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This study presents an innovative approach for unveiling the hidden relationships between natural 
frequency patterns and structural parameters in grid-form frames. By analyzing vibrational 
characteristics, we determine key features, namely the number of vertical beams, boundary 
conditions, and aspect ratios. Extensive finite element analysis generates a dataset, mapping the 
natural frequencies as features against structural parameters as labels reveals distinct, streamlined 
clusters in the feature hyperspace, highlighting an underlying order in the system’s dynamics. An 
advanced classification and interpolation model navigates these spectral trajectories to predict 
structural parameters accurately, even in the presence of damage or different materials. This study 
offers new insights into the intrinsic dynamics of complex structures, inviting further exploration 
into the subtle interplay between vibrational characteristics and structural identity. These findings 
open new avenues for research, potentially transforming the understanding of structural behavior in 
practical engineering applications.
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The precise determination of structural parameters is fundamental to advancing dynamic analysis and 
predictive modeling. Across engineering disciplines, the challenge of identifying unknown or altered 
structural characteristics is pervasive, arising from aging infrastructure, design modifications, or incomplete 
documentation. Successfully addressing this challenge enables critical advancements in structural optimization, 
high-fidelity model updating, and robust data interpretation. By providing a reliable foundation for digital 
models, accurate parameter identification also enhances data fusion techniques, ultimately leading to more 
resilient and predictable structural performance.

Traditional model-based inverse methods have long served as reliable approaches for parameter 
identification, offering well-understood theoretical foundations and direct physical interpretability. For instance, 
Yang et al.1 employed Bayesian identification with an interface device to recover unknown substructures, though 
this approach requires specialized hardware and physical access. Complementing these methods, data-driven 
approaches leverage machine learning to extract diagnostic patterns directly from operational data. Xu et al.2 
demonstrated acoustic anomaly detection by fusing filter-bank features with load information for real-time 
monitoring. Similarly, Tong et al.3 achieved robust fault diagnosis by converting vibrations to Gramian Angular 
Field images using dual-attention networks. Extending these concepts, Vu-Huu et al.4 utilized multi-objective 
optimization to generate engineering-feasible parameter ensembles for improved design and inverse mapping.

The power of identifying characteristic signatures for parameter estimation is exemplified by the “data-
driven fingerprint” method in nanoelectromechanical mass spectrometry5, where vibrational frequency shifts 
serve as unique fingerprints for mass identification without requiring complex device modeling. We extend this 
fundamental principle to structural frame analysis, adapting pattern-recognition methodology for more efficient 
parameter identification of common engineering structures. For this purpose, references6–21 will be reviewed, 
which analyze various parameters affecting natural frequencies and vibrational characteristics, and utilize the 
resulting signatures to identify structural parameters across different structural classes.

Recent advances in vibration-based techniques have paved the way for the reliable extraction of key structural 
and material properties through inverse analysis. For example, Aryana et al.6 introduced a formulation based 
on a second order Taylor expansion to express the inverse eigenvalue problem for modifying the structure’s 
dynamic behavior. Their method, which identifies and locally modifies the most sensitive regions of a finite 
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element model, demonstrated that significant changes in natural frequencies can be achieved with minimal 
induced error. Building on this foundational study, Türker et al.7 later demonstrated that correlating experimental 
flexural vibrations with theoretical models could accurately identify both the mass distribution and elastic 
modulus of fixed-end beams. In a similar manner, Ihesiulor et al.8 applied computational intelligence methods 
to detect and localize delamination in composite laminates by analyzing shifts in natural frequencies, even under 
noisy conditions. Extending this approach, Khan et al.9 developed a convolutional neural network framework 
to classify and predict various in-plane and through-the-thickness delaminations in smart composite laminates. 
The model achieved over 90% classification accuracy by automatically extracting discriminative features from 
vibration spectrograms. Geuzaine et al.10 established guidelines for determining the axial force, flexural rigidity, 
and rotational end stiffness in slender, tensioned cables using analytical approximations derived from measured 
low-frequency responses. Similarly, Salehi et al.11 refined the estimation of boundary conditions in railway 
bridges using artificial neural networks. Their sensitivity analysis on a finite-element model significantly reduced 
the error between computed and measured modal frequencies, highlighting the critical influence of boundary 
conditions on dynamic behavior.

Goldfeld et al.12 proposed an exact element method–based procedure for identifying the continuous stiffness 
distribution in beams by monitoring selective modal frequency shifts. Representing the stiffness profile as a 
polynomial function, their approach used a sensitivity matrix derived from a healthy beam model and was 
validated against both analytical predictions and experimental data. In contrast, Sha et al.13 addressed crack 
localization in beams by introducing a two‐step probabilistic framework that employs Bayesian data fusion of 
relative frequency changes, effectively handling both single and multiple damage scenarios without the need for 
mode shape information. Similarly, Heshmati et al.14 demonstrated that artificial neural networks trained on 
finite element–generated frequency data can reliably detect horizontal cracks in steel beams, underscoring the 
promise of machine learning in damage localization while also emphasizing that the quality of the simulation 
data remains critical. Lee et al.15 combined finite element model updating with deep learning by calibrating 
a reference model from measured modal frequencies and training networks on simulated damage‐induced 
frequency shifts. In this work, experimental validation on three‐story frame structures demonstrated the 
method’s excellent reliability.

Dynamic identification techniques have also reached large-scale structures. Hernández-Montes et al.16 
introduced a Bayesian approach for identifying the structural parameters of cultural-heritage buildings using 
ambient vibration data. They combined frequency and modal information via a probabilistic modal assurance 
criterion and applied it successfully to a sixteenth-century monastery to quantify uncertainties in key finite-
element model parameters. Building on this theme, Wu et al.17 used a surrogate-assisted multi-objective slap-
swarm algorithm with a Gaussian process model for vibration-based parameter identification of concrete dams, 
achieving accurate estimations and significant computational savings. Complementing these studies, Gioffrè et 
al.18 solved the inverse problem of tie-rod mechanical properties in historical masonry by merging experimental 
vibration measurements with uncertainty-informed probabilistic modeling, yielding robust tensile-force and 
stiffness estimates crucial for structural resilience. Finally, Naranjo-Pérez et al.19 developed a Finite Element 
Method (FEM) updating approach based on free-vibration structural parameter identification. The method 
embeds experimental modal properties within a maximum likelihood optimization accelerated by a novel 
combinative algorithm, and was demonstrated on both a laboratory footbridge and a complex heritage structure 
to significantly reduce simulation time without compromising parameter accuracy.

Based on these efforts, Zhang et al.20 developed an impulse excitation technique using square specimens 
to establish a robust relationship between modal frequencies and elastic parameters, facilitating the inverse 
identification of both Poisson’s ratio and Young’s modulus. Finally, Mahat et al.21 introduced a frequency-
informed modal analysis that nondestructively evaluates the elastic properties of solid materials with high 
precision.

Understanding the dynamic response of structures is crucial for ensuring their safety and longevity. A key 
aspect of this behavior is the system’s natural frequency, which governs its inherent vibrational characteristics. 
When external forces coincide with a structure’s natural frequency, resonance can amplify displacements 
and potentially lead to catastrophic failure. To mitigate this risk, accurately determining natural frequencies 
is an essential need that has driven the development of methodologies ranging from classical analytical 
formulations to modern computational tools. Analytical and semi-analytical methods, such as Rayleigh–Ritz 
method, offer foundational insights but are limited by idealized geometries and simplifying assumptions22. For 
intermediate complexity problems, the extended Kantorovich method reduces partial differential equations to 
ordinary differential equations for efficient eigenvalue solutions, yet struggles with highly nonlinear or intricate 
geometries23. Generalized differential quadrature method then emerged, approximating derivatives via weighted 
sums and delivering high accuracy with fewer grid points for relatively smooth problems24. In contrast, the 
finite element method subdivides structures into a detailed mesh of finite elements, effectively handling complex 
geometries, irregular domains, and nonlinear materials. By directly computing mode shapes and resonant 
frequencies through discretized eigenvalue analysis25, FEM has become the gold standard for structural 
dynamics, as evidenced by its widespread application to frames, beams, composites, shells, and sandwich panels. 
Moreover, many works have been undertaken using these methods26–31.

