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Impact of dystrophin deficiency on
vascular smooth muscle cell

Wanling Xuan™, Feng Cheng, Xiaowei Han, Srinivas M. Tipparaju & Muhammad Ashraf

Duchenne Muscular Dystrophy (DMD) is a severe genetic disorder affecting skeletal and cardiac
muscles, primarily in males. While much research has focused on these systems, the role of vascular
smooth muscle cells (VSMCs) remains underexplored. This study examines how dystrophin deficiency
alters VSMCs plasticity using mdx mice and DMD patient-derived iPSC VSMCs. Immunohistochemistry,
Western blot, electron microscopy, and transcriptomic analyses revealed significant abnormalities.

In mdx mice, abnormal vascular structure and vascular degeneration were observed. DMD VSMCs
showed impaired maturation, reduced contractile protein expression, and disrupted mitochondrial
dynamics, including excessive fission and reduced mitochondrial area. These cells also exhibited
increased apoptosis under oxidative stress. Transcriptomic profiling identified dysregulated genes
related to VSMC proliferation, differentiation, and vascular development, with transcription factors
such as GADD45A, SOX9, TIA1, RBBP9, and FOXM1 implicated. Under stress, apoptotic pathways
were notably upregulated. These findings suggest that dystrophin deficiency drives VSMC phenotype
switching and mitochondrial dysfunction, contributing to vascular pathology in DMD. These findings
highlight the importance of targeting vascular abnormalities in therapeutic strategies to slow disease
progression.

Keywords Dystrophin, Duchenne muscular dystrophy, Vascular smooth muscle cells, Oxidative stress,
Induced pluripotent stem cells

Dystrophin is critical for maintaining the integrity of muscle cell membranes™?. A previous clinical study
demonstrated that blood loss in patients with Duchenne Muscular Dystrophy (DMD) was much higher than
that in patients with spinal muscular atrophy undergoing similar surgical procedures, supporting the possibility
that lack of dystrophin in vascular smooth muscle cells (VSMCs) is responsible for poor vasocontractile response
leading to outcomes?. Furthermore, reduction of intramuscular blood flow has been observed in DMD patients,
suggesting an existence of functional muscle ischemia®. Potential vascular dysfunction has been reported in
DMD disease®”. This vascular defect was considerably reduced in DMD mouse by improving angiogenesis with
overexpression of growth factors® which is consistent with the reduction of intramuscular blood flow reported
in DMD patients*. Recently a study demonstrated that in dystrophin deficient dogs both vasoconstriction and
vasorelaxation were comprised’. Vascular dysfunction blunts the blood supply, which impairs muscle tissue
perfusion and causes muscle necrosis and degeneration, which in turn can also limit gene therapy delivery. Thus,
vascular defects may be an underlying pathogenic mechanism in DMD disease.

The most common DMD mouse model is mdx mice, which carry a nonsense mutation in exon 23 of the
dystrophin gene!®!!. The association between muscle structure and function with age throughout the life span of
the mdx mice has only recently been appreciated!?. However, despite the absence of dystrophin in muscles, adult
mdx mice do not exhibit the pathogenic progression characteristic of human DMD, severe muscle weakness, loss
of muscle weight, accumulation of fat and fibrosis is not significant until almost two years of age!!. Furthermore,
an age-dependent effect on angiogenesis in mdx mice has been reported'®. Significant vessel density is decreased
in skeletal muscle from 12-month-old mdx mice compared with 3-month-old mdx mice and aged match wild
type mice®. A previous study reported that isometric force was decreased in VSMCs from mdx mice after nitric
oxide stimulation'®. However, the authors did not reveal the specific age of the mdx mice they used in the
study. Upon mechanical injury, increased neointima formation and smooth muscle proliferation were observed
in 4-5 months old mdx mice. However, they did not report spontaneous neointima thickness in these mdx
mice. As previously reported that significant vessel defects were observed in 12-month-old mdx mice, here we
investigated whether any spontaneous phenotypic changes take place in VSMCs from 12 to 14 months old mdx
mice. Decreased dystrophin expression was reported in synthetic smooth muscle cells compared with contractile
smooth muscle cells in vitro'. Similarly, stabilization of actin filaments promoted the expression of dystrophin'*
in mouse aorta smooth muscle cells. However, whether dystrophin deficiency drives phenotypic switching in
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VSMCs and the underlying mechanisms remain unclear. Human induced pluripotent stem cell (iPSC)-based
models offer a promising platform to study rare diseases such as DMD, providing a renewable source of clinically
relevant human cells.

