinear interactions, boosting prediction accuracy and generalization compared to
single models. Their predictions were then used as fresh input features (meta-features) for a second-level meta-
learner (another XGBoost model) that learnt how to combine them optimally. This architecture enables the
meta-learner to identify the exact scenarios in which each base model works optimally. For example, it may learn
to trust Random Forest’s prediction for braking power more than MLP’s, although XGBoost’s prediction for CO
emission may be weighted more heavily. This advanced error-correction process goes beyond a basic model
comparison or average, yielding to a much lower MSE (10~ vs. 1073 for MLP). Conventional optimization (e.g.,
RSM) is frequently limited to basic, predefined polynomial relationships. Other studies employ PSO to tune
model hyper parameters. The trained hybrid model serves as a high-fidelity alternative for the real engine. The
PSO method searches for the best load and fuel blend combination by querying this rapid, accurate surrogate
model within the fitness function, rather of relying on expensive physical trials or less accurate individual
models. This results in a powerful closed-loop system. This allows for the virtual investigation of millions of
alternative operating points, identifying the global optimum (load =0.86, blend percentage =0.26), which would
be impractical to uncover by testing alone. The fitness function weights were set to represent a realistic trade-
off between performance and emissions. For small datasets such as (25 points), tree-based models outperform
standard neural networks (MLPs). The poor performance of the standalone MLP (highest MSE) demonstrates
the dangers of using a complicated model prone to over fitting on minimal data. The improved performance of
XGBoost and hybrid model shows that gradient boosting and stacking generalization are better paradigms for
this type of problem.

The main uniqueness of this work is the establishment of an integrated framework rather than the
implementation of well-established individual models. This framework includes (1) stacked ensemble
architecture for improved prediction accuracy on small datasets, and (2) closed-loop optimization in which the
PSO algorithm searches for the optimal (load, biodiesel blend ratio) combination by querying the hybrid model
as a fast, accurate digital twin, rather than relying on expensive physical experiments or less accurate individual
models.

Therefore, the objective of this study is to develop and validate a novel integrated framework that combines
a stacked hybrid machine learning model with PSO optimization for a diesel engine running on WCO biodiesel
blends. The specific aims are:

1. To develop a stacked ensemble model using XGBoost, Random Forest, and MLP as base learners. The XG-
Boost algorithm was selected as the meta-learner due to its built-in L1 and L2 regularization that prevents
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over fitting and its powerful gradient boosting framework that optimally combines complex, non-linear
predictions from the base models.

2. To integrate this hybrid model with a PSO algorithm, configured with a swarm size of 100 and 100 iterations
to ensure robust exploration and convergence in the two-dimensional search space, alongside established
cognitive and social parameters to identify the optimal combination of engine load and biodiesel blend ratio.

3. To comprehensively evaluate the framework’s accuracy against experimental data, analyze why the ensemble
approach reduces errors compared to individual models like the MLP, and elucidate the performance-emis-
sion trade-ofts of WCO biodiesel to provide practical insights for engine calibration and blend design.

This work shows a comparative evaluation of three modeling techniques as random forest, XGBoost and MLP
models. Hybrid modeling combines the effects of three modeling techniques. The accuracy of the prediction
model was shown by comparing the outputs of the modeling approach with the experimental findings. The
engine’s performance was evaluated using the following metrics: brake power, mean effective pressure, exhaust
gas temperature, thermal efficiency, fuel-air ratio, equivalence ratio, volumetric efficiency, and specific fuel
consumption. Studies have been conducted on exhaust concentrations, including smoke, CO, HC, and NOx.
Combining ensemble learning (XGBoost-RF) with deep learning (MLP) and PSO optimization would result
in much higher predictive accuracy than independent models. The hybrid PSO-ML framework can efficiently
generalize to previously unknown biodiesel blend ratios, resulting in reliable projections for engine performance
and emission trends. Optimized hybrid ML models can replace experimental testing in biodiesel engine studies,
saving money and time.

Methodology

Biodiesel production

Although diverse feedstocks such as soybean, palm, and jatropha oils have been widely used in biodiesel
production, waste cooking oil (WCO) has specific economic, environmental, and sustainability benefits that
make it an ideal choice for large-scale biodiesel production. WCO is a low-cost, widely available feedstock
produced in vast quantities by the home and commercial food processing sectors. Its use greatly lowers biodiesel
manufacturing costs, which are otherwise driven by the cost of virgin oils. The valorization of WCO solves
environmental and waste management issues. The improper dumping of spent cooking oil into sewage systems
results in substantial water contamination and environmental destruction. Converting this garbage into biodiesel
is a circular economy strategy that transforms a problematic waste stream into a profitable renewable energy
supply. WCO-derived biodiesel lowers lifecycle greenhouse gas emissions. The feedstock does not compete with
food resources, which aligns with the United Nations” Sustainable Development Goals (SDGs) for responsible
consumerism and climate action. As a result, WCO is chosen for its abundance, cost-effectiveness, waste-to-
energy potential, and contribution to environmental sustainability, making it an ideal feedstock for creating
predictive hybrid models for biodiesel engine applications.

WCO from restaurants and hotels was filtered to get rid of impurities and gums. Due to its increased viscosity,
WCO is not utilized in direct way in diesel engines. During transesterification, WCO was changed into methyl
ester. WCO was preheated to 110 °C and filtered to remove moisture. The oil was then transferred into a flask
that was held up by a magnetic stirrer, thermometer and condenser. Methoxide was produced by mixing 1:9
molar methanol with 1.5% by weight NaOH. The mixture of oil and methoxide was stirred for 90 min at 60 °C to
produce glycerin and methyl ester. The glycerin and ester were extracted by leaving the mixture in the separating
funnel for 12 hrs. Warm water was used to remove the catalyst, unreacted methanol and contaminants. A rotary
evaporator was used to dry the biodiesel once the water has been removed to produce crude methyl ester.
Pure diesel was combined with methyl ester at volume ratios of 0, 25, 50, 75, and 100%. Figure 1 depicts the
manufacturing of biodiesel and the creation of its blends. Table 1 lists the properties of crude diesel and methyl
ester mixtures.

The authorization or approval of biodiesel blends depends on national and international fuel standards
that specify allowable mixing ratios and fuel properties according to ASTM (American Society for Testing
and Materials) Standards. ASTM D-445, ASTM D-93, ASTM D-4052, ASTM D-224 and ASTM D-13 specify
parameters such as viscosity, flash point, specific gravity, calorific value and cetane number, respectively. ASTM
D7467 covers blends of biodiesel up to 20% biodiesel. ASTM D6751 describes biodiesel specifications.

