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Identification of frame geometry
and boundary conditions from free-
vibration modal signatures
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This study presents an innovative approach for unveiling the hidden relationships between natural
frequency patterns and structural parameters in grid-form frames. By analyzing vibrational
characteristics, we determine key features, namely the number of vertical beams, boundary
conditions, and aspect ratios. Extensive finite element analysis generates a dataset, mapping the
natural frequencies as features against structural parameters as labels reveals distinct, streamlined
clusters in the feature hyperspace, highlighting an underlying order in the system’s dynamics. An
advanced classification and interpolation model navigates these spectral trajectories to predict
structural parameters accurately, even in the presence of damage or different materials. This study
offers new insights into the intrinsic dynamics of complex structures, inviting further exploration
into the subtle interplay between vibrational characteristics and structural identity. These findings
open new avenues for research, potentially transforming the understanding of structural behavior in
practical engineering applications.
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The precise determination of structural parameters is fundamental to advancing dynamic analysis and
predictive modeling. Across engineering disciplines, the challenge of identifying unknown or altered
structural characteristics is pervasive, arising from aging infrastructure, design modifications, or incomplete
documentation. Successfully addressing this challenge enables critical advancements in structural optimization,
high-fidelity model updating, and robust data interpretation. By providing a reliable foundation for digital
models, accurate parameter identification also enhances data fusion techniques, ultimately leading to more
resilient and predictable structural performance.

Traditional model-based inverse methods have long served as reliable approaches for parameter
identification, offering well-understood theoretical foundations and direct physical interpretability. For instance,
Yang et al.! employed Bayesian identification with an interface device to recover unknown substructures, though
this approach requires specialized hardware and physical access. Complementing these methods, data-driven
approaches leverage machine learning to extract diagnostic patterns directly from operational data. Xu et al.2
demonstrated acoustic anomaly detection by fusing filter-bank features with load information for real-time
monitoring. Similarly, Tong et al.® achieved robust fault diagnosis by converting vibrations to Gramian Angular
Field images using dual-attention networks. Extending these concepts, Vu-Huu et al.* utilized multi-objective
optimization to generate engineering-feasible parameter ensembles for improved design and inverse mapping.

The power of identifying characteristic signatures for parameter estimation is exemplified by the “data-
driven fingerprint” method in nanoelectromechanical mass spectrometry’, where vibrational frequency shifts
serve as unique fingerprints for mass identification without requiring complex device modeling. We extend this
fundamental principle to structural frame analysis, adapting pattern-recognition methodology for more efficient
parameter identification of common engineering structures. For this purpose, references®~! will be reviewed,
which analyze various parameters affecting natural frequencies and vibrational characteristics, and utilize the
resulting signatures to identify structural parameters across different structural classes.

Recent advances in vibration-based techniques have paved the way for the reliable extraction of key structural
and material properties through inverse analysis. For example, Aryana et al.® introduced a formulation based
on a second order Taylor expansion to express the inverse eigenvalue problem for modifying the structure’s
dynamic behavior. Their method, which identifies and locally modifies the most sensitive regions of a finite
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element model, demonstrated that significant changes in natural frequencies can be achieved with minimal
induced error. Building on this foundational study, Tiirker et al.” later demonstrated that correlating experimental
flexural vibrations with theoretical models could accurately identify both the mass distribution and elastic
modulus of fixed-end beams. In a similar manner, Thesiulor et al.® applied computational intelligence methods
to detect and localize delamination in composite laminates by analyzing shifts in natural frequencies, even under
noisy conditions. Extending this approach, Khan et al.? developed a convolutional neural network framework
to classify and predict various in-plane and through-the-thickness delaminations in smart composite laminates.
The model achieved over 90% classification accuracy by automatically extracting discriminative features from
vibration spectrograms. Geuzaine et al.'® established guidelines for determining the axial force, flexural rigidity,
and rotational end stiffness in slender, tensioned cables using analytical approximations derived from measured
low-frequency responses. Similarly, Salehi et al.!! refined the estimation of boundary conditions in railway
bridges using artificial neural networks. Their sensitivity analysis on a finite-element model significantly reduced
the error between computed and measured modal frequencies, highlighting the critical influence of boundary
conditions on dynamic behavior.

Goldfeld et al.'? proposed an exact element method-based procedure for identifying the continuous stiffness
distribution in beams by monitoring selective modal frequency shifts. Representing the stiffness profile as a
polynomial function, their approach used a sensitivity matrix derived from a healthy beam model and was
validated against both analytical predictions and experimental data. In contrast, Sha et al.'* addressed crack
localization in beams by introducing a two-step probabilistic framework that employs Bayesian data fusion of
relative frequency changes, effectively handling both single and multiple damage scenarios without the need for
mode shape information. Similarly, Heshmati et al.!* demonstrated that artificial neural networks trained on
finite element-generated frequency data can reliably detect horizontal cracks in steel beams, underscoring the
promise of machine learning in damage localization while also emphasizing that the quality of the simulation
data remains critical. Lee et al.'> combined finite element model updating with deep learning by calibrating
a reference model from measured modal frequencies and training networks on simulated damage-induced
frequency shifts. In this work, experimental validation on three-story frame structures demonstrated the
method’s excellent reliability.

Dynamic identification techniques have also reached large-scale structures. Herndndez-Montes et a
introduced a Bayesian approach for identifying the structural parameters of cultural-heritage buildings using
ambient vibration data. They combined frequency and modal information via a probabilistic modal assurance
criterion and applied it successfully to a sixteenth-century monastery to quantify uncertainties in key finite-
element model parameters. Building on this theme, Wu et al.!” used a surrogate-assisted multi-objective slap-
swarm algorithm with a Gaussian process model for vibration-based parameter identification of concrete dams,
achieving accurate estimations and significant computational savings. Complementing these studies, Gioffré et
al."® solved the inverse problem of tie-rod mechanical properties in historical masonry by merging experimental
vibration measurements with uncertainty-informed probabilistic modeling, yielding robust tensile-force and
stiffness estimates crucial for structural resilience. Finally, Naranjo-Pérez et al.!° developed a Finite Element
Method (FEM) updating approach based on free-vibration structural parameter identification. The method
embeds experimental modal properties within a maximum likelihood optimization accelerated by a novel
combinative algorithm, and was demonstrated on both a laboratory footbridge and a complex heritage structure
to significantly reduce simulation time without compromising parameter accuracy.

Based on these efforts, Zhang et al.?’ developed an impulse excitation technique using square specimens
to establish a robust relationship between modal frequencies and elastic parameters, facilitating the inverse
identification of both Poisson’s ratio and Young’s modulus. Finally, Mahat et al.?! introduced a frequency-
informed modal analysis that nondestructively evaluates the elastic properties of solid materials with high
precision.

Understanding the dynamic response of structures is crucial for ensuring their safety and longevity. A key
aspect of this behavior is the system’s natural frequency, which governs its inherent vibrational characteristics.
When external forces coincide with a structure’s natural frequency, resonance can amplify displacements
and potentially lead to catastrophic failure. To mitigate this risk, accurately determining natural frequencies
is an essential need that has driven the development of methodologies ranging from classical analytical
formulations to modern computational tools. Analytical and semi-analytical methods, such as Rayleigh-Ritz
method, offer foundational insights but are limited by idealized geometries and simplifying assumptions??. For
intermediate complexity problems, the extended Kantorovich method reduces partial differential equations to
ordinary differential equations for efficient eigenvalue solutions, yet struggles with highly nonlinear or intricate
geometries®. Generalized differential quadrature method then emerged, approximating derivatives via weighted
sums and delivering high accuracy with fewer grid points for relatively smooth problems?’. In contrast, the
finite element method subdivides structures into a detailed mesh of finite elements, effectively handling complex
geometries, irregular domains, and nonlinear materials. By directly computing mode shapes and resonant
frequencies through discretized eigenvalue analysis®>, FEM has become the gold standard for structural
dynamics, as evidenced by its widespread application to frames, beams, composites, shells, and sandwich panels.
Moreover, many works have been undertaken using these methods?-3!.