Therefore, the objective of this study was to investigate the phenotypic changes and underlying mechanisms
in VSMCs associated with dystrophin deficiency, using both aged mdx mice and DMD patient-derived iPSC
VSMCs.

Results

DMD expression in VSMCs

As shown in Fig. 1A, tissue expression analysis using data from the GTEx portal revealed abundant dystrophin
expression in arteries. Further analysis of single-cell RNA-seq data from normal adult mouse thoracic aorta
and human aorta demonstrated that dystrophin is highly expressed in VSMCs compared to other cell types
within the aorta (Fig. 1B,C). Collectively, these findings indicate that dystrophin is most abundantly expressed
in VSMCs across the vascular system.

Phenotypic changes in VSMCs from Mdx mice

Gross morphology (Fig. 2A) revealed no significant dilation or overt structural abnormalities in mdx mice
compared to wild type (WT) controls. Histological analysis using Trichrome Masson staining (Fig. 2B)
showed disrupted vascular architecture in mdx mice, with regions of abnormally thin and thickened aortic
media. In contrast, WT aortas displayed uniform medial thickness. To support the structural observations, we
quantified the maximum media thickness of the aortic wall and fibrosis (P<0.01, n=5) (Fig. 2C,D), which were
significantly increased in mdx mice (P<0.01, n=6) (Fig. 2C). Ultrastructural analysis by transmission electron
microscopy (TEM) (Fig. 2E) revealed degenerative changes in VSMCs from mdx mice, including intranuclear
and cytoplasmic vacuoles, which were absent in WT mice.

Characterization of vascular smooth muscle cells (VSMCs) from normal WT iPSC and DMD
iPSC

Human iPSC-based disease models are promising due to unlimited supply of clinically relevant phenotypic cells
of human origin, especially for rare diseases such as DMD. Accordingly, we generated VSMCs from human
normal iPSC and DMD-iPSC lines (SC604A/ GM25313) by treatment with a small molecule, SB43152 followed
by transforming growth factor-p (TGF-B) (Fig. 3A). With SB43152 treatment, iPSC were differentiated into
mesenchymal stem cell (MSC) like cells expressing MSC markers (NG2 and CD105) with negligible expression
of a-SMA and negative calponin expression (Fig. 3B). We further differentiated these cells into VSMCs using
TGF-B1 as previously described'®. The differentiated VSMCs expressed VSMCs markers including a-SMA and
calponin (Fig. 3C). However, compared with normal VSMCs, DMD iPSC derived VSMCs displayed non-mature
phenotype with low expression of contractile proteins [Calponin, smooth muscle protein 22-alpha (SM-22a),
a-smooth muscle actin (a-SMA)] either by immunofluorescence (Fig. 3C,D) or Western blot (Fig. 3E,F) from
two distinct normal iPSC lines and DMD iPSC lines. Mitochondrial dynamics, specifically the balance between
fission and fusion, are essential for maintaining mitochondrial homeostasis and cellular function'”. Interestingly,
enhanced mitochondrial fission was observed in VSMCs derived from two distinct DMD iPSC with smaller
area and average branch length of mitochondria (Fig. 4A-C) and in VSMCs from 12 months old mdx mice (Fig.
4D,E). Furthermore, oxidative stress was elevated in DMD VSMCs, as indicated by the increased fluorescence
intensity of dihydrorhodamine 123 (DHR123) (Fig. 4F). These results suggested that dystrophin deficiency
caused loss of mitochondrial homeostasis and oxidative stress in VSMCs.

Transcriptome analysis of VSMCs from normal WT iPSC and DMD iPSC

Go enrichment analysis showed negative regulation of smooth muscle cell differentiation and positive regulation
of osteoblast differentiation in DMD VSMCs (Fig. 5A). Vascular development was also significantly decreased
in dystrophin deficient VSMCs (Fig. 5B). Using DAVID tools, we performed KEGG enrichment analysis'®
for VSMCs transcriptomic profiling of normal and DMD iPSC derived VSMCs. Differentially expressed
genes (DEGs) were mainly enriched in upregulation of TGF-f, P53, Rapl and Hippo signaling pathways
and downregulation of ferroptosis in DMD iPSC derived VSMCs (Fig. 5C). Heatmaps revealed enriched
upregulation of genes associated with the TGF-B and P53 signaling pathways in DMD VSMCs (Fig. 5D,E ).
Gene set enrichment analysis (GSEA) revelated enrichment of genes related to mitochondrial depolarization,
and response to irons (Fig. 5F). Transcriptional factor, target, and motif discovery analysis of the dysregulated
gene set showed enrichment of transcriptional factors (TFs) including GADD45A, SOX9, TIA1, RBBP9 and
FOXMI (Fig. 5G).