Experimental test rig

The experiment used a four-stroke, air-cooled, diesel engine that could provide up to 10 kW of power at
1500 rpm. Bore of engine is 100 mm, its stroke is 105 mm, and its compression ratio is 17.5:1. Figure 2 shows
the setup schematic diagram. The engine’s output power was measured by connecting an AC generator with
an electrical output of 15 kW directly to the engine. Output voltage and current data were used to determine
how much electricity the load bank consumed. To assess the intake air flow, a sharp edge orifice was placed
at the air box’s side to reduce the pulsing air flow. The pressure decrease across the orifice was tracked using
U-tube manometer. The intake air and exhaust gas temperatures were measured using Type K thermocouple.
Measurements of carbon monoxide, NO_, smoke and HC exhaust gases were conducted. A gas analyzer (O,
(0-22%) electrochemical cell, NO, (0-1000 ppm) electrochemical), NO (0-4000 ppm) electrochemical cell,
CO, (0-10%) NDIR bench, HC (0-2000 ppm) NDIR bench, and smoke meter (opacity 0-99% and resolution
0.1) were utilized.

Before the tests, the engine was first run without load for 20 min in order to warm it up using diesel oil
under steady state conditions. After engine stabilization, the readings were collected. The engine running
continuously at 1500 rpm and with a range of engine loads was used for each measurement. To guarantee that
the testing results were reliable and reproducible, each engine test condition was done three times with identical

Scientific Reports |

(2025) 15:43832 | https://doi.org/10.1038/541598-025-29269-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Diesel oil

T B25

BS0

Tl B75

o™ B100

WCO  Transesterification Biodiesel 5

Fig. 1. Biodiesel production and its blends preparation.

Properties Method WCO Biodiesel (B100) | Diesel oil
Kinematic viscosity @40 °C, ¢St | ASTM D-445 | 4.7 3

Flash point, °C ASTM D-93 122 74
Specific gravity @15 °C ASTM D-4052 | 0.885 0.837
Lower heating value, MJ/kg ASTM D-224 | 39.6 421
Cetane number ASTM D-13 53 50

Table 1. WCO biodiesel and its blends’ properties.

operating parameters. To minimize random experimental variance, the measured values were averaged over
three replicates. The mean values were presented in the results section, and the standard deviation of each set
of measurements was calculated and used to construct error bars in the accompanying figures. This statistical
technique gives a quantitative measure of variability and increases the level of confidence in the presented
patterns. Prior to testing, all measurement instruments were carefully calibrated in accordance with the
manufacturer’s specifications to ensure the experimental data’s accuracy and repeatability. In terms of thermal
efficiency, hydrocarbons, Exhaust gas analyser was calibrated using approved span gases with known amounts
of CO, CO,, HC, and NOx. Prior to each test session, zero calibration was performed using pure nitrogen. The
smoke meter was calibrated using the manufacturer’s standard reference filters to check the opacity scale. NOx,
carbon monoxide, and smoke emissions, the uncertain ranges were +1 ppm, £1 ppm, £0.01% vol., + 1%, and
+1.5%, respectively. Engine speed, brake power, exhaust gas temperature, and specific fuel consumption were
determined to have the highest measurement errors, at 0.2, 0.85, 0.2, 2.2, and 0.15%, respectively. By summing
up all of the parameter uncertainties, the overall uncertainty was calculated using the following formula.

\/(uTewh)2 + (ubp)® + (usfc)® + (uN)? + (uther)® + (uCO)* + (uHC)? + (uNOx)?

= \/(0.2)2 +(0.85)% + (2.2)% + (0.15) + (1.5)* + (0.01)* + (1)* + (1)* + (0.2)> + (1)*
= +£2.9%
where:

Uncertainties of output power (ubp), EGT (uTexh), engine speed (uN), CO concentration (uCO), HC
emission (uHC), BSFC (usfc), BTE (uther), and NOx (uNOx).
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Fig. 2. Schematic diagram of experimental setup.

Modeling of emissions and engine performance

Based on the collection of experimental input-output data, this model employs various combinations of engine
loads and fuel blends. Three mathematical models as XGBoost regression, Random Forest regression (RF), and
Multi-layer Perceptron ANN (MLP) were used to forecast the output variables.

Data collection and preprocessing

The dataset includes two primary features, load and Fuel, and thirteen target variables representing various
performance metrics: Brake power (kW), Mean effective pressure (bar), BSEC (kg/kW h), BTE (%), Fuel-air
equivalence ratio, EGT (°C), Air-fuel ratio, Volumetric efficiency (%), CO (ppm), CO, (%), HC (ppm), NOx
(ppm), and Smoke emissions (%). In data preprocessing stage, the input for machine learning models was
normalized to a range!. These, multiple target variables were predicted using the following machine learning
model. Three groups were created from the dataset: training, testing, and validation. Training data is considered
90% of the original data while testing and validation have similar split of 5% of the original data. To avoid explicit
train-validation-test divides, an approach of using the complete dataset for both validation and testing was used
due to data limitations. The specified parameters, such as engine load and biodiesel blend ratio, have the greatest
impact on engine performance and exhaust emissions. These parameters are experimentally controllable and
physically meaningful, allowing for accurate modeling and real-world optimization of diesel engines.

System models

The proposed approach combines Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Multilayer
Perceptron (MLP) into a two-stage hybrid framework. Stage 1 (Base Learners): These models effectively capture
nonlinear interactions and feature relevance in the dataset. Stage 2 (XGBoost Meta-Learner): The predictions
from all three base models (XGBoost, RF, and MLP) are combined to form meta-features that serve as input to
the XGBoost meta-learner. The meta-learner refines these predictions by learning complex residual patterns,
which increases overall accuracy and generalization. The Particle Swarm Optimization (PSO) algorithm is
subsequently employed to identify optimal engine operating conditions that balance performance and emissions.
The methodology for system modeling is as shown in Fig. 3.

For the initial predictions, three machine learning models were chosen: Random Forest Regressor®®™,
XGBoost Regressor®®®!, and Multi-Layer Perceptron (MLP) Regressor®>®3. MLP uses several hidden layers (50-
20-10 neurons) to capture intricate, non-linear relationships within data. The neural network’s adaptability allows
the model to cope with a variety of input-output mappings, making it appropriate for challenging regression
issues. XGBoost is a version of boosting decision trees recognized for its rapid performance and superior
precision. It employs a boosting methodology, incrementally incorporating weak learners to reduce error, which
allows it to effectively capture complicated relationships among features. By constructing numerous decision
trees during training, ensemble learning method known as random forest produces the average prediction for
regression problems. It provides information on feature relevance while reducing model variance.

Subsequently, stacking and aggregation stage were implemented. This Stacked Ensemble Model is composed
of predictions from the three base models (MLP, XGBoost, and Random Forest). The stacking model applied
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Fig. 3. Hybrid stacking ensemble and PSO optimization framework, showing the two-stage prediction model
(left) and operational optimization process (right).

the XGBoost Regressor as the meta-learner to leverage the meta-features for final prediction. The selection was
driven by XGBoost’s ability to effectively prevent overfitting and handle complex relationships in the feature
space. Through the integration of several models’ strengths, the stacked model seeks to improve the overall
prediction accuracy. Stacked Ensemble Modeling combines the advantages of multiple models to improve
forecast precision. The meta-model is trained using the predictions from these underlying models as input
features (meta-features). The concept is that the meta-model identifies and rectifies the errors of the base

Scientific Reports|  (2025) 15:43832 | https://doi.org/10.1038/s41598-025-29269-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

models, utilizing their collective strengths to generate more precise predictions for all 13 engine performance
and emission parameters.