Gao26 provided an analytical framework by introducing the random factor method and interval factor 
method. In this approach, the structural parameters are separated into deterministic and random parts, and 
analytical expressions for natural frequencies and mode shapes are derived using the Rayleigh quotient and 
algebra synthesis of random variables. Following this, Ansari et al.27 adopted a semi-analytical method for 
double-walled carbon nanotubes by integrating Eringen’s nonlocal elasticity with the classical Donnell shell 
theory. They implement the Rayleigh–Ritz technique with a polynomial series representation to solve the 
governing differential equations. Similarly, Fallah et al.28 utilized a semi-analytical approach by applying the 
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extended Kantorovich method along with an infinite power series solution to analyze the free vibration behavior 
of moderately thick functionally graded plates on an elastic foundation.

Based on these analytical and semi-analytical methods, later studies incorporate more advanced numerical 
techniques to address complex geometries and material uncertainties. Tornabene et al.29 extended the analytical 
concepts to doubly-curved shells with variable thickness by using a local generalized differential quadrature 
method that integrates higher-order equivalent single layer theories, thereby enhancing the accuracy of dynamic 
response predictions. In a further advancement, Tomar et al.30 combined higher order shear deformation theory 
with stochastic finite element methods to tackle material uncertainties in skewed, sandwich functionally graded 
plates, allowing for a comprehensive quantification of vibration and bending behaviors under uncertainty. 
Continuing this trend, Furtmüller31 introduced a novel finite plate element tailored for concrete–cross-
laminated timber composite plates that employs a higher-order plate theory to capture the characteristic zig-
zag deformations in timber layers. By accounting for the partial interaction between concrete and timber and 
reducing computational complexity compared to traditional continuum models, this approach demonstrates 
the evolving capability of finite element methods to analyze advanced composite structures with both static and 
dynamic accuracy.

By using these developments in dynamic analysis methods, especially FEM, many studies have examined 
the dynamic behavior of frame structures particularly the relationship between natural frequencies and the 
structures’ geometric and material parameters32–38.

Senba et al.32 investigated the vibration reduction in variable geometry trusses by optimizing motion plans 
to avoid resonance during payload manipulation. Their finite element model adjusted trajectories and variable 
member lengths to effectively reduce vibration amplitudes and stresses. In parallel, Sofi et al.33 addressed the 
parameter uncertainties by evaluating the bounds of natural frequencies through an improved interval analysis 
method that transforms the generalized interval eigenvalue problem into two deterministic eigenvalue problems, 
accurately capturing the variability in truss and beam structures.

Pham et al.34 proposed a fuzzy finite element framework to analyze the free vibration response of functionally 
graded semi-rigid frame structures. Their approach features a novel Timoshenko beam element that accounts 
for connection rigidity, along with a response-surface-based fuzzy analysis using the α–cut strategy and first-
order Taylor’s approximation to incorporate uncertainties in material properties, dimensions, and connection 
conditions. Similarly, Gonenli et al.35 investigated the effect of crack location on the buckling and dynamic 
stability of thin plate structures that behave as frame systems. Although their study primarily focuses on plate 
frames, the FEM model directly relates to the analysis of frame structures under damage conditions. Xu et 
al.36 further extended FEM applications by developing a direct numerical simulation procedure that integrates 
Floquet theorem and harmonic balance methods, enabling the assessment of dynamic instability in frame 
structures, including complex behaviors such as multi-mode coupling and flexural–torsional deformations.

In addition, Alaei et al.37 utilized FEM in a parametric study on Persian brick masonry arches, which can 
be considered arch-type frame structures. Their work examined the influence of various geometric parameters 
and support conditions on natural frequencies, leading to the formulation of an empirical equation validated 
by experimental modal analysis. Complementing these studies, Jafari-Talookolaei et al.38 addressed the free 
vibration analysis of general planar frame structures composed of laminated composite beam members. They 
introduced a comprehensive displacement field that captures shear deformation, rotary inertia, material coupling, 
and warping effects, with FEM results showing excellent agreement with 3D ANSYS simulations. Collectively, 
these studies demonstrated the versatility of the finite element method in accurately modeling and analyzing the 
dynamic behaviors of a wide range of frame and frame-like structures.

Despite the extensive body of literature on the influence of structural parameters on vibrational behavior, 
a comprehensive review of recent studies reveals that dedicated and efficient data-driven frameworks for 
directly identifying these parameters from measured dynamic responses remain largely unexplored. This gap 
is particularly evident in frame structures, where accurately defining physical parameters is crucial for reliable 
modeling. We propose a direct, pattern-based approach to identify structural parameters from free-vibration 
signatures, establishing a foundation for scalable applications. Developing such a method not only enhances 
optimization in structural design39 and supports data fusion techniques for damage diagnosis, but also improves 
data preprocessing, providing a more accurate representation of the structure’s true condition40.

In the following section, we introduce the mathematical formulation of the frame structure using a finite 
element method. This section details the FE formulation and presents a novel Gaussian damage function 
developed specifically for applying damage to beams. Next, we introduce a new clustering method designed to 
group spatial data points that form streamline-like patterns. After validating our FE approach and the Gaussian 
damage function through calibration with beam data, we proceed to discuss the FE-generated dataset. Here, we 
explore the relationship between structural parameters and the natural frequencies of the frame. Building on 
these findings, we propose a predictive model that estimates the frame parameters from its natural frequencies, 
using the previously introduced clustering method. This model is evaluated via a modified split-test method to 
identify sensitive parameter combinations that are challenging to predict solely from natural frequency data. 
Finally, we assess the robustness of our model by applying damage to these sensitive areas, demonstrating its 
high accuracy in the presence of environmental variations and structural uncertainties.

Problem definition
The grid form of the frame structure being investigated in the current work is shown in Fig. 1a. As can be seen 
the structure is composed of N − 1 identical sub-frames, where N  is the number of vertical beams and the ith 
vertical beam is numbered above it. Except for the last vertical beam, all sub-frames have two horizontal beams 
across them at the bottom and top. Using this fact, we name each member in the structure by beami,j , where i 
represent a vertical beam index running from 1 through N  and j can be 1, 2 or 3. Here, beami,1 corresponds to 

Scientific Reports |         (2026) 16:3279 3| https://doi.org/10.1038/s41598-025-29390-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the ith vertical beam, and beami,2 and beami,3 correspond to the bottom and top horizontal beam in front of 
the ith vertical beam, respectively. The vertical beams have a length Lv , and the distance between two vertical 
beams is denoted as Lh. Therefore, the total length of the structure is L = Lh × (N − 1). In the following 
sections, we use the aspect ratio constant AR = Lh/Lv  to specify the lengths of the horizontal and vertical 
beams41. Additionally, from Fig. 1b we can see all beams have identical rectangular cross-section with width 
b and height h. Four different arbitrary boundary conditions are considered for this investigation, as shown in 
Fig. 1c. Each boundary condition is defined by the parameter BC, where BC = 1 to BC = 4 represent the 
following boundary conditions, respectively:

	1.	 BC = 1: All corners of the frame are simply supported.
	2.	 BC = 2: All corners are clamped.
	3.	 BC = 3: The two bottom corners are clamped, and the two top corners are simply supported.
	4.	 BC = 4: The two bottom corners are clamped, and the other two corners are free.