Transcriptome analysis of VSMCs from normal iPSC and DMD iPSC following oxidative stress
We further analyzed the response of WT-VSMCs and DMD-VSMCs to oxidative stress. After hydrogen peroxide
(H,0,) treatment, Gene Ontology (GO) enrichment of biological process (BP) showed increased cell death
and apoptosis, muscle contraction, reorganization of actin filament and cytoskeleton; GO enrichment of
cellular components (CC) showed increased actin filament, sarcomeres, contractile fibers, vacuoles, vesicles,
and lysosomes, endoplasmic reticulum; GO enrichment of molecular function (MF) showed increased binding
activity to integrin, calcium, cytoskeletal protein, chemoattractant and amyloid-beta in DMD VSMCs with
oxidative stress (Fig. 6A). While their response to hypoxia, oxidative stress, heparin, and fluid shear stress was
decreased; cell migration and motility were also impaired. In addition, membrane components, mitochondrion
and mitochondrial protein-containing complex were downregulated. Molecular function including signaling
receptor, extracellular matrix binding and transmembrane receptor protein kinase activity were impaired in
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Fig. 1. DMD gene expression across tissues and vascular cell types. (A) DMD gene expression levels in
various human tissues, with notably high expression in arterial tissue. Data obtained from the GTEx Portal
database. (B) Single-cell RNA sequencing (scRNA-seq) data from human aorta showing high DMD expression
specifically in vascular smooth muscle cells (VSMCs), compared to other cell types including endothelial cells
(EC), fibroblasts (Frb/Frbio), monocytes (Mono), and macrophages (Macro). (C) scRNA-seq data from mouse
aorta confirming elevated DMD expression in VSMCs relative to other vascular cell types. Expression levels are
shown as TPM (Transcripts Per Million), indicating relative transcript abundance across cell populations.
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Fig. 2. Phenotypic changes in VSMCs from mdx mice. Phenotypic changes in vascular smooth muscle cells
(VSMCs) from mdx mice. (A) Gross morphology of heart and aorta from 12-14-month-old wild-type (WT)
and mdx mice. No significant dilation was observed in mdx mice compared to WT controls. (B) Trichrome
Masson staining of aorta sections showing loss of vascular structure and fibrosis in mdx mice. (C) Enhanced
local aortic media thickness and (D) fibrosis in 12-14-month-old mdx mice. Quantification of maximum
media thickness and percentage of fibrosis is shown. P<0.01, n=5. (E) Transmission electron microscopy
(TEM) images showing degenerative changes in VSMCs from mdx mice, including intranuclear and
cytoplasmic vacuoles (arrows), which were absent in WT mice. n=5.

