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Transesterification was used to create methyl ester from waste cooking oil (WCO). Diesel oil and 
biodiesel blends in 25, 50, 75, and 100% were developed and authorized by ASTM. The primary 
contribution of this study lies in integrating experimental WCO biodiesel data with a novel hybrid 
machine learning and Particle Swarm Optimization (PSO) framework. A hybrid model, combining 
XGBoost, Random Forest, and MLP, was developed to predict engine performance and emissions. The 
core novelty is the use of base model predictions as meta-features for a final meta-learner, createing a 
superior stacked ensemble. This hybrid model was then coupled with PSO to identify optimal engine 
operating conditions. Key experimental results revealed that pure biodiesel (B100) reduced CO, HC, 
and smoke emissions by 25%, 43%, and 45%, respectively. However, increased NOx emissions by 23% 
and brake-specific fuel consumption by 22% were shown compared to diesel at full load. Crucially, 
the hybrid model demonstrated exceptional predictive accuracy, achieving a significantly lower Mean 
Squared Error (MSE in the order of 10⁻⁷) across all 13 output parameters compared to the individual 
MLP (MSE ~ 10⁻3), RF (MSE ~ 10⁻⁴), and XGBoost (MSE ~ 10⁻⁶) models. The PSO algorithm successfully 
converged to an optimal solution of 86% engine load and  26% biodiesel blend (B26), maximizing 
the defined fitness function that balanced performance and emissions. The results unequivocally 
demonstrate that the proposed hybrid modeling approach offers a robust and highly accurate 
framework for engine optimization, establishing WCO biodiesel as a viable alternative fuel when used 
in optimal blends.
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The Earth suffers from the negative environmental effects of fossil fuels use. The release of greenhouse gases, 
such carbon dioxide, contributes to major environmental problems, including climate change and adverse effects 
on the economy and ecology. By reducing carbon emissions, the Sustainable Development Goals (SDGs) aim 
to save the environment and advance the development of sustainable alternative fuels as biodiesel1. However, it 
is challenging to promote biodiesel as a fuel despite its advantages, with production costs, fuel properties, and 
feedstock availability being vital obstacles to decreasing the demand for pure diesel. Hybrid intelligent models 
have played a crucial role in enhancing the prediction accuracy of engine performance and emissions. Singh 
et al.2 combined Adaptive Neuro-Fuzzy Inference System (ANFIS) with Genetic Algorithm (GA), showing 
improved estimations of brake thermal efficiency (BTE), hydrocarbons (HC), and nitrogen oxides (NOx). 
While this hybridization improved accuracy, it required careful GA tuning, and limiting scalability. Extending 
this work, Singh et al.3 applied the Grasshopper Optimization Algorithm (GOA) to optimize diesel–biodiesel–
ethanol blends, confirming its effectiveness at specific blend ratios but exposing sensitivity to input composition. 
Veza et al.4 and Shirneshan et al.5 employed response surface methodology (RSM) and Box–Behnken design 
(BBD), identifying optimal parameters with < 7% error. These statistical approaches offered interpretability but 
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were restricted to fixed operating ranges. Collectively, these early studies reveal the trade-off between algorithmic 
accuracy and model adaptability.

Recent work has integrated optimization with neural networks. Samuel et al.6 developed an improved particle 
swarm optimization with back propagation neural network (IMPSO-BPNN) for hydrogen–natural gas mixtures, 
achieving a mean absolute percentage error (MAPE) of 0.771%, significantly outperforming GA-BPNN, GA-
SVM, and PSO-SVM. However, its complexity raised concerns over computational feasibility. Ramachander 
et al.7 applied Gaussian regression to diesel injection systems, reporting correlation coefficients near unity 
but requiring high-quality datasets. Simsek et al.8 confirmed that kernel-based extreme learning machine 
(K-ELM) provided more stable and generalizable results compared to LS-SVM and PSO, though interpretability 
was limited. Similar efforts by Bitire and Jen9 and Said et al.10 using GRNN-PSO achieved accurate emission 
predictions, but remained highly parameter-sensitive. Statistical design methods persisted in parallel, with 
Ardebili et al.11 and Manimaran et al.12 applied RSM and CCD to biodiesel blends, offered accurate yet narrow-
scope predictions. Together, these studies underscore the contrast between high-accuracy, complex AI models 
and interpretable but rigid statistical methods.

Kumar and Pal13 refined RSM-based optimization for algal biodiesel with fuel additives, achievied < 6.5% 
error but with limited adaptability. ANN applications gained prominence with Can et al.14 and Hosamani et 
al.15, who confirmed ANN’s predictive reliability (R2 near 1) while emphasized its black-box nature. Advanced 
integrations by Esonye et al.16 and Zheng et al.17 with optimization algorithms improved predictive strength 
but demanded high computational resources. Earlier work by Shivakumar et al.18 validated ANN’s adaptability 
in variable compression ratio engines, though calibration dependency persisted. Rajkumar et al.19 combined 
ANN with genetic algorithms and combustion modeling, offered a balance of accuracy and interpretability. 
Duan et al.20 developed IMPSO-BPNN with near-perfect correlation coefficients, but its tuning complexity 
raised concerns about transferability. These works collectively mark a shift from statistical models to ANN-based 
hybrids, improving accuracy but exacerbating transparency and data dependency issues.

To overcome these, Zandie et al.21 developed multi-input, multi-output ML models for diesel–gasoline–
biodiesel blends, demonstrating robustness under variable loads but requiring dense experimental data. 
Maheshwari et al.22 emphasized nonlinear regression for multi-objective optimization, reliable but functionally 
rigid. Tosun et al.23 showed ANN outperforming linear regression for biodiesel–alcohol blends, though 
interpretability remained problematic. Bendu et al.24 applied GRNN–PSO with ethanol-fueled HCCI engines, 
achieving accuracy but with parameter sensitivity. Wong et al.25,26 confirmed the value of quadratic prediction 
models in scarce datasets, highlighting efficiency but also overfitting risks. Newer algorithms such as Extreme 
Learning Machine (ELM) were tested by Santhosh et al.27, who achieved rapid convergence with ZnO 
nanoparticle blends, though stability under noisy data was questioned. Sebayang et al.28 compared ANN and 
ELM for Sterculia foetida biodiesel, finding ELM superior in emission prediction yet less robust across blends. 
Collectively these references 21–28, highlight the rise of faster, more efficient ML methods (ELM, GRNN–PSO, 
hybrid ANN), but emphasize persistent interpretability and robustness challenges.

Aghbashlo et al.29 integrated ELM with wavelet transforms (ELM-WT), enhancing accuracy with low RMSE. 
Wong et al.30 and Silitonga et al.31 confirmed K-ELM’s superiority over RBFNN and LS-SVM, though with 
increased complexity. Kusumo et al.32 and Ghanbari et al.33 used kernel-based methods and genetic programming 
(GP), achieving high R2 but facing reproducibility challenges. Alruqi et al.34 applied Bayesian-optimized Gaussian 
processes, improving reliability but at computational cost. Sharma et al.35 leveraged Taguchi and utility theory for 
biodiesel–diesel blends, offering straightforward optimization but limited treatment of nonlinear interactions. 
Together with literature 29–35, reveal a turn toward kernel and probabilistic models that trade interpretability for 
accuracy and generalizability. Ensemble methods also gained traction. Poompipatpong36 validated quadratic 
models in marine engines, cost-effective but narrow in scope. Sharma and Sahoo37 demonstrated that boosted 
regression trees (BRT) outperform ANN in both precision and interpretability, signaling the potential of 
ensemble learning. Ghanbari et al.38 reinforced the utility of RSM for nanoparticle-diesel blends, though again 
limited in scope. Foundational works by Huang et al.39 and Ding et al.40 outlined ELM’s theoretical advantages 
but warned against instability under real-world uncertainty. These findings suggest ensemble and kernel-based 
methods as emerging alternatives to ANN dominance.

Comparative assessments strengthened this narrative. Sahin41 found ANN superior for BTE and NOx 
prediction, SVM for exhaust temperature, and extreme gradient boosting best for CO2 and HC. Viswanathan et 
al.42 and Tan et al.43 confirmed ANN’s superiority over RSM, though both remained reliable. Chaki and Biswas44 
enhanced ANN with entropy–FA optimization, reducing errors to ~ 1.75% but retaining interpretability 
concerns. Wang et al.45 integrated GA-SVM with NSGA-III, delivering strong generalization at the expense of 
computational simplicity. Said et al.46 validated Gaussian regression for dual-fuel diesel–biogas engines, reporting 
near-perfect R2. Hasanzadeh et al.47 showed RSM reliable with ~ 5% error. Broader reviews by Sharma48 and 
Aliramezani et al.49 positioned AI-based prognostic modeling as the future of CI engine optimization, noting 
that ensemble and hybrid ML methods outperform conventional approaches but remain constrained by dataset 
dependency and interpretability.

