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ASCL2 contributes to clinical
assessments of breast cancer and
mediates tumor progression via the
interaction with CLDN3

YulongYin?, Qingjie Meng?, Xianghua Liu?, Fangshi Xu?, Yiwen Li3, Xiaogang Han?,
Qiangian Guo* & Yonggang Lv'**

Breast carcinoma (BC) is the most common malignant neoplasm occurring in women, posing a
serious threat to public health. Metastasis is its leading cause of death, nevertheless there is still a
lack of effective treatment. Epithelial-mesenchymal transition (EMT) is a critical process involved

in cancer malignant progression, which is expected to provide new insights into BC treatment.
Through lasso regression SVM-RFE algorithms, ASCL2 was identified as a potential regulator

for BC progression. Multi-omics bioinformatics investigation confirmed its great value in clinical
assessments. ASLC2 can elevate the decision-making benefit of TNM and AJCC-stage prognostic
models and distinguish the prognostic differences of patients with different molecular subtypes.

A survival meta-analysis confirmed its prognostic value in five public cohorts. High expression of
ASCL2 was associated with unfavorable anti-tumor immune response as determined by CIBERSORT
algorithm and immunofluorescence staining. Meanwhile, ASCL2 was also indicative of metabolic
status and therapeutic efficacy through GSEA, GDSC, TIDE and TMB analyses. As for its biofunctions,
overexpression of ASCL2 promoted proliferation, migration and invasion of MCF-7 and MDA-
MB-231 cells. Silencing ASCL2 can significantly inhibit the growth of xenograft tumors in mice.
Mechanistically, CLDN3 was predicted to have a close functional link with ASCL2 through module and
spearman analyses. Co-IP assay confirmed the interaction of ASCL2 and CLDN3. Rescue experiments
demonstrated that overexpression of CLDN3 could partly reverse the inhibitory effects of ASCL2
deletion on the malignant capacities of BC cells, suggesting their synergistic effects. Collectively,
ASCL2 is a pivotal biomarker for successful individualized cancer therapy, targeting ASCL2 has
enormous therapeutic potential.
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Despite recent advances in therapeutic and diagnostic approaches, breast invasive cancer (BRCA) remains the
most common malignant tumor in women and the second leading cause of cancer-related death in women!. The
incidence of BRCA continues to trend upwards, increasing by 1% each year from 2012 to 2021'. Therefore, it
poses a serious health threat and economic burden to the public?. Although surgery combined with endocrine
and molecular targeted therapies greatly improves the prognosis of patients, leading to a 5-year overall survival
rate (OSR) of up to 87% for patients with clinical stage I and II, there are still many dilemmas in the current
treatment and clinical assessments of BRCA. For instance, BRCA is highly heterogeneous, and triple-negative
breast cancer (TNBC) is its refractory subtype. For the metastatic TNBC, the median progression-free survival
(PFS) of patients receiving pembrolizumab plus chemotherapy is only 7.6 months®. Hence, in-depth investigation
of the molecular mechanisms involved BC malignant progression is of great significance.
Epithelial-mesenchymal transition (EMT) is a biological process characterized by the acquisition of
mesenchymal properties by epithelial cells?. There is ample evidence that EMT profoundly affects tumor
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metastasis, invasion and therapeutic resistance®. For instance, PD-L1 knockdown can suppress the angiogenesis
of non-small cell lung cancer (NSLC) through retarding ZEB1-triggered EMT®. CD147 promotes BRCA
progression through inducing EMT via the MAPK/ERK signaling pathway’. Clearly, with in-depth research,
targeting EMT stepwise becomes a promising direction to curing human cancers®. Among the numerous
EMT regulators, ASCL2 has attracted extra attention from oncology researchers due to its critical roles in
multiple biological processes in human cancers. For example, ASCL2 can not only induce an immune excluded
microenvironment, but also affect the efficacy of immunotherapy in colorectal cancer (CRC)%°. Regrettably, its
action mechanisms in BRCA tumorigenesis remain poorly characterized.

Despite no direct evidence confirming the linkage between ASCL2 and EMT, the own functional attributes
of ASCL2 reveal the potential connection between the them. On one hand, ASCL2 can enhance the activity
of the Wnt/B-catenin pathway, which is one of the core signaling pathways regulating the EMT process'!.
Mechanistically, ASCL2 can bind to the promoter region of the TCF7L2 gene, which is the most important
member of the TCF/LEF family and is essential for p-catenin into the nucleus'?. On the other hand, ASCL2
is affiliated with the basic helix-loop-helix (b HLH) family of transcription factors (TFs), which can activate
transcription by binding to the E box and plays critical roles in regulating cellular proliferation, differentiation
and phenotype maintenance'>. For example, E47, a classical member of bHLH family, has been confirmed to be
indispensable in the maintenance of EMT through directly binding to the promoter of E-cadherin!*. TWIST1,
another well-known member of bHLH family, serves as a pivotal TF responsible for promoting EMT!?. Therefore,
ASCL2 may be also strongly implicated in EMT regulation. Indeed, the evidence from gastric cancer (GC) and
colorectal cancer (CRC) have both confirmed its facilitative roles in EMT process'®!7.