DMD VSMCs with oxidative stress (Fig. 6A). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis'® showed upregulated genes related to Rapl signaling pathways, AGE-RAGE signaling pathway
in diabetic complications, fluid shear stress and atherosclerosis in DMD-VSMCs (Fig. 6B). The significantly
enriched top 6 KEGG pathways in downregulated genes in DMD VSMCs included ECM-receptor interaction,
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Fig. 3. Generation of VSMCs from normal and DMD iPS cells. (A) Schematic outline of vascular smooth
muscle cells (VSMCs) differentiation from iPSC; (B) Differentiated MSC-like cells expressed MSC markers:
CD105 and NG2, with low expression of a-SMA, calponin expression is undetectable. (C, D) VSMCs markers
expression by immunostaining in VSMCs derived from two normal and DMD iPSC lines. (E, F) Representative
Western blot images and semi-quantitative estimate of VSMCs markers expression. iPSC: induced pluripotent
stem cells; MSC: mesenchymal stem cells. Bar =100 um. *P<0.05,*P<0.01, n=3 correspond to independent
differentiation batches.
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Fig. 4. Abnormal mitochondrial fission in dystrophin deficiency VSMCs. (A) Enhanced mitochondrial fission
in VSMCs derived from DMD iPSC compared to wild type (WT) VSMCs. Mitochondria were identified by
Mito-tracker. Quantification of mitochondrial area (B) and average branch length (C) in VSMCs from two
WT and DMD iPSC (109.4 +36.02 pm?/cell for WT, 52.37 +25.67 um?/cell for DMD, P<0.001),, and shorter
average branch length (1.07+0.36 pm/cell for W', 0.68 +0.24 um/cell for DMD, P<0.001). 50 cells from each
group were analyzed. (D, E)TEM images showing mitochondrial fission in aortic VSMCs from 12 months
old mdx mice (1.68 +0.53 um?/mitochondria for W', 0.85 + 0.33um?/mitochondria for DMD). Mitochondria
was small and fragmented (arrows). 200 mitochondria from 3 mice of each group were measured. (F)
Representative images of DHR123 staining in VSMCs derived from DMD iPSC and WT VSMCs and
quantification of their intensity. ****P<0.001, **P <0.0, n=3. iPSC: Induced pluripotent stem cells; VSMCs:
vascular smooth muscle cells.
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arrhythmogenic right ventricular cardiomyopathy, phospholipase D signaling pathway and TGF-f signaling
pathway (Fig. 6B). GSEA showed negative regulation of vascular development and calcium signaling; increased
aggresomes and metabolic changes in DMD VSMCs subjected to oxidative stress (Fig. 6C,D). Muscle contraction,
glycosaminoglycan biosynthesis, surfactant homeostasis was decreased in DMD VSMCs subjected to oxidative
stress based on GSEA (Fig. 6E). DMD VSMCs exhibited increased vulnerability to hydrogen peroxide (H,O,)
treatment, as evidenced by elevated oxidative stress levels indicated by enhanced DHR123 fluorescence intensity
(Fig. 6F). In addition, TUNNEL analysis showed that DMD deficiency VSMCs were vulnerable to oxidative
stress with increased cell apoptosis compared with normal VSMCs (Fig. 6G), which is consistent with the
GO enrichment results. These data show that DMD VSMCs are vulnerable under oxidative stress conditions
compared with WT-VSMCs and the pathways activated under stress conditions exacerbate the disease.

Discussion

In the present study we utilized multiple models to evaluate the vascular smooth muscle from human cells as
well as mdx mice which consistently show the phenotype switching directly linked to dystrophin deficiency.
Here, we found loss of vascular structure and degenerative changes of VSMCs in aorta from 12 to 14 months old
mdx mice. The DMD iPSC derived VSMCs (DMD VSMCs) from two patients showed maturation defects and
increased vulnerability to oxidative stress compared with wild type VSMCs. Transcriptome analysis revealed
dysregulation of smooth muscle proliferation and differentiation, and vascular development related biological
function in DMD VSMCs. Under oxidative stress, apoptotic process was significantly enhanced in DMD VSMCs
while their response to hypoxia and oxidative stress was downregulated. Transcriptional factor, target, and motif
discovery analysis of the dysregulated gene set suggested potential contributions of transcriptional factors
GADD45A, SOX9, TIA1, RBBP9 and FOXM to the phenotypes of DMD VSMCs. These molecular evaluation
provides potential signaling pathways and medicators that are key to exacerbating DMD.

VSMCs phenotype switching plays a critical role in multiple vascular diseases. Various stimuli can modulate
the plasticity of VSMCs, such as reactive oxygen species (ROS), oxidized lipids, inflammatory cytokines, and
mechanical stress'®. Exposure to these stimuli leads to phenotype switching of VSMCs from contraction
phenotype towards synthesis phenotype, apoptosis, necrosis, degeneration, and senescence?. In fact, dystrophin
is expressed in normal smooth muscle cells®. Tissue expression analysis showed an abundant expression of
dystrophin in arteries from GTEx portal database. With single cell analysis in both mouse aorta and human
aorta via single cell portal, we also showed higher expression of dystrophin in VSMCs compared with other
cell types, indicating a potentially important role of dystrophin in VSMCs function. Although the etiological
link between aortic aneurysms and DMD remains unclear, a case report of abdominal aneurysm rupture in a
patient with Becker muscular dystrophy (BMD) suggests that dystrophin deficiency may contribute to vessel
wall abnormalities?!. However, given the differences in dystrophin expression between BMD and DMD, caution
is warranted when extrapolating findings from BMD to DMD.

mdx mouse is the most widely used model to study DMD, but their phenotype is milder than that of the
dystrophic patients'!. The young mdx mice show only weak DMD phenotype in skeletal muscle. A greater
degree of cardiac and vessel dysfunction is observed at least in 10-12 months old mdx mice not in young mdx
mice’®. Our study revealed that dystrophin deficiency in 12-14 months old mdx mice, resulted in spontaneous
structural remodeling of the aorta. Abnormal vascular structure and degenerative changes supporting our view
that VSMCs underwent degenerative phenotypes switching. These findings agree with previous studies that
dystrophin expression was significantly reduced during synthetic phenotype switching upon vessel injury*.

