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The persistent challenge of air leakage in smart factories continues to impose significant costs and 
operational inefficiencies. Conventional solutions, such as infrared detectors, suffer from drawbacks, 
demanding additional manpower for detection and incurring monetary losses during equipment 
downtime. Addressing the urgent need for early air leakage detection in manufacturing plants amid 
the ongoing digital transformation, this paper introduces an end-to-end framework that jointly 
handles class imbalance and provides uncertainty-aware predictions. At its core, we propose a novel 
unsupervised-enhanced data sampling method (UEDSM) to preserve data structure while alleviating 
imbalance, integrated with a dropout-enabled neural network (ALDNet) that applies Monte Carlo 
Dropout for robust inference. The effectiveness of our method is validated through a comprehensive 
series of experiments, incorporating real-time physical monitoring of two air compressors within a 
manufacturing plant. Beyond minimizing resource wastage and human intervention, our solution 
achieves over 95% accuracy and an F1-score above 80%, enabling reliable leakage detection several 
minutes in advance. These results highlight the practical viability of our approach for deployment in 
edge environments, contributing to improved efficiency, reduced resource wastage, and enhanced 
resilience in smart manufacturing.
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The smart factory seamlessly orchestrates the integrated management of diverse energy sources, aiming to 
optimize operational efficiency throughout the manufacturing process1–4. Notably, compressed air, a central 
component in the manufacturing process, serves as the control mechanism for a multitude of equipment across 
various sites5. This essential element, periodically supplied by a dedicated provider and conveyed through 
pipelines to end-users, faces potential challenges, including leaks originating from cracks or gaps within the 
intricate network of pipes6,7. In addition, the delicate equilibrium between air demand and supply occasionally 
falters, compelling pneumatic machines to involuntarily release air into the atmosphere8. These instances of air 
leakage can significantly impact the operational efficiency of the smart factory, posing a threat to the reliability 
of the energy supply system. Moreover, the substantial financial repercussions, equating to a 20% loss in the 
factory, underscore the pressing need for effective solutions. Given the absence of an established technique for 
solving air leakage, both industry and academia are actively involved in diverse initiatives aimed at addressing 
these pervasive challenges9,10.

Numerous conventional methods currently exist to detect air leakage in machines, encompassing manual 
inspections with hardware devices, such as the use of infrared cameras to identify leaks by temporarily shutting 
down other devices, as well as real-time monitoring techniques that analyze the ratio of air intake to discharge 
from the machine11,12. But, these approaches pose significant limitations, demanding a substantial investment 
of time and financial resources for effective machine monitoring. Furthermore, operators must halt machine 
operations to compare normal and abnormal sections, introducing challenges that impact the production 
schedule in the factory. While monitoring the ratio of inhaled and discharged air, along with a stop-the-machine 
scheme, can avert further issues after an air leakage, its capacity to alleviate pre-existing financial losses is limited. 
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Thereby, our focus is on an advanced abnormal situation detection technique that enables the pre-detection of 
air leakage within a pneumatic machine. This is achieved through the comprehensive analysis of data collected 
from strategically integrated sensors within the infrastructure of a smart factory13,14.

In recent years, the increasing reliance on deep learning to detect abnormal situations across diverse fields 
attests to its proficiency in uncovering high-order correlations within complex multivariate time series data, 
often characterized by substantial volume and dimensionality15–17. Despite this progress, early detection of 
compressed-air leakage in smart manufacturing remains underexplored, particularly when available datasets 
are highly imbalanced and predictions must be reliable for deployment in safety-critical environments. To 
address these challenges, we investigate a framework that couples an imbalance-aware sampling strategy with 
an uncertainty-aware neural model, and validate its effectiveness using real-world compressor data collected in 
a smart factory setting.

Contributions of this paper
In this paper, we present an end-to-end deep learning framework for early detection of air leakage in IoT-
connected compressors. The framework is designed to mitigate class imbalance and to provide uncertainty-aware 
predictions suitable for deployment in industrial edge environments. The main contributions are summarized 
as follows:

•	 We propose an unsupervised-enhanced data sampling method (UEDSM) that integrates principal compo-
nent analysis, k-means clustering, and cluster similarity scoring to eliminate overlapping majority samples 
prior to SMOTE oversampling.

•	 We propose ALDNet, a dropout-enabled network that applies Monte Carlo Dropout at inference to capture 
epistemic uncertainty. While MC Dropout is well established, its integration with UEDSM in a unified pipe-
line delivers robust, reliable early-warning capability for industrial anomaly detection.