For each member of the frame, we considered the displacement field based on Timoshenko beam theory that is 
shown in Fig. 1d. The following equations represent these displacement fields34:

	

{
u = u0 (x, t) − zϕ (x, t)

w = w0 (x, t) � (1)

In these expressions, u and w denote the displacements parallel to the x-axis and z-axis, respectively. The term 
ϕ represents the bending rotation of the cross-section. The variables u0 and w0 correspond to the displacements 
along the mid-plane of the beam.

Mathematical formulation
Build on the considered displacement field, the non-zero strains associated with them can be formulated as 
follows:

	

{
εx = ∂u

∂x
= ∂u0(x,t)

∂x
− z ∂ϕ(x,t)

∂x

εxz = ∂u
∂z

+ ∂w
∂x

= −ϕ (x, t) + ∂w0(x,t)
∂x

� (2)

In this context, εx and εxz  represent the axial normal strain and the transverse shear strain, respectively. The 
associated normal stress σx and shear stress τxy  can be determined using the linear elastic constitutive equations:

	

{
σx = Eεx

τxz = κGεxz
� (3)

where κ denotes the shear correction factor, which is κ = 5/6 for a rectangular cross-section. Additionally, E 
and G represent the elastic (Young’s) modulus and the shear modulus of the material, respectively. These two 
moduli are related through the following formula:

	
G = E

2 (1 + υ) � (4)

Fig. 1.  Details of the considered structure.
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where υ is the Poisson’s ratio. The total kinetic energy T  of the entire beam can be formulated as:

	

T = 1
2

˚

V

ρ
(
u2

,t + v2
,t + w2

,t

)
dV

= 1
2

L

∫
0

[
ρA

(
∂u0 (x, t)

∂t

)2

+ ρI

(
∂ϕ (x, t)

∂t

)2

+ ρA

(
∂w0 (x, t)

∂t

)2
]

dx

� (5)

Here, ρ represents the material density, and L denotes the length of the beam. The parameters A and I  correspond 
to the cross-sectional area and the moment of inertia of the beam, respectively. The strain potential energy U  of 
the beam is expressed as:

	

U = 1
2

˚

V

(σxεx + εxzτxz) dV

= 1
2

L

∫
0

[
EA

(
∂u0 (x, t)

∂x

)2

+ EI

(
∂ϕ (x, t)

∂x

)2
]

dx

+ 1
2

L

∫
0

[
κGA

EA

2 (1 − υ)ϕ (x, t)2 + κGA

(
∂w0 (x, t)

∂t

)2
]

� (6)

Finite elements formulation
In this section, we use the previously described kinetic and potential energy formulations for a single beam to 
derive the mass and stiffness matrices of the defined elements. By applying a formulation to reduce the stiffness 
matrix, we assemble these matrices into a global matrix. This allows us to determine the natural frequencies of 
the structure. Figure 2 presents the element details that is used to discretizing the beam in this work. Figure 2a 
shows the element with a total length of Le, has three nodes where two of them are at the ends of the element 
and one is in the middle. Each node has three degrees of freedom, represented as ui, wi and ϕi corresponding 
to the node i (i = 1,2, 3).

Figure 2b shows the intrinsic coordinate ξ = (2x − Le)/Le of the considered element. The displacement 
components u and w, along with the bending rotation ϕ, are interpolated in this coordinate using the following 
expressions25:

	
u =

3∑
i=1

Φi (ξ) ui, w =
3∑

i=1

Φi (ξ) wi, ϕ =
3∑

i=1

Φi (ξ) ϕi� (7)

The shape functions Φi (ξ), where i = 1,2, 3, represent the Lagrangian interpolation polynomials corresponding 
to each node of the element. These functions are formulated as follows25:

	 Φ1 = ξ (ξ − 1) /2, Φ2 = 1 − ξ2, Φ3 = ξ (ξ + 1) /2� (8)

We define the element’s degrees of freedom vector, denoted by {δ}, as follows:

	 {δ} = {u1, w1, ϕ1, u2, w2, ϕ2, u3, w3, ϕ3}T � (9)

Here, the superscript T  denotes the transpose of a vector or matrix. By applying the shape functions, we establish 
a relationship between the beam’s displacements and rotations and the nodal degrees of freedom, leading to the 
following expression:

Fig. 2.  Considered beam element.
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u = [Φu] {δ} = [ Φ1 0 0 Φ2 0 0 Φ3 0 0 ] {δ}
w = [Φw] {δ} = [ 0 Φ1 0 0 Φ2 0 0 Φ3 0 ] {δ}
ϕ = [Φϕ] {δ} = [ 0 0 Φ1 0 0 Φ2 0 0 Φ3 ] {δ}

� (10)

An effective approach for calculating the stiffness and mass matrices of the element is the energy method. To 
derive these matrices for the beam element under consideration, we substitute Eq. (10) into (5) and (6), which 
leads to the following expression:

	
T = 1

2{δ̇}T [Me]{δ̇}� (11)

	
U = 1

2{δ}T [Ke] {δ}� (12)

Here, {δ̇} denotes the velocity vector of the beam element, and [Me] and [Ke] are the element’s mass and 
stiffness matrices, respectively. These matrices are calculated as follows:

	
[Me] =

ˆ 1
2

− 1
2

[
ρA[Φu]T [Φu] + ρI[Φϕ]T [Φϕ] + ρA[Φw]T [Φw]

]
Le dξ� (13)

	

[Ke] =

1
2ˆ

− 1
2

[
EA

Le2 [Φu,ξ]T [Φu,ξ] + EI [Φϕ]T [Φϕ] + κGA [Φϕ]T [Φϕ]

+κGA

Le2 [Φw,ξ]T [Φw,ξ]
]

Le dξ

� (14)

Frame share the same material and cross-sectional properties, except for their lengths, which may differ between 
vertical and horizontal beams and can be expressed by i and j indices of each member. This variation in length 
leads to distinct mass [Me] and stiffness [Ke] matrices for vertical and horizontal members. Now the assembled 
mass matrices of each member [M ]ij  can be calculated. To model a damaged beam, stiffness matrix of the beam 
members needs to be calculated after applying stiffness reduction method to their elements14. The following 
expression calculates the stiffness matrix of the nth element of beami,j  in the frame:

	 [Ke]nij = αn
ij [Ke]intact

ij � (15)

where parameter αn
ij  quantifies the loss of stiffness in the nth element of the beami,j . In this work, we use a 

developed gaussian damage function to calculate the parameter α. Based on three parameter Gaussian damage 
function used in42, we introduce the following four parameters to define a damage in beam:

	1.	 Damage location (L): Normalized center location of the damage along the beam. Here, L = 0 corresponds 
to the damage at the beginning of the beam, while L = 1 indicates damage at the end of the beam.

	2.	 Damage severity (S): presents losing stiffness in element 0 < S < 1, where S = 0 indicates no loss in stiff-
ness, and S = 1 signifies that the stiffness of the element becomes zero.

	3.	 Damage width (W): presents the length of the damaged region normalized by the total length of the beam, 
over which the beam’s stiffness is most significantly affected.

	4.	 Damage dispersal (D): It indicates that the damage disperses beyond the initial damage region. Higher val-
ues of D results in stiffness to be reduced just in W region, and low values of this parameter lead to more 
smooth damage reduction along the beams.