The performance and exhaust emissions of a diesel engine powered by a blend of diesel fuel and waste oil 
biodiesel were anticipated and optimized using model structures created with Artificial Neural Networks (ANN) 
and Response Surface Methodology (RSM). The correlation coefficient (R2) for each response in the developed 
model ranged from 0.9785 to 0.9997. An ANN model with a maximum mean absolute error of 1.723% and 
R > 0.99 was employed to predict all responses. The RSM approach returned a desirability value of 0.750, 
indicating satisfactory performance. To analyze RSM regression equations, we employed the Actor Critic with 
the Kronecker-Factored Trust Region-Differential Evolution (ACKTR-DE) and Harris Hawks Optimization 
(HHO) algorithms50. An artificial neural network (ANN) model was provided to estimate the emissions and 
performance of various biodiesel percentages as engine speed varies. All variables had correlation coefficients 
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greater than 0.99 and R2 values higher than 0.98. MSE, MAPE, and MSLE values were low but had a substantial 
predictive ability51. Two mathematical models as extreme learning machine (ELM) and quadratic regression 
were used to forecast engine characteristics and emissions at varying engine speeds and biodiesel concentrations. 
Quadratic regression outperformed ELM in forecasting engine performance and emissions for the majority of 
factors, resulting in reduced root-mean square and mean absolute percentage errors52.

Particle toxicity and tiny particles (less than 23 nm are more damaging). This effect is particularly obvious 
during vehicle cold-start operation, which is an unavoidable daily driving scenario in which after-treatment 
systems malfunction. The data showed that as the engine warms up, PN increases for all fuels while particle 
size decreases. The PN concentration in a fully warmed-up engine was up to 132% higher than in a cold start. 
Particles of 23 nm accounted for a substantial proportion of PN (9%) but only 0.1% of PM. During cold start, 
a fuel blend containing 5% lubricating oil boosted PN concentration while decreasing particle size53. Most 
automobiles require a cold start as part of their normal operation. The engine warm-up time was divided into 
seven parts: formal hot-start and cold-start, as well as intervals that are not classed as cold-start or hot-start under 
regulations. The results showed that as the engine warmed up, the fuel exergy, exhaust heat losses, and exergy 
destruction were decreased by 2.3, 34.1, and 34.1%, respectively, while the exhaust exergy loss was increased by 
43.5%. As the engine warmed up, the FMEP and BSFC were decreased by 56.7% and 14.9%, respectively, while 
the BTE and exergetic efficiency was increased by 5.6% and 5.3%54.

Random Forests were used to choose input variables, while PSO and GA were used to establish the optimal 
model hyperparameters. Hybrid models perform well in both training and validation datasets, with R values 
greater than 0.980 and 0.937, respectively. All R2 values are greater than 0.930, indicating excellent generalization. 
Hybrid models effectively address the limitations of single algorithms and are the best approach for applying 
machine learning to emission prediction55. Six machine learning regression models, Decision Tree (DT), 
Random Forest (RF), Gradient Boosting (GB), Extra Trees (ET), Extreme Gradient Boosting (XGB), and Light 
GBM, were trained to forecast five critical outputs: brake thermal efficiency, brake specific fuel consumption, 
carbon dioxide, particulate matter, and nitrogen oxides. GB outperformed RF and XGB in terms of predictive 
performance, with average R2 values of 0.999 (train) and 0.9586 (test) and MAPE of 2.58%56. Engine behavior 
was modeled and predicted using artificial neural network (ANN) and machine learning (ML) approaches. The 
R2 values of the model showed exceptional agreement with experimental data, exceeding 0.93 for BSFC, 0.97 for 
EGT, and 0.98 for NOx and HC, indicating outstanding predictive capacity across all parameters57.

While numerous studies have applied individual or hybrid models, there is a distinct lack of research that 
employs a stacked ensemble framework which uses the predictions of multiple, diverse base models as inputs 
to a superior meta-learner specifically for modeling engines fueled with Waste Cooking Oil (WCO) biodiesel. 
Furthermore, a truly integrated approach that uses such a high-fidelity model as a digital twin for PSO to discover 
optimal engine settings remains unexplored for this application. Previously, studies used a single machine 
learning model (e.g., ANN, RSM, ANFIS) or compared models side by side. Some investigations use simple 
model averaging. This model demonstrates a stacked hybrid modeling architecture. A two-level stacked ensemble 
was built. At the outset, three fundamentally different models (MLP, XGBoost, and Random Forest) were trained 
separately. XGBoost can handle complex feature interactions. Random Forest is used for robustness and low over 
fitting. MLP captures deep nonlinear interactions, boosting prediction accuracy and generalization compared to 
single models. Their predictions were then used as fresh input features (meta-features) for a second-level meta-
learner (another XGBoost model) that learnt how to combine them optimally. This architecture enables the 
meta-learner to identify the exact scenarios in which each base model works optimally. For example, it may learn 
to trust Random Forest’s prediction for braking power more than MLP’s, although XGBoost’s prediction for CO 
emission may be weighted more heavily. This advanced error-correction process goes beyond a basic model 
comparison or average, yielding to a much lower MSE (10−7 vs. 10−3 for MLP). Conventional optimization (e.g., 
RSM) is frequently limited to basic, predefined polynomial relationships. Other studies employ PSO to tune 
model hyper parameters. The trained hybrid model serves as a high-fidelity alternative for the real engine. The 
PSO method searches for the best load and fuel blend combination by querying this rapid, accurate surrogate 
model within the fitness function, rather of relying on expensive physical trials or less accurate individual 
models. This results in a powerful closed-loop system. This allows for the virtual investigation of millions of 
alternative operating points, identifying the global optimum (load = 0.86, blend percentage = 0.26), which would 
be impractical to uncover by testing alone. The fitness function weights were set to represent a realistic trade-
off between performance and emissions. For small datasets such as  (25 points), tree-based models outperform 
standard neural networks (MLPs). The poor performance of the standalone MLP (highest MSE) demonstrates 
the dangers of using a complicated model prone to over fitting on minimal data. The improved performance of 
XGBoost and hybrid model shows that gradient boosting and stacking generalization are better paradigms for 
this type of problem.

The main uniqueness of this work is the establishment of an integrated framework rather than the 
implementation of well-established individual models. This framework includes (1) stacked ensemble 
architecture for improved prediction accuracy on small datasets, and (2) closed-loop optimization in which the 
PSO algorithm searches for the optimal (load, biodiesel blend ratio) combination by querying the hybrid model 
as a fast, accurate digital twin, rather than relying on expensive physical experiments or less accurate individual 
models.

Therefore, the objective of this study is to develop and validate a novel integrated framework that combines 
a stacked hybrid machine learning model with PSO optimization for a diesel engine running on WCO biodiesel 
blends. The specific aims are:

	1.	 To develop a stacked ensemble model using XGBoost, Random Forest, and MLP as base learners. The XG-
Boost algorithm was selected as the meta-learner due to its built-in L1 and L2 regularization that prevents 
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over fitting and its powerful gradient boosting framework that optimally combines complex, non-linear 
predictions from the base models.

	2.	 To integrate this hybrid model with a PSO algorithm, configured with a swarm size of 100 and 100 iterations 
to ensure robust exploration and convergence in the two-dimensional search space, alongside established 
cognitive and social parameters to identify the optimal combination of engine load and biodiesel blend ratio.

	3.	 To comprehensively evaluate the framework’s accuracy against experimental data, analyze why the ensemble 
approach reduces errors compared to individual models like the MLP, and elucidate the performance-emis-
sion trade-offs of WCO biodiesel to provide practical insights for engine calibration and blend design.

This work shows a comparative evaluation of three modeling techniques as random forest, XGBoost and MLP 
models. Hybrid modeling combines the effects of three modeling techniques. The accuracy of the prediction 
model was shown by comparing the outputs of the modeling approach with the experimental findings. The 
engine’s performance was evaluated using the following metrics: brake power, mean effective pressure, exhaust 
gas temperature, thermal efficiency, fuel-air ratio, equivalence ratio, volumetric efficiency, and specific fuel 
consumption. Studies have been conducted on exhaust concentrations, including smoke, CO, HC, and NOx. 
Combining ensemble learning (XGBoost-RF) with deep learning (MLP) and PSO optimization would result 
in much higher predictive accuracy than independent models. The hybrid PSO-ML framework can efficiently 
generalize to previously unknown biodiesel blend ratios, resulting in reliable projections for engine performance 
and emission trends. Optimized hybrid ML models can replace experimental testing in biodiesel engine studies, 
saving money and time.