•	 We formalize a domain-specific labeling strategy that defines leakage events from actuator dynamics within a 
predictive horizon, and apply correlation-aware feature filtering to mitigate multicollinearity in high-dimen-
sional sensor data.

•	 Extensive performance evaluation validates the superiority of the proposed scheme in terms of accuracy and 
F1-score, utilizing real-time physical monitoring of air compressors within a manufacturing plant.

Related work
The substantial energy loss attributed to air leakage in industry poses a critical challenge, given the indispensable 
role of compressed air in transmitting energy and operating various machines and equipment18. Operating 
under high pressure and system stability, compressed air stands as a vital resource extensively employed in 
automation and control systems within factories. Therefore, ensuring the integrity of compressed air systems 
is imperative for bolstering productivity and curtailing energy consumption. Unfortunately, the susceptibility 
of compressed air to leakage presents a considerable challenge, resulting in monetary losses and diminished 
operational efficiency19. This issue has evolved into a pressing concern in the business landscape, demanding 
urgent attention from the industry.

To tackle this challenge, researchers have recently delved into the detection of air leakage, leveraging diverse 
data and artificial neural network models20–22. For instance, Yang et al. proposed a method to predict the 
differential pressure value between chambers for the early detection of air leakage20. Employing a radial basis 
function neural network and collected air pressure data, the authors demonstrated the feasibility of predicting 
differential pressure values. However, this approach has limitations, requiring additional infrastructure and an 
accurate prediction scheme for preemptive air leakage determination. In another study, Cheng et al. introduced 
a fault detection and diagnosis method using multi-scale convolutional neural networks, showcasing advanced 
performance in detecting air leakage across various environments21. The authors presented that the diagnostic 
capability is enhanced by robust discriminative multiscale features and minimized classification information 
loss through end-to-end learning. In contrast, Quan et al. employed the particle swarm optimization algorithm, 
achieving highly accurate air leakage detection22. While these conventional studies have contributed novel 
analyses of various data to construct models related to air leakage detection, they often fall short in determining 
which data is genuinely relevant to air leakage. Additionally, these studies frequently lack a comparison between 
the proposed methods and conventional approaches.

In addition, extensive research has been dedicated to the identification of air leakage in compressors and 
analogous machinery23–26. In one study, Santolamazza et al. selected energy consumption as an indicator highly 
relevant to the normal operation of pneumatic machines23. They employed an artificial neural network model 
to assess abnormal situations, demonstrating the network’s ability to accurately characterize the system’s energy 
behavior. The results indicated that, when used in conjunction with a control chart, the artificial neural network 
enables the detection of anomalies in high performance. Furthermore, Salmanov et al. proposed a data-driven 
method for bleed valve system failure prediction in industrial engines24, Lee et al. introduced a density-based 
clustering method with logistic regression classifier to anticipate the severity of air leakages in braking pipes25. 
Lastly, Kim et al. attempted to detect abnormal situations using time series data through the anomaly-score-
moving-average technique, grounded in statistical techniques26.

Beyond these domain-specific studies, the broader machine learning community has investigated 
uncertainty-aware sampling and deep active learning strategies to address skewed data distributions. For 
instance, Nuggehalli et al. proposed DIRECT, which employs uncertainty-based thresholds to select informative 
samples under imbalance and label noise conditions27. Next, Jin et al. introduced balanced active learning to 
improve image classification in imbalanced settings28, while Zhang et al. developed GALAXY, a graph-based 
active learning method designed for extreme class imbalance29. From a learning-theoretic perspective, Khan et 
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al. demonstrated that Bayesian uncertainty can guide decision margins for rare classes30, and more recent work 
by Baltaci et al. suggested class-level predictive uncertainty as a measure to mitigate imbalance across datasets31. 
While these approaches offer valuable insights, they typically operate in iterative label acquisition settings and 
focus on benchmark datasets, making them less applicable to industrial telemetry where labeling is fixed and 
costly. Moreover, few works attempt to jointly combine class-imbalance mitigation and predictive uncertainty in 
a unified framework for real-world time series.

In recent decades, despite advancements in air compressor leakage detection, there is still a distinguished 
absence of the latest deep learning techniques, systematic discussions on selecting key factors linked to air leakage 
indicators, comprehensive model comparisons, and effective strategies for handling imbalanced industrial data. 
Our approach addresses these gaps through a unified framework that integrates imbalance mitigation with 
uncertainty-aware inference, thereby enabling robust and reliable early detection of air leakage in real-world 
manufacturing environments.

