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Climate change increasingly threatens the productivity of region-specific strategic agricultural 
products such as tea cultivation in Türkiye, posing a serious risk to both food security and rural 
economies. However, existing literature is notably limited in terms of studies that draw attention to 
this risk and examine the effects of climate change on tea productivity at a regional scale through 
rigorous quantitative methods. To this end, this study investigates the influence of climate change on 
tea productivity in Türkiye’s tea–growing provinces (Artvin, Giresun, Ordu, Rize, and Trabzon) between 
2004 and 2022. Distinct from previous studies, we integrate advanced machine learning techniques 
with the method of moments quantile regression (MMQR) approach to provide comprehensive, 
reliable, and methodologically robust results for the first time in this context. The results of the 
MMQR demonstrate that although humidity reduces tea productivity, temperature and precipitation 
significantly increase it. Furthermore, the results of machine learning research indicate that the tea 
farming area is the variable with the highest importance, whereas humidity emerges as the least 
influential factor. These findings indicate that policymakers need to implement integrated agricultural 
policies in the five tea–growing provinces of the Eastern Black Sea region, including effective moisture 
management, soil fertility, erosion control, and irrigation infrastructure tailored to the climate and 
land conditions.

Keywords  Sustainable farming, Tea agronomy, Climate adaptation, Ensemble learning, Method of moments 
quantile regression

Since the early 20th century, drastic and accelerating changes in the global climate system have caused substantial 
losses in agricultural production and serious disruptions in the food supply chain, affecting most regions of 
the world1,2. For example, food security3, groundwater resources4, renewable energy sources5, agriculture and 
livestock6–9, nature tourism10, cultural heritage11, forestry12, and vector–borne diseases13 are just a few of the 
many ecosystems threatened by the adverse effects of global climate change. At the national level, declining 
agricultural yields and productivity loss brought on by the adverse effects of climate change exacerbate economic 
and social inequality14. Yet, despite the growing global evidence, the localized consequences of climate change on 
regional economies and ecosystems remain underexplored, particularly in vulnerable sectors such as agriculture.

This gap underscores the need for a more comprehensive examination of human activities that shape the 
climate system. Specifically, because of intensive human production and consumption activities such as burning 
fossil fuels, rapid urbanization, and industrialization, the global rate of greenhouse gas emissions has been 
continuously rising. Such changes have led to more extreme weather, higher temperatures, irregular rainfall, and 
increased erosion across the globe. Over time, these factors progressively lower agricultural yields, which in turn 
has a detrimental impact on rural development and economic sustainability15. It is not known exactly whether 
this is the case for tea production, but climate change has nonetheless become a critical global issue16. Because 
of climate change, extreme weather events such as storms, floods, inconsistent precipitation, and rising average 
temperatures have a major detrimental impact on agricultural activities, which are crucial to the economies 
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of developing nations17. One of the main factors slowing economic growth and endangering sustainable rural 
development is the mounting strain that climate change places on agricultural activities18, so researchers should 
also examine climate change impacts at the regional and local levels for strategically important agricultural crops 
such as tea. Tea is one such crop, particularly in the Eastern Black Sea Region of Türkiye, where the majority 
of national tea production occurs. Additionally, tea productivity is highly sensitive to changes in temperature, 
rainfall, and humidity, which are climatic factors that are being increasingly destabilized.

However, this sensitivity has not been adequately addressed in the literature. Indeed, the majority of studies 
have focused on the global or national-level impact of climate change and have paid relatively little attention 
to its effects on tea farming, particularly at the regional level19. However, because of climatic and geographic 
limitations, changes are nonetheless noticeable in tea-producing countries such as China, India, Kenya, and 
Türkiye20,21. Tea is a strategically vital source of income for these countries and is one of the most consumed 
national and global agricultural products. For example, global tea production reaches approximately 30 million 
tons annually. Türkiye, where production capacity is concentrated in the Black Sea region, is among the top 
five tea-producing countries worldwide22. The 207 tea factories located solely in the Black Sea region produce 
approximately 19,000 tons of tea daily23. The tea sector plays a critical role in economic and rural development, 
poverty reduction, and food security, providing income and employment for millions of families, especially in 
low-income countries24. Given this high socio-economic and agricultural importance, the vulnerability of tea 
farming to climate variability poses a direct threat to livelihoods, regional trade, and food security. Thus, there 
remains a significant research gap in understanding these dynamics within the regional context in Türkiye.

On the other hand, tea production worldwide has recorded a remarkable growth in recent years. Global tea 
production has exhibited steady growth over the past decades. According to FAO data, global tea production 
reached approximately 6.7 million metric tons in 2023, representing an average annual growth rate of about 3.2% 
over the past decade. The largest producers are China (≈ 48% of world output), India (≈ 22%), Kenya (≈ 8%), Sri 
Lanka (≈ 5%), and Türkiye (≈ 4%). Türkiye is both a significant producer and the world leader in per capita tea 
consumption. In 2019, the country produced approximately 1.45 million tons of fresh tea leaves, corresponding 
to about 260–270 thousand tons of processed tea. In 2023, the country produced 343,500 tons of processed tea, 
primarily for domestic consumption. Per capita consumption in Türkiye is the highest in the world, estimated 
at 3.16–4.6 kg annually, depending on the source and year. The majority of production occurs in the Eastern 
Black Sea region, particularly in Rize, Trabzon, Artvin, and Giresun provinces, with Rize alone accounting for 
more than 60% of the cultivation area. Although domestic consumption is dominant, Türkiye also exports to 
over 100 countries, with significant markets in the European Union, Russia, and the Middle East22,25,26. In terms 
of consumption, tea remains the most consumed beverage worldwide after water. The global tea market was 
valued at USD 25.6 billion in 2024 and is projected to reach USD 38.1 billion by 2033 (CAGR ≈ 4.5%). The 
data from recent years show that global tea consumption expanded by 2% in 2022 compared to 2021, driven 
by high growth in producing countries27. Per capita consumption varies significantly: Türkiye, Ireland, and the 
United Kingdom lead globally with annual consumption often exceeding 3 kg per person, while large consuming 
markets such as China and India have lower per capita figures but very high aggregate demand22,28,29.

In light of these global market dynamics, the sensitivity of tea production in Türkiye’s Eastern Black Sea 
Region to climate change merits examination. To this end, this study investigates the effects of climate change on 
regional and local tea productivity in the provinces of Artvin, Giresun, Ordu, Rize, and Trabzon. The strategic 
and economic significance of the Eastern Black Sea Region in tea production and its dominant position in 
worldwide tea output serve as our primary motivation. Tea production in Türkiye has increased from 1,442 kg/
day in 2004 to 1,563 kg/day in 2022, positioning it as one of the world’s top tea-producing countries. However, a 
deeper understanding of the detrimental effects of climate change on local and regional agriculture is necessary 
to ensure agricultural sustainability. More research is needed on the effects of climate change on regional and 
local tea farming, given its strategic social and economic importance to the economy and society of the Eastern 
Black Sea Region. In addition to showcasing the development of sustainable agricultural practices, the tea sector 
is also a critical source of revenue for farmers and the local population. Addressing this gap, this study aims to 
answer key questions such as: How sensitive is tea production in Türkiye to climate variability? Which climatic 
factors have the most influence on regional tea yields? How can we methodologically measure and analyze these 
impacts with precision?