XGBoost modeling  Regression problems can be solved quickly and accurately using the sophisticated machine
learning algorithm XGBoost. This method of ensemble learning involves building a sequence of decision trees,
each of which aims to fix the mistakes of the one before it. The prediction accuracy of model is improved by this
recurring boosting technique. When it comes to handling complex, non-linear relationships in data, XGBoost
excels. Regularization settings, which penalize model complexity, are part of the strategy to prevent overfitting.
It ensures that every tree in the model is less affected by noise in the training data and more concentrated on
improving performance. Particularly in competitive data science jobs, XGBoost performs better than rival re-
gression methods. It is the preferred choice for large-scale regression problems due to its speed, accuracy, and
scalability, which offers significant advantages in predictive modeling tasks®*¢!,

Random forest modeling For regression situations, random forest is a reliable and flexible ensemble learning
technique. In order to increase forecast accuracy and manage overfitting, it creates a large number of decision
trees during training and aggregates their outputs. Using a method called bootstrap aggregation or bagging, each
decision tree in the forest has been trained on a random subset of the data, both in terms of features and samples.
Random Forest produces reliable predictions even with noisy data since it combines the results of several trees
in regression. Large datasets with numerous variables and intricate relationships are especially well-suited for
Random Forests. To describe nonlinear linkages and interactions, the method doesn’t require a lot of parameter
tweaking®>.

Multi-layer perceptron (MLP) model An artificial neural network with several layers of neurons, or nodes,
arranged hierarchically is called Multi-Layer Perceptron (MLP). It is one of the most often used and simple
types of neural networks, particularly for supervised learning tasks like classification and regression. Nonlinear
activation functions are typically used by the MLP’s neurons, allowing the network to identify complex input
patterns. MLPs are crucial models for machine learning tasks like pattern recognition, regression, and classifi-
cation because they can identify nonlinear relationships in data. One kind of feed forward neural network made
up of completely linked neurons with a nonlinear activation function is called a multilayer perceptron. The MLP
model’s inferior performance can be due to its sensitivity to hyper parameter adjustment and small dataset size,
which may have resulted in local minima and overfitting difficulties. It is frequently used to separate nonlinearly
separable data®3,

Hybrid model The hybrid model increases the accuracy of predictions regarding output variables in engine
performance analysis by combining the benefits of three specific machine learning techniques: Random Forest,
XGBoost (XGB), and Multi-Layer Perceptron (MLP). This hybrid approach, as opposed to individual models,
makes use of each technique’s distinct advantages. By integrating both approaches, the hybrid model improves
on their combined strengths and dramatically reduces prediction mistakes like Mean Squared Error (MSE). The
hybrid model is especially useful for predicting emissions and engine performance indicators in complex engine
systems because of its integration, which ensures increased precision and dependability. This hybrid stacking
strategy delivers better generalization and lower MSE than any single model.

Particle swarm optimization (PSO)

Once individual model predictions have been generated, the weighting strategy and parameters of model outputs
aggregating are optimized using Particle Swarm Optimization (PSO)%¢°. PSO was used because it can balance
exploitation (personal experience) with exploration (social impact) to discover the best answers. PSO serves two
primary purposes in this work:

1. Hyperparameter optimization: Particle Swarm Optimization (PSO) optimizes each model’s hyperparameters
to successfully lower prediction errors by viewing the ensemble model as a search domain.

2. Meta-model enhancement: PSO improves the weights assigned to each model’s outputs, enabling flexible,
data-driven prediction integration. Managing complex interactions and making sure the ensemble approach
can adapt to different datasets.

The PSO algorithm was used for optimization, with hyperparameters carefully chosen to balance convergence
speed and solution quality. The population size and maximum iteration number were chosen to give adequate
search variety while minimizing computing expense. The weight was reduced linearly in order to guarantee
a smooth transition from exploration to exploitation. The acceleration coefficients were chosen using widely
accepted ranges from previous optimization studies resulting in stable convergence behavior. These parameters
were initially tuned through a series of preliminary trials, which revealed that smaller or larger values slowed
convergence or resulted in premature local optima. The selected setup provided the greatest consistent prediction
accuracy (lowest MSE) across numerous runs of the hybrid PSO-ML models. In the parameter space, which is
defined by two important variables, engine load and blending ratio, each of the initialized 100 particles in the
swarm represents a possible solution. Initial velocities and locations are assigned at random within defined
boundaries. To assess each particle’s location based on the stacked ensemble models’ prediction quality, a fitness
function is created. Fitness of each output is estimated by calculating the weighted total of several goal variables
as follows:
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Fitness = w1 - Brake Power + w2 - mean ef fectie pressure

—ws - Specific Fuel Consumption + wa - Thermal efficiency

4ws - Fuel air equivalence ratio + ws - Exhaust Gas Temperature
4wz - Air Fuel Ratio + ws - Volumetric E f ficiency

+wg - CO Emission + wio - CO2 Emission

+wi1 - HC Emission + w1z - NOx Emission

+wi3 - Smoke Emission

where w; is weight coeflicients for each target variable ¢ (wherei =1, 2, 3,... , 12), calculating out each

variable’s proportionate significance in the fitness score. Depending on how each component should affect total
fitness, these weights might be zero, positive, or negative. The following criterion is used to choose the weight
values®4-66;

w = [0.3, 0, —0.3, 0.3, 0, 0, 0, 0, —0.01, —0.03, —0.01, —0.04, —0.01]

The goal is to get maximum prediction performance by maximizing the fitness function. In PSO, the fitness
function evaluates each solution (set of weights and hyper parameters) based on the ensemble’s prediction error
rate. Maintaining a mixture between local and global search capabilities, PSO updates particle locations and
velocities based on local and global bests as it iterates toward an optimal solution.

These weights are not arbitrary. It were chosen to represent a logical engineering objective that balances
desirable and undesirable outcomes. Positive weights (+0.3) were used to calculate brake power and thermal
efficiency: parameters. It was utilized to increase engine power and fuel economy. These are the major
performance indicators for all engine applications. Negative weights (— 0.3) were employed to reduce specific
fuel consumption, which has a direct influence on operational costs and the environment. To reduce harmful
emissions, negative weights for CO and NOx were utilized (- 0.01 and —0.04, respectively). The varying
magnitudes represent a prioritization. The larger weight for NOx (- 0.04) indicates that it is a critical pollutant
with strict regulatory restrictions, giving its removal a higher priority in the optimization. Zero weights (e.g.,
mean effective pressure) were employed. These parameters were determined to have a significant correlation
with other, already-weighted factors, hence biasing the fitness function without adding new information. In
summary, the weights represent a specific optimization goal: to discover the operating condition that delivers
the optimal balance of high power, high efficiency, and low emissions, with a significant emphasis on minimizing
NOx emissions. This is a typical case for engine calibration under modern environmental rules.