Methodology
Biodiesel production
Although diverse feedstocks such as soybean, palm, and jatropha oils have been widely used in biodiesel 
production, waste cooking oil (WCO) has specific economic, environmental, and sustainability benefits that 
make it an ideal choice for large-scale biodiesel production. WCO is a low-cost, widely available feedstock 
produced in vast quantities by the home and commercial food processing sectors. Its use greatly lowers biodiesel 
manufacturing costs, which are otherwise driven by the cost of virgin oils. The valorization of WCO solves 
environmental and waste management issues. The improper dumping of spent cooking oil into sewage systems 
results in substantial water contamination and environmental destruction. Converting this garbage into biodiesel 
is a circular economy strategy that transforms a problematic waste stream into a profitable renewable energy 
supply. WCO-derived biodiesel lowers lifecycle greenhouse gas emissions. The feedstock does not compete with 
food resources, which aligns with the United Nations’ Sustainable Development Goals (SDGs) for responsible 
consumerism and climate action. As a result, WCO is chosen for its abundance, cost-effectiveness, waste-to-
energy potential, and contribution to environmental sustainability, making it an ideal feedstock for creating 
predictive hybrid models for biodiesel engine applications.

WCO from restaurants and hotels was filtered to get rid of impurities and gums. Due to its increased viscosity, 
WCO is not utilized in direct way in diesel engines. During transesterification, WCO was changed into methyl 
ester. WCO was preheated to 110 °C and filtered to remove moisture. The oil was then transferred into a flask 
that was held up by a magnetic stirrer, thermometer and condenser. Methoxide was produced by mixing 1:9 
molar methanol with 1.5% by weight NaOH. The mixture of oil and methoxide was stirred for 90 min at 60 °C to 
produce glycerin and methyl ester. The glycerin and ester were extracted by leaving the mixture in the separating 
funnel for 12 hrs. Warm water was used to remove the catalyst, unreacted methanol and contaminants. A rotary 
evaporator was used to dry the biodiesel once the water has been removed to produce crude methyl ester. 
Pure diesel was combined with methyl ester at volume ratios of 0, 25, 50, 75, and 100%. Figure 1 depicts the 
manufacturing of biodiesel and the creation of its blends. Table 1 lists the properties of crude diesel and methyl 
ester mixtures.

The authorization or approval of biodiesel blends depends on national and international fuel standards 
that specify allowable mixing ratios and fuel properties according to ASTM (American Society for Testing 
and Materials) Standards. ASTM D-445, ASTM D-93, ASTM D-4052, ASTM D-224 and ASTM D-13 specify 
parameters such as viscosity, flash point, specific gravity, calorific value and cetane number, respectively. ASTM 
D7467 covers blends of biodiesel up to 20% biodiesel. ASTM D6751 describes biodiesel specifications.

Experimental test rig
The experiment used a four-stroke, air-cooled, diesel engine that could provide up to 10  kW of power at 
1500 rpm. Bore of engine is 100 mm, its stroke is 105 mm, and its compression ratio is 17.5:1. Figure 2 shows 
the setup schematic diagram. The engine’s output power was measured by connecting an AC generator with 
an electrical output of 15 kW directly to the engine. Output voltage and current data were used to determine 
how much electricity the load bank consumed. To assess the intake air flow, a sharp edge orifice was placed 
at the air box’s side to reduce the pulsing air flow. The pressure decrease across the orifice was tracked using 
U-tube manometer. The intake air and exhaust gas temperatures were measured using Type K thermocouple. 
Measurements of carbon monoxide, NOx, smoke and HC exhaust gases were conducted. A gas analyzer (O2 
(0–22%) electrochemical cell, NO2 (0–1000 ppm) electrochemical), NO (0–4000 ppm) electrochemical cell, 
CO2 (0–10%) NDIR bench, HC (0–2000 ppm) NDIR bench, and smoke meter (opacity 0–99% and resolution 
0.1) were utilized.

Before the tests, the engine was first run without load for 20 min in order to warm it up using diesel oil 
under steady state conditions. After engine stabilization, the readings were collected. The engine running 
continuously at 1500 rpm and with a range of engine loads was used for each measurement. To guarantee that 
the testing results were reliable and reproducible, each engine test condition was done three times with identical 
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operating parameters. To minimize random experimental variance, the measured values were averaged over 
three replicates. The mean values were presented in the results section, and the standard deviation of each set 
of measurements was calculated and used to construct error bars in the accompanying figures. This statistical 
technique gives a quantitative measure of variability and increases the level of confidence in the presented 
patterns. Prior to testing, all measurement instruments were carefully calibrated in accordance with the 
manufacturer’s specifications to ensure the experimental data’s accuracy and repeatability. In terms of thermal 
efficiency, hydrocarbons, Exhaust gas analyser was calibrated using approved span gases with known amounts 
of CO, CO₂, HC, and NOₓ. Prior to each test session, zero calibration was performed using pure nitrogen. The 
smoke meter was calibrated using the manufacturer’s standard reference filters to check the opacity scale. NOx, 
carbon monoxide, and smoke emissions, the uncertain ranges were ± 1 ppm, ± 1 ppm, ± 0.01% vol., ± 1%, and 
± 1.5%, respectively. Engine speed, brake power, exhaust gas temperature, and specific fuel consumption were 
determined to have the highest measurement errors, at 0.2, 0.85, 0.2, 2.2, and 0.15%, respectively. By summing 
up all of the parameter uncertainties, the overall uncertainty was calculated using the following formula.

	

√
(uT exh)2 + (ubp)2 + (usfc)2 + (uN)2 + (uther)2 + (uCO)2 + (uHC)2 + (uNOx)2

=
√

(0.2)2 + (0.85)2 + (2.2)2 + (0.15)2 + (1.5)2 + (0.01)2 + (1)2 + (1)2 + (0.2)2 + (1)2

= ± 2.9%

 where:
Uncertainties of output power (ubp), EGT (uTexh), engine speed (uN), CO concentration (uCO), HC 

emission (uHC), BSFC (usfc), BTE (uther), and NOx (uNOx).

Properties Method WCO Biodiesel (B100) Diesel oil

Kinematic viscosity @40 °C, cSt ASTM D-445 4.7 3

Flash point, °C ASTM D-93 122 74

Specific gravity @15 °C ASTM D-4052 0.885 0.837

Lower heating value, MJ/kg ASTM D-224 39.6 42.1

Cetane number ASTM D-13 53 50

Table 1.  WCO biodiesel and its blends’ properties.

 

Fig. 1.  Biodiesel production and its blends preparation.
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Modeling of emissions and engine performance
Based on the collection of experimental input-output data, this model employs various combinations of engine 
loads and fuel blends. Three mathematical models as XGBoost regression, Random Forest regression (RF), and 
Multi-layer Perceptron ANN (MLP) were used to forecast the output variables.

Data collection and preprocessing
The dataset includes two primary features, load and Fuel, and thirteen target variables representing various 
performance metrics: Brake power (kW), Mean effective pressure (bar), BSFC (kg/kW h), BTE (%), Fuel-air 
equivalence ratio, EGT (°C), Air-fuel ratio, Volumetric efficiency (%), CO (ppm), CO2 (%), HC (ppm), NOx 
(ppm), and Smoke emissions (%). In data preprocessing stage, the input for machine learning models was 
normalized to a range1. These, multiple target variables were predicted using the following machine learning 
model. Three groups were created from the dataset: training, testing, and validation. Training data is considered 
90% of the original data while testing and validation have similar split of 5% of the original data. To avoid explicit 
train-validation-test divides, an approach of using the complete dataset for both validation and testing was used 
due to data limitations. The specified parameters, such as engine load and biodiesel blend ratio, have the greatest 
impact on engine performance and exhaust emissions. These parameters are experimentally controllable and 
physically meaningful, allowing for accurate modeling and real-world optimization of diesel engines.

System models
The proposed approach combines Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Multilayer 
Perceptron (MLP) into a two-stage hybrid framework. Stage 1 (Base Learners): These models effectively capture 
nonlinear interactions and feature relevance in the dataset. Stage 2 (XGBoost Meta-Learner): The predictions 
from all three base models (XGBoost, RF, and MLP) are combined to form meta-features that serve as input to 
the XGBoost meta-learner. The meta-learner refines these predictions by learning complex residual patterns, 
which increases overall accuracy and generalization. The Particle Swarm Optimization (PSO) algorithm is 
subsequently employed to identify optimal engine operating conditions that balance performance and emissions. 
The methodology for system modeling is as shown in Fig. 3.

For the initial predictions, three machine learning models were chosen: Random Forest Regressor58,59, 
XGBoost Regressor60,61, and Multi-Layer Perceptron (MLP) Regressor62,63. MLP uses several hidden layers (50-
20-10 neurons) to capture intricate, non-linear relationships within data. The neural network’s adaptability allows 
the model to cope with a variety of input-output mappings, making it appropriate for challenging regression 
issues. XGBoost is a version of boosting decision trees recognized for its rapid performance and superior 
precision. It employs a boosting methodology, incrementally incorporating weak learners to reduce error, which 
allows it to effectively capture complicated relationships among features. By constructing numerous decision 
trees during training, ensemble learning method known as random forest produces the average prediction for 
regression problems. It provides information on feature relevance while reducing model variance.