Results and discussion
In this section, the performance of UEDSM with ALDNet is comprehensively evaluated through experiments. 
The section begins by introducing the experimental settings, providing details on the dataset description, 
performance metrics, and comparison methods. Subsequently, the corresponding experimental results are 
thoroughly analyzed. All experiments are implemented using Python 3.6.13 with Tensorflow 2.6.2 on a server 
equipped with an Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz, 65.0 GB RAM, and NVIDIA GeForce GTX 
1660 SUPER with CUDA 11.2.

Dataset description
To conduct a comprehensive evaluation, we utilized IoT sensor data gathered from real-time physical monitoring 
of two air compressors in a manufacturing plant located in South Korea, as shown partially in Fig. 1. These data, 
recorded and stored in the cloud every minute, initially comprised twenty-nine features. However, after data 
preprocessing, twelve features were retained for training the classification model. The training dataset covers 
the periods from April 15, 2023, to April 25, 2023, and May 01, 2023, to May 15, 2023, representing operational 
periods of the air compressors. For testing, data from June 14 to June 31, July 01 to July 15, and August 03 to 
August 21 were used. Table 1 presents the class ratios for each air compressor.

The sensor data were provided by the collaborating company, where standard calibration procedures had 
been performed in accordance with the manufacturer’s guidelines. This ensured that the recorded pressure 
and flow values were consistent and reliable for analysis. Although the plant environment naturally introduced 
background noise, the collected time series exhibited stable patterns, and the proposed framework maintained 
consistent performance across multiple datasets, demonstrating robustness to such disturbances. For labeling, 
leakage events were defined according to the actuator dynamics expressed in Eq.  (6). This rule ensured 
reproducibility and consistency in the ground-truth annotations used for training and evaluation.

Machine Type Class

April May June July August

Count Ratio (%) Count Ratio (%) Count Ratio (%) Count Ratio (%) Count Ratio (%)

Air compressor #1
0 7245 94.0 11960 95.3 11540 92.1 8480 98.0 11189 98.3

1 466 6.0 588 4.7 994 7.9 172 2.0 194 1.7

Air compressor #2
0 6179 87.4 8694 86.9 13034 82.5 11883 90.6 11500 96.1

1 893 12.6 1308 13.1 2772 17.5 1237 9.4 469 3.9

Table 1.  Class ratios for each air compressor in a manufacturing plant located in South Korea.

 

Fig. 1.  Monitoring site of two air compressors used for data collection..
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Performance metrics
We assess the performance of the proposed framework and compare it with relevant baselines using two key 
metrics: accuracy and F1-score. These metrics are commonly used to evaluate classification models and are 
defined as

	
Accuracy = TP + TN

TP + FP + TN + FN
,� (1)

and

	
F1-score = 2 · TP

2 · TP + FP + FN
,� (2)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false 
negatives, respectively. Higher values for both metrics indicate superior classification performance. Given the 
prevalent challenge of imbalanced class distribution in real-world classification scenarios, F1-score especially 
serves as a valuable metric for a more sophisticated evaluation of model performance.

Comparison methods
To thoroughly evaluate the effectiveness of the proposed ALDNet classifier, we conducted a comprehensive 
comparison with six established methodologies widely employed in practical applications. The methodologies 
considered are as follows: 

	1.	 Support vector machine (SVM): A classifier that seeks a decision boundary to maximize the separation be-
tween data points of different classes, subject to specific conditions 32.

	2.	 Decision tree: A hierarchical model that recursively splits data based on attribute significance 33.
	3.	 Random forest: An ensemble of decision trees designed to improve generalization performance 34.
	4.	 Naive Bayes: A probabilistic model based on Bayes’ theorem with independence assumptions 35.
	5.	 K-nearest neighbor (KNN): An algorithm classifying data points by referencing the labels of the k nearest 

neighbors 36.
	6.	 XGBoost: A gradient boosting framework that iteratively improves classification by re-weighting misclassi-

fied samples 37.

Furthermore, to assess the effectiveness of the proposed UEDSM, we compared it with seven other widely used 
methods for handling imbalanced data. 

	1.	 ClusterCentroids: An under-sampling method strategically reducing the majority class by replacing a cluster 
of majority samples with the cluster centroid determined by a k-means algorithm 38.

	2.	 NearMiss: An under-sampling method systematically eliminating samples from the majority class in a ran-
dom fashion 39.

	3.	 TomekLinks: An under-sampling method adequately employed to identify samples from the majority class 
with the minimal euclidean distance to the minority class 40.