Gao® provided an analytical framework by introducing the random factor method and interval factor
method. In this approach, the structural parameters are separated into deterministic and random parts, and
analytical expressions for natural frequencies and mode shapes are derived using the Rayleigh quotient and
algebra synthesis of random variables. Following this, Ansari et al.?” adopted a semi-analytical method for
double-walled carbon nanotubes by integrating Eringen’s nonlocal elasticity with the classical Donnell shell
theory. They implement the Rayleigh-Ritz technique with a polynomial series representation to solve the
governing differential equations. Similarly, Fallah et al.?® utilized a semi-analytical approach by applying the
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extended Kantorovich method along with an infinite power series solution to analyze the free vibration behavior
of moderately thick functionally graded plates on an elastic foundation.

Based on these analytical and semi-analytical methods, later studies incorporate more advanced numerical
techniques to address complex geometries and material uncertainties. Tornabene et al.2° extended the analytical
concepts to doubly-curved shells with variable thickness by using a local generalized differential quadrature
method that integrates higher-order equivalent single layer theories, thereby enhancing the accuracy of dynamic
response predictions. In a further advancement, Tomar et al.** combined higher order shear deformation theory
with stochastic finite element methods to tackle material uncertainties in skewed, sandwich functionally graded
plates, allowing for a comprehensive quantification of vibration and bending behaviors under uncertainty.
Continuing this trend, Furtmiiller’! introduced a novel finite plate element tailored for concrete-cross-
laminated timber composite plates that employs a higher-order plate theory to capture the characteristic zig-
zag deformations in timber layers. By accounting for the partial interaction between concrete and timber and
reducing computational complexity compared to traditional continuum models, this approach demonstrates
the evolving capability of finite element methods to analyze advanced composite structures with both static and
dynamic accuracy.

By using these developments in dynamic analysis methods, especially FEM, many studies have examined
the dynamic behavior of frame structures particularly the relationship between natural frequencies and the
structures’ geometric and material parameters®*-3%,

Senba et al.? investigated the vibration reduction in variable geometry trusses by optimizing motion plans
to avoid resonance during payload manipulation. Their finite element model adjusted trajectories and variable
member lengths to effectively reduce vibration amplitudes and stresses. In parallel, Sofi et al.** addressed the
parameter uncertainties by evaluating the bounds of natural frequencies through an improved interval analysis
method that transforms the generalized interval eigenvalue problem into two deterministic eigenvalue problems,
accurately capturing the variability in truss and beam structures.

Pham et al.* proposed a fuzzy finite element framework to analyze the free vibration response of functionally
graded semi-rigid frame structures. Their approach features a novel Timoshenko beam element that accounts
for connection rigidity, along with a response-surface-based fuzzy analysis using the a-cut strategy and first-
order Taylor’s approximation to incorporate uncertainties in material properties, dimensions, and connection
conditions. Similarly, Gonenli et al.* investigated the effect of crack location on the buckling and dynamic
stability of thin plate structures that behave as frame systems. Although their study primarily focuses on plate
frames, the FEM model directly relates to the analysis of frame structures under damage conditions. Xu et
al.’¢ further extended FEM applications by developing a direct numerical simulation procedure that integrates
Floquet theorem and harmonic balance methods, enabling the assessment of dynamic instability in frame
structures, including complex behaviors such as multi-mode coupling and flexural-torsional deformations.

In addition, Alaei et al.*” utilized FEM in a parametric study on Persian brick masonry arches, which can
be considered arch-type frame structures. Their work examined the influence of various geometric parameters
and support conditions on natural frequencies, leading to the formulation of an empirical equation validated
by experimental modal analysis. Complementing these studies, Jafari-Talookolaei et al.’® addressed the free
vibration analysis of general planar frame structures composed of laminated composite beam members. They
introduced a comprehensive displacement field that captures shear deformation, rotary inertia, material coupling,
and warping effects, with FEM results showing excellent agreement with 3D ANSYS simulations. Collectively,
these studies demonstrated the versatility of the finite element method in accurately modeling and analyzing the
dynamic behaviors of a wide range of frame and frame-like structures.

Despite the extensive body of literature on the influence of structural parameters on vibrational behavior,
a comprehensive review of recent studies reveals that dedicated and efficient data-driven frameworks for
directly identifying these parameters from measured dynamic responses remain largely unexplored. This gap
is particularly evident in frame structures, where accurately defining physical parameters is crucial for reliable
modeling. We propose a direct, pattern-based approach to identify structural parameters from free-vibration
signatures, establishing a foundation for scalable applications. Developing such a method not only enhances
optimization in structural design® and supports data fusion techniques for damage diagnosis, but also improves
data preprocessing, providing a more accurate representation of the structure’s true condition®.

In the following section, we introduce the mathematical formulation of the frame structure using a finite
element method. This section details the FE formulation and presents a novel Gaussian damage function
developed specifically for applying damage to beams. Next, we introduce a new clustering method designed to
group spatial data points that form streamline-like patterns. After validating our FE approach and the Gaussian
damage function through calibration with beam data, we proceed to discuss the FE-generated dataset. Here, we
explore the relationship between structural parameters and the natural frequencies of the frame. Building on
these findings, we propose a predictive model that estimates the frame parameters from its natural frequencies,
using the previously introduced clustering method. This model is evaluated via a modified split-test method to
identify sensitive parameter combinations that are challenging to predict solely from natural frequency data.
Finally, we assess the robustness of our model by applying damage to these sensitive areas, demonstrating its
high accuracy in the presence of environmental variations and structural uncertainties.

Problem definition

The grid form of the frame structure being investigated in the current work is shown in Fig. la. As can be seen
the structure is composed of N — 1 identical sub-frames, where IV is the number of vertical beams and the 7*"
vertical beam is numbered above it. Except for the last vertical beam, all sub-frames have two horizontal beams
across them at the bottom and top. Using this fact, we name each member in the structure by beam, ;, where
represent a vertical beam index running from 1 through /V and j can be 1, 2 or 3. Here, beam;,1 corresponds to
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Fig. 1. Details of the considered structure.

the i*" vertical beam, and beam; 2 and beam; s correspond to the bottom and top horizontal beam in front of
the i*" vertical beam, respectively. The vertical beams have a length L, and the distance between two vertical
beams is denoted as L". Therefore, the total length of the structure is L = L" x (N — 1). In the following
sections, we use the aspect ratio constant AR = L" /L to specify the lengths of the horizontal and vertical
beams?!. Additionally, from Fig. 1b we can see all beams have identical rectangular cross-section with width
b and height h. Four different arbitrary boundary conditions are considered for this investigation, as shown in
Fig. 1c. Each boundary condition is defined by the parameter BC, where BC' = 1 to BC' = 4 represent the
following boundary conditions, respectively:

BC' = 1: All corners of the frame are simply supported.