Using these new four parameters,αn for the corresponding nth element in the beam can be calculated using 
the following expression:

	

αn = 1 − S ×




e
−D

(
n−ns

W

)2

, n < ns

1, ns ≤ n ≤ ne

e
−D

(
n−ne

W

)2

, ne < n

� (16)

where W = ⌊W/Le⌋ represent number of damaged elements; also ns = ⌊L
(

L
Le

)
− W/2⌋ and 

ne = ⌊L
(

L
Le

)
+ W/2⌋ indicate the starting and ending element index of the damaged region, respectively. 

Figure 3 illustrated these above parameters and method, where also middle element of damage nm =
⌊
L

(
L

Le

)⌋
, 

is presented.
Similar to the previous section, the following section uses these four parameters with subscript i, j, which 

defines them for beami,j  in the frame structure.
After calculating the assembled stiffness and mass matrices of each frame member, the assembled stiffness 

and mass matrices of the entire frame can now be obtained. To do this, it is essential to consider the continuity 
conditions of the degrees of freedom at the beam’s joint section. As illustrated in Fig. 4, each vertical beam is 
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connected at both ends to two horizontal beams in such a way that the end nodes of the vertical beam align 
precisely with the corresponding nodes on the horizontal beams.

Considering that, at the non-shared nodes, the mass and stiffness matrices of the horizontal and vertical 
beams do not interact with each other, we define the transformation matrix [T ] to map the degrees of freedom 
of the two end nodes of the vertical beam to those of the horizontal beams. This transformation is presented 
below38:

	

[T ] =




[Ts] · · · 0

[I]
...

syms. [Ts]


 , [Ts] =

[
0 1 0

−1 0 0
0 0 1

]
� (17)

Importantly, the transformation matrix [T ] is consistent across all vertical beams. Since only the degrees of 
freedom at the two end nodes require modification, while the intermediate nodes maintain their displacement 
fields unchanged, the matrix [T ] for these intermediate nodes effectively becomes an identity matrix [I] whose 
size corresponds to the number of intermediate degrees of freedom. If [K]i,j=1 and [M ]i,j=1 represent the total 
stiffness and mass matrices of the vertical beam, the modified stiffness ¯[K]i,j=1 and mass ¯[M ]i,j=1 matrices 
can be obtained as:

	
¯[K]ij = [T ]T [K]ij [T ] , ¯[M ]ij = [T ]T [M ]ij [T ] , (i = {1,2, . . . , N} ; j = 1)� (18)

After using these matrices to obtain the overall mass and stiffness matrices of the frame, we can move on to 
discretizing the equations of motion for free vibration, which are as follows:

	 [M ] {∆̈} + [K] {∆} = {0}� (19)

Fig. 4.  Degrees of freedom on frame joint section.

 

Fig. 3.  Using gaussian damage function and its parameters on beam.
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In these equations, [K] and [M ] denote the global stiffness and mass matrices, respectively, while, {∆̈} and {∆} 
represent the total acceleration vector and the vector of degrees of freedom. Assuming a general solution of the 
form {∆} = {∆0} eiωt for Eq. (19), we arrive at the following equation:

	
(
[K] − ω2 [M ]

)
{∆0} = {0}� (20)

Here, ω denotes the system’s natural frequency, and {∆0} is the associated mode shape. The nontrivial solutions 
of Eq.  (20) emerge from resolving the determinant equation det

(
[K] − ω2 [M ]

)
= 0. This process leads to 

the extraction of the system’s vibrational characteristics. Figure 5 illustrates the flowchart of the finite element 
(FE) model of the frame, highlighting its inputs and outputs to enhance the understanding of how the final 
mathematical expressions function.

Streamline clustering methodology
Clustering algorithms play a pivotal role in identifying intrinsic structures within datasets, particularly 
in scenarios where data points exhibit directional or flow-like patterns. In this paper, we propose a novel 
streamline clustering algorithm designed to detect clusters that align with directional trends originating from 
a user-specified initial point based on cosine similarity computation algorithms43. Traditional centroid-based 
clustering methods often prioritize compactness or density, which may fail to capture anisotropic or trajectory-
oriented structures. Algorithm 1 constructs a streamline cluster L around an initial point p, iteratively extending 
it bidirectionally while enforcing directional consistency among neighboring points.

Algorithm 1.   Pseudocode of the streamline clustering method.

The algorithm begins by initializing the ordered cluster L with the user-specified point p (Line 02). The 
cluster expands bidirectionally by dynamically capturing geometrically aligned neighbors at its current 
endpoints, ph and pt where the superscripts t and h stand for ‘tail’ and ‘head’. At each iteration, the algorithm 
identifies m nearest neighbors to ph and pt within the dataset X , restricted to points ahead of ph (X > ph) or 
behind pt (X < pt) to enforce ordered growth (Lines 05–06). For each neighbor Nh

i  or N t
i , direction vectors 

V h
i = Nh

i − ph and V t
i = N t

i − pt are computed to quantify alignment. Subclusters lh
i  and lt

i  are then formed 
by grouping neighbors whose direction vectors exhibit near-parallelism, determined by a cosine similarity 
threshold (Lines 07–14). Specifically, if the normalized dot product (Lines 12,13), the vectors are deemed 
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collinear, and their corresponding points are merged into the same subcluster. The subcluster with the largest 
membership at each end is appended (for the head) or prepended (for the tail) to L, ensuring incremental 
extension along the most consistent local direction (Lines 16–17). This bidirectional expansion repeats until 
L stabilizes in size (Line 18), indicating that no further aligned points can be incorporated. By prioritizing 
geometric alignment over raw proximity, the algorithm captures directional trends inherent to the data, making 
it particularly effective for flow-like structures where clusters follow smooth, contiguous paths.

Results and discussion
Convergence and validation
In this section, a convergence test is conducted for both the intact frame and the damaged beam. Additionally, to 
verify the accuracy of the proposed formulations and also the developed computer programs, the results for both 
the intact and damaged frame and beam are compared with those obtained from the commercial ANSYS software. 
All subsequent analyses use a beam with a rectangular cross-section made of steel, with the following material and 
geometric properties: E = 200 GPa, ρ = 7850kg/m3, υ = 1/3, L = Lh = 1 m, h = 0.05 m, b = 0.1 m.

Figure 6 presents the convergence results for a frame with N = 6, BC = 1 and AR = 1. Convergence was 

monitored using the frequency deviation, defined as 100 ×
∣∣∣ωi

j − ω
i−1
j

∣∣∣ /ωi−1
j , where ‘j’ corresponds to the 

mode number and ‘i’ denotes the current iteration as the number of elements per beam increases from ‘i − 1’ 
to ‘i’. As shown, the frequency deviation decreases logarithmically as the number of elements increases. A mesh 
density of 50 elements per beam was selected for all subsequent analyses, as the rate of change in the results 
beyond this point becomes negligible.

Now that the frame model has converged, its accuracy is validated by comparing the first three natural 
frequencies with those obtained from ANSYS. Table 1 presents these results for a frame with AR = 1, considering 
two different numbers of vertical beams and four types of boundary conditions.

A convergence study was conducted for a cantilever beam incorporating the damage function. The damaged 
case, characterized by the parameters (S = 0.5,W = 0.2,L = 0.5,D = 1), is presented in Fig. 7. The results 
demonstrate a similar convergence trend to the intact frame; the change in frequency becomes negligible 
beyond approximately 50 elements per beam, as the response stabilizes with no significant further variation. 
Consequently, a mesh density of 50 elements per beam was adopted for all subsequent damaged beam analyses 
to maintain consistency and computational efficiency.