Case reports on abdominal aneurysm rupture in patients with Becker muscular dystrophy suggests the
involvement of major vessels in the pathogenesis of DMD disease. On the other hand, a lack of studies on
VSMCs from DMD patients has been attributed due to nonavailability of human tissue for analysis. Therefore, in
this study we differentiated VSMCs from DMD iPSC to investigate the role of dystrophin deficiency in VSMCs
and its mechanism. We discovered that maturation defects are present in VSMCs differentiated from DMD
iPSC compared to VSMCs differentiated from normal iPSC. It is more likely that dystrophin may be a marker
of VSMC:s differentiation and is critical for the maintenance of contractile phenotype. It has been reported that
overexpression of myocardin and myocardin-related transcription factor A (MRTF-A) promoted expression
of dystrophin'*. However, it is obvious that dystrophin deficiency promoted loss of contractile phenotype of
VSMCs. We performed the transcriptome analysis for VSMCs differentiated from human normal and DMD
iPSC. KEGG enrichment analysis revealed upregulation of genes related to p53 and Hippo signaling pathways
while genes related to ferroptosis, Notch signaling, osteoblast differentiation and inhibition of smooth muscle
cell differentiation were downregulated. It is known that p53 signaling pathway is involved in the regulation of
VSMCs proliferation?2. p53 activation also impaired smooth muscle differentiation via inhibition of Myocd?.
Hippo signaling pathway plays a critical role in the regulation of VSMCs phenotype?*?>. Notch signaling
pathway, mediated by basic helix-loop-helix (P HLH) transcriptional repression, controls VSMCs differentiation
and modulates the transcription of endogenous contractile genes in VSMCs?*?’. VSMCs mainly express
Notchl, Notch2, and Notch3?® receptors. Jagged 1-mediated Notch activation is required for the expression
of smooth muscle contractility markers in VSMCs?*-* In addition, mitochondria are dynamic organelles and
continuously undergo fission and fusion processes. VSMCs mitochondrial metabolism has been reported as one
of the mechanisms involved in the complex regulation of the VSMCs phenotype3**!. GSEA analysis revealed
upregulation of genes associated with mitochondrial depolarization in DMD VSMCs, consistent with our findings
of disrupted mitochondrial homeostasis (excessive mitochondrial fission) in dystrophin-deficient VSMCs.
However, further functional validation, such as JC-1 staining to assess mitochondrial membrane potential, is
needed to confirm these observations. Mitochondrial fission is induced by membrane depolarization®. The
imbalance of mitochondrial fission and fusion may contribute to the DMD VSMCs immature phenotype. Taken
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together, dystrophin deficiency plays an important role in VSMC homeostasis and likely promotes the loss of the
contractile phenotype through dysregulation of mitochondrial and related signaling pathways.

Oxidative stress is a prominent feature of the dystrophic pathology with increased inflammation and
myonecrosis in muscle tissue®®. It has been reported that the lack of dystrophin renders the skeletal muscle
susceptible to free radical induced injury*’. However, it is unclear whether dystrophin loss also affects VSMCs
vulnerability to oxidative stress. Indeed, our data support that DMD VSMCs showed enhanced oxidative stress. In
addition, oxidative stress and oxidative DNA damage have a strong bearing on the DMD phenotype progression®.
In this regard, we used H,O, treatment to recapitulate phenotype changes in DMD VSMCs in comparison with
wild type VSMCs. DMD VSMCs were highly vulnerable to H,O, treatment with higher oxidative stress level
and incidence of apoptosis. KEGG pathway enrichment analysis showed fluid shear stress and atherosclerosis
increased in DMD VSMCs. Furthermore, the biological component of the Go analysis showed the majority of
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«Fig. 5. Transcriptome analysis of VSMCs derived from normal and DMD iPSC lines. GO categories of
biological process (BP), molecular function (MF) and cellular components (CC) showing significant
enrichment in the dataset of genes upregulated (A) and downregulated (B) in DMD-VSMCs compared
to normal WT-VSMCs. Low -log10 (FDR) values are in green and high — logl0 (FDR) values are in red,
the size of the circle is proportional to the number of enriched genes. (C) KEGG pathway analysis of fold
enrichment from up and down regulated mRNAs with top 14 in DMD-VSMCs compared to WT-VSMCs. (D)
Heatmap of enriched upregulation of genes associated with the TGF- signaling pathway in DMD VSMCs.
(E) Heatmap of enriched upregulation of genes associated with the p53 signaling pathway in DMD VSMCs.
(F) GSEA biological process (BP) enrichment analysis showing significant enrichment in the dataset of genes
downregulated in DMD-VSMCs (P<0.01, FDR<0.25). (G) Transcriptional factor, target, and motif discovery
analysis showing enrichment of transcriptional factors GADD45A, TIA1, RBBP9, FOXM1 and SOX9 with
iRegulon on the upregulated gene set (fold-change >2, P<0.05) in DMD-VSMCs compared to WT-VSMCs.
GSEA: gene set enrichment analysis, iPSC: induced pluripotent stem cells; VSMCs: vascular smooth muscle
cells; WT: wild type. n=3 correspond to independent differentiation batches.