This study is unique in several aspects. First, this study is, to our knowledge, the first empirical investigation 
to assess how climate change affects the tea productivity in Türkiye—a key agricultural product with strong 
socio–economic ramifications in the Black Sea Region. By focusing on the provinces of Artvin, Giresun, Ordu, 
Rize, and Trabzon in the region, this study uniquely captures the subnational and region-specific dynamics of 
climate change’s impact on agricultural productivity, offering insights that are currently lacking in the literature. 
Second, the study also contributes novel perspectives on climate adaptation strategies by focusing specifically 
on tea farming in the region. Unlike many other crops, there has been a body of evidence that tea is particularly 
sensitive to climate change. So, by examining how these factors influence tea productivity in the region, this 
study provides practical recommendations for local climate adaptation, which are crucial for stakeholders in 
the region, such as farmers and policymakers. Third, distinct from prior empirical research, this study employs 
a complementary dual methodological approach that uniquely combines the method of moments quantile 
regression (MMQR) with advanced machine learning techniques (Gradient Boosting (GB), Extreme Gradient 
Boosting (XGBoost), and Genetic Algorithm-Extreme Gradient Boosting (GA-XGBoost)). MMQR enables us 
to examine how climate variables affect tea productivity differently across the yield distribution (i.e., in low-
yielding vs. high-yielding provinces), revealing heterogeneous effects that conventional OLS regression cannot 
capture. However, regression-based approaches, including MMQR, cannot determine the relative importance of 
explanatory variables. Machine learning models, in turn, identify which climatic and non-climatic variables are 
most important for overall predictive accuracy and uncover potential nonlinear relationships and interactions. 
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Together, this dual approach provides a more complete analytical picture. This integrated framework offers novel, 
policy-relevant insights that neither method alone could deliver, making it particularly valuable for designing 
targeted adaptation strategies.

We have organized the sections of the study as follows. In the second section we explain the theoretical 
framework, and comprises literature reviews of the variables. In Sect. 3, we introduce the model and dataset, and 
in Sect. 4, we describe the estimating approaches. The findings and discussion appear in Sect. 5. In Sect. 6, we 
present the study’s findings and policy recommendations.

Theoretical background and literature review
Climate change refers to long–term shifts in climate characteristics on a global or regional scale caused by 
both natural and anthropogenic forces. Based on comprehensive scientific reports, one of the primary causes 
of global climate change is the sharp rise in greenhouse gas emissions following the industrial revolution30. 
Understanding sectoral adaptation and the actions needed to counteract these changes is crucial for managing 
the potential influence of climate change31. To this end, sustainable agricultural practices are increasingly 
inevitable. Furthermore, incorporating cutting–edge and climate-resilient methods of agricultural production 
and management into conventional farming practices in light of climate projections is essential for sustainable 
agriculture32. In agricultural practices that are susceptible to the adverse consequences of climate change, 
policymakers should employ adaptive and mitigative strategies to boost resilience and productivity33. In fact, 
because the agricultural sector is more vulnerable to the consequences of climate drivers than other sectors, 
extreme weather events such as droughts and floods have especially severe and long-lasting detrimental impact 
on productivity and output34.

Because agricultural sustainability is a multidimensional and complicated topic, it merits assessment at 
several levels, including local, national, and global35. Indeed, the ambiguities and debates around sustainability 
are the foundation of this concept’s complexity36. Agricultural sustainability is also a holistic and integrative 
approach that emphasizes environmental and natural resource preservation while requiring the use of suitable 
agricultural practices to boost productivity to satisfy the world’s growing food demand37. This strategy not 
only has positive effects on food and nutritional security but also contributes to the adoption of innovative 
agricultural approaches on a global scale, helping agricultural sectors worldwide to achieve a more resilient and 
sustainable structure38.

The nexus of climate change, agricultural activities, and economic growth
Scholarly debates have centered on the nexus among economic growth, agricultural sustainability, and extreme 
weather occurrences such as droughts and high temperatures brought on by global climate change, particularly 
in the post-COVID–19 period. For example, from an economic point of view, Bilal and Kanzig39 proposed that a 
1 °C rise in temperature might result in a 12% decline in world GDP. This estimate shows the potential for larger 
losses and the significant correlation between extreme climate events and the global economy. In their analysis 
of 174 nations from 1960 to 2014, Kahn et al.40 also calculated that a 0.04 °C increase in temperature would have 
a detrimental impact on economic growth, with losses worldwide potentially reaching 13% by 2100. Similarly, 
according to Lemaire41, a consistent 1 °C rise in temperature in developing nations lowers the rate of economic 
growth by 1.25%. Finally, Byrne and Vitenu–Sackey42 also argued that both developed and developing nations’ 
economic and socioeconomic indicators suffer from rising temperatures brought on by climate change. Based 
on the findings of this study, rising temperatures have a more pronounced and disproportionate impact on 
economic growth, particularly in developing countries.

There is increasing evidence that climate change, through erosion, erratic precipitation, and rising average 
temperatures, reduces agricultural productivity, which in turn hampers economic growth17,18. Production 
declines as a result of productivity loss, and the cost of associated agricultural products rises accordingly. These 
consequences are becoming more noticeable and disruptive in countries where agriculture is the primary 
economic sector. Thus, both economic growth and agricultural practice in these countries more clearly show 
the direct and measurable impact of climate change. For example, Trinh43 found that climate change negatively 
affects farm net income, a crucial measure of agricultural production. Both developed and developing countries 
experience these effects. Adams et al.44 also assessed how climate change was affecting the U.S. agricultural sector 
and confirmed that temperature increases and fluctuating rainfall affect agricultural yields, with significant 
implications for global food security. Similarly, Lu et al.45 determined that climate change has a detrimental 
impact on agricultural yields, particularly because of temperature increases and water resource constraints, 
without looking at how it affects grain production. Burke et al.31 also demonstrated that excessive heat reduces 
agricultural yields, thereby endangering global production. Additionally, in their study spanning the years 2000–
2019, Dubovitski et al.46 examined climate threats to Russia’s agricultural industry in the context of climate 
change. The results indicated that annual temperature fluctuations and increased precipitation lead to yield 
losses.