BC = 2: All corners are clamped.

BC' = 3: The two bottom corners are clamped, and the two top corners are simply supported.
BC' = 4: The two bottom corners are clamped, and the other two corners are free.

Ll S e

For each member of the frame, we considered the displacement field based on Timoshenko beam theory that is
shown in Fig. 1d. The following equations represent these displacement fields**:

{ u=muo (2,t) — 2¢ (z,1) (1)

w = wo (z,t)

In these expressions, v and w denote the displacements parallel to the x-axis and z-axis, respectively. The term
¢ represents the bending rotation of the cross-section. The variables uo and wo correspond to the displacements
along the mid-plane of the beam.

Mathematical formulation
Build on the considered displacement field, the non-zero strains associated with them can be formulated as

follows:
Ex
Exz =

In this context, €, and €, represent the axial normal strain and the transverse shear strain, respectively. The
associated normal stress 0, and shear stress 7., can be determined using the linear elastic constitutive equations:

or = Fe,
Tey = KGEx 2

duo(z,t) _  89(w.t)
“or % or

oz
Jwo (z,
Gu = —¢ (1) + oyt

)

Nl

3)

where k denotes the shear correction factor, which is & = 5/6 for a rectangular cross-section. Additionally, £
and G represent the elastic (Young’s) modulus and the shear modulus of the material, respectively. These two
moduli are related through the following formula:

E
C=5070 @)
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where v is the Poisson’s ratio. The total kinetic energy 7" of the entire beam can be formulated as:

T:%///p(u?t—i—vi—l—w?t)dV

\%
NEEs) 2 (99 (@,0) 2 [ Qwo (@ 1) 2 p
P ot tp ot te ot v

Here, p represents the material density, and L denotes the length of the beam. The parameters A and I correspond
to the cross-sectional area and the moment of inertia of the beam, respectively. The strain potential energy U of
the beam is expressed as:

U= %/// (0wta + Ex2Taz)dV

L
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Finite elements formulation
In this section, we use the previously described kinetic and potential energy formulations for a single beam to
derive the mass and stiffness matrices of the defined elements. By applying a formulation to reduce the stiffness
matrix, we assemble these matrices into a global matrix. This allows us to determine the natural frequencies of
the structure. Figure 2 presents the element details that is used to discretizing the beam in this work. Figure 2a
shows the element with a total length of Le, has three nodes where two of them are at the ends of the element
and one is in the middle. Each node has three degrees of freedom, represented as u;, w; and ¢; corresponding
to the node i (: = 1,2, 3).

Figure 2b shows the intrinsic coordinate £ = (2o — Le)/Le of the considered element. The displacement
components » and w, along with the bending rotation ¢, are interpolated in this coordinate using the following
expressions®’:

3 3 3
UZZ‘I)i(ﬁ)umw:Zq’i(ﬁ)wm(b:Z@(ﬁ)@ (7)
1=1 =1 i=1

The shape functions ®; (&), wherei = 1,2, 3, represent the Lagrangian interpolation polynomials corresponding
to each node of the element. These functions are formulated as follows?”:

Dy =E(E—1)/2,Pa=1-& D3 =E(£+1) /2 )
We define the element’s degrees of freedom vector, denoted by {6}, as follows:

{6}:{ulvwlv¢13u27w27¢27u33w35¢3}T (9)

Here, the superscript T denotes the transpose of a vector or matrix. By applying the shape functions, we establish
a relationship between the beam’s displacements and rotations and the nodal degrees of freedom, leading to the
following expression:

] Le /2 f—e—] Le/2 F—>
() Nodel Node 2 Node 3
& Q Q
- 0——¢ 1

Fig. 2. Considered beam element.
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u=[®,){6}=[® 0 0 @ 0 0 & 0 0 1 {5}
w=[,]{6}=[0 & 0 0 & 0 0 & 0 1{6} (10)
p=[@s){0}=[0 0 & 0 0 & 0 0 s 1 {5}

An effective approach for calculating the stiffness and mass matrices of the element is the energy method. To
derive these matrices for the beam element under consideration, we substitute Eq. (10) into (5) and (6), which
leads to the following expression:

T = %{S}T[Me]{(;} (11)
U= %{5}T (Ke] {5} (12)

Here, {0} denotes the velocity vector of the beam element, and [Me] and [Ke] are the element’s mass and
stiffness matrices, respectively. These matrices are calculated as follows:

1

[Me] = /§ [pA[Ru]" [@u] + pI[26]" [®6] + pA[®u]" [®u]] Le dE (13)

_1
2
L

EA T T T
[Kel = [ |75 [Pugl” [Puel + EI[Pg]" [Pg] + RGA[Dy]" [0y]
/1|:Le 3 13 ¢ ¢ ¢ ¢ 14)

2

KGA T
o (@) [@u| Le d

Frame share the same material and cross-sectional properties, except for their lengths, which may differ between
vertical and horizontal beams and can be expressed by ¢ and j indices of each member. This variation in length
leads to distinct mass [M e] and stiffness [K e] matrices for vertical and horizontal members. Now the assembled
mass matrices of each member [M], ; can be calculated. To model a damaged beam, stiffness matrix of the beam

. . . . 4 .
members needs to be calculated after applying stiffness reduction method to their elements'®. The following
expression calculates the stiffness matrix of the nt" element of beam, ; in the frame:

[Ke]l = aly [Ke]imteet (15)

n
ij ij
where parameter of; quantifies the loss of stiffness in the n'" element of the beam; ;. In this work, we use a
developed gaussian damage function to calculate the parameter cv. Based on three parameter Gaussian damage

function used in*?, we introduce the following four parameters to define a damage in beam:

1. Damage location (£): Normalized center location of the damage along the beam. Here, £ = 0 corresponds
to the damage at the beginning of the beam, while £ = 1 indicates damage at the end of the beam.

2. Damage severity (S): presents losing stiffness in element 0 < & < 1, where & = 0 indicates no loss in stiff-
ness, and & = 1 signifies that the stiffness of the element becomes zero.

3. Damage width (20): presents the length of the damaged region normalized by the total length of the beam,
over which the bean’s stiffness is most significantly affected.

4. Damage dispersal (©): It indicates that the damage disperses beyond the initial damage region. Higher val-
ues of D results in stiffness to be reduced just in 2J region, and low values of this parameter lead to more
smooth damage reduction along the beams.

Using these new four parameters,a™ for the corresponding n'” element in the beam can be calculated using
the following expression:

e , n<ns
a"=1-6x 1, ns <n < ne (16)

o ()’
e By , Me<n

where 20 = |20/Le| represent number of damaged elements; also ns = [£ (é) —2/2] and
ne = £ (L%) + 20/2] indicate the starting and ending element index of the damaged region, respectively.

Figure 3 illustrated these above parameters and method, where also middle element of damage n,, = LS (é )J ,
is presented.

Similar to the previous section, the following section uses these four parameters with subscript 4, j, which
defines them for beam; ; in the frame structure.

After calculating the assembled stiffness and mass matrices of each frame member, the assembled stiffness
and mass matrices of the entire frame can now be obtained. To do this, it is essential to consider the continuity
conditions of the degrees of freedom at the beam’s joint section. As illustrated in Fig. 4, each vertical beam is
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Fig. 3. Using gaussian damage function and its parameters on beam.

v = vertical

h = horizontal
U = Upper joint
B =Bottom joint

Fig. 4. Degrees of freedom on frame joint section.

connected at both ends to two horizontal beams in such a way that the end nodes of the vertical beam align
precisely with the corresponding nodes on the horizontal beams.