Since no existing studies directly address a Gaussian damage function model for beams, we validated the 
present model using ANSYS simulations. The simulations were first conducted for a cantilever beam, whose 
properties are detailed at the beginning of this section. Table 2 lists the first three natural frequencies of the intact 
cantilever beam, as calculated using both ANSYS and present method.

To model the damage in ANSYS, we represent the beam with 50 separate sections, each corresponding to an 
element in our current FE model, then Young’s modulus of these sections is updated based on the corresponding 
element Young’s modulus in FE model. We considered previous cantilever beam with nine different damage 
scenarios for validation. The losses in Young’s modulus of these scenarios per element are represented by their 
αn values in Fig. 8 for nth element in the beam.

As can be seen the considered scenarios are composed of varying between three different values for damage 
location (L = 0.2, 0.5, 0.8) and damage dispersal (D = 100, 10, 1) and two other damage parameters are as 
follows: S = 0.75,W = 0.1. Table 3 presents the first three natural frequencies of corresponding to these 
damage scenarios calculated by ANSYS and present method. Notably, the clamped end corresponds to element 
one, while the free end corresponds to element 50.

Another validation was conducted for a damaged frame with two different numbers of vertical beams, each 
subjected to two different damage widths. The first three natural frequencies are listed in Table 4 for a model 
with fixed parameters (AR = 1, BC = 1,S = 0.75,D = 1000,L = 0.5) and compared against ANSYS 
results, where the damage was applied on beam1,2. As can be seen, the results of the present work closely match 
those obtained from ANSYS for all intact and damage cases, demonstrating strong validation of the proposed 
approach.

Fig. 5.  Flowchart of the FE model function of the frame.
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Dataset description
Following the successful validation of the FE model, which demonstrated high accuracy in predicting the natural 
frequencies of the frame structures, we are now well-positioned to investigate their vibrational behavior. To begin 
our analysis, the material and geometric properties of the validated beam model were held constantly. Table 5 
introduce Dataset X , which comprises the first five natural frequencies(rad/s) of 2400 specific frame structures. 
By systematically varying three parameters (6 distinct quantities of N , four types of BC , and 100 values of the 
AR uniformly distributed between 0.41 and 2.1), the first five natural frequencies of these structures, along with 
their three corresponding varying parameters, are compiled in X . The material and geometric properties of the 
validated beam model were held constant and can be seen in this table.

With dataset X  established, we now turn to analyzing its vibrational characteristics in the following section.

Fig. 7.  Convergence of natural frequencies for the damaged cantilever beam.

 

BC

N = 4 N = 6
Present ANSYS Present ANSYS

1
ω1 24.370 24.37 13.266 13.26

ω2 56.296 56.30 28.983 28.98

ω3 113.919 113.91 48.222 48.22

2
ω1 29.099 29.10 14.799 14.80

ω2 62.393 62.38 32.067 32.07

ω3 134.994 135.00 52.206 52.21

3
ω1 26.145 26.14 13.895 13.89

ω2 58.358 58.36 30.162 30.16

ω3 127.590 127.59 49.589 49.59

4
ω1 26.128 26.13 13.877 13.87

ω2 31.159 31.16 29.924 29.92

ω3 58.341 58.34 30.157 30.16

Table 1.  Comparison of the first three natural frequencies (Hz) of the intact frame with ANSYS results for 
different vertical beam configurations and boundary conditions.

 

Fig. 6.  Convergence of natural frequencies for the inctact frame.
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Frame vibrational characteristics
In this section, we aim to analyze the introduced dataset X  to understand the relationship between variable 
parameters and natural frequencies, and work toward predicting these parameters based on the natural 
frequencies. Figure 9a represents the distribution of the five natural frequencies for all structures in X , displayed 
using both box plots and violin plots. It can be inferred that higher-order natural frequencies exhibit a larger 
distribution width and significantly larger mean values. Additionally, for each natural frequency, the distribution 
shows a higher density at lower values, with similar patterns observed across all frequencies. Figure 9b illustrates 
the parameter sensitivity analysis of the first five natural frequencies by quantifying their variance distributions 
across three distinct parameter sets:

 → Variance of natural frequencies across all values of N , with AR and BC  held constant.
→ Variance of natural frequencies across all values of AR, with N  and BC  held constant.
 → Variance of natural frequencies across all values of BC , with N  and AR held constant.

A preliminary analysis reveals that parameter N  exerts the strongest influence on natural frequency 
variations, followed by AR, with BC  showing the least impact.

N = 4, W = 0.05 N = 6, W = 0.2
Present ANSYS Present ANSYS

ω1 24.366 24.36 13.250 13.25

ω2 56.180 56.16 28.932 28.93

ω3 112.541 112.20 47.999 48.00

Table 4.  First three natural frequencies of damaged frame (Hz).

 

L

D = 100 D = 10 D = 1
Present ANSYS Present ANSYS Present ANSYS

0.2
ω1 31.594 31.571 30.636 30.606 27.056 27.036

ω2 246.965 246.68 244.983 244.66 228.609 228.3

ω3 649.299 648.28 641.264 640.13 593.901 593.0

0.5
ω1 37.894 37.868 37.481 37.451 35.581 35.551

ω2 204.904 204.72 200.722 200.52 187.135 186.96

ω3 675.394 674.31 667.644 666.43 612.528 611.39

0.8
ω1 40.548 40.521 40.518 40.491 40.321 40.293

ω2 235.476 235.25 232.703 232.45 219.216 218.98

ω3 572.961 572.29 562.484 561.77 533.370 532.75

Table 3.  First three natural frequencies of damaged cantilever beam (Hz) for nine scenarios.

 

Fig. 8.  α values per element of cantilever beam in nine different damage scenarios.

 

ω1 ω2 ω3

Present 40.68 251.95 692.52

ANSYS 40.65 251.72 691.66

Table 2.  First three Natural frequency of intact cantilever beam (Hz).
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Notably, in the first natural frequency, the influence of parameter N  exhibits a pronounced divergence 
from parameters AR and BC . This distinct separation suggests that N  may function as a dominant driver of 
variability in the first natural frequency. To examine this, Fig. 10 shows the distribution of the normalized first 
natural frequency (ω1/ω1,max ) compared with those for each of the six N  values.

It can be observed from this figure that larger N  values are concentrated in the lower range of the normalized 
first natural frequency, while smaller N  values correspond to higher ω1 values. Additionally, the density peak 
in the ω1 distribution appears to correlate statistically with the distribution of the N  parameter. In Fig. 11, we 
investigate whether the N  parameter can be inferred from the distribution peaks of the normalized first natural 
frequency. Figure 11a represents the histogram of ω1/ω1,max which provides higher resolution to distinguish 
distribution peaks. Notably, this histogram reveals six distinct peaks region (S1, . . . , S6) corresponding to the 
six N  values, a feature that could not be clearly resolved in the earlier distribution plots of ω1. Figure 11b displays 
the normalized observation for each of the six N  values across the peak regions S1 to S6​.

As can be seen, the N  values can be distinguished based on the first natural frequency ω1; however, this 
method lacks accuracy for higher N  values due to the high density of ω1 within the corresponding domain. 
Building on the similar peak patterns observed across all natural frequencies in Fig. 9a, we hypothesized that the 
correlation between N  values and these peaks could also extend to the four additional natural frequencies and 
help us to reach better accuracy for finding N  values.