In addition to the agricultural sector, global climate change also directly affects economic growth. In this 
regard, Fankhauser and Tol47 highlighted how labour, savings, and capital accumulation are all negatively 
affected by climate change. In a similar vein, Dell et al.48 discovered that a 1 °C rise in temperature in developing 
countries between 1950 and 2003 slowed economic growth by 1.1%. Their report also noted that although the 
consequences of rising temperatures are more pronounced in low-income countries, they are less so in wealthy 
ones. Similarly, Raddatz49 claimed that low–income countries are particularly vulnerable to climate change 
and that it reduces economic development by about 1%. In addition, the economic effects of climate change 
in middle- and high-income countries are more limited and generally vary between 0.25% and 0.5%. On this 
issue, Tol50 also evaluated the political and economic effects of climate change and concluded that, despite its 
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initial benefits over the past century, it has had a longer-term negative impact on the economy and well-being of 
countries with lower incomes and higher temperatures.

The interlinkages of climate change and tea production
As climate change impacts vary significantly across regions and crop types, understanding how these global 
patterns translate into specific agricultural contexts is essential. Tea cultivation, being both strategically vital 
and highly sensitive to climatic variability, offers an ideal case for examining localized impacts and adaptation 
challenges.

Building on this understanding, researchers have recently focused more on the crop-specific consequences 
of climate change for tea farming, conducting empirical studies using samples from various countries. However, 
there is currently little consensus in the literature regarding how climate change affects tea productivity. 
Wijeratne51 provided empirical evidence of the beneficial impacts of increased warmth and rainfall on Sri Lankan 
tea agricultural yield. Biggs et al.52, however, stressed that this is not the case for other nations and claimed that 
India’s tea production was adversely affected by rising temperatures and fluctuating rainfall. Similarly, Mallik and 
Ghosh53 investigated how climate change affected tea production in India, finding that high temperatures and 
erratic rainfall had detrimental impacts. Furthermore, Lou et al.54 explored how climate change impacted tea 
output from 1985 to 2018 in China and found that drought and high temperatures had a detrimental impact on 
tea productivity. These findings were consistent with previous studies. For example, Cheserek et al.55 investigated 
the connection between Kenyan tea yield and temperature, showing that raising the average air temperature by 
up to 19.2 °C enhanced yield; however, raising it above this point resulted in a substantial decline in output.

Despite these studies, significant gaps remain in understanding how climate change affects tea productivity, 
particularly for developing countries. In this regard, Bayraç and Doğan56 explored how climate change affected 
agricultural yield in Türkiye, but they did not provide empirical evidence that rising average temperatures have 
a detrimental impact on agriculture. Akcan et al.57 also used the autoregressive distributed lag (ARDL) limits 
test approach to examine how climate change affected the agriculture industry from 1985 to 2018 in Türkiye. 
The findings of the study demonstrate that rising temperature adversely affected the agricultural sector. Studies 
focusing on Türkiye, covering the period 1975–2019, have shown significant relationships between temperature 
and precipitation and tea yield; for example, İrdem58 analyzed tea yield in Türkiye between 1975 and 2019 and 
found a statistically significant positive correlation between annual tea yield and temperature variables such as 
maximum and minimum temperatures and annual precipitation level. Subsequently, the results of his study 
empirically demonstrate that while annual precipitation showed no significant relationship with tea yield, the 
effects of temperature were particularly pronounced during summer months. The findings also indicate that 
future temperature increases based on current climate change scenarios may further enhance tea productivity in 
the region. Similarly, Tutal59, using panel data analysis for the Eastern Black Sea region for the period 1970–2018, 
found that rising temperatures, particularly during the post-1993 “warming period,” have had a statistically 
significant positive effect on tea yield in Türkiye. In contrast, while precipitation showed a positive impact on 
yield prior to 1993, its influence diminished significantly in recent decades due to increased variability and 
extreme rainfall events, which may negatively affect soil structure and growing conditions. So, these results 
suggest to us that consistent warming has contributed to yield gains, whereas irregular precipitation patterns 
may pose emerging risks to tea cultivation in the region. In addition, Yazıcı60 highlights that the negative impacts 
of climate change on tea yield observed globally are also evident in Türkiye. Her study mainly emphasizes that 
these effects include irregular rainfall, elevated temperatures, shifts in harvest timing, increased incidence 
of pests and diseases, declining soil quality, and a notable rise in extreme weather events, all of which pose 
growing risks to sustainable tea cultivation. Beyond the empirical analysis, survey-based research conducted by 
Yıldız and Özcan61 also shows that shifting temperature averages, changing precipitation levels, and increasing 
rainfall irregularity have led to altitude-dependent impacts on tea production in this region. Their findings also 
demonstrate that while coastal lowland areas experience yield losses, particularly during the first flush harvest, 
higher-altitude regions tend to benefit from yield increases during the second and third harvests, which highlights 
a spatial differentiation in climate impacts across tea-growing zones. As shown in Fig. 1, tea productivity tends 
to increase in years with higher precipitation and temperature in the cities. However, relative humidity does 
not show a consistent link and decreases as yield increases. International systematic reviews and ecological 
suitability/modeling studies indicate that tea plants require high relative humidity, generally between 70% and 
80%. However, excessive or prolonged humidity can reduce yield due to disease and physiological stress62–64.

Recent research across Asia and globally further underscores the diverse and region-specific impacts of 
climate change on tea production. For instance, Jayasinghe & Kumar64 documented that in Sri Lanka, moderate 
increases in temperature and rainfall can enhance yields, whereas prolonged droughts have adverse effects. Studies 
in China54,65 have linked drought frequency and heat waves to substantial interannual variability in tea output. 
Similarly, research from Kenya55 indicates that both short-term weather variability and long-term climate trends 
require adaptive cultivation strategies to maintain productivity. Comparative analyses, such as Ahmed et al.19 
and Bania et al.62, suggest that while tea is sensitive to multiple climatic parameters, the magnitude, direction, 
and threshold levels of impacts vary substantially by region, which points to the importance of location-specific 
and data-driven adaptation policies.

Despite the increasing volume of empirical studies on the agricultural impacts of climate change, to the best 
of our knowledge, no prior research has systematically examined Türkiye’s tea sector through a dual empirical 
lens that combines the MMQR with advanced machine learning techniques. So, this study aims to fill this gap by 
combining MMQR and advanced machine learning techniques to offer novel insights into the climatic factors 
and their relation to tea productivity at the subnational level. This integrated approach allows for a more nuanced 
understanding of both distributional heterogeneity and non–linear interactions, offering innovative and policy-
relevant insights into the climatic determinants of tea productivity at the subnational level.
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Model and variable specifications
The study explores the impact of climate change on tea productivity in provinces where tea has been cultivated 
in Türkiye between 2004 and 2022. We measured tea productivity (TP) in kilograms of tea per decare, and we 
quantified climate change with three key indicators: rainfall (PRE), mean temperature (TEM), and humidity 
(MOIS). Total tea area data is the tea production area (TPA). We sourced TP and TPA data from the Turkish 
Statistical Institute66, and we collected PRE, TEM, and MOIS data from the Turkish State Meteorological 
Service67. While these metrics capture general climate patterns, it is important to note that they represent 
mean climatic conditions rather than comprehensive climate change indicators. Climate change encompasses 
longer–term trends, increased variability, and the frequency of extreme events—dimensions not fully captured 
by annual averages alone. Nevertheless, it should be particularly emphasized that climate anomalies observed in 
parameters such as temperature, precipitation, and humidity are direct consequences of anthropogenic climate 
change, and variations in these parameters are regarded as manifestations of climate change itself.