Herein, we utilized two machine learning algorithms to identify ASCL2 as a potential biomarker for driving
BRCA progression and characterizing its clinical status. With the aid of comprehensive data mining, the pivotal
values of ASCL2 in clinical assessments of BRCA were also determined, such as the prediction of survival
outcomes and therapeutic responses. Moreover, ASCL2 exhibited potent carcinogenic abilities both in vivo and
in vitro, showing great potential as a novel therapeutic target. Mechanistically, the interaction of ASCL2 and
CLDN3 drove BRCA tumorigenesis. Our findings provide new insights into BRCA treatment and contribute to
its individualized therapy.

Materials and methods

Data source

The transcriptome data and clinical information of five public cohorts were utilized for data mining, including
TCGA-BRCA, MEABRIC, ICGC-KR, GSE20685 and GSE42568 datasets. Their brief information and main use
were presented in Table 1. Their clinical characteristics were shown in Table S1. All transcriptome data was
standardized by log2 (FPKM + 1) transformation.

EMT-related gene set

EMTome (www.emtome.org) and MSigDB databases (https://www.gsea-msigdb.org/) provided an EMT-rela
ted gene set consisting of 1072 regulatory genes'®. Among that, three EMT-related gene sets contributed to
this establishment process, including ‘HALLMARK Epithelial to mesenchymal transition, ‘GOBP Epithelial
to mesenchymal transition, and ‘GOBP Regulation of epithelial to mesenchymal transition’ (Table S2). The
protein-protein interaction (PPI) network of these EMT genes was constructed using the STRING database and
their biological functions were analyzed using Metascape database!*2°.

Consensus clustering and machine learning analysis

Consensus clustering analysis was performed via the ‘ConsensusClusterPlus’ package in R software (version
4.3.3). The optimal number of clusters was determined according to the cumulative distribution function (CDF).
The heatmap of the consistency matrix was employed to quantify the intragroup and intergroup heterogeneities.
Lasso regression and support vector machine recursive feature elimination (SVM-RFE) was used to identify the
pivotal EMT genes involved in BRCA pathogenesis. The former machine learning algorithm was performed via
‘glmnet’ R package, and the latter one was ‘KeBABS’ R package.

Prognostic analysis

According to the cutoff value of ASCL2 expression, BRCA patients in each public cohort were divided into
high- and low-ASCL2 expression groups. The cutoff value was determined using the Cutoff Finder online tool.
The survival difference analyses were based on the Kaplan-Meier method. A series of prognostic analyses
were conducted to assess the clinical value of ASCL2, including receiver operating characteristic curve
(ROC), multivariate independent prognostic analysis, decision curve analysis, clinical subgroup analysis, and

Cohort Sample size | PMID Platform Main use

TCGA-BRCA | 1015 NA NA Prognostic, immune, metabolic and therapeutic status
METABRIC 1764 22,522,925 | Illumina HT-12 v3 Prognostic validation

ICGC-KR 50 NA Tllumina HiSeq 2000 | Prognostic validation

GSE20685 327 25,887,482 | GPL570 Prognostic validation

GSE42568 104 23,740,839 | GPL570 Prognostic validation

Table 1. Brief information and main uses of five public cohorts. NA, not applicable.
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nomogram. A meta-analysis was conducted using Review Manager 5.2 software to assess the comprehensive
prognostic effect of ASCL2 across multiple cohorts. The evaluation indicator was odds ratio (OR) value. I value
was applied to measure statistical heterogeneity. The overall effects were tested by z test.

Immune analysis and immunofluorescence assay

The immune effects of ASCL2 were explored using CIBERSORT algorithm, ESTIMATE method, ssGSEA
and TIMER online tool?!-2. Next, we conducted immunofluorescence to validate the effects of ASCL2 on the
infiltration levels of CD8 + T cells. The experimental workflow followed as previously reported?*. Briefly, the 4-mm
tissue sections prepared were sequentially subjected to dewaxing, antigen retrieval, fixation, and nonspecific
blocking. Then, tissue sections were incubated with first and secondary antibodies (ASCL2: ab157918, CD8:
ab33786, Abcam, Cambridge, UK) in a light avoidance condition. ASCL2 was stained by the FITC-labeled goat
anti-mice IgG (H&L) antibody (Beyotime, Shanghai, China). CD8 was stained by the Cy3-labeled goat anti-mice
IgG (H&L) antibody. Nucleus was stained by the Hoechst reagent (Beyotime, Shanghai, China). The stained
slides were observed via a fluorescent microscope under a 40 x magnification (Olympus BX53).

GSEA

Metabolic analysis was performed using gene set enrichment analysis (GSEA). Nine gene sets used in GSEA
were obtained from MSigDB database and listed in Table S3. The phenotype labels were high- ASCL2-expression
samples versus low-ASCL2-expression samples. A total of 1000 permutations were performed with no gene
symbol collapse.

Therapeutic correlation analysis

Genomics of Drug Sensitivity in Cancer (GDSC) database was used to investigate the relationships between the
ASCL2 expressive levels and the sensitivity of molecular targeted therapy (MTT) and multiple chemotherapy
drugs. The predictive role of ASCL2 on the efficacy of immune checkpoint inhibitors (ICIs) was assessed using
tumor mutation burden (TMB)?*, TIDE score®’, expressions of immune checkpoints (ICs), and IMvigor 210
cohort?’.