Unlike the first natural frequency, which exhibits a strong correlation with N, higher-order frequencies show 
a weaker discernible link to N . Instead, the influence of the two other parameters AR and BC  dominates their 
behavior, as demonstrated in Fig. 9b. To clarify these attributes, Fig. 12 shows the sensitivity of the first five 
natural frequencies to parameters AR and BC , for six different values of N , separately.

From this Figure, we observe that the effects of AR and BC  on certain natural frequencies can be 
distinguished. However, the natural frequency to which these parameters’ impacts are separable depends on the 
value of N . For example, at N = 3, the first three natural frequencies exhibit clear separation between AR and 
BC  driven effects. In contrast, at N = 8, the same frequencies show overlapping influences of AR and BC , 
requiring classification methods to disentangle their contributions. To visualize how these patterns govern the 
natural frequencies, we plot them in a three-dimensional space in Fig. 13. This figure comprises 10 subfigures, 
each corresponding to one of the 10 combinations of three natural frequencies selected from the five of them, 
labeled systematically as C1 to C10.

As can be distinguished from these ten sub-figures, the dataset exhibits a striking resemblance to streamlined 
curves or trajectories within the feature space. These visualizations suggest distinct geometric patterns that 
organize the data into coherent, unlabeled structures. To advance our goal of identifying structural labels derived 
from the natural frequency combinations, the subsequent section will employ clustering techniques to partition 

Fig. 9.  Natural frequency distributions of X  and their dependency on features.

 

Category Parameter Description

Varying parameters

N = 3,4, . . . , 8 Number of vertical beams

BC = 1,2, 3,4 Boundary condition

AR = AR1, AR2, . . . , ARi, . . . , ARn,
ARi = AR1 + ARn−AR1

n−1 (i − 1) Aspect ratio, where:n = 100, AR1 = 0.41, ARn = 2.1.

Fixed parameters

Lh = 1m Length of horizontal beams

h = Lh/20 = 0.05m Height of cross section

b = 0.1m Width of cross section

E = 200 GPa Young’s modules

ρ = 7850kg/m3 Density

υ = 1/3 Poisson’s ratio

Table 5.  Description of dataset X.
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these curves into meaningful groups. By uncovering clusters, we aim to systematically associate them with 
structural labels, characterize their relationships to the natural frequencies, and identify correlations that may 
map these groups to specific structural configurations. This approach will enable data-driven classification of 
the system’s underlying structural identity. Figure 14 shows the workflow of the clustering method that is used.

As it can be seen in this method, after assigning arbitrary labels to each sample in X , we used Algorithm 1 
to find the streamlines locally around a random point in each of ten plots (C1, . . . , C10). After finding these 
local streamlines ‘L’ and storing them into the cluster repository ‘LR’, the elements of L are removed from Xi, 
where Xi is the dataset corresponding to plot Ci for i = 1, . . . , 10. This loop continues until Xi is empty, and 
the computation is applied to all i from one to ten. At the end, all clusters that were stored in LR are merged 
based on their arbitrary labels. This step aims to prevent duplication in clusters if two clusters have the same 
members. This step also helps in joining the separated sharp-angled streamlines when connectivity of those can 
be observed from another cluster in LR. Figure 15 project the results of applying discussed clustering method 
to X  in C1.

As can be seen, 24 clusters have been found as streamlines with this methodology, which can be recognized 
in above figures by the specific color and index adjust to them in right side. Although the high density of the 
points in lower values of natural frequencies, makes the observation of the clusters in these regions almost 
impossible, but in Table 6, the properties of these cluster across some examinations of their true labels, makes a 
clear presentation of them.

At first glance, we can find out that the variance of N  and BC  labels on each cluster are zero or so close to 
zero, representing that the streamlines identified through the current clustering method each correspond to 
specific labels of BC  and the N  which can be found out by the mean values of these labels in corresponding 
cluster. In another word, for a given combination of boundary conditions and vertical beam count, all structural 
aspect ratios generate a streamline within the frequency plot. By analyzing the size of these 24 streamlines, it is 
evident that each has a size of approximately 100 which corresponds to the number of aspect ratios included in 
the dataset for a specific combination of N  and BC . Figure 16a illustrates the correlation between changes in AR 
and shifts in the first natural frequencies for each of the 24 unique combinations of vertical beams and boundary 
conditions. As shown in all 24 streamlines, the AR exhibits a strong correlation with natural frequencies, with 
correlation coefficients consistently exceeding 0.8.

Also in Fig. 16b, for each of the 24 combinations of N − BC , a multivariate linear model is fitted from the 
five natural frequencies to AR, and plotted predicted versus actual AR as a single semi-transparent scatter. As 
it can be seen, the cloud of all points lies tightly about the dashed line; also, the overall RMSE is 0.021. RMSE is 
root mean square error for interpolation results for AR predictions, defined by following formulation39:

Fig. 11.  Peak-based classification of first natural frequency and observation of N  in them.

 

Fig. 10.  Normalized first natural frequency distributions across six N  values.
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RMSE =

√∑m

i=1

(
ARi − ARi

)2

m
� (21)

where m is total number of the prediction’s cases for AR, also ARi and ARi are true AR labels and predictions 
of it in prediction case ith respectively. These diagnostics indicate that the relationship is essentially linear over 
the sampled range.

These robust relationships imply that, for a given combination of N  and BC , if the natural frequency and 
AR of two points in the frequency plot are known, the value of a third point between them can be predicted 
using simple linear interpolation. Specifically, either the AR or natural frequency of the intermediate point can 
be estimated based on the linear trend established by the two known data points. Based on these findings, we 
introduce an algorithm in the next section that, given the input natural frequency, can determine or predict these 
three parameters.

Model development and sensitivity analysis
From our original dataset X , we generate a new dataset XL containing predicted structural properties. This XL 
dataset comprises 24 sub-datasets, each corresponding to specific values of N  and BC . Within each sub-dataset, 
there are 100 samples representing 100 distinct aspect ratios for the given N  and BC  defined in Table 5. Thus, 
XL (N, BC) encapsulates the five natural frequencies and their corresponding aspect ratios for 100 structures 
with the specified N  and BC . Figure 17 illustrates our methodology for estimating the structural properties 
from the input natural frequencies Ωinput, which consist of the first five natural frequencies of the structure.

In this flowchart, the input natural frequencies Ωinput are first projected onto each of the ten Ci combinations. 
For each Ci the Euclidean distance between the input point and every N − BC  entry in the corresponding 
XL (N, BC) sub-dataset is calculated. These distances are then stored in Di (N, BC). Subsequently, we 
identify the minimum values of N  and BC  across the summation of Di for all i. These minimums are denoted as 
N  and BC  representing our predictions for the number of vertical beams and boundary conditions of the input 
natural frequency structure. Next, within the sub-dataset XL

(
N, BC

)
, we locate the two natural frequencies 

and aspect ratios closest to Ωinput. Using linear interpolation between these two nearest points and the input 
Ωinput, we estimate the aspect ratio of the frame structure, denoted as AR.

To establish performance baselines and contextualize the efficacy of our proposed model, we employed two 
widely recognized machine learning algorithms; Random Forest (RF) and Support Vector Machines (SVM). 
Table 7 evaluates the performance of the proposed model using a 70% training and 30% testing split of the XL 
dataset. No validation split was required, as the model lacks tunable hyperparameters. The accuracy represented 
the percentage of true classification results, and RMSE for evaluation of interpolation in AR predictions. Since 
each streamline corresponds to a unique N − BC  combination, the training data must include all 24 streamlines 
to ensure robust classification. Data was partitioned uniformly across streamlines to preserve their integrity, as 
removing any subset risks fragmenting streamlines and disrupting the interpolation process for AR prediction.