The dataset consisted of annual observations for five provinces (Artvin, Giresun, Ordu, Rize, and Trabzon) 
over the period 2004–2022 (N = 5; T = 19). The primary reason for limiting the scope of the analysis to these five 
provinces was that commercial tea production in Türkiye was largely concentrated in them due to geographical 
and climatic conditions. In addition, the availability of long-term and consistent statistics provided by the 
Turkish Statistical Institute and the Turkish State Meteorological Service exclusively for the 2004–2022 period 
was a decisive factor in determining the duration of the analysis. Leng et al.68, Shan et al.69, Almulhim et al.70, 
and Chen et al.71, conducted with a similar panel data structure, employed the MMQR method in relatively 
small samples and obtained statistically significant and policy-relevant findings. This evidence demonstrated 
that the data structure and methodological choice of our study were consistent with the relevant literature. 

Fig. 1.  Climatic variables and tea productivity by provinces between 2004 and 2022 (left axis: tea productivity; 
right axis: climatic variables).

 

Scientific Reports |          (2026) 16:122 5| https://doi.org/10.1038/s41598-025-29358-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


We applied a logarithmic transformation to minimize the effects of heteroskedasticity, balance the influence of 
outliers, and make the proportional relationships between variables more straightforward. Table 1 summarizes 
the description of the variables.

Figure 1. visualizes the province–level temporal trends of climatic variables and tea productivity defined in 
Table 1 for the 2004–2022 period.

The estimating model of the study is constructed as in Eq. 1.

	 lnT P it = β0 + β1lnP REit+β2lnT EM it+β3lnMOISit + β4lnT P Ait + εit� (1)

where t is the time dimension (t = 2004, …,2022), i is the cross-sectional dimension (i = 5), and ϵ  is the error 
term. β 0 represents the constant term, while β 1, β 2, β 3, and β 4 are the explanatory variable parameters. 
T P it represents the tea yield of province i in year t, while P REit, T EM it, MOISit, and T P Ait represent 
the total precipitation, average temperature, average relative humidity, and tea production area data for province 
i in year t, respectively.

Methodology
Panel data analysis
We perform some preliminary diagnostic tests before examining the basic estimation relationships among the 
variables in Eq. 1’s estimation model. Accordingly, the first stage is examining cross–section dependence (CSD), 
and the second stage is investigating the slope heterogeneity (SH) problems of the model. In panel data analysis, 
common shocks and similar external factors can lead to interdependence among cross-sectional units. In this 
context, controlling for CSD and selecting appropriate testing approaches that account for this phenomenon 
are of critical importance. The presence of CSD plays a decisive role in the choice of econometric methodology. 
Indeed, when CSD exists, more robust methods that explicitly account for such dependence should be employed 
instead of conventional testing approaches. Otherwise, neglecting CSD may result in biased and inconsistent 
estimates, misleading generalizations, and inappropriate policy recommendations. The relationships between 
variables may affect each unit—a country, region, or sector—to varying degrees. In this context, the assumption 
that slope coefficients are homogeneous across all cross units can lead to overlooking structural differences. Such 
an assumption may reduce the reliability of the estimated coefficients and weaken the validity of the model. The 
SH test is critically important for assessing whether the same policy instrument produces similar effects across 
different units. Based on the findings of the SH test, econometric methods that account for slope heterogeneity 
should be employed. Therefore, the control of CSD is conducted in detail using four different tests: CD of 
Pesaran72, CDw of Juodis and Reese73, CDw+ of Fan et al.74, and CD* of Xie and Pesaran75. Then, we investigate 
the slope properties of the model using the CSD–sensitive Delta ( ∆̂ ) and CSD–sensitive Adjusted Delta ( ∆̂ adj.) 
tests, newly proposed by Bersvendsen and Ditzen76.

In the third stage, we check the stationarity of the variables with the cross–sectionally IPS (CIPS) test 
developed by Pesaran and the multivariate augmented Dickey–Fuller (MADF) test introduced by Taylor 
and Sarno77, which considers both CSD and SH. In the fourth stage, we test for the presence of long–term 
relationships with cointegration tests based on Durbin Hausman (DH) of Westerlund78 and Lagrange Multiplier 
(LM) of Westerlund and Edgerton79. Both cointegration tests estimate reliable test statistics under SH and CSD 
conditions. The DH test adds flexibility to cointegration tests by allowing the explanatory variables to be I(0), 
provided that the dependent variable is I(1). In addition, this test offers two different test statistics: DHpanel, 
which addresses slope homogeneity, and DHgroup, which pertains to slope heterogeneity. The LM test provides 
robust results even in small samples.

The fifth stage involves the estimation of long–run coefficients. The pool of quantile–based estimation 
techniques offers an array of options. Among these, we prefer the novel and robust MMQR approach developed 
by Machado and Silva80. Researchers looking into climate change, global warming, energy, and environmental 
issues have often used this method because (a) it gives more information than OLS–based methods that only 
look at average relationships; (b) it can handle outliers and heterogeneity; (c) it is based on covariance; (d) it gives 
accurate estimates even when there is multicollinearity and endogeneity; (e) it works well even with models that 
are not linear or normally distributed; f) While conventional econometric approaches may encounter efficiency 
and consistency issues in small sample sizes, the MMQR approach, with its moment-based structure, provides 
stronger and more reliable estimates; and g) Moreover, it enables researchers to analyse not only the mean or 
specific quantiles but also all quantiles within the Q10–Q90 range simultaneously. These features give the MMQR 
approach distinct advantages over traditional methods and other quantile–based estimation techniques, making 
it a suitable choice for this study. Equation 2 displays the basic form of the quantile regression Eq. 

Variable Acronym Definition (Unit)

Tea productivity TP It is calculated by dividing the total amount (kg) of tea by the total tea area (decare)

Precipitation PRE Total annual rainfall (Millimeter)

Temperature TEM Average annual temperature (Celsius)

Moisture MOIS Average annual relative moisture (%)

Tea production area TPA Total area of tea plantation (Decare)

Table 1.  Description of the variables.
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	 QYi,t (τ /Xi,t ) = βτ + X ′
i,tβα τ � (2)

In Eq. 2, QYi,t (τ /Xi,t ) represents the conditional quantile τ th. In other words, it refers to the distribution of 
the dependent variable under a given quantile ( τ th). β τ  represents the effect of unobservable factors, whereas 
α τ  acts as a predictor for the independent variable. Xit denotes the set of independent variables. q( τ ) denotes 
the sample quantile ( τ th) derived from the optimization problem. The definition of optimization is the same as 
in Eq. 3.

	
minq

∑
i

∑
t
pτ(Rit −

(
δi + Z′

itγ
)

q)� (3)

Equation 4 illustrates the quantile regression model constructed within the framework of the Eq. 1 estimation 
model.