Clinical samples and RT-qPCR

25 pairs of BRCA and adjacent normal tissues were collected from the department of breast and thoracic
surgery in Xi'an No.3 hospital (May 15%, 2023 to May 15, 2024). All parents have signed the informed consent
before PCR detection. The study protocol was approved by the Ethics Committees of Xian No.3 Hospital
(ID:20,230,416). We confirmed that all methods were performed in accordance with the relevant guidelines and
regulations.

Total RNA was extracted using TRIzol Reagent (TakaRa, Japan). The optical density at 260 nm and 280 nm
(A260/A280) was measured for evaluating RNA purity of samples. Reverse transcription was conducted using
PrimeScript RT reagent Kit (Takara, Japan). On the ABI Prism 7900 sequence system, PCR reaction was labeled
and detected using SYBR-Green PCR Reagent (Takara, Japan). GAPDH was used as the internal reference. The
relative gene expression was calculated according to the 2-AACT method.

Western blot

Western blot assays were conducted as previously reported?’. Briefly, cells were lysed using RIPA buffer
(Beyotime, China). The protein concentration was measured using BCA kit (Beyotime, China) and the proteins
were separated by 10% SDS-PAGE (Applygen, China). The membranes were blocked by 5% of skim milk and
incubated with primary and secondary antibodies. The used antibodies (Sigma-Aldrich, German) were as
follows: anti- ASCL2 rabbit polyclonal antibody (1/1000, SAB1305026), anti-CLDN3 rabbit monoclonal antibody
(1/1000, CL13128), anti-GAPDH rabbit polyclonal antibody (1/2500, ABS16). Protein blots were visualized by
BeyoECL plus solution (Beyotime, China).

Cell culture and gene vectors

Two breast cancer cell lines (MCF-7 and MDA-MB-231) were purchased from Procell Life Company (Wuhan,
China). MCF-7 cells were cultured in MEM medium containing 10% FBS (Fetal bovine serum) and 1% P/S
(Penicillin/ Streptomycin). MDA-MB-231 cells were cultured in Leibovitz’s L-15 medium containing 10% FBS
and 1% P/S. Cells were incubated at 37°C and 5% CO?2. Specific short hairpin RNAs (sh-ASCL2 and sh-CLDN3)
and overexpression plasmids (OE-ASCL2 and OE-CLDN3) were synthesized by HanHeng Biotechnology
(Shanghai, China).

Colony formation assay

Cell proliferation was assessed by colony formation assay. In a 6-well plate, the cells with logarithmic growth
phase were seeded at a density of 1.5x10° cells/ per well. When colonies formed, they were fixed and stained
using methanol and Giemsa. Colonies were counted under the microscope from five random fields.

Transwell migration and invasion assays

The experimental flow was referred to previous studies?2. To perform migration assays, the upper chambers were
added medium with 0.1% FBS, while the lower chambers were added medium with 10% FBS. 5x 10° cells were
seeded into upper chamber for 24-h incubation. Then, unmigrated cells were removed by PBS and cotton swab.
Migrated cells were fixed and stained by paraformaldehyde and 0.1% crystal violet. In invasive assays, the upper
chambers were precoated with Matrigel (Corning, NY, USA). Quantitative analysis was conducted using a high
magnification microscope (100-fold) from five random visual fields.
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Co-Immunoprecipitation (Co-IP)

Protein A +G Agarose (Beyotime, China) was used to conduct this experiment, which followed the protocol
of manufacturer. Briefly, protein A/G magnetic beads were bound and crosslinked by DSS to the first antibody.
Cells were lysed and incubated with beads overnight. Afterward, bound antigens were eluted from the beads
by sample buffer and detected using Western blot assay. The first antibodies were as follows: anti-ASCL2 rabbit
polyclonal antibody (1/1000, SAB1305026), anti-CLDN3 rabbit monoclonal antibody (1/1000, CL13128).

Xenograft assay

Ten female BALB/c nude mice were purchased from Animal Experimentation Center, Xi'an Jiaotong University
School of Medicine, and were applied for in vivo experiment. 1x 107 MCF-7 cells transfected with sh-ASCL2 or
sh-vector were subcutaneously injected into the right flank of each mouse. The length and width of xenograft
were measured every four days, by which tumor volume was calculated according to the formula: 0.5 x (tumor
length) x (tumor width)%. Mice were anesthetized with ketamine. After the mice were sacrificed by cervical
dislocation, tumors were harvested and weighed. This study was approved by the Ethics Committee of Xi'an
No.3 Hospital (ID:20,230,416). We confirmed that all methods were carried out in accordance with relevant
guidelines and regulations. We confirm that all methods are reported in accordance with ARRIVE guidelines.

Statistical analysis

All statistical analyses were performed using the R software (Ver 4.3.3) and GraphPad Prism (Ver 9.0). The
continuous variables among groups were compared using the T test or Welch T test. The categorical variables
among groups were compared using the Wilcoxon rank sum test. Spearman coefficient was applied in correlation
analysis. In vitro experiments were conducted three times independently. P<0.05 was considered statistically
significant.