enriched categories were relevant to cell death and apoptotic process, which is consistent with increased number
of apoptotic cells in DMD VSMCs exposed to oxidative stress. Go analysis also confirmed the upregulation
of lytic vacuole/ vacuole and vesicle pathway in DMD-VSMCs. Per se, adult mdx mice do not exhibit the
severe phenotype, but abnormalities are observed in hearts and vascular system at 10-12 months. Our results
support that oxidative stress in DMD VSMCs replicated phenotype similar to 12-14 months old mdx mice
where vacuole formation propensity was increased in VSMCs suggesting that DMD iPSC derived VSMCs could
be used to model disease progression in vitro by applying oxidative stress. More importantly, GO enrichment
analysis also supported our idea that the response of VSMCs to oxidative stress was robust. Interestingly, cellular
components including actin filament, sarcomere and contractile fibers underwent increased reorganization in
DMD VSMCs. MAPK signaling and regulation of contraction of smooth muscle cells were also upregulated by
stress. However, GSEA and KEGG analysis showed that genes related to negative regulation of calcium were
decreased in DMD VSMC:s affected by oxidative stress which is known to induce actin reorganization and stress
fiber formation in the vascular EC and myoblasts®**. It is very likely that these filament/ fibers were stress fibers
which needs further study. On a molecular scale, our GSEA analysis showed transcriptional changes in fatty acid
metabolism and cholesterol homeostasis with increased genes expression related to fatty acid beta oxidation,
sulfur lyase, lipoprotein particle receptor activity, nicotinate and nicotinamide metabolism in DMD VSMCs
during disease progression. However, these bioinformatic analysis derived results need further validation. In
addition to oxidative stress, nitrosative stress is a significant contributor to DMD. Studies have demonstrated
that dystrophin deficiency leads to aberrant nitric oxide synthase (NOS) signaling and increased S-nitrosylation
of key cardiac and muscular proteins, suggesting a role for nitrosative stress in DMD progression*!*2. However,
whether dystrophin deficiency directly exacerbates nitrosative stress in VSMCs derived from DMD patients
remains to be elucidated.

In summary, we have established DMD iPSC derived VSMCs and mdx mouse model that the dystrophin
deficiency led to VSMCs phenotype changes and disrupted mitochondrial metabolism. It is suggested that the
transcriptome analysis may allow the discovery of potential signaling pathways involved in the dysregulation of
transcription factors.

Methods

Human iPSC culture

The Human iPSC cell line DYS0100 (WT_1) from ATCC Company, JIPSC1000_KOLF2.1]_human iPS cell line
(WT_2) from Jackson laboratory, human DMD iPS cell line SC604A (DMD_1) with a deletion of exons 3-7 in
the dystrophin gene from SBI Company and human DMD iPS cell line GM25313 (DMD_2) with a deletion of
exon 45 in the dystrophin gene from Coriell Institute for Medical Research were used. iPSC were cultured on
vitronectin coated six-well plate in mTeSR1 medium (Stem Cell Technologies) with a daily change. iPSC were
passaged using ReLeSR™ passaging reagent (Stem Cell Technologies).