Subsequently, stacking and aggregation stage were implemented. This Stacked Ensemble Model is composed 
of predictions from the three base models (MLP, XGBoost, and Random Forest). The stacking model applied 

Fig. 2.  Schematic diagram of experimental setup.
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the XGBoost Regressor as the meta-learner to leverage the meta-features for final prediction. The selection was 
driven by XGBoost’s ability to effectively prevent overfitting and handle complex relationships in the feature 
space. Through the integration of several models’ strengths, the stacked model seeks to improve the overall 
prediction accuracy. Stacked Ensemble Modeling combines the advantages of multiple models to improve 
forecast precision. The meta-model is trained using the predictions from these underlying models as input 
features (meta-features). The concept is that the meta-model identifies and rectifies the errors of the base 

Fig. 3.  Hybrid stacking ensemble and PSO optimization framework, showing the two-stage prediction model 
(left) and operational optimization process (right).
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models, utilizing their collective strengths to generate more precise predictions for all 13 engine performance 
and emission parameters.

XGBoost modeling  Regression problems can be solved quickly and accurately using the sophisticated machine 
learning algorithm XGBoost. This method of ensemble learning involves building a sequence of decision trees, 
each of which aims to fix the mistakes of the one before it. The prediction accuracy of model is improved by this 
recurring boosting technique. When it comes to handling complex, non-linear relationships in data, XGBoost 
excels. Regularization settings, which penalize model complexity, are part of the strategy to prevent overfitting. 
It ensures that every tree in the model is less affected by noise in the training data and more concentrated on 
improving performance. Particularly in competitive data science jobs, XGBoost performs better than rival re-
gression methods. It is the preferred choice for large-scale regression problems due to its speed, accuracy, and 
scalability, which offers significant advantages in predictive modeling tasks60,61.

Random forest modeling  For regression situations, random forest is a reliable and flexible ensemble learning 
technique. In order to increase forecast accuracy and manage overfitting, it creates a large number of decision 
trees during training and aggregates their outputs. Using a method called bootstrap aggregation or bagging, each 
decision tree in the forest has been trained on a random subset of the data, both in terms of features and samples. 
Random Forest produces reliable predictions even with noisy data since it combines the results of several trees 
in regression. Large datasets with numerous variables and intricate relationships are especially well-suited for 
Random Forests. To describe nonlinear linkages and interactions, the method doesn’t require a lot of parameter 
tweaking58,59.

Multi-layer perceptron (MLP) model  An artificial neural network with several layers of neurons, or nodes, 
arranged hierarchically is called Multi-Layer Perceptron (MLP). It is one of the most often used and simple 
types of neural networks, particularly for supervised learning tasks like classification and regression. Nonlinear 
activation functions are typically used by the MLP’s neurons, allowing the network to identify complex input 
patterns. MLPs are crucial models for machine learning tasks like pattern recognition, regression, and classifi-
cation because they can identify nonlinear relationships in data. One kind of feed forward neural network made 
up of completely linked neurons with a nonlinear activation function is called a multilayer perceptron. The MLP 
model’s inferior performance can be due to its sensitivity to hyper parameter adjustment and small dataset size, 
which may have resulted in local minima and overfitting difficulties. It is frequently used to separate nonlinearly 
separable data62,63.

Hybrid model  The hybrid model increases the accuracy of predictions regarding output variables in engine 
performance analysis by combining the benefits of three specific machine learning techniques: Random Forest, 
XGBoost (XGB), and Multi-Layer Perceptron (MLP). This hybrid approach, as opposed to individual models, 
makes use of each technique’s distinct advantages. By integrating both approaches, the hybrid model improves 
on their combined strengths and dramatically reduces prediction mistakes like Mean Squared Error (MSE). The 
hybrid model is especially useful for predicting emissions and engine performance indicators in complex engine 
systems because of its integration, which ensures increased precision and dependability. This hybrid stacking 
strategy delivers better generalization and lower MSE than any single model.

Particle swarm optimization (PSO)
Once individual model predictions have been generated, the weighting strategy and parameters of model outputs 
aggregating are optimized using Particle Swarm Optimization (PSO)64,65. PSO was used because it can balance 
exploitation (personal experience) with exploration (social impact) to discover the best answers. PSO serves two 
primary purposes in this work:

	1.	 Hyperparameter optimization: Particle Swarm Optimization (PSO) optimizes each model’s hyperparameters 
to successfully lower prediction errors by viewing the ensemble model as a search domain.

	2.	 Meta-model enhancement: PSO improves the weights assigned to each model’s outputs, enabling flexible, 
data-driven prediction integration. Managing complex interactions and making sure the ensemble approach 
can adapt to different datasets.

The PSO algorithm was used for optimization, with hyperparameters carefully chosen to balance convergence 
speed and solution quality. The population size and maximum iteration number were chosen to give adequate 
search variety while minimizing computing expense. The weight was reduced linearly in order to guarantee 
a smooth transition from exploration to exploitation. The acceleration coefficients were chosen using widely 
accepted ranges from previous optimization studies resulting in stable convergence behavior. These parameters 
were initially tuned through a series of preliminary trials, which revealed that smaller or larger values slowed 
convergence or resulted in premature local optima. The selected setup provided the greatest consistent prediction 
accuracy (lowest MSE) across numerous runs of the hybrid PSO-ML models. In the parameter space, which is 
defined by two important variables, engine load and blending ratio, each of the initialized 100 particles in the 
swarm represents a possible solution. Initial velocities and locations are assigned at random within defined 
boundaries. To assess each particle’s location based on the stacked ensemble models’ prediction quality, a fitness 
function is created. Fitness of each output is estimated by calculating the weighted total of several goal variables 
as follows:
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F itness = w1 · Brake P ower + w2 · mean effectie pressure

−w3 · Specific F uel Consumption + w4 · Thermal efficiency
+w5 · F uel air equivalence ratio + w6 · Exhaust Gas T emperature

+w7 · Air F uel Ratio + w8 · V olumetric Efficiency

+w9 · CO Emission + w10 · CO2 Emission

+w11 · HC Emission + w12 · NOx Emission

+w13 · Smoke Emission

 where wi is weight coefficients for each target variable i ( where i = 1, 2, 3, . . . , 12), calculating out each 
variable’s proportionate significance in the fitness score. Depending on how each component should affect total 
fitness, these weights might be zero, positive, or negative. The following criterion is used to choose the weight 
values64–66:

	 w = [0.3, 0, −0.3, 0.3, 0, 0, 0, 0, −0.01, −0.03, −0.01, −0.04, −0.01]

The goal is to get maximum prediction performance by maximizing the fitness function. In PSO, the fitness 
function evaluates each solution (set of weights and hyper parameters) based on the ensemble’s prediction error 
rate. Maintaining a mixture between local and global search capabilities, PSO updates particle locations and 
velocities based on local and global bests as it iterates toward an optimal solution.

These weights are not arbitrary. It were chosen to represent a logical engineering objective that balances 
desirable and undesirable outcomes. Positive weights (+ 0.3) were used to calculate brake power and thermal 
efficiency: parameters. It was utilized to increase engine power and fuel economy. These are the major 
performance indicators for all engine applications. Negative weights (− 0.3) were employed to reduce specific 
fuel consumption, which has a direct influence on operational costs and the environment. To reduce harmful 
emissions, negative weights for CO and NOx were utilized (− 0.01 and − 0.04, respectively). The varying 
magnitudes represent a prioritization. The larger weight for NOx (− 0.04) indicates that it is a critical pollutant 
with strict regulatory restrictions, giving its removal a higher priority in the optimization. Zero weights (e.g., 
mean effective pressure) were employed. These parameters were determined to have a significant correlation 
with other, already-weighted factors, hence biasing the fitness function without adding new information. In 
summary, the weights represent a specific optimization goal: to discover the operating condition that delivers 
the optimal balance of high power, high efficiency, and low emissions, with a significant emphasis on minimizing 
NOx emissions. This is a typical case for engine calibration under modern environmental rules.

Results and discussion
Brake power (BP)
Impact of biodiesel mixtures on engine output power is depicted in Fig. 4. It is clear that brake power rises in 
tandem with engine load. Increased methyl ester content reduces calorific value, leading to lower output power 

Fig. 4.  Output power of the fuels at engine load variation.
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despite higher fuel consumption at increased loads. Because of its greater density and viscosity, methyl ester 
demonstrated worse fuel atomization, fuel-air mixing, and vaporization. Biodiesel contains oxygen (about 10–12 
wt%) in its molecular structure, lowering its heating value by 10–15% compared to diesel. As a result, less energy 
is released per unit of fuel, resulting in a lower power output. Biodiesel generates less power than diesel oil due 
to its lower calorific value. For the same amount of power, biodiesel and other diesel oil blends require more fuel. 
The lowest output power of biodiesel at 1500 rpm is 23% less than diesel oil under maximum load. The results 
were agreed with references9,12,15.