Results

ASCL2 is a potential gene for characterizing the EMT prognostic risk in breast carcinoma

The flowchart of this study was shown in Fig. 1. EMTome and MSigDB databases were employed to construct an
EMT-related gene set containing 1072 members (Fig. 2A). The PPI network of these EMT genes was presented
in Fig. 2B. Biological function analysis confirmed that they enriched in EMT process, including ‘regulation
of epithelial mesenchymal transition’ and ‘Extracellular matrix organization” (Fig. 2C). Consensus clustering
analysis which defined the prognosis of BC patients (TCGA-BRCA cohort) as the outcome variable revealed
that 1072 EMT genes could be divided into four patterns (Fig. 2D). Regrettably, four EMT clusters could only
reflect 44.2% of the prognostic alteration (Fig. 2E), and there was no significant difference in OSR of patients
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Fig. 1. The workflow of this study. EMT, epithelial-mesenchymal transition; PPI, protein—protein interaction;
PCA, principal components analysis; DEGs, differentially expressed genes; SVM-RFE, support vector machine-
recursive feature elimination; Co-IP, Co-Immunoprecipitation.
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Fig. 2. Identification of critical EMT genes for characterizing breast carcinoma. (A) Construction of a
comprehensive EMT gene set; (B) The PPI network of 1072 EMT regulators; (C) Function enrichment
analysis of EMT gene set using Metascape database; (D) The results of consensus clustering analyses; (E) PCA
results of four EMT clusters; (F) Survival differences between four EMT clusters (TCGA-BRCA cohort); (G)
Differentially expressed genes between tumor and normal samples (the absolute value of Log2FC is greater
than 1); (H) Lasso regression analysis; (I) SVM-RFE algorithm; (J) The intersection genes of two machine
learning algorithms; (K) Five potential EMT genes affecting BC progression. BC, breast carcinoma.

with different clusters (Fig. 2F). Therefore, we attempted to apply machine learning algorithms to identify critical
EMT genes that determine the prognosis of BRCA patients.

213 EMT genes with significant differential expressions in BC samples were identified using a volcano plot
(Fig. 2G). Based on their expression matrix, 15 and 23 candidate genes were screened out respectively using
lasso regression and SVM-RFE algorithms (Fig. 2HI). The intersection of two machine learning screening
results yielded five candidate genes, including MAL2, KLF17, SLC7A5, LEF1 and ASCL2 (Fig. 2JK). Considering
various research have witnessed the important roles of ASCL2 in multiple cancers (Table 2), ASCL2 was selected
as the final research subject.

ASCL2 is of great value in prognostic assessment of BRCA patients

According to the cutoff value of ASCL2 expression (1.687), 1015 BRCA patients in TCGA cohort were divided
into two groups. Patients with high ASCL2 expressions suffered from worse overall survival and progression
free survival (PFS) time (Fig. 3AB). ASCL2 presented a good accuracy for predicting the OSR of BRCA patients
(Fig. 3C) and was identified as an independent prognostic factor (HR=1.227, Fig. 3DE). Notably, introducing
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Cancer type PMID Expression | Function

Colon cancer 39,895,630 | Up-regulated | Oncogenic properties

Colorectal cancer 37,591,954 | Up-regulated | Immune excluded microenvironment
Colorectal cancer 36,824,410 | Up-regulated | Stemness

Prostate cancer 38,064,349 | Up-regulated | Neuroendocrine differentiation
Stomach adenocarcinoma | 36,008,864 | Up-regulated | Inflammation regulation

Pancreatic adenocarcinoma | 38,955,307 | Up-regulated | Oncogenic properties

Table 2. Critical functions of ASCL2 in human cancers.

ASCL2 as a prognostic variable can enhance the decision-making benefit of the TNM and AJCC-Stage models
(Fig. 3F). The subgroup analyses showed that ASCL2 was able to distinguish prognostic differences among
patients with different clinical features (Fig. 3G-M). For facilitating clinical practice, a nomogram consisting of
age, clinical stage, molecular typing, and ASCL2 expressive level was constructed (Fig. 3N), and its prediction
accuracy was approved by calibration curves (Figure S1).

Meanwhile, patients with high ASCL2 expressions were accompanied by the later TMN and clinical stages,
indicating ASCL2 was involved in the malignant progression of BC (Fig. 4A). Moreover, Her-2 and luminal B
types were more likely to appear in patients with high ASCL2 expressions, while the proportion of Basel and
luminal A types were higher in low expression groups (Fig. 4B). There were obvious prognostic differences
between high- and low-ASCL2 expression groups in patients with four molecular classifications (Fig. 4C-F).
Collectively, ASCL2 provided valuable information for survival analyses of BRCA patients.

The prognostic value of ASCL2 is also successfully validated in other cohorts except for TCGA
cohort

As expected, high ASCL2 expression also conferred an unfavorable survival outcome in METABRIC cohort
(HR=1.25, Fig. 4G). ASCL2 expressive levels were also associated with molecular classifications of breast
carcinoma (BC) (Fig. 4H). The proportion of Her-2 and Claudin-low was significantly higher in high
expression group, whereas that of luminal A and B types was markedly lower (Fig. 4H). However, ASCL2 can
only distinguish the prognostic differences in luminal A and B types (Fig. 41IJ) but failed in other molecular
classifications (Fig. 4K-M).