The proposed model demonstrates outstanding performance in predicting structural properties from 
frequency signatures. For classification, it attains 100% accuracy for both the N  and the BC , substantially 
outperforming the comparative SVM and RF classifiers. In the interpolation stage for AR prediction the 
model achieves an extremely low RMSE indicating a marked improvement in precision. Overall, these findings 
demonstrate the model’s superior accuracy across both classification and interpolation tasks. This design of 
uniform split-test inherently precludes standard cross-validation methods42; consequently, to further assess 

Fig. 12.  Sensitivity of natural frequencies to AR and BC  across six different values of N .
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model performance under varying data conditions, we tested non-standard split sizes with smaller training 
percentages and larger test splits to previous analysis in Fig. 18.

The dual-axis plot illustrates in Fig. 18a, demonstrates interplay between classification errors for N  and BC , 
and RMSE of AR as training data size increases. N  achieves 0% error just below 10% training data size, while 
BC  errors vanish entirely before 25% training data size. Simultaneously, the right y-axis tracks the RMSE for 
AR, which decreases from 0.1 to 10−3, demonstrating the interpolation stage’s refinement with additional 
training. The green dashed line which is RMSE of AR when N  and BC  are correctly classified, consistently 
lies below the solid line which is RMSE including misclassified cases, underscoring that residual AR errors are 

Fig. 13.  Visualization of X  in 10 selections of the 3 natural frequencies from 5 of them.
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primarily due to misclassification of N − BC , not interpolation flaws. By 25% training data, both RMSE lines 
converge, as N  and BC  errors have already reached zero.

Figure  18b evaluates the impact of input parameters on prediction results in Fig.  18a for all training set 
size tests. The two top sub-figures show that most classification errors arise from inputs with N = 5,6 and 

Fig. 15.  Clustering results projected in C1.

 

Fig. 14.  Flowchart of streamlines clustering of X.
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BC = 1,2, suggesting ambiguity in these configurations’ frequency signatures. Third sub-figure down these 
two, represent the RMSE of AR (y-axis) In all tests that is done in Fig. 18a across by input AR range (x-axis). 
For example, each small bar shown in this figure that has unique values for AR in x-axis, represents RMSE of AR 
for all testes in Fig. 18a that have similar AR input as inputs. We can see that RMSE peaks at AR = 0.5 . . . 0.75 
and AR = 1.0 . . . 1.25, highlight structural geometries where interpolation struggles. In the next sections, we 
conduct a robust test on these critical and sensitive structural parameter combinations by introducing simulated 
damage and structure that is made by different materials, evaluating the model’s performance under real-world-
like scenarios.

Model robustness assessment under structural damage
The model’s ability to maintain accuracy under such perturbations is critical for practical deployment. Unlike 
previous tests, which focused on data scarcity, here we simulate physical degradation in sensitivity-prone 
configurations which is applying damage to them. This evaluates how natural frequency distortions impact 

Fig. 16.  AR– natural frequencies correlation and linear-prediction accuracy across 24 combinations of 
N − BC .

 

True labels of the cluster members

N BC AR

Clusters Size Mean Variance Mean Variance Mean Variance

1 100 7 0 1 0 1.2585 0.2432

2 100 8 0 2 0 1.2585 0.2432

3 100 7 0 2 0 1.2585 0.2432

4 100 8 0 3 0 1.2585 0.2408

5 100 8 0 1 0 1.2585 0.2336

6 101 3 0 2.9801 0.0396 1.2589 0.2336

7 98 7 0 3 0 1.2755 0.2289

8 98 6 0 1 0 1.2755 0.2242

9 97 6 0 2 0 1.2840 0.2105

10 96 4 0 1 0 1.2925 0.2060

11 93 6 0 3 0 1.3180 0.2016

12 92 5 0 2 0 1.3265 0.1972

13 91 5 0 1 0 1.3350 0.2432

14 90 5 0 3 0 1.3435 0.2242

15 100 4 0 3 0 1.2585 0.1929

16 96 4 0 2 0 1.2925 0.2432

17 89 5 0 4 0 1.3520 0.2459

18 100 3 0 2 0 1.2585 0.2432

19 101 3.0396 0.1584 3.9801 0.0396 1.2513 0.2196

20 100 8 0 4 0 1.2585 0.2150

21 95 4 0 4 0 1.3010 0.2432

22 94 6 0 4 0 1.3095 0.2432

23 100 3 0 1 0 1.2585 0.2432

24 100 7 0 4 0 1.2585 0.2432

Table 6.  Properties and examination of clusters in Fig. 15 along their true labels.
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predictions. To quantify these distortions, we introduce the Frequency Shift Index named FSI, a metric defined 
as the normalized root mean square of percentage changes in natural frequencies, calculated as:

	

FSI =

√√√√1
5

5∑
i=1

(
ωcurrent

i − ωbaseline
i

ωbaseline
i

)2

× 100� (22)

where ωbaseline
i  and ωcurrent

i  are ith natural frequencies of non-damaged and damaged structures with similar 
variable labels (N, BC, AR).

Table 8 present prediction results across two sensitive parameter combinations under increasing damage 
severity, quantified by FSI. The damage applied on beam1,2 of each structure, other damage parameters 
considered as follow: L = 0.5,W = 0.1,D = 10.

The results in this table reveal two critical trends. First, no classification errors are observed for N  and BC  
across all tested damage severities. Second, we can see that difference between AR and actual values of AR 
correlate to increasing damage severity and FSI values, but the AR remain remarkably close to the actual values 
across all cases.

Move over, Table 9 evaluates the combined impact of beami,j  selection and damage location within the 
chosen beam on the model’s prediction accuracy. For this analysis, we selected two new identified critical 
configurations. The damage severity in this table is chosen to be S = 0.75 where it has more impact on model 
results based on last table. other damage parameters are as follows: W = 0.1,D = 10.

Fig. 18.  Model performance under non-standard training-test splits.

 

SVM RF presented

Classification accuracy (%)
N 77.22 99.44 100

BC 56.67 86.39 100

Interpolation RMSE AR 0.3235 0.0713 8.5162 × 10−4

Table 7.  Model evaluation results with uniform training-test split (70–30 split).

 

Fig. 17.  Workflow of natural frequency based structural parameter identification.
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It is noteworthy that due to the symmetry of the frame structure, applying damage to symmetrically equivalent 
beams yield identical natural frequency responses. To eliminate redundancy, only non-symmetric beam-location 
pairs are evaluated, as symmetric counterparts provide no additional frequency-distinctive information.

This table reveals that all N  and BC  are correct predictions. Therefore, damage at the center of beams 
produces the highest FSI values and results in AR be less accurate. Similarly, damage to horizontal beams that 
are near corners of the frame, elevates FSI and AR errors, suggesting geometric asymmetry near boundaries 
exacerbates frequency distortions. This confirms damage location critically impacts prediction reliability, 
particularly in edge cases.

Table 10 evaluates the influence of two additional damage parameters, damage width and dispersal on 
prediction accuracy. Two new structural configurations are examined in this table under identical damage 
conditions applied on beam1,2 with following damage parameters: L = 0.5,S = 0.75.

Again, no errors occur in N  or BC  predictions in all considered cases with very close AR value Relative 
to the actual value of AR. However, we can see that damage weight strongly correlates with FSI values and AR 
errors, similarly, damage dispersal amplifies errors but with lower impact.