Considering that, at the non-shared nodes, the mass and stiffness matrices of the horizontal and vertical
beams do not interact with each other, we define the transformation matrix [T'] to map the degrees of freedom
of the two end nodes of the vertical beam to those of the horizontal beams. This transformation is presented

below?®:
0
0 (17)
1

Importantly, the transformation matrix [T7] is consistent across all vertical beams. Since only the degrees of
freedom at the two end nodes require modification, while the intermediate nodes maintain their displacement
fields unchanged, the matrix [T for these intermediate nodes effectively becomes an identity matrix [I] whose
size corresponds to the number of intermediate degrees of freedom. If [K], ;_, and [M], ;_, represent the total
stiffness and mass matrices of the vertical beam, the modified stiffness [K]; ;_, and mass [M], ;_, matrices

] - 0
[T] = m =

1
: -1 0
syms. [T5] 0

can be obtained as:
[[_(]zj = [T]T[K]ij (17, [MLJ = [T]T[M]ij (T],(i={12,...,N};j=1) (18)

After using these matrices to obtain the overall mass and stiffness matrices of the frame, we can move on to
discretizing the equations of motion for free vibration, which are as follows:

[M]{A} + [K]{A} = {0} (19)
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In these equations, K] and [M] denote the global stiffness and mass matrices, respectively, while, {A} and {A}
represent the total acceleration vector and the vector of degrees of freedom. Assuming a general solution of the
form {A} = {Ag} €™ for Eq. (19), we arrive at the following equation:

([K] = w® [M]) {A0} = {0} (20)

Here, w denotes the system’s natural frequency, and { Ao} is the associated mode shape. The nontrivial solutions
of Eq. (20) emerge from resolving the determinant equation det ([K ] —w? M ]) = 0. This process leads to

the extraction of the system’s vibrational characteristics. Figure 5 illustrates the flowchart of the finite element
(FE) model of the frame, highlighting its inputs and outputs to enhance the understanding of how the final
mathematical expressions function.

Streamline clustering methodology

Clustering algorithms play a pivotal role in identifying intrinsic structures within datasets, particularly
in scenarios where data points exhibit directional or flow-like patterns. In this paper, we propose a novel
streamline clustering algorithm designed to detect clusters that align with directional trends originating from
a user-specified initial point based on cosine similarity computation algorithms®. Traditional centroid-based
clustering methods often prioritize compactness or density, which may fail to capture anisotropic or trajectory-
oriented structures. Algorithm 1 constructs a streamline cluster L around an initial point p, iteratively extending
it bidirectionally while enforcing directional consistency among neighboring points.

Parameter Description
Inputs: X Data set
p Initial point
Output: L Streamline cluster around p
01 Start
02 Set first cluster centroid as p in L
03 Do
04 form p™ and pt as end and first point of L respectively;
05 form N" as m nearest points to p”* in X > p" via Euclidean distance;
06 form Nt as m nearest points to pt in X < pt via Euclidean distance;
07 For all i in range of m
08 Set N* as cluster centroid of I'; Set N as cluster centroid of I;
09 V' =N —p" Vi = Nf —p";
10 For all j > i in range of m
11 th:Njh_ph;Vjt:th_pt;
12 VI s Append N to LI
Az PPERE iy 1o ks
13 VL1 Prepend NY to Uf;
AT ePENE iy 10 4
14 End
15 End
16 Append I that has most member to L;
17 Prepend I that has most member to L;
18 While (no longer change in L size)
19 End

Algorithm 1. Pseudocode of the streamline clustering method.

The algorithm begins by initializing the ordered cluster L with the user-specified point p (Line 02). The
cluster expands bidirectionally by dynamically capturing geometrically aligned neighbors at its current
endpoints, p” and p* where the sugerscripts t and h stand for ‘tail’ and ‘head’ At each iteration, the algorithm
identifies m nearest neighbors to p”" and p’ within the dataset X, restricted to points ahead of P (X > pM)or
behind p* (X < p') to enforce ordered growth (Lines 05-06). For each neighbor NP or N}, direction vectors
VI = N} —p" and Vi = N} — p' are computed to quantify alignment. Subclusters 1" and I! are then formed
by grouping neighbors whose direction vectors exhibit near-parallelism, determined by a cosine similarity
threshold (Lines 07-14). Specifically, if the normalized dot product (Lines 12,13), the vectors are deemed

Scientific Reports |

(2026) 16:3279 | https://doi.org/10.1038/s41598-025-29390-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Inputs FE calculation Outputs
[ —_ S Ny T T T T \
BN | g |
: = ' AR — Discretization et oo
&b | i
! : ! Lo . M s K B : 1 |
: : : [Ke]™™ Assembhng%Eigenvalues—H» E: N |

e =
Y bKel, -y
£ ¥ L_» Stiffness reduction | IS |
: g W, | AL
\ : @ij ! : I [
\ / J \ J

Fig. 5. Flowchart of the FE model function of the frame.

collinear, and their corresponding points are merged into the same subcluster. The subcluster with the largest
membership at each end is appended (for the head) or prepended (for the tail) to L, ensuring incremental
extension along the most consistent local direction (Lines 16-17). This bidirectional expansion repeats until
L stabilizes in size (Line 18), indicating that no further aligned points can be incorporated. By prioritizing
geometric alignment over raw proximity, the algorithm captures directional trends inherent to the data, making
it particularly effective for flow-like structures where clusters follow smooth, contiguous paths.

Results and discussion

Convergence and validation

In this section, a convergence test is conducted for both the intact frame and the damaged beam. Additionally, to

verify the accuracy of the proposed formulations and also the developed computer programs, the results for both

the intact and damaged frame and beam are compared with those obtained from the commercial ANSYS software.

All subsequent analyses use a beam with a rectangular cross-section made of steel, with the following material and

geometric properties: £ = 200 GPa, p = 7850kg/m® v =1/3,L =L, =1 m,h =0.05m,b= 0.1 m.
Figure 6 presents the convergence results for a frame with V = 6, BC' = 1 and AR = 1. Convergence was

i i—1
wj —w,
mode number and ¢’ denotes the current iteration as the number of elements per beam increases from 4 — 1’
to ‘0’ As shown, the frequency deviation decreases logarithmically as the number of elements increases. A mesh
density of 50 elements per beam was selected for all subsequent analyses, as the rate of change in the results
beyond this point becomes negligible.

Now that the frame model has converged, its accuracy is validated by comparing the first three natural
frequencies with those obtained from ANSYS. Table 1 presents these results for a frame with A R — 1, considering
two different numbers of vertical beams and four types of boundary conditions.

A convergence study was conducted for a cantilever beam incorporating the damage function. The damaged
case, characterized by the parameters (6 = 0.5,20 = 0.2, £ = 0.5, = 1), is presented in Fig. 7. The results
demonstrate a similar convergence trend to the intact frame; the change in frequency becomes negligible
beyond approximately 50 elements per beam, as the response stabilizes with no significant further variation.
Consequently, a mesh density of 50 elements per beam was adopted for all subsequent damaged beam analyses
to maintain consistency and computational efficiency.

Since no existing studies directly address a Gaussian damage function model for beams, we validated the
present model using ANSYS simulations. The simulations were first conducted for a cantilever beam, whose
properties are detailed at the beginning of this section. Table 2 lists the first three natural frequencies of the intact
cantilever beam, as calculated using both ANSYS and present method.