Results and discussion

Brake power (BP)

Impact of biodiesel mixtures on engine output power is depicted in Fig. 4. It is clear that brake power rises in
tandem with engine load. Increased methyl ester content reduces calorific value, leading to lower output power
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Fig. 4. Output power of the fuels at engine load variation.
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despite higher fuel consumption at increased loads. Because of its greater density and viscosity, methyl ester
demonstrated worse fuel atomization, fuel-air mixing, and vaporization. Biodiesel contains oxygen (about 10-12
wt%) in its molecular structure, lowering its heating value by 10-15% compared to diesel. As a result, less energy
is released per unit of fuel, resulting in a lower power output. Biodiesel generates less power than diesel oil due
to its lower calorific value. For the same amount of power, biodiesel and other diesel oil blends require more fuel.
The lowest output power of biodiesel at 1500 rpm is 23% less than diesel oil under maximum load. The results
were agreed with references®!1°.

Mean effective pressure (MEP)

The impact of biodiesel blends on engine mean effective pressure is depicted in Fig. 5. It is clear that mean
effective pressure rises in tandem with engine load. Fuel consumption rises as engine load increases. MEP
decreases as a result of methyl ester’s decreased calorific value brought on by an increase in its proportion. The
increased viscosity of biodiesel has an effect on atomization and spray penetration and results in bigger droplets
and poorer mixing with air, particularly at partial loads. This results in less efficient combustion. The methyl
ester hinders fuel- air mixing, atomization and vaporization due to its higher density and viscosity. Pure diesel
and biodiesel blends need more fuel to produce the same amount of power because methyl ester has a lower
calorific value. MEP of B100 is 23% lower than diesel oil at 1500 rpm and peak load. The findings were agreed
with literature®!%12,

Brake specific fuel consumption (BSFC)

Figure 6 shows how engine output power affects the precise fuel consumption of blends of methyl ester and
pure diesel. Diesel oil requires less fuel than biodiesel for all output power range. The engine needs more fuel
to produce the same amount of power for methyl ester than diesel fuel. As engine load increased, BSFC values
fell for both fuels. Because methyl ester has lower calorific value about pure diesel, its BSFC is higher than
crude diesel. The higher density of biodiesel results in more mass flow for the same injection time. Furthermore,
higher viscosity results in less effective atomization and air-fuel mixing, lowering combustion efficiency and
necessitating more fuel to maintain the same load. These properties of methyl ester lead to problems with air-
fuel mixing, vaporization, and atomization. Biodiesel’s worse combustion, decreased volatility, and increased
viscosity are the primary causes of its higher BSFC. Molecular frictional forces of biodiesel are the causes of
elevated BSFC. When compared to diesel oil, biodiesel had the greatest BSFC of 22% at engine full load. The
results were confirmed with references”!%1°,
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Fig. 5. Mean effective pressure of tested fuels at loads changes.
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Fig. 6. BSFC for tested blends at loads variations.

Brake thermal efficiency (BTE)

The difference in BTE when utilizing diesel and biodiesel mixtures is seen in Fig. 7. Fuel consumption rises in
tandem with engine load. The thermal efficiency decreases as the percentage of methyl ester increases. BTE peaks
and then starts to decrease as engine output power rises. Lower engine brake power leads to more concentrated
fuel use and higher heat loss. Because of increased fuel consumption and friction losses, the rise in engine
output power results in higher BSFC. Biodiesel has reduced thermal efficiency due to its increased viscosity, poor
combustion characteristics, and low volatility. Biodiesel’s increased surface tension cause bigger droplets and less
homogenous air-fuel mixtures. This results in incomplete combustion and less effective heat release, reducing
thermal efficiency. Atomization, vaporization and air- fuel mixing problems are shown due to these properties
of biodiesel. This decline in BTE would be explained by methyl ester’s reduced lower heating value and volatility
when compared to crude diesel. Higher engine output power result in higher heat loss and fuel consumption.
At maximum load, methyl ester’s BTE drops by 21% in comparison to diesel fuel. The literature validated these
findings”"%.

Exhaust gas temperature (EGT)

Figure 8 shows the relationship between engine power and exhaust gas temperature for methyl ester and diesel
mixtures. As engine load rises, the temperature of exhaust gases rises for all fuels. This could happen because
higher load causes the engine to use more fuel, which raises the cylinder temperature and increases exhaust gases
heat loss. Because more of the generated heat exits the cylinder with the exhaust gases rather than being turned
into usable work, EGT rises even while brake thermal efficiency falls. Because diesel-methyl ester mixtures burn
and heat up less efficiently than diesel fuel, their EGT are greater at the load variation. The reduced volatility and
higher viscosity of biodiesel causes issues with atomization and vaporization, which raises the EGT of methyl
ester about crude diesel. In comparison to pure diesel, methyl ester has lower calorific value and more heat loss,
which lowers the BTE and raises the EGT. These features of biodiesel cause issues with vaporization, atomization,
and air-fuel mixing. In comparison to diesel oil, EGT of B100 increased by 28% at highest output load. These
results were corroborated by the literature””:,

Air-Fuel ratio (A/F)

Figure 9 illustrates how the air-fuel ratio for diesel and methyl ester blends is impacted by engine brake power.
Air-fuel ratio decreases as engine load rises. A/F should be lowered since a higher engine load produced higher
fuel flow rate. Diesel fuel uses less fuel than methyl ester blends and has a larger calorific value, therefore biodiesel
fuel has the declined air-fuel ratio. Methyl ester blends have lower stoichiometric A/F than diesel. Because
biodiesel mixtures construction of 11% more O, about diesel, they require less air to run. Fuel consumption is
increased by the density and viscosity of methyl ester. These features of biodiesel cause issues with vaporization,
atomization, and air-fuel mixing. In comparison to diesel, biodiesel mixtures have lower stoichiometric A/F
ratio. The amount of fuel utilized for a given volume rises when diesel and biodiesel are blended, while the actual
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Fig. 7. Impact of tested fuel on BTE with engine brake power variation.
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Fig. 8. EGT of the used blends at engine output variation.
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Fig. 9. Impact of tested fuel on air-fuel ratio with engine brake power variation.

air-fuel ratio falls. At 100% engine load, the methyl ester fuel-air ratio was decreased by 13% about diesel oil. The
findings were agreed with references®!1°.