Finally, we evaluate the robustness of our model under worst-case scenarios involving multiple simultaneous 
damages in Table 11 for the last two combinations of critical structure parameters. These scenarios, focus on cases 
where damages have the most significant impact on natural frequencies and model prediction errors, which are 
applying highly destituted damage with larger damage width and severity on center of the beams that is close to 
boundary conditions region. These damages are applied to four beams: beam1,2, beam2,1, beam2,2, beam3,1, 
with other damage properties that are as follows: L = 0.5, S = 0.75,W = 0.2,D = 1.

This table demonstrates that even under high FSI values caused by severe damages, model all predictions for 
N  and BC  remains accurate and the interpolation results for AR also stays Acceptably accurate considering the 
significant changes in natural frequencies.

Model robustness assessment under different materials
In this section, the model’s robustness is further assessed by applying it to structures made of two additional 
materials- stainless steel and aluminum- while maintaining identical frame geometries and boundary 
configurations. The corresponding results are presented in Table 12. The material properties used in this 
comparison are summarized in as follow: Stainless steel : E = 193Gpa, ρ = 8000kg/m3, υ = 0.3. 
Aluminum : E = 69Gpa, ρ = 2700kg/m3, υ = 0.33.

For reference, the baseline frame corresponds to the steel properties used in constructing the dataset 
from which the model was originally trained. The natural frequencies corresponding to each frame–material 
combination were computed and used as model inputs to evaluate the predicted results. The FSI for each case 
was also recalculated using the ωbaseline

i  with original steel properties as a reference to maintain consistency in 
comparison.

N = 5, BC = 1, AR = 1.15 N = 5, BC = 2, AR = 0.65

L FSI N BC AR FSI N BC AR

beam1,1
0.25 1.0267 5 1 1.1250 0.0000 5 2 0.6500

0.50 1.6040 5 1 1.1091 0.0000 5 2 0.6500

beam1,2

0.25 1.0706 5 1 1.1249 1.1399 5 2 0.6475

0.50 1.9737 5 1 1.0987 0.2228 5 2 0.6489

0.75 1.0919 5 1 1.1295 1.0121 5 2 0.6442

beam2,1
0.25 0.8658 5 1 1.1332 1.0041 5 2 0.6454

0.50 1.1293 5 1 1.1208 4.1684 5 2 0.6270

beam2,2

0.25 1.1122 5 1 1.1245 1.0673 5 2 0.6447

0.50 1.3593 5 1 1.1194 0.7018 5 2 0.6466

0.75 1.1604 5 1 1.1309 1.2271 5 2 0.6436

beam3,1
0.25 0.8814 5 1 1.1390 1.0176 5 2 0.6464

0.50 0.9271 5 1 1.1337 4.2385 5 2 0.6326

Table 9.  Impact of beamij  and L selection for damage on prediction results in critical non-symmetric cases.

 

N = 6, BC = 1, AR = 0.65 N = 6, BC = 2, AR = 1.15

S FSI N BC AR FSI N BC AR

0.25 0.0948 6 1 0.6492 0.0286 6 2 1.1490

0.50 0.2952 6 1 0.6476 0.0805 6 2 1.1473

0.75 0.8640 6 1 0.6432 0.2106 6 2 1.1426

Table 8.  Damage severity impact on prediction results on eight different sensitive structure.

 

Scientific Reports |         (2026) 16:3279 19| https://doi.org/10.1038/s41598-025-29390-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The results show that all cases were correctly classified with no misclassifications, and AR predictions match 
the true values closely. Stainless steel shows slightly larger AR prediction errors which is consistent with its 
higher FSI values and greater frequency shifts, whereas aluminum yields smaller deviations. In all cases, the 
predicted AR remain acceptably close to actual values.

Conclusion
The identification of structural parameters in grid-form frames can be fundamentally re-envisioned by treating 
natural frequency data as a structured landscape of modal signatures. This work introduces a direct, three-
phase computational methodology to navigate this landscape. In the first phase, a comprehensive modal map is 
generated via finite element analysis to capture the first five natural frequencies across diverse configurations. 
In the second phase, the intrinsic low-dimensional streamline topologies within this map are discovered and 
characterized, where each trajectory encodes a unique combination of the number of vertical beams (N ) and 
boundary conditions (BC). Finally, a classification–interpolation model is deployed to instantly map a new set 
of frequencies to its corresponding streamline, identifying N  and BC , followed by precise interpolation along 
the trajectory to determine the aspect ratio (AR).

This pattern-based methodology presents a fundamental shift from conventional approaches by eliminating 
dependency on iterative inverse analysis and high-fidelity physical modeling, which are often susceptible to 
convergence issues and modeling inaccuracies. Instead, the framework learns the direct relationship between 
vibrational signatures and structural identity through a precomputed data-driven map. This bypasses the 
need for complex, error-prone characterization, offering a robust and computationally efficient pathway 
for parameter identification. By transforming a traditionally challenging inverse problem into a streamlined 
pattern-recognition task, this work provides a universally applicable foundation for rapid and scalable structural 
assessment, significantly advancing the practical implementation of non-destructive evaluation in structural 
health monitoring.

The practical application of this methodology is bounded by the scope of its training dataset, wherein a 
tolerable error can be defined based on the predefined parameter ranges it was designed to identify. Several 

N = 5, BC = 3, AR = 1.85 N = 6, BC = 4, AR = 1.35

FSI N BC AR FSI N BC AR

Stainless steel 2.6706 5 3 1.6182 2.6797 6 4 1.2741

Aluminum 0.1593 5 3 1.8653 0.1538 6 4 1.3544

N = 7, BC = 2, AR = 0.88 N = 8, BC = 3, AR = 0.78

FSI N BC AR FSI N BC AR

Stainless steel 2.6827 7 2 0.8019 2.6838 8 3 0.7225

Aluminum 0.1535 7 2 0.8847 0.1534 8 3 0.7834

Table 12.  Prediction results of four frame configurations in two different materials.

 

FSI N BC AR

N = 5, BC = 2, AR = 1.15 11.9283 5 2 0.9015

N = 6, BC = 2, AR = 0.65 9.1343 6 2 0.5661

Table 11.  Multi-beam damage analysis on model predictions in four structural configurations.

 

N = 5, BC = 1, AR = 0.65 N = 6, BC = 1, AR = 1.15

D FSI N BC AR FSI N BC AR

W = 0.05

100 0.3386 5 1 0.6478 0.3923 6 1 0.1391

10.0 0.3455 5 1 0.6478 0.4016 6 1 1.1390

1.00 0.5295 5 1 0.6467 0.6728 6 1 1.1303

W = 0.10

100 0.8048 5 1 0.6451 1.1229 6 1 1.1193

10.0 0.9158 5 1 0.6445 1.3209 6 1 1.1105

1.00 1.3859 5 1 0.6425 2.1395 6 1 1.0910

W = 0.2 

100 1.4395 5 1 0.6414 2.3359 6 1 1.0871

10.0 1.6744 5 1 0.6403 2.7037 6 1 1.0743

1.00 2.4458 5 1 0.6358 3.4542 6 1 1.0554

Table 10.  Damage width and dispersal impact on prediction accuracy in two sensitivity-prone configurations.
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avenues remain open for further investigation to enhance its robustness and scope. Future studies could 
integrate common sources of frequency shifts not considered here, such as material damping and environmental 
effects, into the pattern recognition model. Furthermore, the influence of different damage types and their 
interaction with geometric parameters presents a critical research direction. Ultimately, these findings establish 
a foundational stage for launching a new class of structural health monitoring techniques that leverage intrinsic 
modal patterns for efficient and direct structural assessment.

Data availability
The datasets generated and analyzed during the current study are not publicly available because further analy-
ses are underway and we wish to avoid premature release, but are available from the corresponding author on 
reasonable request.
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