To model the damage in ANSYS, we represent the beam with 50 separate sections, each corresponding to an
element in our current FE model, then Young’s modulus of these sections is updated based on the corresponding
element Young’s modulus in FE model. We considered previous cantilever beam with nine different damage
scenarios for validation. The losses in Young’s modulus of these scenarios per element are represented by their
a™ values in Fig. 8 for n'" element in the beam.

As can be seen the considered scenarios are composed of varying between three different values for damage
location (£ = 0.2,0.5,0.8) and damage dispersal (D = 100, 10, 1) and two other damage parameters are as
follows: & = 0.75,20 = 0.1. Table 3 presents the first three natural frequencies of corresponding to these
damage scenarios calculated by ANSYS and present method. Notably, the clamped end corresponds to element
one, while the free end corresponds to element 50.

Another validation was conducted for a damaged frame with two different numbers of vertical beams, each
subjected to two different damage widths. The first three natural frequencies are listed in Table 4 for a model
with fixed parameters (AR =1,BC =1,6 =0.75, = 1000, £ = 0.5) and compared against ANSYS
results, where the damage was applied on beam 2. As can be seen, the results of the present work closely match
those obtained from ANSYS for all intact and damage cases, demonstrating strong validation of the proposed
approach.

monitored using the frequency deviation, defined as 100 x

/ w;.’l, where ‘5’ corresponds to the
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Fig. 6. Convergence of natural frequencies for the inctact frame.

N=4 N=6

BC | Present | ANSYS | Present | ANSYS
wy | 24370 | 2437 | 13266 |13.26
1| wy | 56296 | 56.30 |28.983 |28.98
wsz | 113.919 | 11391 | 48222 |48.22
wy | 29.099 | 29.10 |14.799 | 14.80
2 |wy | 62393 | 6238 |32.067 |32.07
wsz | 134.994 | 135.00 |52.206 |52.21
wy | 26145 | 26.14 |13.895 |13.89
3 | wy | 58358 | 5836 |30.162 |30.16
wsz | 127.590 | 127.59 | 49.589 | 49.59
wy | 26128 | 26.13 |13.877 |13.87
4| wy | 31159 | 31.16 |29.924 |29.92
w3 | 58341 | 5834 |30.157 |30.16

Table 1. Comparison of the first three natural frequencies (Hz) of the intact frame with ANSYS results for
different vertical beam configurations and boundary conditions.

Frequency deviation (%)

10 L . L L .
0 10 20 30 40 50 60 70 80

Number of elements

Fig. 7. Convergence of natural frequencies for the damaged cantilever beam.

Dataset description
Following the successful validation of the FE model, which demonstrated high accuracy in predicting the natural
frequencies of the frame structures, we are now well-positioned to investigate their vibrational behavior. To begin
our analysis, the material and geometric properties of the validated beam model were held constantly. Table 5
introduce Dataset X, which comprises the first five natural frequencies(rad/s) of 2400 specific frame structures.
By systematically varying three parameters (6 distinct quantities of IV, four types of BC, and 100 values of the
AR uniformly distributed between 0.41 and 2.1), the first five natural frequencies of these structures, along with
their three corresponding varying parameters, are compiled in X . The material and geometric properties of the
validated beam model were held constant and can be seen in this table.

With dataset X established, we now turn to analyzing its vibrational characteristics in the following section.
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3 05
0

3 05
0

w1 w2 w3
Present | 40.68 | 251.95 | 692.52
ANSYS | 40.65 | 251.72 | 691.66

Table 2. First three Natural frequency of intact cantilever beam (Hz).
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Fig. 8. « values per element of cantilever beam in nine different damage scenarios.

D = 100 D =10 D=1

e Present | ANSYS | Present | ANSYS | Present | ANSYS
wp | 31.594 | 31.571 30.636 | 30.606 27.056 | 27.036
0.2 | wy |246.965 | 246.68 | 244.983 | 244.66 | 228.609 | 228.3
w3 | 649.299 | 648.28 | 641.264 | 640.13 | 593.901 | 593.0
wp | 37.894 | 37.868 37.481 | 37.451 35.581 | 35.551
0.5 | wo |204.904 | 204.72 | 200.722 | 200.52 | 187.135 | 186.96
w3 | 675.394 | 674.31 | 667.644 | 666.43 | 612.528 | 611.39
wy | 40.548 | 40.521 40.518 | 40.491 40.321 | 40.293
0.8 | wo |235476 |235.25 |232.703 | 232.45 |219.216 |218.98
w3 | 572.961 | 572.29 | 562.484 | 561.77 | 533.370 | 532.75

Table 3. First three natural frequencies of damaged cantilever beam (Hz) for nine scenarios.

N = 4,20 = 0.05 N =6,25 = 0.2

Present | ANSYS Present ANSYS
wp | 24.366 | 24.36 13.250 13.25
wo | 56.180 | 56.16 28.932 28.93
w3 | 112.541 | 112.20 47.999 48.00

Table 4. First three natural frequencies of damaged frame (Hz).

Frame vibrational characteristics
In this section, we aim to analyze the introduced dataset X to understand the relationship between variable
parameters and natural frequencies, and work toward predicting these parameters based on the natural
frequencies. Figure 9a represents the distribution of the five natural frequencies for all structures in X, displayed
using both box plots and violin plots. It can be inferred that higher-order natural frequencies exhibit a larger
distribution width and significantly larger mean values. Additionally, for each natural frequency, the distribution
shows a higher density at lower values, with similar patterns observed across all frequencies. Figure 9b illustrates
the parameter sensitivity analysis of the first five natural frequencies by quantifying their variance distributions
across three distinct parameter sets:

— Variance of natural frequencies across all values of IV, with AR and BC held constant.

[ar—1— Variance of natural frequencies across all values of AR, with N and BC held constant.

— Variance of natural frequencies across all values of BC, with NV and AR held constant.

A preliminary analysis reveals that parameter N exerts the strongest influence on natural frequency
variations, followed by AR, with BC' showing the least impact.
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Category Parameter Description
N =34,...,8 Number of vertical beams

Varying parameters BC =1,2,34 Boundary condition
AR = AR1,ARq,...,AR;,...,AR,, . o _ _
AR, — AR, + ZRZ:;\"%Q G =1 Aspect ratio, where:n = 100, ARy = 0.41, AR,, = 2.1.
Ly =1m Length of horizontal beams

h = Lp/20 = 0.05m Height of cross section

b=0.1m Width of cross section
E = 200 GPa

p = 7850kg/m?>

Fixed parameters ,
Young’s modules

Density

Poisson’s ratio

v=1/3

Table 5. Description of dataset X.
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Fig. 9. Natural frequency distributions of X and their dependency on features.

Notably, in the first natural frequency, the influence of parameter N exhibits a pronounced divergence
from parameters AR and BC. This distinct separation suggests that /N may function as a dominant driver of
variability in the first natural frequency. To examine this, Fig. 10 shows the distribution of the normalized first
natural frequency (w1 /w1,mae ) compared with those for each of the six IV values.