Mean effective pressure (MEP)
The impact of biodiesel blends on engine mean effective pressure is depicted in Fig. 5. It is clear that mean 
effective pressure rises in tandem with engine load. Fuel consumption rises as engine load increases. MEP 
decreases as a result of methyl ester’s decreased calorific value brought on by an increase in its proportion. The 
increased viscosity of biodiesel has an effect on atomization and spray penetration and results in bigger droplets 
and poorer mixing with air, particularly at partial loads. This results in less efficient combustion. The methyl 
ester hinders fuel- air mixing, atomization and vaporization due to its higher density and viscosity. Pure diesel 
and biodiesel blends need more fuel to produce the same amount of power because methyl ester has a lower 
calorific value. MEP of B100 is 23% lower than diesel oil at 1500 rpm and peak load. The findings were agreed 
with literature9,10,12.

Brake specific fuel consumption (BSFC)
Figure 6 shows how engine output power affects the precise fuel consumption of blends of methyl ester and 
pure diesel. Diesel oil requires less fuel than biodiesel for all output power range. The engine needs more fuel 
to produce the same amount of power for methyl ester than diesel fuel. As engine load increased, BSFC values 
fell for both fuels. Because methyl ester has lower calorific value about pure diesel, its BSFC is higher than 
crude diesel. The higher density of biodiesel results in more mass flow for the same injection time. Furthermore, 
higher viscosity results in less effective atomization and air-fuel mixing, lowering combustion efficiency and 
necessitating more fuel to maintain the same load. These properties of methyl ester lead to problems with air-
fuel mixing, vaporization, and atomization. Biodiesel’s worse combustion, decreased volatility, and increased 
viscosity are the primary causes of its higher BSFC. Molecular frictional forces of biodiesel are the causes of 
elevated BSFC. When compared to diesel oil, biodiesel had the greatest BSFC of 22% at engine full load. The 
results were confirmed with references9,10,15.

Fig. 5.  Mean effective pressure of tested fuels at loads changes.
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Brake thermal efficiency (BTE)
The difference in BTE when utilizing diesel and biodiesel mixtures is seen in Fig. 7. Fuel consumption rises in 
tandem with engine load. The thermal efficiency decreases as the percentage of methyl ester increases. BTE peaks 
and then starts to decrease as engine output power rises. Lower engine brake power leads to more concentrated 
fuel use and higher heat loss. Because of increased fuel consumption and friction losses, the rise in engine 
output power results in higher BSFC. Biodiesel has reduced thermal efficiency due to its increased viscosity, poor 
combustion characteristics, and low volatility. Biodiesel’s increased surface tension cause bigger droplets and less 
homogenous air-fuel mixtures. This results in incomplete combustion and less effective heat release, reducing 
thermal efficiency. Atomization, vaporization and air- fuel mixing problems are shown due to these properties 
of biodiesel. This decline in BTE would be explained by methyl ester’s reduced lower heating value and volatility 
when compared to crude diesel. Higher engine output power result in higher heat loss and fuel consumption. 
At maximum load, methyl ester’s BTE drops by 21% in comparison to diesel fuel. The literature validated these 
findings7,21,23.

Exhaust gas temperature (EGT)
Figure 8 shows the relationship between engine power and exhaust gas temperature for methyl ester and diesel 
mixtures. As engine load rises, the temperature of exhaust gases rises for all fuels. This could happen because 
higher load causes the engine to use more fuel, which raises the cylinder temperature and increases exhaust gases 
heat loss. Because more of the generated heat exits the cylinder with the exhaust gases rather than being turned 
into usable work, EGT rises even while brake thermal efficiency falls. Because diesel-methyl ester mixtures burn 
and heat up less efficiently than diesel fuel, their EGT are greater at the load variation. The reduced volatility and 
higher viscosity of biodiesel causes issues with atomization and vaporization, which raises the EGT of methyl 
ester about crude diesel. In comparison to pure diesel, methyl ester has lower calorific value and more heat loss, 
which lowers the BTE and raises the EGT. These features of biodiesel cause issues with vaporization, atomization, 
and air-fuel mixing. In comparison to diesel oil, EGT of B100 increased by 28% at highest output load. These 
results were corroborated by the literature7,17,19.

Air-Fuel ratio (A/F)
Figure 9 illustrates how the air-fuel ratio for diesel and methyl ester blends is impacted by engine brake power. 
Air-fuel ratio decreases as engine load rises. A/F should be lowered since a higher engine load produced higher 
fuel flow rate. Diesel fuel uses less fuel than methyl ester blends and has a larger calorific value, therefore biodiesel 
fuel has the declined air-fuel ratio. Methyl ester blends have lower stoichiometric A/F than diesel. Because 
biodiesel mixtures construction of 11% more O2 about diesel, they require less air to run. Fuel consumption is 
increased by the density and viscosity of methyl ester. These features of biodiesel cause issues with vaporization, 
atomization, and air-fuel mixing. In comparison to diesel, biodiesel mixtures have lower stoichiometric A/F 
ratio. The amount of fuel utilized for a given volume rises when diesel and biodiesel are blended, while the actual 

Fig. 6.  BSFC for tested blends at loads variations.
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Fig. 8.  EGT of the used blends at engine output variation.

 

Fig. 7.  Impact of tested fuel on BTE with engine brake power variation.
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air-fuel ratio falls. At 100% engine load, the methyl ester fuel-air ratio was decreased by 13% about diesel oil. The 
findings were agreed with references9,12,15.

Fuel-air equivalence ratio
Figure 10 indicates how the output power affects the fuel-air equivalence ratio for diesel and biodiesel mixtures. 
As engine load increases, the equivalence ratio climbs. Since a higher engine load causes a higher fuel flow rate, 
the equivalence ratio should be adjusted. Diesel fuel burns less fuel and has larger calorific value than methyl 
ester blends, hence methyl ester fuel has a lower equivalence ratio. Biodiesel mixtures have lower stoichiometric 
A/F than pure diesel. Blends of biodiesel require less air to run since they contain 11% more oxygen than diesel. 
Methyl ester’s density and viscosity rise as the fuel flow rate does. Higher density requires more fuel per cycle, 
and its oxygenated structure naturally requires less external air for complete combustion than diesel. These 
characteristics of biodiesel lead to problems with air-fuel mixing, atomization and vaporization. Related to diesel 
oil, methyl ester mixtures have lower stoichiometric A/F. Actual air-fuel ratio falls and the amount of fuel utilized 
for a given volume rises when diesel and biodiesel are combined. At peak engine load, the equivalence ratio of 
biodiesel was decreased by 14% about crude diesel. The literature validated these results9,21,23.

Volumetric efficiency
The difference in volumetric efficiency between diesel and methyl ester blends as a function of engine load is 
shown in Fig. 11. It decreases because of the restrictions of air flow in intake manifold at higher engine loads. 
Volumetric efficiency is significantly impacted by engine load because of the higher residual gas temperature. 
At increasing engine output power, it drops due to severe air throttling brought on by constrained airflow in 
the intake air. Volumetric efficiency of methyl ester mixtures with larger methyl ester content is lower. Exhaust 
gas temperatures of biodiesel mixtures are higher than diesel. Methyl ester fuel burns with less air since it 
includes 11% oxygen. Biodiesel’s evaporative cooling effect, particularly at partial loads, can reduce intake 
air temperature and increase air density, leading to improved volumetric efficiency. Due to variations in their 
thermal characteristics and latent heat of vaporization, biodiesel has greater cylinder temperature and lower 
input air temperature. Crude diesel oil has 10% greater volumetric efficiency than B100 at highest brake power. 
The findings were validated with literature7,12,23.

CO emissions
As shown in Fig. 12, engine output power affects CO levels of diesel and biodiesel mixtures. When engine 
output power increases, CO emissions begin to rise after initially declining to a minimum. Engine load affects 
the quantity of carbon monoxide generated because lower engine output power promotes slower rates of CO 
oxidation by reducing gas cylinder temperatures. Lower gas cylinder temperatures at lower engine loads promote 
the slow rate of CO oxidation. Compared to crude diesel, methyl ester emits less carbon monoxide. Oxygen-rich 
molecular structure of biodiesel facilitates improved combustion and reduces the likelihood of the creation of 

Fig. 9.  Impact of tested fuel on air-fuel ratio with engine brake power variation.
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Fig. 11.  Volumetric efficiency of tested fuels at different loads.

 

Fig. 10.  Effect of biodiesel blends on fuel- air equivalence ratio.
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fuel-rich zones. Biodiesel has a lower carbon-to-hydrogen ratio than diesel, which means that less carbon is 
accessible for CO production per unit of fuel burned. Because methyl ester contains more oxygen than diesel 
oil, it has been demonstrated to have improved combustion efficiency and air-fuel mixing. At maximum output 
power, B100 reduces CO emissions by 25% in comparison to diesel fuel. Previous investigations have shown 
similar results15,17,21.