	 QT P it (τk /βi, Xit ) = βi + β1τ P REit + β2τ T EM it + β3τ MOISit + β4τ T P Ait� (4)

We employ in the sixth stage the panels corrected standard errors (PCSE) and feasible generalized least squares 
(FGLS) estimation tests to validate the MMQR model results as robustness tests. It is possible for these tests to 
take CSD and unobserved heterogeneity into account; they are also unaffected by possible autocorrelation and 
heteroscedasticity issues81.

Ensemble learning
Ensemble learning algorithms combine multiple machine learning models to learn from the errors of weak 
learners and thereby generate stronger and more accurate predictions82. In this context, we employ the GB and 
XGBoost algorithms. GB uses gradient descent to minimize the loss function of the previous model, training 
new weak models by minimizing the gradients it computes at each stage. Each new model adds its predictions 
to the ensemble until it meets the stopping condition. XGBoost is an extended form of GB with superior speed, 
efficiency, and performance. Furthermore, XGBoost shows excellent performance and generalization ability in 
addressing nonlinear problems. Its most important feature is the use of L1 (lasso) and L2 (ridge) regularization 
to avoid overfitting. The steps of the XGBoost algorithm are (a) preprocessing the data; (b) making an initial 
tree model to find the starting point; (c) updating the model with GB; (d) finding the best values for the 
hyperparameters; (e) performing regularization to lower the risk of overfitting; and (f) building the final model 
and determining model performance values83.

For high prediction accuracy, it is important to determine the appropriate hyperparameter values for the 
methods. For this purpose, grid search or random search operations are useful. On the one hand, whereas a grid 
search systematically scans the hyperparameter space and tries all possible combinations, the computations are 
time-consuming for models with many hyperparameters. Random search, on the other hand, selects a random 
sample from the hyperparameter space, which may prevent finding the optimal combination and may not 
provide an exact solution. We estimate the hyperparameters of GB and develop a model for the hyperparameters 
of XGBoost with a grid search. In addition, we propose a new GA–XGBoost model by estimating it with a 
genetic algorithm based on heuristic algorithms.

We estimate the model using three different methods. First, we divide the dataset into two categories: training 
(80%) and testing (20%). We train the training data using the GB, XGBoost, and GA–XGBoost algorithms. 
We assess the test data by computing various performance criteria. We use a grid search to determine the 
hyperparameters of the GB and XGBoost algorithms. GA optimizes the hyperparameters of the GA–XGBoost 
algorithm. We apply a 5–fold validation for hyperparameter selection. We calculate root mean squared error 
(RMSE), mean absolute error (MAE), mean squared error (MSE), and coefficient of determination (R²) values 
to evaluate model performances. Figure 2 displays the roadmap for the machine learning algorithms used in 
this study.

Panel data analyses were performed using Stata/MP 17.0 (StataCorp LLC, College Station, TX, USA), while 
all machine learning analyses were conducted using R version 4.4.2 (R Core Team, 2024) in RStudio version 
2024.9.1.394 on a Windows 11 × 64 (build 26100) operating system. The primary R packages included gbm 
(2.2.2) for Gradient Boosting, xgboost (1.7.11.1) for Extreme Gradient Boosting, GA (3.2.4) for Genetic 
Algorithm optimization, and caret (7.0.1) for model training and cross-validation. All analyses are reproducible 
with the provided dataset and code specifications. Figure 3 summarizes the methodology of the study in a seven-
stage flowchart.

Results and discussion
As can be seen in Table 2’s descriptive statistics, the variables with the highest mean and median are TPA and 
TP, respectively. The variable with the highest maximum value is TPA, whereas the variable with the lowest 
minimum value is TEM. The variables with the highest and lowest standard deviation values are TPA and MOIS, 
respectively. In general, the distribution and variance characteristics of variables should be taken into account 
when choosing parametric or nonparametric tests. The Chen–Shapiro84 normal distribution test shows that all 
variables do not fit the normal distribution except the TEM variable, suggesting that quantile–based estimation 
methods that provide reliable and robust results should be preferred for data that do not meet the assumption 
of normal distribution.

In the first stage, we checked whether CSD exists. Table 3 displays the CSD results, which indicate that the 
null hypothesis, which assumes the absence of CSD, is largely rejected, and CSD is present in all variables. This 
suggests that taking CSD into account in the analysis is critical for the accuracy and reliability of the results.
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In the second stage, we evaluate the slope homogeneity of the model parameters. For this purpose, Table 4 
shows the SH test results. ∆̂  and ∆̂ adj test statistics reveal that the null hypothesis assuming slope homogeneity 
is rejected and the model coefficients exhibit heterogeneity by differing across units.

In the third stage, we analyze the stationarity properties of the variables. In this context, Table 5 shows the 
results of CIPS and MADF panel unit root tests. Both panel unit root test results indicate that all variables have 
a unit root at level, but all variables are stationary when first differences are taken.

In the fourth stage, we investigate cointegration relationships. Table 6 presents the LM and DH cointegration 
test results. In the LM test, the bootstrap p-value is considered in the presence of CSD, whereas the asymptotic 
p–value is regarded in the absence of CSD. Therefore, we use the bootstrap p–value because CSD was found 
in the study. This result implies that we cannot reject the null hypothesis of cointegration’s nonexistence. In 
the DH test, the null hypothesis that there is no cointegration is rejected according to both test statistics, and 
cointegration exists.

Fig. 3.  Flowchart of methodology.

 

Fig. 2.  Proposed model.
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We estimate the long-term coefficients in the fifth stage. Table 7 reports the results of MMQR, which uses 
nine quantiles (Q = 0.10, 0.20, ., 0.90). The findings from the MMQR reveal heterogeneous effects of PRE, 
TEM, MOIS, and TPA on tea yield. In this context, the effect of PRE, TEM, MOIS, and TPA on tea yield varies 
significantly across cantiles. PRE exhibits a positive and significant effect on tea yield in all quantiles except 
Q(0.80) and Q(0.90). In contrast to higher quantiles, PRE coefficients show a significant relationship with tea yield 
at lower quantile levels. The PRE coefficient is relatively low at higher quantile levels (e.g., 0.184 at Q(0.70)) and 
comparatively high at lower quantile levels (e.g., 0.237 at Q(0.10)). These findings suggest that PRE plays a critical 
role in increasing tea yields in provinces with lower tea yields. These findings are consistent with the results of 

Variables CIPS test MADF test

Level 1st difference Level 1st difference

TP –2.308 –3.308*** 23.291 116.996***

PRE –2.589 –4.561*** 48.836 102.750***

TEM –2.235 –3.207*** 36.808 102.214***

MOIS –2.382 –2.832*** 27.382 79.896***

TPA –1.484 –2.771*** 13.506 102.213***

Table 5.  Unit root test. Note: ***p 0.01.