It can be observed from this figure that larger NV values are concentrated in the lower range of the normalized
first natural frequency, while smaller N values correspond to higher w1 values. Additionally, the density peak
in the w; distribution appears to correlate statistically with the distribution of the IV parameter. In Fig. 11, we
investigate whether the /N parameter can be inferred from the distribution peaks of the normalized first natural
frequency. Figure 11a represents the histogram of w1 /w1, mae Which provides higher resolution to distinguish
distribution peaks. Notably, this histogram reveals six distinct peaks region (S1, ..., S¢) corresponding to the
six IV values, a feature that could not be clearly resolved in the earlier distribution plots of w; . Figure 11b displays
the normalized observation for each of the six IV values across the peak regions S1 to S.

As can be seen, the IV values can be distinguished based on the first natural frequency wi; however, this
method lacks accuracy for higher N values due to the high density of w; within the corresponding domain.
Building on the similar peak patterns observed across all natural frequencies in Fig. 9a, we hypothesized that the
correlation between N values and these peaks could also extend to the four additional natural frequencies and
help us to reach better accuracy for finding IV values.

Unlike the first natural frequency, which exhibits a strong correlation with IV, higher-order frequencies show
a weaker discernible link to V. Instead, the influence of the two other parameters AR and BC' dominates their
behavior, as demonstrated in Fig. 9b. To clarify these attributes, Fig. 12 shows the sensitivity of the first five
natural frequencies to parameters AR and BC, for six different values of IV, separately.

From this Figure, we observe that the effects of AR and BC on certain natural frequencies can be
distinguished. However, the natural frequency to which these parameters’ impacts are separable depends on the
value of N. For example, at N = 3, the first three natural frequencies exhibit clear separation between AR and
BC driven effects. In contrast, at N = 8, the same frequencies show overlapping influences of AR and BC,
requiring classification methods to disentangle their contributions. To visualize how these patterns govern the
natural frequencies, we plot them in a three-dimensional space in Fig. 13. This figure comprises 10 subfigures,
each corresponding to one of the 10 combinations of three natural frequencies selected from the five of them,
labeled systematically as C'y to Co.

As can be distinguished from these ten sub-figures, the dataset exhibits a striking resemblance to streamlined
curves or trajectories within the feature space. These visualizations suggest distinct geometric patterns that
organize the data into coherent, unlabeled structures. To advance our goal of identifying structural labels derived
from the natural frequency combinations, the subsequent section will employ clustering techniques to partition
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Fig. 11. Peak-based classification of first natural frequency and observation of IV in them.

these curves into meaningful groups. By uncovering clusters, we aim to systematically associate them with
structural labels, characterize their relationships to the natural frequencies, and identify correlations that may
map these groups to specific structural configurations. This approach will enable data-driven classification of
the system’s underlying structural identity. Figure 14 shows the workflow of the clustering method that is used.

As it can be seen in this method, after assigning arbitrary labels to each sample in X, we used Algorithm 1
to find the streamlines locally around a random point in each of ten plots (C1, ..., C1o). After finding these
local streamlines ‘L’ and storing them into the cluster repository ‘L g}, the elements of L are removed from X,
where X; is the dataset corresponding to plot C; for ¢ = 1, ..., 10. This loop continues until X; is empty, and
the computation is applied to all ¢ from one to ten. At the end, all clusters that were stored in Lr are merged
based on their arbitrary labels. This step aims to prevent duplication in clusters if two clusters have the same
members. This step also helps in joining the separated sharp-angled streamlines when connectivity of those can
be observed from another cluster in Lr. Figure 15 project the results of applying discussed clustering method
to X in C1.

As can be seen, 24 clusters have been found as streamlines with this methodology, which can be recognized
in above figures by the specific color and index adjust to them in right side. Although the high density of the
points in lower values of natural frequencies, makes the observation of the clusters in these regions almost
impossible, but in Table 6, the properties of these cluster across some examinations of their true labels, makes a
clear presentation of them.

At first glance, we can find out that the variance of N and BC labels on each cluster are zero or so close to
zero, representing that the streamlines identified through the current clustering method each correspond to
specific labels of BC and the N which can be found out by the mean values of these labels in corresponding
cluster. In another word, for a given combination of boundary conditions and vertical beam count, all structural
aspect ratios generate a streamline within the frequency plot. By analyzing the size of these 24 streamlines, it is
evident that each has a size of approximately 100 which corresponds to the number of aspect ratios included in
the dataset for a specific combination of NV and BC. Figure 16a illustrates the correlation between changesin AR
and shifts in the first natural frequencies for each of the 24 unique combinations of vertical beams and boundary
conditions. As shown in all 24 streamlines, the AR exhibits a strong correlation with natural frequencies, with
correlation coefficients consistently exceeding 0.8.

Also in Fig. 16b, for each of the 24 combinations of N — BC, a multivariate linear model is fitted from the
five natural frequencies to AR, and plotted predicted versus actual AR as a single semi-transparent scatter. As
it can be seen, the cloud of all points lies tightly about the dashed line; also, the overall RMSE is 0.021. RMSE is
root mean square error for interpolation results for AR predictions, defined by following formulation®:
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Fig. 12. Sensitivity of natural frequencies to AR and BC across six different values of V.

S, (AR: — AR;)” 1)

m

RMSE =

where m is total number of the prediction’s cases for AR, also AR; and ‘AR, are true AR labels and predictions
of it in prediction case i*" respectively. These diagnostics indicate that the relationship is essentially linear over
the sampled range.

These robust relationships imply that, for a given combination of N and BC, if the natural frequency and
AR of two points in the frequency plot are known, the value of a third point between them can be predicted
using simple linear interpolation. Specifically, either the AR or natural frequency of the intermediate point can
be estimated based on the linear trend established by the two known data points. Based on these findings, we
introduce an algorithm in the next section that, given the input natural frequency, can determine or predict these
three parameters.

Model development and sensitivity analysis

From our original dataset X, we generate a new dataset X L containing predicted structural properties. This X L
dataset comprises 24 sub-datasets, each corresponding to specific values of NV and BC'. Within each sub-dataset,
there are 100 samples representing 100 distinct aspect ratios for the given NV and BC' defined in Table 5. Thus,
XL (N, BC) encapsulates the five natural frequencies and their corresponding aspect ratios for 100 structures
with the specified N and BC' Figure 17 illustrates our methodology for estimating the structural properties
from the input natural frequencies 2input, which consist of the first five natural frequencies of the structure.

In this flowchart, the input natural frequencies i pw: are first projected onto each of the ten C; combinations.
For each C} the Euclidean distance between the input point and every N — BC entry in the corresponding
XL (N, BC) sub-dataset is calculated. These distances are then stored in D; (IV, BC). Subsequently, we
identify the minimum values of NV and BC' across the summation of D; for all i. These minimums are denoted as
N and BC representing our predictions for the number of vertical beams and boundary conditions of the input
natural frequency structure. Next, within the sub-dataset X L (N ,B C’), we locate the two natural frequencies

and aspect ratios closest to 2inpu¢. Using linear interpolation between these two nearest points and the input
Qinput, We estimate the aspect ratio of the frame structure, denoted as AR.

To establish performance baselines and contextualize the efficacy of our proposed model, we employed two
widely recognized machine learning algorithms; Random Forest (RF) and Support Vector Machines (SVM).
Table 7 evaluates the performance of the proposed model using a 70% training and 30% testing split of the X I
dataset. No validation split was required, as the model lacks tunable hyperparameters. The accuracy represented
the percentage of true classification results, and RMSE for evaluation of interpolation in AR predictions. Since
each streamline corresponds to a unique N — BC' combination, the training data must include all 24 streamlines
to ensure robust classification. Data was partitioned uniformly across streamlines to preserve their integrity, as
removing any subset risks fragmenting streamlines and disrupting the interpolation process for AR prediction.