Generation of vascular smooth muscle cells from iPS cells and their characterization

Human iPSC at passages 20-30 were used for VSMCs differentiation. The differentiation protocol outline is
shown in Fig. 3A. Briefly, human iPSC were cultured on vitronectin using mTeSR1 medium. Upon confluency,
the medium was switched to a-MEM basal medium supplemented with 20% Knock out serum (KSR), ImM
L-Glutamine, 10mM Nonessential Amino Acid and 10uM SBB-431,542 for 10 days. Next, the cells were
trypsinized and seeded at a density of 4x 10* cells/cm? onto uncoated culture dishes in expansion medium
(a-MEM basal medium +10% FBS). After the third passage, a morphologically homogeneous population of
mesenchymal stem cells (MSC)-like cells became evident and were tested for mesenchymal makers. Then the
MSC-like cells were further differentiated into VSMCs using 5ng/ml TGF treatment for 6 days. The differentiated
VSMCs were characterized with a-SMA, calponin and SM-22a staining. For immunofluorescence staining, cells
were fixed with 4% PFA for 10 min and blocked with 10% FBS for 1 h at room temperature. Cells were incubated
with primary antibodies including anti-CD105 (sc-18838, Santa Cruz), NG2 (MAB5384A4, Millipore Sigma),
a-SMA (ab5694, Abcam) and calponin (C2687, Sigma) respectively at 4°C overnight and secondary antibody
conjugated to Alexa Fluor 594 or Alexa Fluor 488 (Life Technologies) at room temperature for 1 h. DAPI was
used as nuclear counterstain.
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Go function analysis of upregulated genes in DMD-VSMCs vs.WT-VSMCs with oxidative stress

Go function analysis of downregulated genes in DMD-VSMCs vs.WT-VSMCs with oxidative stress
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Reactive oxygen species measurement and oxidative stress induction

Reactive oxygen species (ROS) levels were assessed using dihydrorhodamine 123 (DHR123), a non-fluorescent,
uncharged derivative of rhodamine 123. DHR123 passively diffuses into cells and is oxidized by ROS to form
rhodamine 123 (R123), a cationic green fluorescent dye. R123 preferentially accumulates in mitochondria due
to its positive charge. The increase in fluorescence intensity reflects elevated intracellular ROS levels, providing
a relative measure of oxidative stress. VSMCs differentiated from either normal or DMD iPSCs were exposed to
100 uM H,O, for 24 h to induce oxidative stress.

Animal and histology
Mouse aortic tissue from 12 to 14 months old wild type mice (Stock No: 000665 The Jackson Laboratory) and
mdx mice (Stock No: 018018, The Jackson Laboratory) was harvested and processed for Masson’s trichrome
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«Fig. 6. Transcriptome analysis of WT VSMCs and DMD VSMCs with oxidative stress. (A) GO categories
of biological process (BP), molecular function (MF) and cellular components (CC) showing significant
enrichment in the dataset of genes upregulated and downregulated in DMD-VSMCs compared to normal
WT-VSMCs with oxidative stress. Low logl0 (FDR) values are in blue and high — log10 (FDR) values are in
purple, the size of the circle is proportional to the number of enriched genes. (B) KEGG pathway analysis of
fold enrichment from up and down regulated mRNAs with top 14 in DMD-VSMCs compared to WT-VSMCs
under oxidative stress. GSEA KEGG pathway enrichment analysis (C) and GO function biological process
(BP), cellular components (CC), molecular function (MF) enrichment analysis (D) showing significant
enrichment in the dataset of genes upregulated in DMD VSMCs with oxidative stress, and (E) BP and KEGG
pathway enrichment in the dataset of genes downregulated in DMD VSMCs with oxidative stress. P<0.01,
FDR<0.25. (F) Representative images of DHR123 staining in VSMCs derived from DMD iPSC and WT
VSMCs subjected to 24 h H,0, treatment (100 uM) and quantification of their intensity. (G) VSMCs from
DMD iPSC were vulnerable to oxidative stress. TUNEL positive cells in VSMCs from normal and DMD iPS
cells after 24 h H,0, (100 uM) treatment. Semi-quantitative estimate of TUNEL positive cells in VSMCs with
H,O, treatment. n=3 correspond to independent differentiation batches. GSEA: gene set enrichment analysis,

22
iPSC: induced pluripotent stem cells; VSMCs: vascular smooth muscle cells; WT: wild type.

staining as reported previously*®. Maximum media wall thickness was measured as the maximum intima-media
distance. Fibrosis have been shown to be normally distributed in the rodent aorta. Animal experiments were
carried out according to the experimental protocol approved by the Augusta University Animal Care and Use
Committee (approval number 2018 — 0940) in accordance with the National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals. The animal is euthanized using an overdose (5%) of inhaled isoflurane,
followed by pneumothorax prior to tissue collection. Animal research is reported according to the ARRIVE
guidelines.