CO2 emission
Figure 13 illustrates how engine load affects carbon dioxide levels for methyl ester mixtures at peak load. An 
increasing engine load causes the cylinder gas temperature to rise, which raises CO2 emissions. Engine load 
affects carbon dioxide concentrations via altering the gas cylinder’s temperature and converting CO to CO2. 
Increasing the biodiesel mixing ratio lowers CO2 emissions since methyl ester has higher oxygen percentage 
and less carbon than pure diesel. Methyl ester’s oxygen content improves improved combustion and lowers the 
fuel-rich zone building. Consequently, for the same energy output, less carbon is oxidised, resulting in slightly 
reduced direct CO₂ emissions. Methyl ester showed improved combustion efficiency compared to diesel oil. 
Molecular composition of B100 is rich in oxygen, which improves combustion and reduces the likelihood of a 
fuel-rich zone. Compared to diesel oil, biodiesel decreased carbon dioxide emissions by 20% when operating at 
full load. The literature validated these findings9,15,23.

NOx emissions
As shown in Fig. 14, engine output power affects the NOx concentrations from biodiesel blends. Thermal nitrogen 
oxide production is influenced by temperature, residence time, and cylinder oxygen content. At low engine 
loads, the fuel-air blend is lean but at high engine loads, it is rich. The rise in cylinder temperature is the reason 
for the increase in NOx concentrations. As engine load increased, more cylinder turbulence resulted in a richer 
mixture. At high cylinder combustion temperatures, dissociated nitrogen and oxygen combine to form thermal 
NOx. Nitrogen oxides concentrations are increased in tandem with the amount of methyl ester. Adiabatic flame 
temperature rises noticeably as a result of all of this, increasing the NOx emissions of methyl ester relative to pure 
diesel. The engine cylinder’s increased turbulence creates a richer A/F mixture. These trends are grounded in 
combustion physics. Biodiesel has a greater cetane number, resulting in an earlier start of combustion and longer 
residence time at high temperatures. This allows more nitrogen and oxygen to react and generate NOₓ. The rise 
in NOx with biodiesel concentration, biodiesel NOx paradox’ stems from higher combustion temperatures and 
advanced combustion timing, both promoting thermal NOx formation. A decrease in ignition delay, air mixing, 
and fuel preparation time has been blamed for the increase in NOx. Compared to diesel oil, B100 produces 45% 
increased NOx when running at the highest load. The patterns of NOx emissions were consistent with earlier 
studies14,21,23.

Fig. 12.  Effect of methyl esters on CO concentrations at engine load change.
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Fig. 14.  NOx concentrations with brake power change for biodiesel blends.

 

Fig. 13.  Influence of methyl ester mixtures on CO2 at engine load variation.
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HC emissions
The link between engine brake power and HC concentrations for diesel and methyl ester blends is shown in 
Fig. 15. Increased engine loads, cylinder temperatures, and fuel consumption all result in higher hydrocarbon 
concentrations in methyl ester mixtures. This is because of the high engine brake power, which results in a rich 
fuel combination and a scarcity of oxygen. At all engine loads, methyl ester lowers HC concentrations due to high 
oxygen content. When methyl ester is substituted for diesel fuel, it emits lower hydrocarbons due to its higher 
cetane number. Because biodiesel contains more oxygen, more particles oxidize during diffusion combustion, 
which improves its capacity to lower HC emissions. The O2 in biodiesel facilitates improved combustion 
and decreases the likelihood of fuel-rich zone production. Higher cetane number of biodiesel result in more 
controlled combustion, lowering the risk of misfire or incomplete combustion, both of which are primary causes 
of HC. Methyl ester has superior combustion efficiency over crude diesel because of its higher oxygen content. 
When using biodiesel instead of diesel fuel when the engine is running at full load, HC emissions are reduced by 
43%. Findings of the literature support the trend in HC emissions7,9.

Smoke opacity
The influences of engine output power and different biodiesel blends on smoke emissions are depicted in Fig. 
16. More smoke is produced since the engine was running faster and using more fuel. At lower engine loads, 
less smoke is created since there is more oxygen present. Because of the rise in fuel consumption, a drop in 
oxygen content resulted in observably increased smoke concentrations at high engine output power. The more 
biodiesel produced the less smoke. Oxygen of methyl ester was the reason for the reduction in smoke. Smoke 
increased along with fuel usage and output power. Diesel mixtures with methyl ester produced less smoke than 
those containing ordinary diesel. Biodiesel burns and emits smoke. Biodiesel typically contains low aromatics 
and sulfur, both of which contribute significantly to soot generation in diesel combustion. Their absence results 
in cleaner combustion and reduced soot nucleation. Biodiesel is better able to reduce smoke emissions during 
diffusion combustion by increasing the amount of particle oxidation that takes place. The oxygen in methyl 
esters increases combustion efficiency, decreases smoke, and enhances ignition. When diesel engine runs at full 
load, B100 has decreased smoke emission about pure diesel oil by 45%. The findings were confirmed by other 
studies15,19,21.

Simulation parameters of machine learning models
The simulation parameters of the three models as Multi-Layer Perceptron (MLP), Random Forest, and XGBoos 
are designed to optimize the prediction performance. Three hidden layers with 50, 20, and 10 neurons each 
make up the structure for the MLP. MLP activation function is Rectified Linear Unit (ReLU). Also, the Adam 
optimizer is used with a learning rate equal to 0.001, with early stopping equal to 0.0001. The Random Forest, 
and XGBoost models use the default configuration parameters.

Particle swarm optimization
Using the predictions of regression models, Particle Swarm Optimization (PSO) determines the best 
combination of input variables, such as engine load and blending ratio, to either maximize or reduce a weighted 

Fig. 15.  HC concentrations of tested blends at brake power variation.
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objective function, sometimes indicated the fitness function. This guarantees that the final decision considers 
all performance metrics (such as efficiency and emissions) based on the established priorities. The efficiency of 
PSO allows it to quickly identify high-quality solutions without the need to evaluate every possible combination, 
leading to significant reductions in both time and resource sources.

Figure 17 illustrates the iterative convergence process of the Particle Swarm Optimization (PSO) algorithm 
toward the optimal combination of engine load and biodiesel blending ratio. The figure consists of a sequence of 
subplots showing six key iterations (1, 5, 9, 13, 17, and 22) from the total 100 iterations performed, documenting 
the evolution of the swarm’s search strategy. Each subplot represents the two-dimensional search space defined 
by engine load (x-axis, 0–100%) and blending ratio (y-axis, B0–B100). The swarm consists of 100 particles 
(represented by blue dots), each representing a potential solution candidate. The red star indicates the global 
best position discovered up to that iteration and the solution with the highest fitness value. The green dot shows 
the centroid (average position) of the entire swarm, indicating the collective tendency of the particles. The 
optimization process demonstrates a clear convergence pattern. In iteration 1, particles are randomly distributed 
throughout the search space, with a centroid at approximately (load = 0.51, blend ratio = 0.49), indicating an 
initial broad exploration phase. As iterations progress, the swarm collectively moves toward regions of higher 
fitness. By iteration 5, the centroid shifts to (0.65, 0.35), showing a clear preference for higher engine loads and 
moderate biodiesel blends. This trend continues through iterations 9 and 13, where the centroid reaches (0.77, 
0.28) and (0.83, 0.27), respectively, indicating refinement toward specific optimal regions.

The convergence becomes particularly evident in iterations 17 and 22, where particles cluster tightly 
around the global best position at (0.86, 0.26). This spatial concentration demonstrates that the algorithm has 
successfully identified a robust optimum. The consistent reduction in blending ratio from 0.49 to 0.26 across 
iterations suggests that moderate biodiesel blends (around B26) combined with high engine loads (around 86%) 
yield the best compromise between performance and emissions. The dynamic adjustment of velocity ranges 
from (− 0.05, 0.05) in early iterations to (− 0.01, 0.01) after iteration 10 enables the algorithm to transition 
effectively from global exploration to local exploitation. This strategic balance ensures thorough search coverage 
while allowing precise refinement near promising solutions. Figure 18 thus provides visual evidence of the PSO 
algorithm’s effectiveness in navigating complex multi-objective optimization landscapes, ultimately identifying 
the optimal operating conditions that maximize the defined fitness function balancing engine performance with 
emission constraints.