 

Blomquist and 
Westerlund 
(2013)

Bersvendsen and 
Ditzen (2020)

Test Test stat. p–value Test stat. p–value

∆̂ 2.637*** 0.008 –3.162*** 0.002

∆̂ adj. 3.188*** 0.001 –2.000** 0.046

Table 4.  Slope homogeneity (SH) test results. Note: ***p 0.01, **p 0.05.

 

Variables CD CDw CDw+ CD

TP 4.68*** –1.97** 13.63*** –0.56

PRE 7.54*** 1.01 24.84*** 3.55***

TEM 12.85*** –2.65*** 37.97*** 0.73

MOIS 3.46*** 0.68 11.88*** 3.51***

TPA –1.51 4.51*** 32.45*** 1.08

Table 3.  Cross-sectional dependence (CSD) test results. Note: ***p 0.01, **p 0.05.

 

Variable Type Mean Median Std. Dev. Min. Max. Chen-Shapiro

TP

Overall 7.097 7.264 0.515 5.412 7.733 0.922***

Between 0.434 6.353 7.452

Within 0.336 6.155 7.995

PRE

Overall 7.040 6.974 0.455 6.052 8.038 0.994**

Between 0.478 6.522 7.756

Within 0.15 6.57 7.322

TEM

Overall 2.706 2.727 0.087 2.442 2.833 0.960***

Between 0.081 2.563 2.755

Within 0.048 2.586 2.825

MOIS

Overall 4.248 4.252 0.071 4.055 4.405 1.008

Between 0.069 4.155 4.345

Within 0.035 4.149 4.335

TPA

Overall 10.178 11.360 3.034 3.807 13.231 0.899***

Between 3.361 4.546 13.141

Within 0.274 9.439 11.193

Table 2.  Descriptive statistics. Note: ***p 0.01, **p 0.05.
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Ahmed et al.19 and Mallik and Ghosh53, who emphasized that PRE variability significantly affects tea production 
in India. On the other side, Wijeratne51 found that increases in temperature, soil moisture deficit, and saturation 
pressure deficit at low elevations in Sri Lanka can negatively impact tea productivity. This divergence may be due 
to differences in topography and soil structure between the different regions.

When we evaluate the situation in terms of PRE, the increase in the PRE observed in the Eastern Black 
Sea Region in recent years has a positive effect on tea yields. This effect reflects not only the increase in total 
precipitation but also the regional shifts in rainfall regimes and the restructuring of the hydrological cycle driven 
by climate change. In the Eastern Black Sea region, the rise in rainfall intensity and the sustained soil moisture 
over the past two decades have helped stabilize water availability for tea plants. Accordingly, the positive impact 
of precipitation on tea productivity can be interpreted as a beneficial outcome of climate change through its 
reinforcing effect on the regional water cycle.

The MMQR results of our study similarly show a positive and significant relationship between TEM and tea 
yield in all quantiles, emphasizing the important role of TEM in tea yields. In this context, TEM tends to have a 
greater impact on tea yield at lower quantiles (e.g., 2.672 at Q(0.10)) than at higher quantiles (e.g., 2.151 at Q(0.90)). 
This suggests that in provinces with lower tea yields, TEM is another critical factor in increasing those yields. 
We found that the average TEM changes observed at the regional level positively affected tea yield. On the axis 
of climate parameters, Cheserek et al.55, Yan et al.65, Lou et al.54, and Wu et al.85 suggested that TEM is one of the 
most important limiting parameters in tea cultivation. More importantly, this finding is broadly in line with the 
results of Lou et al.54, İrdem58, Tutal59, and Wu et al.85, who observed that moderate increases in average TEM 
can improve physiological functions in tea plants. However, our results differ from Biggs et al.52, who found that 
excessive heat in some Indian regions had a detrimental effect.

The MMQR results reveal that TEM exerts a strong and positive effect on tea yields across all quantiles. This 
outcome reflects the regional warming trend driven by anthropogenic climate change, which has enhanced 
photosynthetic efficiency and extended the growing season. The positive response indicates that current 
warming remains within the crop’s physiological tolerance, yielding short-term productivity gains. However, 
this effect is not purely climatic but a manifestation of ongoing climate change, as continued warming may 
push temperatures beyond optimal levels. Thus, temperature captures both the adaptive and risk dimensions of 
climate change in regional tea farming.

MMQR results also demonstrate a negative and significant link between MOIS and tea yield in all quantiles. 
These findings prove that MOIS has a negative and significant influence on tea yield. In this context, the effect of 
MOIS on tea yield is stronger and more negative in higher quantiles (e.g., − 3.189 at Q(0.90)), whereas the effect 
is lower in lower quantiles (e.g., − 2.451 at Q(0.10)). The findings of this study, which reveal the negative effect of 
MOIS on tea yield, are consistent with the results obtained by Bania et al.62, Shrestha and Miles63, and Jayasinghe 
and Kumar64. The MMQR results indicate that MOIS has a negative and statistically significant effect on tea 
yields across all quantiles. This finding reflects the adverse impacts of anthropogenic climate change, which has 
intensified regional humidity levels and increased their variability. Global warming enhances the atmosphere’s 
water-holding capacity and, combined with altered rainfall and temperature patterns, causes persistently high 
relative humidity in the Eastern Black Sea region. Such conditions exceed the tea plant’s optimal humidity range 
(≈ 70–80%), leading to respiratory stress, greater fungal disease incidence, and yield loss. Overall, the stronger 

Variables Quantiles

Q(0.10) Q(0.20) Q(0.30) Q(0.40) Q(0.50) Q(0.60) Q(0.70) Q(0.80) Q(0.90)

PRE 0.237*
(0.138)

0.214**
(0.098)

0.204**
(0.088)

0.196**
(0.084)

0.191**
(0.084)

0.184**
(0.087)

0.180**
(0.091)

0.163
(0.114)

0.156
(0.126)

TEM 2.672***
(0.627)

2.521***
(0.448)

2.458***
(0.401)

2.406***
(0.383)

2.377***
(0.383)

2.332***
(0.397)

2.304***
(0.413)

2.194***
(0.517)

2.151***
(0.570)

MOIS –2.451**
(1.061)

–2.665***
(0.755)

–2.754***
(0.677)

–2.828***
(0.648)

–2.869***
(0.648)

–2.933***
(0.670)

–2.972***
(0.697)

–3.128***
(0.875)

–3.189***
(0.968)

TPA 0.203***
(0.027)

0.162***
(0.022)

0.144***
(0.019)

0.130***
(0.017)

0.122***
(0.016)

0.110***
(0.018)

0.102***
(0.019)

0.072***
(0.023)

0.060***
(0.022)

Constant 6.107*
(3.477)

8.243***
(2.501)

9.135***
(2.240)

9.877***
(2.130)

10.285***
(2.119)

10.922***
(2.208)

11.317***
(2.292)

12.871***
(2.866)

13.485***
(3.151)

Table 7.  Method of moments quantile regression (MMQR). Notes: ***p 0.01, **p 0.05, *p 0.1. Standard errors 
(S.E) are in parentheses.