In GSE20685 and GSE42568 cohorts, ASCL2 still demonstrated prognosis discriminatory ability and
moderate predictive accuracy ranging from 0.577 to 0.679 (Fig. 5A-D). Nevertheless, no prognostic differences
were observed between different ASCL2 expression groups in ICGC-KR cohort, with an AUC value even less
than 0.5 (Fig. 5EF). Ultimately, a meta-analysis combining five cohorts confirmed that high expression of ASCL2
increases the mortality risk of BC patients, with an odds ratio of 1.53 (Fig. 5G). No potential publication bias was
detected through a funnel plot (Fig. 5H).

High expression of ASCL2 is a potential marker of adverse anti-tumor immune response
CIBERSORT algorithm revealed the complicated effects of ASCL2 on the levels of immune infiltration
(Fig. 6A). Given that affected immune cells exert supportive or detrimental functions in anti-tumor response,
high expressions of ASCL2 may ultimately result in immunosuppression (Table 3). Similarly, deep deletion
of ASCL2 copy number strongly elevated the infiltration level of CD8+ T cells, which are the core cytotoxic
cells in anti-tumor process (Fig. 6B). The immunofluorescence detection on one pair of clinical samples was
implemented to validate the bioinformatic results. In the BC sample with high-ASCL2 expression, the intensity
of red fluorescence representing CD8 protein was very weak. By contrast, the intensity of red fluorescence in
the tumor sample with low-ASCL2 expression was strong (Fig. 6C). Obviously, high expression of ASCL2 was
accompanied by an inhibitory infiltration of CD8+ T cells.

The immune score in high-ASCL2 expression group was significantly lower than that in low expression
group, whereas the tumor purity showed an opposite trend (Fig. 6DE). Moreover, the functions of multiple
immune pathways were suppressed according to the results of ssGSEA analyses, such as T cell function, cytolytic
activity and antigen presentation cell (APC) function (Fig. 6F). These findings highlighted that high expression
of ASCL2 may lead to an untoward status of anti-tumor immune response.

ASCL2 can suggest metabolic status and therapeutic response of breast cancer patients
Although the enrichment levels of not all metabolic gene sets were associated with ASCL2 expressions,
biosynthetic process, glycolysis, amino acid (AA) metabolism, nucleotide metabolism and lipid metabolism
still exhibited the trends of enrichments in the samples with high expressions (Fig. 7A-I). This indicated that
high expression of ASCL2 resulted in vigorous biosynthesis, which was the biological foundation of tumor rapid
growth and invasion?s.

Among commonly utilized chemotherapy and molecular targeted (MT) drugs, the sensitivity of temsirolimus,
elesclomol and talazoparib was positively correlated with ASCL2 expression, while the negative correlations
were observed in afatinib and lapatinib (Fig. 7JK). As for the therapeutic effects of ICIs, there was a contradiction
among different bioinformatic results. TIDE scores in samples with high ASCL2 expressions were significantly
higher than that in low expressions. Commonly, a higher TIDE score indicates a greater risk of immune evasion,
suggesting a low chance of benefiting from immunotherapy?®. Thus, high expression of ASCL?2 indicated a poor
response to immunotherapy. However, the TMB value in high expression group was markedly higher than that in
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Fig. 3. Prognostic value of ASCL2 in TCGA-BRCA cohort. (A) Difference in OSR between high- and
low-ASCL2 expression groups; (B) Difference in PFS between high- and low-ASCL2 expression groups;

(C) Time-dependent accuracy of ASCL2 for predicting OSR; (D-E) The identification of BC independent
prognostic factors through cox univariate (Blue) and multivariate (Red) analyses; (F) The decision benefit of
four prognostic models based on DCA analyses; (G-M) The clinical subgroup analyses; (N) The nomogram
consisting of clinical stage, molecular subtype and ASCL2 expression; OSR, overall survival rate; PFS,
progression-free survival; HR, hazard ratio; AUC, area under curve.

low expression group and was positively correlated with ASCL2 expression (Fig. 7MN). The higher TMB value,
the greater the likelihood that tumor antigens are recognized by the anti-tumor immune system, and the higher
probability that immunotherapy will be effective?. Hence, TMB-related results indicated a favorable response
to immunotherapy. Similarly, the expressions of many immune checkpoints (ICs) in high expression group
were significantly higher than that in low expression group (Fig. 70), which also supported above conclusion.
Regretfully, in a real clinical cohort referring to immunotherapy (IMvigor 210 cohort), no expressive differences
of ASCL2 were found between patients with different therapeutic effects (Fig. 7P).

Overexpression of ASCL2 confers higher malignancy to breast cancer
Through the PCR tests on 25 pairs of clinical samples, ASCL2 was confirmed to be significantly upregulated
in tumor tissues (Fig. 8A). Prior to experiments in vitro, PCR tests determined that OE-ASCL2 and sh-ASCL2
can effectively manipulate ASCL2 expressions in MCF-7 and MDA-MB-231 cells (Fig. 8B). Colony formation
assays revealed that overexpression of ASCL2 promoted, whereas silencing ASCL2 inhibited the proliferation of
BC cells (Fig. 8CD). Similarly, tumor cells with ASCL2 overexpression possessed more migratory and invasive
capacities, while ASCL2 deletion prevented migration and invasion processes (Fig. 8E-H).
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Fig. 4. Prognostic value of ASCL2 in METABRIC cohort. (A) The correlations between clinical features and
ASCL2 expressive levels (TCGA-BRCA cohort); (B) Differences in the proportion of molecular subtypes
between high- and low-ASCL2 expression groups (TCGA-BRCA cohort); (C-F) Overall survival differences

of patients with four molecular subtypes between high- and low-ASCL2 expression groups (TCGA-BRCA
cohort); (G) Overall survival differences between two ASCL2 expression groups in METABRIC cohort; (H)
Differences in the proportion of molecular subtypes (METABRIC cohort); (I-M) Overall survival differences of
patients with five molecular subtypes in METABRIC cohort.