The proposed model demonstrates outstanding performance in predicting structural properties from
frequency signatures. For classification, it attains 100% accuracy for both the N and the BC, substantially
outperforming the comparative SVM and RF classifiers. In the interpolation stage for AR prediction the
model achieves an extremely low RMSE indicating a marked improvement in precision. Overall, these findings
demonstrate the model’s superior accuracy across both classification and interpolation tasks. This design of
uniform split-test inherently precludes standard cross-validation methods*?; consequently, to further assess
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Fig. 13. Visualization of X in 10 selections of the 3 natural frequencies from 5 of them.

model performance under varying data conditions, we tested non-standard split sizes with smaller training
percentages and larger test splits to previous analysis in Fig. 18. __

The dual-axis plot illustrates in Fig. 18a, demonstrates interplay between classification errors for N and BC,
and RMSE of AR as training data size increases. N achieves 0% error just below 10% training data size, while
BC errors vanish entirely before 25% training data size. Simultaneously, the right y-axis tracks the RMSE for
AR, which decreases from 0.1 to 10~%, demonstrating the interpolation stage’s refinement with additional
training. The green dashed line which is RMSE of AR when N and BC are correctly classified, consistently
lies below the solid line which is RMSE including misclassified cases, underscoring that residual AR errors are
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Fig. 14. Flowchart of streamlines clustering of X
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Fig. 15. Clustering results projected in C;.

Cluster

primarily due to misclassification of N — BC, not interpolation flaws. By 25% training data, both RMSE lines

converge, as N and BC errors have already reached zero.

Figure 18b evaluates the impact of input parameters on prediction results in Fig. 18a for all training set
size tests. The two top sub-figures show that most classification errors arise from inputs with N = 5,6 and
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1 100 |7 0 1 0 1.2585 | 0.2432
2 100 |8 0 2 0 1.2585 | 0.2432
3 100 |7 0 2 0 1.2585 | 0.2432
4 100 |8 0 3 0 1.2585 | 0.2408
5 100 |8 0 1 0 1.2585 | 0.2336
6 101 |3 0 2.9801 | 0.0396 1.2589 | 0.2336
7 98 7 0 3 0 1.2755 | 0.2289
8 98 6 0 1 0 1.2755 | 0.2242
9 97 |6 0 2 0 1.2840 | 0.2105
10 9% |4 0 1 0 1.2925 | 0.2060
11 93 6 0 3 0 1.3180 | 0.2016
12 92 5 0 2 0 1.3265 | 0.1972
13 91 5 0 1 0 1.3350 | 0.2432
14 90 5 0 3 0 1.3435 | 0.2242
15 100 | 4 0 3 0 1.2585 | 0.1929
16 9% |4 0 2 0 1.2925 | 0.2432
17 89 5 0 4 0 1.3520 | 0.2459
18 100 |3 0 2 0 1.2585 | 0.2432
19 101 | 3.0396 | 0.1584 3.9801 | 0.0396 1.2513 | 0.2196
20 100 |8 0 4 0 1.2585 | 0.2150
21 95 4 0 4 0 1.3010 | 0.2432
22 94 |6 0 4 0 1.3095 | 0.2432
23 100 |3 0 1 0 1.2585 | 0.2432
24 100 |7 0 4 0 1.2585 | 0.2432

Table 6. Properties and examination of clusters in Fig. 15 along their true labels.
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Fig. 16. AR- natural frequencies correlation and linear-prediction accuracy across 24 combinations of
N - BC.

BC = 1,2, suggesting ambiguity in these configurations” frequency signatures. Third sub-figure down these
two, represent the RMSE of AR (y-axis) In all tests that is done in Fig. 18a across by input AR range (z-axis).
For example, each small bar shown in this figure that has unique values for AR in x-axis, represents RMSE of AR
for all testes in Fig. 18a that have similar AR input as inputs. We can see that RMSE peaksat AR = 0.5...0.75
and AR = 1.0...1.25, highlight structural geometries where interpolation struggles. In the next sections, we
conduct a robust test on these critical and sensitive structural parameter combinations by introducing simulated
damage and structure that is made by different materials, evaluating the model’s performance under real-world-
like scenarios.

Model robustness assessment under structural damage

The model’s ability to maintain accuracy under such perturbations is critical for practical deployment. Unlike
previous tests, which focused on data scarcity, here we simulate physical degradation in sensitivity-prone
configurations which is applying damage to them. This evaluates how natural frequency distortions impact
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SVM | RF presented

7722 9944 | 100

Classification accuracy (%)
56.67 |86.39 | 100

=G

Interpolation RMSE 0.3235 | 0.0713 | 8.5162 x 10~ 4

Table 7. Model evaluation results with uniform training-test split (70-30 split).
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Fig. 18. Model performance under non-standard training-test splits.

predictions. To quantify these distortions, we introduce the Frequency Shift Index named FSI, a metric defined
as the normalized root mean square of percentage changes in natural frequencies, calculated as:

5 . 2
1 wgurrent _ wbaselme
FSI= | = E i i x 100 (22)
5 wbasehne
. 2
=1
where wP?*2 and "™t gre " natural frequencies of non-damaged and damaged structures with similar

variable labels (IV, BC, AR).

Table 8 present prediction results across two sensitive parameter combinations under increasing damage
severity, quantified by FSI. The damage applied on beami,2 of each structure, other damage parameters
considered as follow: £ = 0.5,20 = 0.1,© = 10.

The results in this table reveal two critical trends. First, no classification errors are observed for N and BC'
across all tested damage severities. Second, we can see that difference between AR and actual values of AR
correlate to increasing damage severity and FSI values, but the AR remain remarkably close to the actual values
across all cases.

Move over, Table 9 evaluates the combined impact of beam;,; selection and damage location within the
chosen beam on the model’s prediction accuracy. For this analysis, we selected two new identified critical
configurations. The damage severity in this table is chosen to be & = 0.75 where it has more impact on model
results based on last table. other damage parameters are as follows: 20 = 0.1, = 10.
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N =6,BC =1,AR = 0.65 N =6,BC =2,AR =1.15
S | FSI N |BC AR FSI |N |BC | AR
0.25 | 0.0948 6 1 0.6492 0.0286 | 6 2 1.1490
0.50 | 0.2952 6 1 0.6476 0.0805 | 6 2 1.1473
0.75 | 0.8640 6 1 0.6432 0.2106 | 6 2 1.1426

Table 8. Damage severity impact on prediction results on eight different sensitive structure.

N =5,BC =1,AR = 1.15 N =5,BC =2,AR = 0.65
£ |FsI N |BC AR I  |N |BC |AR
0.25 | 1.0267 5 1 1.1250 0.0000 |5 2 0.6500
beamq 1
' 0.50 | 1.6040 5 1 1.1091 0.0000 |5 2 0.6500
0.25 | 1.0706 5 1 1.1249 1.1399 |5 2 0.6475
beamy 2 |0.50 |1.9737 5 1 1.0987 0.2228 |5 2 0.6489
0.75 | 1.0919 5 1 1.1295 1.0121 |5 2 0.6442
0.25 |0.8658 5 1 1.1332 1.0041 |5 2 0.6454
beama 1
0.50 |1.1293 5 1 1.1208 4.1684 |5 2 0.6270
0.25 | 1.1122 5 1 1.1245 1.0673 |5 2 0.6447
beamz2 |0.50 |1.3593 5 1 1.1194 0.7018 |5 2 0.6466
0.75 | 1.1604 5 1 1.1309 1.2271 |5 2 0.6436
0.25 |0.8814 5 1 1.1390 1.0176 |5 2 0.6464
beams 1
0.50 |0.9271 5 1 1.1337 4.2385 |5 2 0.6326

Table 9. Impact of beam;; and £ selection for damage on prediction results in critical non-symmetric cases.