 

LM test Test statistic Bootstrap p–value Asymptotic p–value

5.661 0.967 0.000

DH 
test Test statistic p–value

DHgroup 2.493*** 0.006

DHpanel 4.463*** 0.000

Table 6.  Cointegration test results. Note: ***p 0.01.
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negative effect in higher quantiles indicates that climate change–induced humidity pressure poses a growing 
challenge for sustainable tea farming in high-yield areas.

Finally, the results show that the effect of the control variable TPA on tea yield is positive and significant 
across all cantiles. These findings indicate that the effect of TPA on tea yield decreases as we move towards 
higher quantiles, but this effect increases significantly towards lower quantiles. It reveals that the expansion of tea 
farming areas, especially in low-yielding provinces, has a stronger and more significant effect on tea yields than 
in high-yielding provinces. This suggests that soil diversity in large areas in the region may increase tea yields. 
The findings of this study, which indicate that TPA has a positive and significant effect on TP, are consistent with 
the results of studies by Bania et al.62 and Shrestha & Miles63.

Moreover, in the sixth stage of the analysis, we check the robustness of the MMQR results using PCSE and 
FGLS regression estimations. Table 8 presents the FGLS and PCSE estimation results. PRE, one of the variables 
affecting tea yield, shows a positive and significant effect, supporting the claim that an increase in rainfall can 
increase tea yields. Similarly, the TEM variable also has a positive and significant relationship. Thus, we find 
that temperature is a positive and significant variable for tea yield. In contrast, the MOIS variable has a negative 
and significant effect on tea yield. This indicates that humidity may be a risk factor, especially for sustainable 
tea farming. In addition, the TPA variable also exhibits a positive and significant relationship. In this context, 
expanding agricultural areas increases tea yield. These results are consistent with the findings from the MMQR 
analysis and support the strong link between tea yield and climate change indicators. Figure  4 provides a 
graphical summary of the empirical findings.

In addition to panel data analysis, in the seventh stage, we use GB, XGBoost, and GA–XGBoost from ensemble 
learning algorithms in a different methodological approach. For GB hyperparameters, we use “interaction 
depth” for maximum depth, “n.trees” for number of trees, “shrinkage” for learning rate, and “n.minobsinnode” 
for minimum number of leaf nodes. For the hyperparameters of XGBoost, “nround” indicates how many trees 
the model will be updated with, “max_depth” specifies the maximum depth of the tree, “eta” represents the 
learning rate, “gamma” is the minimum error required for a split to occur, “colsample_bytree” refers to the 
number of feature subsets used, “min_child_weight” denotes the minimum number of samples needed to create 

Fig. 4.  Graphical summary of MMQR, FGLS, and PCSE estimation findings.

 

Variable FGLS PCSE

PRE 0.177***
(0.060)

0.194**
(0.078)

TEM 1.300***
(0.226)

2.395***
(0.389)

MOIS –1.642***
(0.322)

–2.843***
(0.556)

TPA 0.107***
(0.016)

0.127***
(0.016)

Constant 8.234***
(1.227)

10.025***
(1.611)

Wald χ2 81.91***
(0.000)

69.52***
(0.000)

Table 8.  FGLS and PCSE Estimation results. Notes: ***p 0.01, **p 0.05, *p 0.1. Standard errors (S.E) are in 
parentheses.
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a leaf node, and “subsample” indicates the sampling rate. Table 9 shows the tested and assigned values for the 
hyperparameters.

The GA–XGBoost method determined the hyperparameter values for both GA and XGBoost. For XGBoost, 
we optimized values in the range of nround 50–500, max_depth 3–10, eta 0.01–0.3, subsample, and colsample_
bytree 0.5–1.0 with GA. The maximum number of iterations for GA is set to 50, with a crossover rate of 0.8 and 
a mutation rate of 0.1. Table 10 presents the model performance values for various population sizes.

According to the RMSE values, the population size for the best performance value is 20. Therefore, we 
determined the optimal parameter values for the GA–XGBoost algorithm to be nround 323, max_depth 6, eta 
0.1, subsample 0.8, and colsample_bytree 0.8. In this study, we looked at the GB, XGBoost, and GA–XGBoost 
algorithms. Table 11 shows the efficacy of the models and the importance of the variables.

According to the model performance criteria (min RMSE, MAE, MSE, and max R²), the GA–XGBoost 
method performed best. TPA stood out as the variable with the highest significance, whereas the MOIS was 
the least significant variable. Although empirical analyses revealed that the MOIS had a negative and significant 
effect on tea yield, machine learning models identified this variable as the least important factor. The result 
indicates that the effect of humidity on tea yield may be complex. Moreover, this indicates that humidity is 
less determinative than other climatic and environmental factors, emphasizing that strategies to increase tea 
production and yields in the region should focus on changes in more influential parameters such as temperature, 
precipitation, and agricultural areas.

Variables

GB XGBoost GA-XGBoost

Importance Score Gain Cover Frequency Gain Cover Frequency

TPA 39.816 (1) 0.512 (1) 0.281 0.279 0.386 (1) 0.338 0.249

PRE 22.972 (2) 0.175 (3) 0.193 0.196 0.249 (2) 0.229 0.309

TEM 17.550 (4) 0.132 (4) 0.234 0.218 0.227 (3) 0.221 0.240

MOIS 19.66 (3) 0.179 (2) 0.290 0.305 0.136 (4) 0.210 0.200

RMSE 0.123 0.112 0.093

MAE 0.094 0.088 0.077

MSE 0.015 0.012 0.008

R2 0.816 0.846 0.893

Table 11.  Variable importance levels according to GB, XGBoost and GA–XGBoost methods.

 

Population Size RMSE MAE MSE R2

20 0.0939 0.0773 0.0088 0.8938

30 0.1064 0.0766 0.0113 0.8635

40 0.1012 0.0808 0.0102 0.8767

50 0.1027 0.0798 0.0105 0.8730

60 0.0970 0.0777 0.0094 0.8867

Table 10.  Model performance values.