Injection of tumor cells with ASCL2 knockdown can significantly suppress the growth of xenograft tumors
in mice (Fig. 9A). The weight and volume of xenograft tumors in ASCL2 deletion group were significantly less
than that in control group (Fig. 9BC). Targeting ASCL2 could be a promising therapeutic approach against BC.

The synergistic effects of ASCL2 and CLDN3 contribute to BC malignant progression

The PPI network of genes highly related to ASCL2 was constructed (Figure S2). Using the MOCDE plugin,
its core module was identified, which contained CLDNS3, a critical protein responsible for regulating cell tight
junctions® (Fig. 9D). In TCGA-BRCA cohort, ASCL2 expression was highly positively correlated with CLDN3
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Fig. 5. Validating the prognostic value of ASCL2 in other cohorts. (A-B) Overall survival differences and
prediction accuracy of ASCL2 in GSE20685 cohort; (C-D) Overall survival differences and prediction accuracy
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KR cohort; (H) Funnel plots for assessing publication bias; (I) A meta-analysis for assessing the prognostic risk
of high ASCL2 expression.

expression (Fig. 9E). Similar to ASCL2, high expression of CLDN3 lead to a poor survival outcome for BC
patients (HR=1.41, Fig. 9F). Hence, it was speculated that ASCL2 and CLDN3 jointly mediate the progression

and metastasis of BC.

As confirmed by Western blot tests, genetic tools targeting CLDN3 can effectively alter its expressions in
two BC cell lines (Fig. 10A). Co-IP assay revealed that ASCL2 was detected in the immunocomplexes pulled
down by both ASCL2 and CLDN3 antibodies (Fig. 10BC). Similarly, CLDN3 can also be detected in the
immunocomplexes pulled down by two antibodies (Fig. 10DE). These observations were indicative of a potential
molecular interaction between ASCL2 and CLDN3. In MCEF-7 cells, overexpression of CLDN3 strongly promoted
cell proliferation, while ASCL2 deletion partly counteracted this facilitative effect (Fig. 10FG). In MDA-MB-231
cells, silencing CLDN3 significantly inhibited cell proliferation, while ASCL2 overexpression weakened this
inhibitory effect (Fig. 10HI). As expected, overexpression of CLDN3 also enhanced the migrative and invasive
abilities of MCF-7 cells, while ASCL2 knock-down impaired this reinforcement (Fig. 10JK). Targeting CLDN3
attenuated the migrative and invasive abilities of MDA-MB-231 cells, while ASCL2 overexpression rescued this
weakening (Fig. 10LM). Collectively, CLDN3 possessed oncogenic functions similar to ASCL2 and cooperatively
regulated the malignant behaviors of BC through molecular collaboration with ASCL2.

The pan-cancer analysis of ASCL2
We performed a preliminary pan-cancer analysis of ASCL2 to widen its biomarker availability. Among
32 cancer types in TCGA database, ASCL2 exhibited differential expressions in up to 15 cancer types, with
expressive upregulations observed in all of these tumors (Fig. 11A). ASCL2 possessed prognostic value in
9 cancer types, however the impact of its high expressions on survival outcomes were closely related to the
tumor types (Fig. 11B). Its high expressions were indicative of worse prognosis in four cancer types including
BRCA, esophageal cancer (ESCA), lower grade glioma (LGG), and liver cancer (LIHC). Nevertheless, its high
expressions revealed favorable prognosis in bladder cancer (BLCA), cervical cancer (CESC), pancreatic cancer
(PAAD), stomach cancer (STAD) and melanoma (SKCM). Moreover, the close connections between ASCL2

and immune infiltration levels in almost all 31 cancer types (Fig. 11C), demonstrating its pivotal impact on the
cancer tumor immune microenvironment.
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Final
Trend effect on
in high anti-tumor
Immune cells expression | Basic function immune
Plasma cells Decreased | They primarily exert bidirectional roles in antitumor immunity through antibody secretion Uncertain
T cells CD8 Decreased | CD8 T cells can directly kill tumor cells through the perforin-granzyme pathway and Fasl/TRAIL pathway Unfavorable
Tregs Increased | Tregs exert immunosuppressive effects by inhibiting the functions of T cells, NK cells, and macrophages Unfavorable
NK cells activated | Decreased | NK cells exert rapid, non-specific cytotoxic effects in antitumor immunity, independent of antigen presentation Unfavorable
Macrophages MO | Increased MO type is the common precursor of M1/M2 macrophages, and its ultimate function depends on signals from the tumor Uncertain
microenvironment
Macrophages M1 Decreased | M1-type cells can directly kill tumor cells by releasing reactive oxygen species and TNF-a, or activate T cells by presenting tumor Beneficial
antigens through MHC-II molecules
Mast cells activated | Increased The r(_)les of mast cells are highly dependent on the tumor microenvironment and can promote tumor progression through Unfavorable
releasing VEGF in some cases