Transmission electron microscopy

Mouse aorta was processed for electron microscopy to assess ultrastructural changes in the VSMCs from mdx
mice. Samples were processed and imaging was carried out by the Augusta University histology and TEM core.
Briefly, aortic tissues were cut into Imm?® pieces and fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate
buffer (pH 7.4). Next, tissues were post-fixed in 1% osmium tetroxide in 1% K4Fe (CN)6 buffer with 0.1 M
sodium cacodylate, dehydrated through a graded series of ethanol and propylene oxide, and embedded in Epon
812. Ultrathin cryo-sections were prepared using Leica UC7 Ultramicrotomes, mounted on copper grids and
stained with lead citrate and uranyl acetate. Images were captured by JEOL JEM-1230 Transmission Electron
Microscope. Individual mitochondrial area measurement was used Image J.

Mito-tracker staining

Mitochondria in cultured cells were visualized by staining with MitoTracker Red CMXRos dye (Thermo Fisher
Scientific). The dye was added to the live cells at a final concentration of 100 nM and incubated at 37 °C for 30
min. Cells were washed and fixed in 2% Paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Images
were taken by a confocal microscope (Olympus, Japan). Mitochondrial area and average branch length from

VSMCs were analyzed using Image ] software with mitochondrial analyzer plugin®*.

TUNEL staining

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) was performed to assess
cell apoptosis using commercial apoptosis detection kit (Thermo Fisher Scientific, United States). All procedures
were done according to the directions of the manufacturers. Cells were counterstained with DAPI to visualize
nuclei. The number of TUNEL-positive cells was determined by randomly counting 10 fields and was expressed
as a percentage of the cells with normal nuclei.

Western blot

Cell extracts were lysed with radio immunoprecipitation assay (RIPA) buffer supplemented with Protease
Inhibitors Mixture (Sigma). Pierce™ BCA Protein Assay Kit (Thermo Scientific) was used to determine protein
concentration. 10 ug protein was separated by SDS/PAGE and transferred to the PVDF membrane (Bio-Rad).
Membranes were incubated with primary antibodies overnight at 4 °C: a-SMA (ab5694, abcam), Calponin
(C2687, Sigma), SM-22a (10493-1-AP, Thermo Fisher Scientific), Tubulin (2128 S, Cell Signaling Technology)
and P-actin (BDB612657, BD). On second day, membranes were incubated with an anti-mouse/rabbit
peroxidase-conjugated secondary antibody at room temperature. Inmunoreactive bands were visualized by the
enhanced chemiluminescence method (Bio-Rad) with Fluorchem E detection system (ProteinSimple USA). The
relative expression levels of target proteins were quantified by Image] software (National Institutes of Health,
Bethesda, MD, United States).

mRNA sequencing and analysis

RNA was extracted from VSMCs derived from human iPSC lines DY0100 and SC604A, with or without oxidative
stress, using the Qiagen RNeasy Kit. Cells from three independent differentiation batches were used. Sequencing
was performed at Washington University’s Genome Core using the Illumina NovaSeq 6000. Libraries were
prepared, indexed, pooled, and sequenced per standard protocols. Basecalling and demultiplexing were done
using bcl2fastq and a custom Python script. Reads were aligned to the Ensembl release 76 genome using STAR
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(v2.5.1a). Gene counts were generated with featureCounts (v1.4.6-p5), and transcript quantification was done
using Salmon (v0.8.2). Quality metrics were assessed with RSeQC (v2.6.4). Data were normalized using TMM
in EdgeR, and low-expression and ribosomal genes were filtered out. Limma with voomWithQualityWeights
was used for modeling and differential expression analysis. Genes with > 2-fold change and FDR < 0.05 were
considered significant. Pathway enrichment for DEGs was performed using DAVID (KEGG)' and GO tools,
with p < 0.01 and FDR < 0.05 as cutoffs. Results were visualized via bioinformatics.com.cn. GSEA (v4.3.2) was
used for additional KEGG and GO analysis (nominal p < 0.01, FDR < 0.25). Transcription factor analysis was
done using iRegulon in Cytoscape (v3.9.1). DMD expression was examined using GTEx and Broad Institute’s
Single Cell Portal datasets for human and mouse aorta.

Statistical analysis

Data were expressed as mean + SD. Normality was tested and statistical analysis of differences among the different
groups was compared by unpaired two-tailed Student’s t-tests. The differences were considered statistically
significant at P<0.05. Statistical analyses were performed by Graphpad Prism 9.5.

Data availability
The raw data of the mRNA sequence is deposited in the GEO database (GSE232219). The datasets used and/or
analyzed during the current study are available from the corresponding author on request.
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