Fuel-air equivalence ratio

Figure 10 indicates how the output power affects the fuel-air equivalence ratio for diesel and biodiesel mixtures.
As engine load increases, the equivalence ratio climbs. Since a higher engine load causes a higher fuel flow rate,
the equivalence ratio should be adjusted. Diesel fuel burns less fuel and has larger calorific value than methyl
ester blends, hence methyl ester fuel has a lower equivalence ratio. Biodiesel mixtures have lower stoichiometric
A/F than pure diesel. Blends of biodiesel require less air to run since they contain 11% more oxygen than diesel.
Methyl ester’s density and viscosity rise as the fuel flow rate does. Higher density requires more fuel per cycle,
and its oxygenated structure naturally requires less external air for complete combustion than diesel. These
characteristics of biodiesel lead to problems with air-fuel mixing, atomization and vaporization. Related to diesel
oil, methyl ester mixtures have lower stoichiometric A/F. Actual air-fuel ratio falls and the amount of fuel utilized
for a given volume rises when diesel and biodiesel are combined. At peak engine load, the equivalence ratio of
biodiesel was decreased by 14% about crude diesel. The literature validated these results®2%23,

Volumetric efficiency

The difference in volumetric efficiency between diesel and methyl ester blends as a function of engine load is
shown in Fig. 11. It decreases because of the restrictions of air flow in intake manifold at higher engine loads.
Volumetric efficiency is significantly impacted by engine load because of the higher residual gas temperature.
At increasing engine output power, it drops due to severe air throttling brought on by constrained airflow in
the intake air. Volumetric efficiency of methyl ester mixtures with larger methyl ester content is lower. Exhaust
gas temperatures of biodiesel mixtures are higher than diesel. Methyl ester fuel burns with less air since it
includes 11% oxygen. Biodiesel's evaporative cooling effect, particularly at partial loads, can reduce intake
air temperature and increase air density, leading to improved volumetric efficiency. Due to variations in their
thermal characteristics and latent heat of vaporization, biodiesel has greater cylinder temperature and lower
input air temperature. Crude diesel oil has 10% greater volumetric efficiency than B100 at highest brake power.
The findings were validated with literature”1%%,

CO emissions

As shown in Fig. 12, engine output power affects CO levels of diesel and biodiesel mixtures. When engine
output power increases, CO emissions begin to rise after initially declining to a minimum. Engine load affects
the quantity of carbon monoxide generated because lower engine output power promotes slower rates of CO
oxidation by reducing gas cylinder temperatures. Lower gas cylinder temperatures at lower engine loads promote
the slow rate of CO oxidation. Compared to crude diesel, methyl ester emits less carbon monoxide. Oxygen-rich
molecular structure of biodiesel facilitates improved combustion and reduces the likelihood of the creation of
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Fig. 11. Volumetric efficiency of tested fuels at different loads.
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Fig. 12. Effect of methyl esters on CO concentrations at engine load change.

fuel-rich zones. Biodiesel has a lower carbon-to-hydrogen ratio than diesel, which means that less carbon is
accessible for CO production per unit of fuel burned. Because methyl ester contains more oxygen than diesel
oil, it has been demonstrated to have improved combustion efficiency and air-fuel mixing. At maximum output
power, B100 reduces CO emissions by 25% in comparison to diesel fuel. Previous investigations have shown
similar results'>17:21,

CO, emission

Figure 13 illustrates how engine load affects carbon dioxide levels for methyl ester mixtures at peak load. An
increasing engine load causes the cylinder gas temperature to rise, which raises CO, emissions. Engine load
affects carbon dioxide concentrations via altering the gas cylinder’s temperature and converting CO to CO,.
Increasing the biodiesel mixing ratio lowers CO, emissions since methyl ester has higher oxygen percentage
and less carbon than pure diesel. Methyl ester’s oxygen content improves improved combustion and lowers the
fuel-rich zone building. Consequently, for the same energy output, less carbon is oxidised, resulting in slightly
reduced direct CO, emissions. Methyl ester showed improved combustion efficiency compared to diesel oil.
Molecular composition of B100 is rich in oxygen, which improves combustion and reduces the likelihood of a
fuel-rich zone. Compared to diesel oil, biodiesel decreased carbon dioxide emissions by 20% when operating at
full load. The literature validated these findings™!>%.

NOx emissions

As shown in Fig. 14, engine output power affects the NOx concentrations from biodiesel blends. Thermal nitrogen
oxide production is influenced by temperature, residence time, and cylinder oxygen content. At low engine
loads, the fuel-air blend is lean but at high engine loads, it is rich. The rise in cylinder temperature is the reason
for the increase in NOx concentrations. As engine load increased, more cylinder turbulence resulted in a richer
mixture. At high cylinder combustion temperatures, dissociated nitrogen and oxygen combine to form thermal
NOx. Nitrogen oxides concentrations are increased in tandem with the amount of methyl ester. Adiabatic flame
temperature rises noticeably as a result of all of this, increasing the NO_emissions of methyl ester relative to pure
diesel. The engine cylinder’s increased turbulence creates a richer A/F mixture. These trends are grounded in
combustion physics. Biodiesel has a greater cetane number, resulting in an earlier start of combustion and longer
residence time at high temperatures. This allows more nitrogen and oxygen to react and generate NO,. The rise
in NOx with biodiesel concentration, biodiesel NOx paradox’ stems from higher combustion temperatures and
advanced combustion timing, both promoting thermal NOx formation. A decrease in ignition delay, air mixing,
and fuel preparation time has been blamed for the increase in NOx. Compared to diesel oil, B100 produces 45%
increased NOx when running at the highest load. The patterns of NOx emissions were consistent with earlier
studies!®2123,
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Fig. 14. NOx concentrations with brake power change for biodiesel blends.
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HC emissions

The link between engine brake power and HC concentrations for diesel and methyl ester blends is shown in
Fig. 15. Increased engine loads, cylinder temperatures, and fuel consumption all result in higher hydrocarbon
concentrations in methyl ester mixtures. This is because of the high engine brake power, which results in a rich
fuel combination and a scarcity of oxygen. At all engine loads, methyl ester lowers HC concentrations due to high
oxygen content. When methyl ester is substituted for diesel fuel, it emits lower hydrocarbons due to its higher
cetane number. Because biodiesel contains more oxygen, more particles oxidize during diffusion combustion,
which improves its capacity to lower HC emissions. The O, in biodiesel facilitates improved combustion
and decreases the likelihood of fuel-rich zone production. Higher cetane number of biodiesel result in more
controlled combustion, lowering the risk of misfire or incomplete combustion, both of which are primary causes
of HC. Methyl ester has superior combustion efficiency over crude diesel because of its higher oxygen content.
When using biodiesel instead of diesel fuel when the engine is running at full load, HC emissions are reduced by
43%. Findings of the literature support the trend in HC emissions””.

Smoke opacity

The influences of engine output power and different biodiesel blends on smoke emissions are depicted in Fig.
16. More smoke is produced since the engine was running faster and using more fuel. At lower engine loads,
less smoke is created since there is more oxygen present. Because of the rise in fuel consumption, a drop in
oxygen content resulted in observably increased smoke concentrations at high engine output power. The more
biodiesel produced the less smoke. Oxygen of methyl ester was the reason for the reduction in smoke. Smoke
increased along with fuel usage and output power. Diesel mixtures with methyl ester produced less smoke than
those containing ordinary diesel. Biodiesel burns and emits smoke. Biodiesel typically contains low aromatics
and sulfur, both of which contribute significantly to soot generation in diesel combustion. Their absence results
in cleaner combustion and reduced soot nucleation. Biodiesel is better able to reduce smoke emissions during
diffusion combustion by increasing the amount of particle oxidation that takes place. The oxygen in methyl
esters increases combustion efficiency, decreases smoke, and enhances ignition. When diesel engine runs at full
load, B100 has decreased smoke emission about pure diesel oil by 45%. The findings were confirmed by other
studies!>1921,

Simulation parameters of machine learning models

The simulation parameters of the three models as Multi-Layer Perceptron (MLP), Random Forest, and XGBoos
are designed to optimize the prediction performance. Three hidden layers with 50, 20, and 10 neurons each
make up the structure for the MLP. MLP activation function is Rectified Linear Unit (ReLU). Also, the Adam
optimizer is used with a learning rate equal to 0.001, with early stopping equal to 0.0001. The Random Forest,
and XGBoost models use the default configuration parameters.