Table 3. The effects of high ASCL2 expression on immune microenvironment. Tregs, T cells regulatory; NK,

natural killer; VEGE, vascular endothelial growth factor.
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The comparison between ASCL2 and other EMT biomarkers

There have been many studies identifying various EMT regulators as biomarkers for clinical assessments of
BRCA3!. Nonetheless, ASCL2 offers some advantages in some aspects (Table 4). First, excellent prediction ability.
Compared with other EMT regulators, ASCL2 possessed a best prognostic analytical performance with an
AUC of 0.728. Second, comprehensive bioinformatic investigation. Herein, we not only assessed the prognostic
value of ASCL2, but also probed into its immune effect, metabolic influence and therapeutic correlation,
comprehensively mapping its clinical landscape in BRCA. However, some studies did not even evaluate the
predictive accuracy of ASCL2. Third, precise mechanism exploration. In addition to our study, the other four
research did not clarify the oncogenic mechanisms of ASCL2. By contrast, we demonstrated that the synergistic
effects of ASCL2 and CLDN3 exerted a pivotal role in the malignant progression of BRCA, providing valuable
clues for developing therapeutic targets.

Discussion
Breast carcinoma is the most frequent malignancy diagnosed in women, leading a serious burden on public
health and the economy, with 685,000 deaths annually*?. Metastasis is its leading cause of death, up to 30% of
patients are accompanied with metastatic symptoms at the time of diagnosis®®. Although new therapeutic agents
are being continuously formulated, the median OS of metastatic patients was commonly less than 60 months®.
Therefore, elucidating the molecular mechanism of BC progression is important for its treatment. Considering
EMT is the fundamental dynamic factors of tumor invasion and metastasis, we took this as a breakthrough point
to attempt to provide theoretical clues for this issue. Through reasonable exploration, ASCL2 may be the answer
to the question for treating BC, due to its critical clinical values and cancer regulatory capabilities.

ASCL2 is a famous transcription factor (TF) belonging to the helix-loop-helix (BHLH) family. Available
evidence has demonstrated that ASCL2 can regulate cell differentiation and the origin of cancer through
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Fig. 10. An underlying oncogenic mechanism of ASCL2 in breast cancer. (A) Transfection efficiency of the
recombinant vectors of CLDN3; (B-E) The interaction of ASCL2 and CLDN3 as confirmed by Co-IP assays;
(F-I) ASCL2 and CLDN3 can mutually affect each other’s ability to promote the proliferation of BC cells; (J-M)
ASCL2 and CLDN3 can mutually affect each other’s ability to promote the migration and invasion of BC cells;
IP, immunoprecipitation; HC, heavy chain; LG, light chain; **P<0.01, **P<0.001.

Wnt signaling pathway*>*. The underlying roles of ASCL2 in tumor biology have been gradually revealed in
recent years. For instance, ASCL2 contributes to gastric tumor migration, invasion and EMT process'®. ASCL2
drives colon tumorigenesis via HMGA1-induced histone recruitment®”. ASCL2 is a key regulator to control
the neuroendocrine transition in prostate cancer®®. These findings all pointed toward a pan-cancer property of
ASCL2. Unfortunately, the research related to the roles of ASCL2 in BC is still at a relatively nascent stage. Only
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Fig. 11. Pan-cancer analysis of ASCL2. (A) The differential expressions of ASCL2 between normal and tumor
samples across 31 cancer types in TCGA database; (B) The effects of ASCL2 expressive levels on the prognosis
of patients across 31 cancer types; (C) The effects of ASCL2 expressive levels on the immune infiltration levels
across 31 cancer types. *P<0.05, **P<0.01, **P <0.001; NS, not statistic difference.
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Study PMID | Gene Validation cohort | Prediction accuracy | Mechanism exploration
40,634,441 NOX4 NA NA NA

37,304,008 EZR Three (n=2091) 0.693 NA

36,620,876 CBX3 NA 0.664 NA

30,602,372 PRAME | NA NA NA

NA ASCL2 | Four (n=2245) 0.728 Synergistic function of CLDN3

Table 4. The comparison between ASCL2 and other EMT biomarkers. NA, not applicable.

one study observed that elevated ASCL2 expression was closely associated with worse prognosis in BC**. Herein,
we demonstrated that ASCL2 promoted malignant capacities of BC cells, and silencing ASCL2 can significantly
inhibit the growth of xenograft tumors in mice. It refines the functional landscape of ASCL2 in human cancers.
Targeting ASCL2 has the potential to be a promising approach for fighting BC. Indeed, AT7867, a potent oral
AKT inhibitor has been experimentally confirmed to suppress stemness and progression of colorectal cancer
(CRC) through targeting ASCL2%.