The convergence of the Particle Swarm Optimization algorithm to a specific optimum of 86% engine load 
with B26 biodiesel blend (Fig. 18) is a finding of significant practical importance. This result is not arbitrary but 
is a direct consequence of the carefully weighted fitness function, which encoded the real-world objective of 
balancing performance with environmental concerns. The high optimal load is driven by the positive weighting 
of brake power and thermal efficiency, which generally improve with load due to reduced relative heat losses 
and improved combustion efficiency. However, the algorithm correctly avoided the maximum load condition, 
where the sharp rise in emissions, particularly NOx, would have penalized the fitness score. Concurrently, the 
identification of a B26 blend as optimal reveals a key trade-off in biodiesel utilization. While high biodiesel blends 
(like B100) reduce CO, HC, and smoke through more complete combustion, they also significantly increase 
NOx emissions and fuel consumption. The B26 blend represents an optimal compromise, offering substantial 
emission reductions over pure diesel without the severe NOx increase and power loss of high-percentage blends. 

Fig. 16.  Smoke changes of all fuels at engine output changes.
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Identifying of B26 as optimal provides actionable insight: mid-level blends can achieve significant emission 
reductions with minimal performance loss, suggesting very high blends may be inefficient.

Comparison between developed models and experimental
This section uses XGBoost, random forest, ANN, and hybrid models to forecast the output variables, including 
brake power, mean effective pressure, BSFC, BTE, EGT, A/F, fuel-air equivalency ratio, CO, HC, NOx, CO2, 
and smoke, using the experimental data that has been provided as shown in Figs. 18 and 19. Figure 18 provides 
comprehensive visual validation of the predictive models for performance parameters through a series of three-

Fig. 17.  Particle Swarm Optimization convergence sequence showing iterations 1, 5, 9, 13, 17, and 22. Blue 
dots represent individual particles, red star indicates global best position, and green dot shows swarm centroid.
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dimensional surface plots that compare experimental measurements with model predictions across the complete 
operational domain. Each subplot, from (a) Brake power to (h) Equivalence ratio, represents a specific engine 
performance parameter, with the x-axis showing engine load (0-100%), the y-axis representing biodiesel blending 
ratio (B0–B100), and the z-axis displaying the corresponding parameter value. The experimental data points, 
marked as “Actual” in the legends, are distributed across the load-blend space according to the experimental 
design matrix, representing the ground truth measurements obtained from engine testing.

Similarly, Fig. 19 shows the comparison for emission parameters, with subplots from (a) Carbon monoxide 
(CO) to (e) Smoke opacity. The prediction surfaces generated by four different modeling approaches as MLP, 
XGBoost, Random Forest, and the final Hybrid model are overlaid on the same coordinate system, allowing for 

Fig. 18.  Experimental vs. predicted engine performance: (a) Brake power, (b) Mean effective pressure, (c) 
BSFC, (d) BTE, (e) EGT, (f) Volumetric efficiency, (g) Air-fuel ratio, (h) Equivalence ratio.
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direct visual comparison between predicted and experimental values. The key observation across all subplots is 
the consistent close alignment between the Hybrid model surface (labeled “Final”) and the spatial distribution 
of experimental data points. For instance, in the BTE plot Fig.  18d, the Hybrid model accurately captures 
the efficiency peak at intermediate load conditions and its variation with blending ratio, closely following 
the actual measurement points. Similarly, for emission parameters like NOx Fig.  19d and CO Fig.  19a, the 
Hybrid model surface correctly represents the increasing trends with higher engine loads while maintaining 
appropriate sensitivity to biodiesel blending effects. The consistent performance across diverse parameter types 
from power-related metrics like brake power Fig. 18a and mean effective pressure Fig. 18b to complex emission 
characteristics like HC Fig. 19c and smoke opacity Fig. 19e demonstrates the robustness of the Hybrid modeling 
approach. Particularly noteworthy is the model’s accuracy in capturing non-linear interactions between engine 
load and blending ratio, as evidenced by the curved surface contours that faithfully follow the experimental data 
distributions. This visual evidence, combined with the quantitative metrics, provides strong validation of the 
Hybrid model’s suitability for engine optimization and emission prediction tasks.

Conversely, the reduction in CO and unburned HC emissions is a direct benefit of the fuel-bound oxygen 
in biodiesel molecules, which facilitates more complete oxidation, especially in fuel-rich zones within the 
combustion chamber that are prevalent at high loads. The model’s accurate capture of the non-linear relationship 
between blending ratio and volumetric efficiency Fig. 18f further underscores its capability to map complex 
physicochemical interactions, such as the displacement of intake air by biodiesel vapor and the effects of charge 
cooling.

The following metrics are used to compare the models. The mean square error (MSE) calculated as:

	
MSE (y, ŷ) = 1

N

∑
N
i=1(yi − ŷi)2

 where y is measured output is value and ŷ is the predicted target value. Examination of Mean Squared Error 
(MSE) outcomes from the deployed models provides significant insights into their performance attributes as 
depicted in Figs. 20 and 21. The Multi-Layer Perceptron (MLP) recorded the worst MSE performance across 
most parameters, such as BTE Fig. 20d and CO emission Fig. 21a. This may be related to experimental data 
limitation. Conversely, the XGBoost Regressor realized the lowest MSE among the individual models, as clearly 

Fig. 19.  Experimental vs. predicted emissions: (a) CO, (b) CO2, (c) HC, (d) NOx, (e) Smoke opacity.
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seen in subplots like brake power Fig. 20a and BSFC Fig. 20c. XGBoost has the capability in managing non-linear 
relationships and utilizing its gradient boosting framework to gradually minimize prediction errors. However, 
precise adjustment of parameters like learning rate, tree depth, and regularization factors is necessary for XGBoost 
to function well. The Random Forest Regressor showed moderate performance, with an MSE that is lower than 
that of the MLP but higher than that of XGBoost, evident in parameters like mean effective pressure Fig. 20b 
and HC emission Fig. 21c. This is consistent with the Random Forest’s method of averaging predictions from 
independently trained trees, which provides robustness and mitigates variance. Finally, the hybrid model, which 
integrates predictions from MLP, XGBoost, and Random Forest into meta-features, achieved the lowest overall 
MSE across all parameters, as quantitatively demonstrated in every subplot of Figs. 20 and 21. This illustrates the 
benefits of stacking, where the strengths of individual models are combined to offset their weaknesses. While the 
hybrid model excels in minimizing bias and variance, it also introduces additional computational complexity. 
In summary, the MSE results for the 13 target parameters emphasize the advantages of ensemble and hybrid 

Fig. 20.  Prediction MSE for performance parameters: (a) Brake power, (b) Mean effective pressure, (c) BSFC, 
(d) BTE, (e) EGT, (f) Volumetric efficiency, (g) Air-fuel ratio, (h) Equivalence ratio.
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methodologies for predictive tasks involving tabular data, while also highlighting the limitations of MLP in this 
scenario.

The comprehensive results presented demonstrate not only the effectiveness of the proposed hybrid modeling 
and optimization framework but also provide deep insights into the interplay between engine operation, fuel 
composition, and performance-emission trade-offs. The superior predictive accuracy of the hybrid stacked 
ensemble model, as quantitatively validated by its minimal MSE across all sub-figures in Figs.  20 and 21, 
stems from its unique architecture. The hybrid model acts as a committee of experts, using a meta-learner to 
intelligently combine the predictions from the MLP, XGBoost, and Random Forest models. This allows it to 
compensate for the individual weaknesses of each algorithm, particularly the tendency of the standard MLP to 
overfit on small datasets, thereby achieving a level of robustness and accuracy unachievable by any single model.

Table 2 presents a detailed comparison of the Mean Squared Error (MSE) associated with various engine 
performance and emission parameters across four models: MLP, XGBoost, Random Forest, and a hybrid 
model. In the case of brake power, the MSE values indicate a distinct pattern, with MLP exhibiting the highest 
error (0.002721589), followed by Random Forest (0.000432729). XGBoost shows a significantly lower error 
(6.38E−07), while the hybrid model achieves the best performance with the lowest error (5.34E−07). A similar 
trend is observed for mean effective pressure, where MLP again records a high MSE (0.002204502), whereas 
Random Forest (0.00017572) and XGBoost (7.52E−07) demonstrate improved performance, with the hybrid 
model yielding the most favorable result (9.25E−07). In the context of emissions predictions, particularly for CO 
emissions, MLP again registers the highest error (0.006708499), being notably surpassed by XGBoost (7.19E−07) 
and Random Forest (0.000765264). The hybrid model, however, provides the most precise prediction, achieving 
an MSE of only 1.66E−07. Regarding thermal efficiency, MLP’s error stands at 0.008889129, this is significantly 
greater than that of XGBoost (8.64E−07) and Random Forest (0.000185856), while the hybrid model reduces 
the error to 3.11E−07. For specific fuel consumption, MLP records an error of 0.004083075, whereas XGBoost 
(7.01E−07), Random Forest (0.000482096), and the hybrid model (3.95E−07) show progressive enhancements. 
Similarly, the hybrid model achieved the lowest error. Overall, the hybrid model demonstrates superior 
predictive performance across all metrics, while MLP consistently achieves the worst performance. These 

Fig. 21.  Prediction MSE for emissions: (a) CO, (b) CO2, (c) HC, (d) NOx, (e) Smoke opacity.
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findings underscore that the hybrid model, effectively leveraging the strengths of the individual models, has a 
potential capability in reducing predictive errors.