Particle swarm optimization
Using the predictions of regression models, Particle Swarm Optimization (PSO) determines the best
combination of input variables, such as engine load and blending ratio, to either maximize or reduce a weighted
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Fig. 15. HC concentrations of tested blends at brake power variation.
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Fig. 16. Smoke changes of all fuels at engine output changes.

objective function, sometimes indicated the fitness function. This guarantees that the final decision considers
all performance metrics (such as efficiency and emissions) based on the established priorities. The efficiency of
PSO allows it to quickly identify high-quality solutions without the need to evaluate every possible combination,
leading to significant reductions in both time and resource sources.

Figure 17 illustrates the iterative convergence process of the Particle Swarm Optimization (PSO) algorithm
toward the optimal combination of engine load and biodiesel blending ratio. The figure consists of a sequence of
subplots showing six key iterations (1, 5,9, 13, 17, and 22) from the total 100 iterations performed, documenting
the evolution of the swarm’s search strategy. Each subplot represents the two-dimensional search space defined
by engine load (x-axis, 0-100%) and blending ratio (y-axis, B0O-B100). The swarm consists of 100 particles
(represented by blue dots), each representing a potential solution candidate. The red star indicates the global
best position discovered up to that iteration and the solution with the highest fitness value. The green dot shows
the centroid (average position) of the entire swarm, indicating the collective tendency of the particles. The
optimization process demonstrates a clear convergence pattern. In iteration 1, particles are randomly distributed
throughout the search space, with a centroid at approximately (load=0.51, blend ratio =0.49), indicating an
initial broad exploration phase. As iterations progress, the swarm collectively moves toward regions of higher
fitness. By iteration 5, the centroid shifts to (0.65, 0.35), showing a clear preference for higher engine loads and
moderate biodiesel blends. This trend continues through iterations 9 and 13, where the centroid reaches (0.77,
0.28) and (0.83, 0.27), respectively, indicating refinement toward specific optimal regions.

The convergence becomes particularly evident in iterations 17 and 22, where particles cluster tightly
around the global best position at (0.86, 0.26). This spatial concentration demonstrates that the algorithm has
successfully identified a robust optimum. The consistent reduction in blending ratio from 0.49 to 0.26 across
iterations suggests that moderate biodiesel blends (around B26) combined with high engine loads (around 86%)
yield the best compromise between performance and emissions. The dynamic adjustment of velocity ranges
from (- 0.05, 0.05) in early iterations to (- 0.01, 0.01) after iteration 10 enables the algorithm to transition
effectively from global exploration to local exploitation. This strategic balance ensures thorough search coverage
while allowing precise refinement near promising solutions. Figure 18 thus provides visual evidence of the PSO
algorithm’s effectiveness in navigating complex multi-objective optimization landscapes, ultimately identifying
the optimal operating conditions that maximize the defined fitness function balancing engine performance with
emission constraints.

The convergence of the Particle Swarm Optimization algorithm to a specific optimum of 86% engine load
with B26 biodiesel blend (Fig. 18) is a finding of significant practical importance. This result is not arbitrary but
is a direct consequence of the carefully weighted fitness function, which encoded the real-world objective of
balancing performance with environmental concerns. The high optimal load is driven by the positive weighting
of brake power and thermal efficiency, which generally improve with load due to reduced relative heat losses
and improved combustion efficiency. However, the algorithm correctly avoided the maximum load condition,
where the sharp rise in emissions, particularly NOx, would have penalized the fitness score. Concurrently, the
identification of a B26 blend as optimal reveals a key trade-off in biodiesel utilization. While high biodiesel blends
(like B100) reduce CO, HC, and smoke through more complete combustion, they also significantly increase
NOx emissions and fuel consumption. The B26 blend represents an optimal compromise, offering substantial
emission reductions over pure diesel without the severe NOx increase and power loss of high-percentage blends.
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Fig. 17. Particle Swarm Optimization convergence sequence showing iterations 1, 5, 9, 13, 17, and 22. Blue
dots represent individual particles, red star indicates global best position, and green dot shows swarm centroid.

Identifying of B26 as optimal provides actionable insight: mid-level blends can achieve significant emission
reductions with minimal performance loss, suggesting very high blends may be inefficient.

Comparison between developed models and experimental

This section uses XGBoost, random forest, ANN, and hybrid models to forecast the output variables, including
brake power, mean effective pressure, BSFC, BTE, EGT, A/E, fuel-air equivalency ratio, CO, HC, NOx, Co,,
and smoke, using the experimental data that has been provided as shown in Figs. 18 and 19. Figure 18 provides
comprehensive visual validation of the predictive models for performance parameters through a series of three-
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Fig. 18. Experimental vs. predicted engine performance: (a) Brake power, (b) Mean effective pressure, (c)
BSEC, (d) BTE, (e) EGT, (f) Volumetric efficiency, (g) Air-fuel ratio, (h) Equivalence ratio.

dimensional surface plots that compare experimental measurements with model predictions across the complete
operational domain. Each subplot, from (a) Brake power to (h) Equivalence ratio, represents a specific engine
performance parameter, with the x-axis showing engine load (0-100%), the y-axis representing biodiesel blending
ratio (B0-B100), and the z-axis displaying the corresponding parameter value. The experimental data points,
marked as “Actual” in the legends, are distributed across the load-blend space according to the experimental
design matrix, representing the ground truth measurements obtained from engine testing.

Similarly, Fig. 19 shows the comparison for emission parameters, with subplots from (a) Carbon monoxide
(CO) to (e) Smoke opacity. The prediction surfaces generated by four different modeling approaches as MLP,
XGBoost, Random Forest, and the final Hybrid model are overlaid on the same coordinate system, allowing for
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direct visual comparison between predicted and experimental values. The key observation across all subplots is
the consistent close alignment between the Hybrid model surface (labeled “Final”) and the spatial distribution
of experimental data points. For instance, in the BTE plot Fig. 18d, the Hybrid model accurately captures
the efficiency peak at intermediate load conditions and its variation with blending ratio, closely following
the actual measurement points. Similarly, for emission parameters like NOx Fig. 19d and CO Fig. 19a, the
Hybrid model surface correctly represents the increasing trends with higher engine loads while maintaining
appropriate sensitivity to biodiesel blending effects. The consistent performance across diverse parameter types
from power-related metrics like brake power Fig. 18a and mean effective pressure Fig. 18b to complex emission
characteristics like HC Fig. 19¢ and smoke opacity Fig. 19e demonstrates the robustness of the Hybrid modeling
approach. Particularly noteworthy is the model’s accuracy in capturing non-linear interactions between engine
load and blending ratio, as evidenced by the curved surface contours that faithfully follow the experimental data
distributions. This visual evidence, combined with the quantitative metrics, provides strong validation of the
Hybrid model’s suitability for engine optimization and emission prediction tasks.