It is noteworthy that due to the symmetry of the frame structure, applying damage to symmetrically equivalent
beams yield identical natural frequency responses. To eliminate redundancy, only non-symmetric beam-location
pairs are evaluated, as symmetric counterparts provide no additional frequency-distinctive information.

This table reveals that all N and BC' are correct predictions. Therefore, damage at the center of beams
produces the highest FSI values and results in AR be less accurate. Similarly, damage to horizontal beams that
are near corners of the frame, elevates FSI and AR errors, suggesting geometric asymmetry near boundaries
exacerbates frequency distortions. This confirms damage location critically impacts prediction reliability,
particularly in edge cases.

Table 10 evaluates the influence of two additional damage parameters, damage width and dispersal on
prediction accuracy. Two new structural configurations are examined in this table under identical damage
conditions applied on beam 2 with following damage parameters: £ = 0.5, & = 0.75. L

Again, no errors occur in N or BC' predictions in all considered cases with very close AR value Relative
to the actual value of AR. However, we can see that damage weight strongly correlates with FSI values and AR
errors, similarly, damage dispersal amplifies errors but with lower impact.

Finally, we evaluate the robustness of our model under worst-case scenarios involving multiple simultaneous
damages in Table 11 for the last two combinations of critical structure parameters. These scenarios, focus on cases
where damages have the most significant impact on natural frequencies and model prediction errors, which are
applying highly destituted damage with larger damage width and severity on center of the beams that is close to
boundary conditions region. These damages are applied to four beams: beamy 2, beams 1, beams 2, beams, 1,
with other damage properties that are as follows: £ = 0.5, 6 = 0.75,20 = 0.2, = 1.

__ This table demonstrates that even under high FSI values caused by severe damages, model all predictions for
N and BC remains accurate and the interpolation results for AR also stays Acceptably accurate considering the
significant changes in natural frequencies.

Model robustness assessment under different materials

In this section, the model’s robustness is further assessed by applying it to structures made of two additional
materials- stainless steel and aluminum- while maintaining identical frame geometries and boundary
configurations. The corresponding results are presented in Table 12. The material properties used in this
comparison are summarized in as follow: Stainless steel : E = 193Gpa, p = 8000kg/m?> v = 0.3.
Aluminum : E = 69Gpa, p = 2700kg/m?, v = 0.33.

For reference, the baseline frame corresponds to the steel properties used in constructing the dataset
from which the model was originally trained. The natural frequencies corresponding to each frame-material
combination were computed and used as model inputs to evaluate the predicted results. The FSI for each case
was also recalculated using the w?**°i* with original steel properties as a reference to maintain consistency in
comparison.
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N =5,BC =1,AR = 0.65 N =6,BC =1,AR = 1.15
D | FSI N |Bc |arR I |~ |BC | AR
100 |0.3386 5 1 0.6478 03923 |6 |1 0.1391
97 — 0.05 | 10.0 | 0.3455 5 1 0.6478 0.4016 |6 |1 1.1390
1.00 | 0.5295 5 1 0.6467 06728 |6 |1 1.1303
100 | 0.8048 5 1 0.6451 1.1229 | 6 1 1.1193
917 — 0.10 | 10.0 | 09158 5 1 0.6445 13209 [6 |1 1.1105
1.00 | 1.3859 5 1 0.6425 21395 |6 |1 1.0910
100 | 1.4395 5 1 0.6414 2.3359 |6 1 1.0871
0 = 0.2 [100 | 1.6744 5 1 0.6403 27037 |6 |1 1.0743
1.00 | 2.4458 5 1 0.6358 34542 |6 |1 1.0554

Table 10. Damage width and dispersal impact on prediction accuracy in two sensitivity-prone configurations.

FSI N BC | AR
N =5,BC=2,AR=1.15 119283 |5 |2 0.9015
N =6,BC =2,AR=0.65| 9.1343 |6 |2 0.5661

Table 11. Multi-beam damage analysis on model predictions in four structural configurations.

FSI

Stainless steel 2.6706
Aluminum 0.1593

1.6182 2.6797

B AR FSI N |BC |AR
3 6 4
3 6 4

1.8653 0.1538

FSI
Stainless steel 2.6827

0.8019 2.6838
0.8847 0.1534

0.7225
0.7834

N
5
5
N=7,BC=2,AR=10.88 | N =8,BC =3, AR = 0.78
N
7
7

BC |AR FSI N |B AR
2 8 3
2 8 3

Aluminum 0.1535

Table 12. Prediction results of four frame configurations in two different materials.

The results show that all cases were correctly classified with no misclassifications, and AR predictions match
the true values closely. Stainless steel shows slightly larger AR prediction errors which is consistent with its
higher FSI values and greater frequency shifts, whereas aluminum yields smaller deviations. In all cases, the
predicted AR remain acceptably close to actual values.

Conclusion

The identification of structural parameters in grid-form frames can be fundamentally re-envisioned by treating
natural frequency data as a structured landscape of modal signatures. This work introduces a direct, three-
phase computational methodology to navigate this landscape. In the first phase, a comprehensive modal map is
generated via finite element analysis to capture the first five natural frequencies across diverse configurations.
In the second phase, the intrinsic low-dimensional streamline topologies within this map are discovered and
characterized, where each trajectory encodes a unique combination of the number of vertical beams (/V) and
boundary conditions (BC'). Finally, a classification-interpolation model is deployed to instantly map a new set
of frequencies to its corresponding streamline, identifying N and BC, followed by precise interpolation along
the trajectory to determine the aspect ratio (AR).

This pattern-based methodology presents a fundamental shift from conventional approaches by eliminating
dependency on iterative inverse analysis and high-fidelity physical modeling, which are often susceptible to
convergence issues and modeling inaccuracies. Instead, the framework learns the direct relationship between
vibrational signatures and structural identity through a precomputed data-driven map. This bypasses the
need for complex, error-prone characterization, offering a robust and computationally efficient pathway
for parameter identification. By transforming a traditionally challenging inverse problem into a streamlined
pattern-recognition task, this work provides a universally applicable foundation for rapid and scalable structural
assessment, significantly advancing the practical implementation of non-destructive evaluation in structural
health monitoring.

The practical application of this methodology is bounded by the scope of its training dataset, wherein a
tolerable error can be defined based on the predefined parameter ranges it was designed to identify. Several
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avenues remain open for further investigation to enhance its robustness and scope. Future studies could
integrate common sources of frequency shifts not considered here, such as material damping and environmental
effects, into the pattern recognition model. Furthermore, the influence of different damage types and their
interaction with geometric parameters presents a critical research direction. Ultimately, these findings establish
a foundational stage for launching a new class of structural health monitoring techniques that leverage intrinsic
modal patterns for efficient and direct structural assessment.

Data availability

The datasets generated and analyzed during the current study are not publicly available because further analy-
ses are underway and we wish to avoid premature release, but are available from the corresponding author on
reasonable request.
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