Our primary goal was to compare the predictive accuracy of four different modeling approaches (MLP, 
XGBoost, RF, Hybrid) across 13 distinct output variables. MSE is a stringent, widely accepted metric for regression 
tasks. Its quadratic nature heavily penalizes large errors, making it highly effective for clearly differentiating 
between models’ performance, especially when the errors are very small, as in our case (ranging from 10−3 to 
10−7). Mean Square Error was chosen as the primary metric because it is sensitive to large deviations and can 
provide a direct quantitative measure of prediction accuracy during the model training and testing phases. The 
fitness function for our Particle Swarm Optimization (PSO) was fundamentally based on minimizing prediction 
error. Using MSE, this is directly related to the error being minimized, ensured consistency throughout our 
methodology.

Conclusions
WCO was used to produce methyl ester in this study, and the properties of the biodiesel blend nearly resemble 
ASTM diesel. Different ratios of diesel and biodiesel are used, such as 25, 50, 75, and 100%. Models using 
XGBoost, random forest, MLP and hybrid models are utilized in experimental studies on engine emissions 
and performance for biodiesel and diesel mixtures. This study demonstrates that significant research novelty 
can be achieved through the intelligent integration of existing mathematical tools. The proposed hybrid stack 
and its use within an optimization pipeline where PSO efficiently queries the model to find the best operating 
conditions offer a novel methodology that transcends the capabilities of its individual components.

The following is a summary of the results obtained:

•	 Output power and mean effective pressure for B100 are 25 and 24% decreased about pure diesel engine at 
highest brake power and 1500 rpm, respectively. In relation to crude diesel, biodiesel raised the BSFC, equiv-
alence ratio, and EGT by 28%, 22%, and 23%, respectively, at full engine output power. Biodiesel’s volumetric 
efficiency and air-fuel ratio are 4% and 15% declined about diesel oil at 100% engine output power, respec-
tively.

•	 At 1500 rpm engine speed and maximum brake output power, the highest decreases in carbon monoxide, 
CO2, hydrocarbons, and smoke were 12, 13, 44, and 48%, respectively using pure biodiesel in relation to diesel 
oil. Methyl ester application reduces nitrogen oxides by 23% about diesel oil.

•	 Hybrid model incorporates MLP, XGBoost, and RF predictions into meta-features, had the lowest total MSE. 
This demonstrates the advantages of stacking, which combines the advantages of several models to counteract 
their drawbacks. The hybrid model approach is very good at reducing bias and variation. MSE findings for 
the 13 target parameters show the limitations of MLP in this situation while also demonstrating the benefits 
of ensemble and hybrid approaches for prediction tasks using tabular data.

•	 Using biodiesel blends reduce engine emissions as HC, CO and smoke compared to diesel oil. B100 reduces 
CO, CO2, HC and smoke emissions by 25, 20, 43 and 45% in comparison to diesel fuel. Waste is diverted from 
disposal by using WCO. Compared to fossil diesel, life cycle GHG emissions are usually lower. When WCO 
is accessible locally and processing is scaled appropriately, economic viability increases. Particularly at lower 
blend ratios up to 20%, WCO biodiesel offers engine performance (power, specific fuel consumption, and 
thermal efficiency that is comparable to diesel. WCO biodiesel’s increased oxygen content improves combus-
tion efficiency. WCO is a cheap and renewable that minimizes pollution from the waste disposal and lessens 
reliance on fossil fuels. So, WCO-based biodiesel is a viable alternative fuel for CI engines.

This study is a robust methodology for navigating the complex multi-objective optimization landscape of 
sustainable engine operation, bridging the gap between data-driven modeling and fundamental engine 
thermodynamics. The main result of this study is the successful development of a hybrid AI and PSO 

Parameters MLP XGBoost Random forest Hybrid model

Brake power 0.002721589 6.38E−07 0.000432729 5.34E−07

Mean effective pressure 0.002204502 7.52E−07 0.00017572 9.25E−07

BSFC 0.004083075 7.01E−07 0.000482096 3.95E−07

BTE 0.008889129 8.64E−07 0.000185856 3.11E−07

Exhaust gas temperature 0.001735155 1.10E−06 0.000762397 3.24E−07

Air-fuel ratio 0.002840784 8.34E−07 0.00084836 4.86E−07

Equivalence ratio 0.00805232 1.75E−06 0.000523592 5.62E−07

Volumetric efficiency 0.0026497 5.59E−07 0.000187546 5.69E−07

CO emission 0.006708499 7.19E−07 0.000765264 1.66E−07

CO2 emission 0.002008877 6.76E−07 0.000309425 6.67E−07

HC emission 0.002500108 1.28E−06 0.000922653 2.03E−07

NOx emission 0.002344321 1.75E−06 0.000894478 4.38E−07

Smoke emission 0.004297152 5.20E−07 0.000448199 4.73E−07

Table 2.  Mean square error (MSE) for MLP, XGBoost, random Forest, and final hybrid model.
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optimization framework, which identified that operating a diesel engine at 86% load with a 26% biodiesel blend 
(B26) provides the optimal balance between engine performance and emission reduction for WCO biodiesel.

Hybrid modeling and optimization strengths and weaknesses
In statistical and regression models, simple structure, easy interpretation, and little computational effort. Limited 
capacity to capture nonlinear and linked effects across variables; accuracy suffers under complex biodiesel or 
multi-fuel circumstances. ANN and Machine Learning Models have strong nonlinear mapping capabilities, 
excellent predictive accuracy, and adaptability to big datasets. Training takes a large amount of data; there is a 
risk of overfitting; and model interpretability is limited. In hybrid and optimization-based models, it combines 
the strengths of numerous methods to increase accuracy, robustness, and generalization, as well as the ability 
to tune and optimize parameters. It is computationally expensive and requires meticulous parameter selection 
and validation to assure dependability. The hybrid XGBoost-RF-MLP model optimized by PSO was created to 
combine the nonlinear learning capability of ensemble and deep models with the global search efficiency of 
metaheuristic optimization, overcoming the limits of individual methods.

Limitations and practical implications
While this study establishes a robust methodological framework, its findings should be considered in light of 
certain limitations. The analysis is based on a constrained experimental dataset from a single engine configuration 
operating at steady-state conditions. Consequently, the model’s generalizability to other engine sizes, designs, and 
transient operating cycles remains to be fully validated. Furthermore, the optimization was conducted using a 
limited set of input parameters, excluding variables such as injection timing. NOx mitigation solutions should be 
considered in biodiesel operations. EGR systems to lower combustion temperatures, selective catalytic reduction 
(SCR) and oxidation catalysts to reduce tailpipe NOx, and fuel-borne additives (cerium oxide, titanium dioxide 
nanoparticles, and water emulsions) to improve combustion and suppress peak temperature are now recognized 
as effective approaches to reducing NOx emissions in biodiesel-fueled CI engines. The created hybrid ML-PSO 
framework may significantly minimize the number of expensive and time-consuming engine experiments 
by accurately projecting performance and emission outcomes for diverse biodiesel-HHO-nanoparticle 
combinations. Furthermore, the model can guide appropriate blend and additive selection under a variety of 
load and speed conditions, hence facilitating data-driven optimization and sustainable fuel formulation for CI 
engines.

Future work
The dataset will be increased by conducting additional tests and integrating publically accessible engine 
performance data to improve the hybrid model’s forecasting accuracy. EGR and selective catalytic reduction 
systems will be used to lower tailpipe NOx. Expanding operational scope will be used to validate the framework 
under transient engine operations, variable load/speed settings and real-world driving cycles to to prove the 
hybrid model prediction framework’s robustness and adaptability to realistic engine environments. Exploring fuel 
variability will investigate the impact of different WCO feedstocks and fuel additives on the model’s predictions 
and the identified optimum. Exploration of nano additives will improve combustion efficiency and emissions. 
Combining WCO biodiesel with hydrogen or HHO enrichment will produce nearly zero emissions. Future study 
will concentrate on incorporating economic feasibility, energy return on investment and environmental impact 
indicators as carbon footprint into the modeling framework. This integration will allow for a full assessment 
of WCO biodiesel’s competitiveness against conventional diesel and alternative renewable fuels, offering data-
driven insights for policy formulation and large-scale implementation. Generalizability can be assessed by 
testing the proposed methodology on a wider range of engine sizes and types to confirm its robustness and 
transferability. The framework will be extended to include multi-fuel (Jatropha, palm, algal biodiesel) and multi-
engine datasets, allowing the model to capture broader operational behaviors and increase generalization. This 
update will also support transfer learning and meta-model adaptation, improving prediction accuracy across a 
variety of combustion systems and fuel attributes.

Data availability
All data generated or analyzed during this study are included in this published article.
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