Conversely, the reduction in CO and unburned HC emissions is a direct benefit of the fuel-bound oxygen
in biodiesel molecules, which facilitates more complete oxidation, especially in fuel-rich zones within the
combustion chamber that are prevalent at high loads. The model’s accurate capture of the non-linear relationship
between blending ratio and volumetric efficiency Fig. 18f further underscores its capability to map complex
physicochemical interactions, such as the displacement of intake air by biodiesel vapor and the effects of charge
cooling.

The following metrics are used to compare the models. The mean square error (MSE) calculated as:

1 ~
MSE (y, @ = NZ fvzl(yz —yi)2

where y is measured output is value and ¥ is the predicted target value. Examination of Mean Squared Error
(MSE) outcomes from the deployed models provides significant insights into their performance attributes as
depicted in Figs. 20 and 21. The Multi-Layer Perceptron (MLP) recorded the worst MSE performance across
most parameters, such as BTE Fig. 20d and CO emission Fig. 21a. This may be related to experimental data
limitation. Conversely, the XGBoost Regressor realized the lowest MSE among the individual models, as clearly

Scientific Reports|  (2025) 15:43832 | https://doi.org/10.1038/s41598-025-29269-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

seen in subplots like brake power Fig. 20a and BSFC Fig. 20c. XGBoost has the capability in managing non-linear
relationships and utilizing its gradient boosting framework to gradually minimize prediction errors. However,
precise adjustment of parameters like learning rate, tree depth, and regularization factors is necessary for XGBoost
to function well. The Random Forest Regressor showed moderate performance, with an MSE that is lower than
that of the MLP but higher than that of XGBoost, evident in parameters like mean effective pressure Fig. 20b
and HC emission Fig. 21c. This is consistent with the Random Forest’s method of averaging predictions from
independently trained trees, which provides robustness and mitigates variance. Finally, the hybrid model, which
integrates predictions from MLP, XGBoost, and Random Forest into meta-features, achieved the lowest overall
MSE across all parameters, as quantitatively demonstrated in every subplot of Figs. 20 and 21. This illustrates the
benefits of stacking, where the strengths of individual models are combined to offset their weaknesses. While the
hybrid model excels in minimizing bias and variance, it also introduces additional computational complexity.
In summary, the MSE results for the 13 target parameters emphasize the advantages of ensemble and hybrid
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methodologies for predictive tasks involving tabular data, while also highlighting the limitations of MLP in this
scenario.

The comprehensive results presented demonstrate not only the effectiveness of the proposed hybrid modeling
and optimization framework but also provide deep insights into the interplay between engine operation, fuel
composition, and performance-emission trade-offs. The superior predictive accuracy of the hybrid stacked
ensemble model, as quantitatively validated by its minimal MSE across all sub-figures in Figs. 20 and 21,
stems from its unique architecture. The hybrid model acts as a committee of experts, using a meta-learner to
intelligently combine the predictions from the MLP, XGBoost, and Random Forest models. This allows it to
compensate for the individual weaknesses of each algorithm, particularly the tendency of the standard MLP to
overfit on small datasets, thereby achieving a level of robustness and accuracy unachievable by any single model.

Table 2 presents a detailed comparison of the Mean Squared Error (MSE) associated with various engine
performance and emission parameters across four models: MLP, XGBoost, Random Forest, and a hybrid
model. In the case of brake power, the MSE values indicate a distinct pattern, with MLP exhibiting the highest
error (0.002721589), followed by Random Forest (0.000432729). XGBoost shows a significantly lower error
(6.38E—07), while the hybrid model achieves the best performance with the lowest error (5.34E-07). A similar
trend is observed for mean effective pressure, where MLP again records a high MSE (0.002204502), whereas
Random Forest (0.00017572) and XGBoost (7.52E-07) demonstrate improved performance, with the hybrid
model yielding the most favorable result (9.25E-07). In the context of emissions predictions, particularly for CO
emissions, MLP again registers the highest error (0.006708499), being notably surpassed by XGBoost (7.19E-07)
and Random Forest (0.000765264). The hybrid model, however, provides the most precise prediction, achieving
an MSE of only 1.66E—07. Regarding thermal efficiency, MLP’s error stands at 0.008889129, this is significantly
greater than that of XGBoost (8.64E-07) and Random Forest (0.000185856), while the hybrid model reduces
the error to 3.11E-07. For specific fuel consumption, MLP records an error of 0.004083075, whereas XGBoost
(7.01E-07), Random Forest (0.000482096), and the hybrid model (3.95E-07) show progressive enhancements.
Similarly, the hybrid model achieved the lowest error. Overall, the hybrid model demonstrates superior
predictive performance across all metrics, while MLP consistently achieves the worst performance. These
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Parameters MLP XGBoost | Random forest | Hybrid model
Brake power 0.002721589 | 6.38E-07 | 0.000432729 5.34E-07
Mean effective pressure | 0.002204502 | 7.52E-07 | 0.00017572 9.25E-07
BSFC 0.004083075 | 7.01E-07 | 0.000482096 3.95E-07
BTE 0.008889129 | 8.64E-07 | 0.000185856 3.11E-07
Exhaust gas temperature | 0.001735155 | 1.10E-06 | 0.000762397 3.24E-07
Air-fuel ratio 0.002840784 | 8.34E-07 | 0.00084836 4.86E-07
Equivalence ratio 0.00805232 | 1.75E-06 | 0.000523592 5.62E-07
Volumetric efficiency 0.0026497 5.59E-07 | 0.000187546 5.69E-07
CO emission 0.006708499 | 7.19E-07 | 0.000765264 1.66E-07
CO, emission 0.002008877 | 6.76E-07 | 0.000309425 6.67E-07
HC emission 0.002500108 | 1.28E-06 | 0.000922653 2.03E-07
NOx emission 0.002344321 | 1.75E-06 | 0.000894478 4.38E-07
Smoke emission 0.004297152 | 5.20E-07 | 0.000448199 4.73E-07

Table 2. Mean square error (MSE) for MLP, XGBoost, random Forest, and final hybrid model.

findings underscore that the hybrid model, effectively leveraging the strengths of the individual models, has a
potential capability in reducing predictive errors.