ASCL2-involved carcinogenesis implicates intricate regulatory mechanisms. In the post-transcriptional
regulation, TET2-BCLAF1 complex can up-regulate the methylation of ASCL2 promoter, thereby inhibiting
ASCL2 expression and colorectal cancer progression?!. In the transcriptional regulation, SMYD3 can be
transcriptionally activated by the TCF4 complex, thereby promoting ASCL2 expression via enhancing its
H3K4me3 status*?. Here, we identified a novel access to regulate BC progression, termed the synergistic effect
of ASCL2 and CLDNB3. Co-IP assays confirmed the existence of direct or indirect interaction between them,
while the rescue experiments demonstrated that they can mutually affect each other’s oncogenic abilities. In fact,
multiple oncogenes mediate cancer progression by establishing interactions with other molecules. For instance,
FNDC3B can facilitate gastric cancer metastasis via interacting with FAM83H*. DAB2 binding to LASP1
strongly promotes the migration and invasion of non-small cell lung cancer (NSCLC)*. Clearly, our findings
will open up new perspectives on BC treatments.

Accurate clinical assessment is a critical issue in cancer individualized therapy. As the most widely used
prognostic tool, the C-index of TNM staging system is just 0.716, which has plenty of room for improvement*’.
Through our comprehensive investigation, ASCL2 not only possessed an excellent prediction accuracy, but also
lifted the decision performance of TNM system. Thus, ASCL2 is an important complement to the TNM-based
prognostic evaluation system. An increasing number of scholars have advocated incorporating biological factors
into the prognostic system, which leads the future trend*S. Moreover, ASCL2 promises to be a reliable biomarker
for reflecting the metabolic, immune and therapeutic status of BC, which was partly supported by the existing
research. For instance, ASCL2 can induce immune tolerant microenvironment through recruiting cancer-
associated fibroblasts®. ASCL2-DPEP1 positive feedback loop facilitates drug resistance in colon cancer?’.
Altogether, ASCL2 has great potential to display the clinical status of BC using genetic information.

Our bioinformatic findings revealed that the prognostic performance of ASCL2 in validation cohorts
was slightly weaker than that in TCGA cohort. There are two possible reasons for this limitation. First, the
biological heterogeneity. There are certain differences in clinical characteristics among patients in different
cohorts, which leads to a substantial variation in the biological effects of ASCL2 across different tumor samples,
thereby resulting in prognostic differences*. For example, up to 23.8% (265/1109) of patients were diagnosed
with middle or advanced stage disease in TCGA cohort, whereas this proportion was only 12% (6/50) in ICGC
cohort. Moreover, the mean age of patients in ICGC cohort was obviously younger than that in the other
cohorts (31.81 vs 58.83), which may indicate a higher malignant cancer potential. Second, the heterogeneity
of techniques and methodologies. For example, the discrepancies in tumor tissue collection, fixation, and
preservation across different cohorts can significantly affect RNA quality, thereby affecting the measurements
of ASCL2 expressions*®. Additionally, different sequencing platforms vary in their sensitivity, dynamic range,
and background noise for detecting gene expression levels. These technical factors will all influence the ultimate
assessments of ASCL2’s prognostic performance. To better move ASCL2 as an effective prognostic marker in
clinical practice, two points are worth noting. First, from a single marker to a combined model. Although ASCL2
exhibited a certain prognostic analytic capability, it is not realistic to expect that ASCL2 individually undertakes
the precise prognostic assessment of BRCA. Constructing a comprehensive model by combining it with classic
indicators such as TNM staging is a more appropriate approach®. Second, validation in large, prospective,
heterogeneous cohorts. The small and retrospective cohorts should be banished in favor of robust large-scale
data to refine the prognostic parameters of ASCL2, such as the determination of cutoff value and applicable
subgroup populations.

ASCL2 and CLDN3 synergistically drive malignant progression of BRCA through specific molecular
pathways. On one hand, as a TF, ASCL2 can active multiple effector molecules of Wnt/B-catenin signaling
pathway, such as TWIST!® and ZEB1°!, thereby promoting EMT process. On the other hand, CLDN3 serves
as a core protein component of cell tight junctions®. Its aberrant expressions in cancers will lead to loss of cell
polarity and the defects in intercellular adhesion function, thereby enhancing the invasive capacity of tumor
cells®. This alteration of adhesion property is complementary to the mesenchymal phenotype driven by ASCL2,
together facilitating tumor metastasis.

Naturally, there are still several limitations to this study. First, the prognostic value of ASCL2 has not been
adequately tested in more clinical cohorts. The nomogram constructed by ASCL2 also lacked clinical validation
in predicting OSR of patients. Second, the associations of ASCL2 with cancer metabolism and therapeutic
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response were not verified by cell experimentations and clinical data. Third, evidence has been presented that
ASCL2 is a pivotal downstream target gene of Wnt signaling pathway. Nevertheless, it remains elusive whether
the synergistic molecular of ASCL2, CLDN3, is also activated by the Wnt pathway. Thus, further research is
necessary to address the above inadequacies.

Conclusion

Distant metastasis is the leading cause of death in BC patients, the overall survival for advanced patients is
commonly less than 5 years. EMT is an essential process for cancer development and progression, providing
a promising solution to BC treatment. Herein, a critical regulator ASCL2 was confirmed to have a high value
in BC clinical assessments, due to its suggestive roles in prognosis, anti-tumor immune response, metabolism
reprogramming and therapeutic efficacy. Through a series of in vitro and in vivo experimentations, ASCL2
exhibited potent oncogenic effects and targeting it is expected to be a promising strategy. Mechanistically, the
synergistic effects of ASCL2 and CLDN3 mediated malignant progression of BC. Collectively, our findings will
provide new insights into BC personalized therapy.
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