 

Method Hyperparameters Tested Values Assigned Value

GB interaction depth 1,3,5 5

n_trees 50,100, 150 100

shrinkage 0.01, 0.1, 0.3 0.3

n.minobsinnode 5, 10, 20 5

XGBoost nround 50, 100, 150 150

max_depth 3, 5, 7 3

eta 0.01, 0.1, 0.3 0.1

gamma 0, 1, 5 0

colsample_bytree 0.6, 0.8 0.6

min_child_weight 1, 3, 5 3

subsample 0.6, 0.8 0.8

Table 9.  Tested and selected hyperparameter values for the methods.
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Conclusion and policy implications
Climate change has had significant negative impacts on agricultural productivity, reducing capacity to meet 
the food needs of a growing population. In this context, increasing tea productivity, one of the most consumed 
beverages and strategic agricultural products on a global scale, is critical for agricultural sustainability and 
reducing economic inequalities. Therefore, conducting an in–depth analysis of the abiotic (soil quality and 
climate variables) and biotic factors (pests, diseases, weeds, and plant competition) affecting tea cultivation 
and determining the necessary climatic parameters for sustainable tea farming is of great importance. Given 
this critical need, this study empirically examined the impact of climate change on tea yields in Türkiye’s tea–
growing regions between 2004 and 2022 by using both MMQR and machine learning methods. So, this dual 
methodological approach enhances the robustness of our findings and brings new perspectives on climate 
adaptation in tea agriculture.

Empirical results revealed that precipitation and average temperature had a positive effect on tea productivity. 
At the same time, whereas the results also indicated that increased humidity had a negative impact on tea 
productivity, machine learning models showed that humidity was a lower determinant than other climatic 
and environmental factors. This suggested that although monitoring humidity was necessary for sustainable 
tea production, it would be more strategic to prioritize more influential parameters such as temperature, 
precipitation, and agricultural area. In addition, the expansion of the tea cultivation area had a positive impact 
on tea productivity. These results prove that policies aiming to increase productivity in tea production should be 
reevaluated within the framework of climate change, land use, and sustainable agricultural practices. Based on 
these results, we provide several key policy recommendations to ensure sustainable tea production in Türkiye, 
with a particular focus on adapting to climate change and improving agricultural practices.

•	 Because Artvin, Giresun, Ordu, Rize, and Trabzon are the provinces where tea is intensively cultivated in Tür-
kiye, policymakers should promote climate–adapted agricultural techniques such as drip irrigation and soil 
moisture conservation methods in this region. As a policy justification for this point, we consider that these 
techniques may directly address the identified need for efficient water management and protection against 
extreme weather conditions, which are projected to become more frequent due to climate change.

•	 Although expanding the area under tea cultivation increases yields, increasing the productivity of existing ag-
ricultural land offers a more sustainable solution. Problems such as excessive moisture and erosion negatively 
affect soil fertility, especially in Rize and Trabzon. Therefore, policymakers should focus on promoting soil 
conservation measures, fertilization based on soil analysis, and the use of erosion control techniques, such as 
further green cover through afforestation. Subsequently, we believe that these kinds of actions directly address 
agricultural production and soil degradation, which is a key concern highlighted by the study, and align with 
global calls for more sustainable agricultural practices under changing climate conditions.

•	 Early warning systems that are region–specific and sensitive to climatic change would ensure that farmers are 
prepared for sudden weather events (floods, hail, excessive rainfall) or long–term expected weather condi-
tions. Accessible channels such as mobile applications, local radio and television broadcasts, and social media 
platforms could deliver the needed information to farmers.

•	 Because traditional agricultural methods have a negative impact on tea yields, farmers should use innovative 
agricultural products such as sensors, drones, and IoT–based irrigation systems in the region. In this context, 
grants and low-interest loans can help farmers access innovative agricultural technologies, and training pro-
grams should be organized for their use. So, we believe that these technologies can increase efficiency and 
sustainability in tea farming by addressing the identified challenges of soil and water management under 
changing climate conditions.

•	 Policymakers should prioritize reducing farmers’ input costs and enabling them to better market their prod-
ucts, as well as promoting and strengthening tea producer cooperatives. In addition, joint strategies to combat 
climate change can arise from regional cooperation.

This study examines the relationship between tea yield and climate change in Türkiye’s Eastern Black Sea Region 
using an integrated methodological framework combining MMQR and machine learning models (GB, XGBoost, 
GA–XGBoost). The proposed approach is readily transferable to other countries, regions, and agricultural 
contexts where comparable climate and production data are available. This framework enables researchers to 
analyze heterogeneous effects across yield distributions while identifying critical determinants of agricultural 
productivity. However, given substantial regional variations in climate conditions, soil characteristics, and 
farming practices, country-specific calibration and validation are essential for ensuring result reliability. Beyond 
its academic contribution, this transferable framework provides policymakers with a replicable analytical tool 
for developing evidence-based, location-specific agricultural and climate adaptation strategies.

This study has some limitations. First, care should be taken when generalizing the findings to other countries 
or regions with different climatic or geographical environments, as this study only covers the provinces of 
Artvin, Giresun, Ordu, Rize, and Trabzon in Türkiye. While the scope of this study offers valuable regional 
insights, it may not capture the broader variability in tea production practices worldwide. Moreover, the dataset 
used in this study covers the period from 2004 to 2022, which may not fully account for long-term climate-
induced impacts or cyclical climatic patterns. Notably, the reliance on annual aggregated data limits our ability 
to capture intra-annual variability and extreme weather events that may critically affect tea yield. Furthermore, 
the study primarily examines climate variables such as precipitation, temperature, and humidity, while explicitly 
excluding other crucial factors such as soil quality (e.g., pH, organic matter, nutrient availability, soil structure, 
soil moisture), agricultural technologies, and land management practices, etc., which may also significantly 
influence tea productivity. The absence of soil quality data is particularly significant, as soil fertility, structure, 
and erosion patterns are known to directly affect tea plant growth and yield sustainability in the Eastern Black 
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Sea Region. Additionally, topographical variables such as altitude, slope, and aspect, as well as biotic factors 
including pest pressure and disease incidence, were not incorporated due to data unavailability, limiting a more 
holistic understanding of tea productivity determinants. In this context, future research could address these 
limitations by expanding the dataset to include longer time periods, higher temporal resolution (e.g., monthly or 
seasonal data), more diverse geographical locations, soil quality parameters, topographical variables and biotic 
factors. Future studies can conduct more comprehensive analyses by incorporating environmental, economic, 
and socioeconomic variables such as soil, land, production techniques, biotic and abiotic factors, input costs, 
farmer income, and agricultural subsidies that affect tea yield, using high-frequency data, spatial models, and 
machine learning techniques.

Data availability
This study used publicly available data and needed no informed consent. Tea production and agricultural area 
data were obtained from the Turkish Statistical Institute (https://biruni.tuik.gov.tr/medas), and climate change 
data (precipitation, temperature, and humidity) were retrieved from the Turkish State Meteorological Service 
(https://www.mgm.gov.tr/). All datasets used in the analysis are cited and described in detail within the ​m​a​n​u​s​
c​r​i​p​t​.​​

Code availability
All custom R scripts used for the machine learning analyses, as well as all Stata scripts used for the coefficient 
estimation procedures, are available at: https://doi.org/10.5281/zenodo.17610824.
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