Our primary goal was to compare the predictive accuracy of four different modeling approaches (MLP,
XGBoost, RF, Hybrid) across 13 distinct output variables. MSE is a stringent, widely accepted metric for regression
tasks. Its quadratic nature heavily penalizes large errors, making it highly effective for clearly differentiating
between models’ performance, especially when the errors are very small, as in our case (ranging from 107> to
1077). Mean Square Error was chosen as the primary metric because it is sensitive to large deviations and can
provide a direct quantitative measure of prediction accuracy during the model training and testing phases. The
fitness function for our Particle Swarm Optimization (PSO) was fundamentally based on minimizing prediction
error. Using MSE, this is directly related to the error being minimized, ensured consistency throughout our
methodology.

Conclusions

WCO was used to produce methyl ester in this study, and the properties of the biodiesel blend nearly resemble
ASTM diesel. Different ratios of diesel and biodiesel are used, such as 25, 50, 75, and 100%. Models using
XGBoost, random forest, MLP and hybrid models are utilized in experimental studies on engine emissions
and performance for biodiesel and diesel mixtures. This study demonstrates that significant research novelty
can be achieved through the intelligent integration of existing mathematical tools. The proposed hybrid stack
and its use within an optimization pipeline where PSO efficiently queries the model to find the best operating
conditions offer a novel methodology that transcends the capabilities of its individual components.

The following is a summary of the results obtained:

o Output power and mean effective pressure for B100 are 25 and 24% decreased about pure diesel engine at
highest brake power and 1500 rpm, respectively. In relation to crude diesel, biodiesel raised the BSFC, equiv-
alence ratio, and EGT by 28%, 22%, and 23%, respectively, at full engine output power. Biodiesel’s volumetric
efficiency and air-fuel ratio are 4% and 15% declined about diesel oil at 100% engine output power, respec-
tively.

o At 1500 rpm engine speed and maximum brake output power, the highest decreases in carbon monoxide,
CoO,, hydrocarbons, and smoke were 12, 13, 44, and 48%, respectively using pure biodiesel in relation to diesel
oil. Methyl ester application reduces nitrogen oxides by 23% about diesel oil.

« Hybrid model incorporates MLP, XGBoost, and RF predictions into meta-features, had the lowest total MSE.
This demonstrates the advantages of stacking, which combines the advantages of several models to counteract
their drawbacks. The hybrid model approach is very good at reducing bias and variation. MSE findings for
the 13 target parameters show the limitations of MLP in this situation while also demonstrating the benefits
of ensemble and hybrid approaches for prediction tasks using tabular data.

« Using biodiesel blends reduce engine emissions as HC, CO and smoke compared to diesel oil. B100 reduces
CO, CO,, HC and smoke emissions by 25, 20, 43 and 45% in comparison to diesel fuel. Waste is diverted from
disposal by using WCO. Compared to fossil diesel, life cycle GHG emissions are usually lower. When WCO
is accessible locally and processing is scaled appropriately, economic viability increases. Particularly at lower
blend ratios up to 20%, WCO biodiesel offers engine performance (power, specific fuel consumption, and
thermal efficiency that is comparable to diesel. WCO biodiesel’s increased oxygen content improves combus-
tion efficiency. WCO is a cheap and renewable that minimizes pollution from the waste disposal and lessens
reliance on fossil fuels. So, WCO-based biodiesel is a viable alternative fuel for CI engines.

This study is a robust methodology for navigating the complex multi-objective optimization landscape of
sustainable engine operation, bridging the gap between data-driven modeling and fundamental engine
thermodynamics. The main result of this study is the successful development of a hybrid AI and PSO
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optimization framework, which identified that operating a diesel engine at 86% load with a 26% biodiesel blend
(B26) provides the optimal balance between engine performance and emission reduction for WCO biodiesel.

Hybrid modeling and optimization strengths and weaknesses

In statistical and regression models, simple structure, easy interpretation, and little computational effort. Limited
capacity to capture nonlinear and linked effects across variables; accuracy suffers under complex biodiesel or
multi-fuel circumstances. ANN and Machine Learning Models have strong nonlinear mapping capabilities,
excellent predictive accuracy, and adaptability to big datasets. Training takes a large amount of data; there is a
risk of overfitting; and model interpretability is limited. In hybrid and optimization-based models, it combines
the strengths of numerous methods to increase accuracy, robustness, and generalization, as well as the ability
to tune and optimize parameters. It is computationally expensive and requires meticulous parameter selection
and validation to assure dependability. The hybrid XGBoost-RF-MLP model optimized by PSO was created to
combine the nonlinear learning capability of ensemble and deep models with the global search efficiency of
metaheuristic optimization, overcoming the limits of individual methods.

Limitations and practical implications

While this study establishes a robust methodological framework, its findings should be considered in light of
certain limitations. The analysis is based on a constrained experimental dataset from a single engine configuration
operating at steady-state conditions. Consequently, the model’s generalizability to other engine sizes, designs, and
transient operating cycles remains to be fully validated. Furthermore, the optimization was conducted using a
limited set of input parameters, excluding variables such as injection timing. NOx mitigation solutions should be
considered in biodiesel operations. EGR systems to lower combustion temperatures, selective catalytic reduction
(SCR) and oxidation catalysts to reduce tailpipe NOx, and fuel-borne additives (cerium oxide, titanium dioxide
nanoparticles, and water emulsions) to improve combustion and suppress peak temperature are now recognized
as effective approaches to reducing NOx emissions in biodiesel-fueled CI engines. The created hybrid ML-PSO
framework may significantly minimize the number of expensive and time-consuming engine experiments
by accurately projecting performance and emission outcomes for diverse biodiesel-HHO-nanoparticle
combinations. Furthermore, the model can guide appropriate blend and additive selection under a variety of
load and speed conditions, hence facilitating data-driven optimization and sustainable fuel formulation for CI
engines.

Future work

The dataset will be increased by conducting additional tests and integrating publically accessible engine
performance data to improve the hybrid model’s forecasting accuracy. EGR and selective catalytic reduction
systems will be used to lower tailpipe NOx. Expanding operational scope will be used to validate the framework
under transient engine operations, variable load/speed settings and real-world driving cycles to to prove the
hybrid model prediction framework’s robustness and adaptability to realistic engine environments. Exploring fuel
variability will investigate the impact of different WCO feedstocks and fuel additives on the model’s predictions
and the identified optimum. Exploration of nano additives will improve combustion efficiency and emissions.
Combining WCO biodiesel with hydrogen or HHO enrichment will produce nearly zero emissions. Future study
will concentrate on incorporating economic feasibility, energy return on investment and environmental impact
indicators as carbon footprint into the modeling framework. This integration will allow for a full assessment
of WCO biodiesel’s competitiveness against conventional diesel and alternative renewable fuels, offering data-
driven insights for policy formulation and large-scale implementation. Generalizability can be assessed by
testing the proposed methodology on a wider range of engine sizes and types to confirm its robustness and
transferability. The framework will be extended to include multi-fuel (Jatropha, palm, algal biodiesel) and multi-
engine datasets, allowing the model to capture broader operational behaviors and increase generalization. This
update will also support transfer learning and meta-model adaptation, improving prediction accuracy across a
variety of combustion systems and fuel attributes.
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All data generated or analyzed during this study are included in this published article.
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