	4.	 SMOTETomek: An integrated over-and-under-sampling strategy harnessing the synergy of SMOTE and 
Tomek link 41.

	5.	 ADASYN: An over-sampling method generating diverse sample quantities based on an estimate of the local 
distribution of the target class 42.

	6.	 KMeansSMOTE: An over-sampling method implementing k-means clustering prior to oversampling through 
SMOTE 43.

	7.	 BorderlineSMOTE: An over-sampling method grounded in SMOTE, selectively utilizing a few class samples 
on the border to generate better samples 44.

Experimental results and discussion
This section delves into a comprehensive analysis of the experimental results obtained from the proposed 
framework, comparing it with several other methods. The enhancements are fully examined in terms of accuracy 
and F1-score.

Effectiveness of UEDSM
The impact of the UEDSM was rigorously assessed through a comprehensive comparative analysis across 
two distinct scenarios: model performance with and without UEDSM application prior to training. A critical 
parameter, u, representing the number of subsequent time steps, was set to five, enabling the classification 
models to predict air leakage occurrences five minutes in advance. This forward-looking approach significantly 
enhances the practical utility of the models in real-world manufacturing environments, providing a crucial 
window for preventive action.

Table  2 presents a detailed overview of the experimental results, revealing substantial performance 
enhancements in both accuracy and F1-score metrics across the air compressor datasets. The integration of 
UEDSM consistently yields superior performance in the majority of cases, underscoring its efficacy in addressing 
class imbalance and enhancing the models’ discriminative capabilities. This consistency suggests that UEDSM’s 
impact is robust across different model architectures and data distributions, a crucial factor for its broad 
applicability in industrial settings. A deeper examination of the results uncovers several key insights regarding 
the performance of the models. The magnitude of improvement varies across models and datasets, indicating 
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that UEDSM’s effectiveness is influenced by the underlying model architecture and the specific characteristics 
of each dataset. This variability emphasizes the complexity of the class imbalance problem in industrial data and 
highlights the necessity for tailored approaches in various manufacturing scenarios.

Notably, the ALDNet model demonstrates remarkable improvements, particularly in F1-score metrics. For 
the first air compressor dataset, ALDNet’s F1-score increased from 82.60% to 84.00%, while in the second dataset, 
a substantial improvement from 72.06% to 80.10% was observed. This significant enhancement in F1-score, 
especially for the second dataset, highlights ALDNet’s superior ability to leverage the balanced dataset produced 
by UEDSM. The performance gap between ALDNet and other models widens after UEDSM application, 
particularly for the second air compressor dataset, suggesting that ALDNet’s architecture is particularly well-
suited to exploit the balanced dataset produced by UEDSM.

ALDNet’s consistent performance improvement across both datasets indicates a high degree of generalizability, 
a crucial factor for practical applications in diverse industrial settings. This robustness across datasets is 
particularly valuable in manufacturing environments where conditions may vary significantly between different 
air compressors or production lines. Interestingly, some models (e.g., Naive Bayes) show a decrease in certain 
metrics after UEDSM application. This observation highlights the complexity of the class imbalance problem 
and suggests that UEDSM’s effectiveness may vary depending on the underlying assumptions of each model. 
It also underscores the importance of careful model selection when implementing UEDSM in real-world 
scenarios. The graphical representation of these trends in Fig.  2 further corroborates the statistical findings, 
providing a visual confirmation of ALDNet’s superiority when combined with UEDSM. This visual analysis aids 
in identifying patterns and relationships that might not be immediately apparent from the numerical data alone, 
offering additional insights into the performance characteristics of different models under UEDSM.

These results have significant implications for the field of air leakage detection in smart manufacturing. The 
combination of ALDNet and UEDSM demonstrates superior classification accuracy and robust performance 
across different compressor datasets, suggesting high potential for real-world implementation. The models’ 
ability to predict air leakage five minutes in advance provides a crucial window for preventive action, potentially 
reducing downtime and maintenance costs in manufacturing environments. Furthermore, the consistent 
improvement across models after UEDSM application underscores the importance of addressing class 
imbalance in industrial datasets, where anomalies are often rare but critical events. This finding has broader 
implications for anomaly detection in various industrial processes, potentially leading to more efficient and 
reliable manufacturing operations.

In conclusion, the synergy between ALDNet and UEDSM not only demonstrates superior performance in 
air leakage detection but also opens avenues for further research in handling imbalanced datasets in industrial 
applications.

Classification performance with alternative data sampling methods for the first air compressor
Table 3 presents a comprehensive analysis of classification performance across eight data sampling methods, 
including UEDSM, applied to the first air compressor dataset. This comparative study aims to elucidate the 
optimal pairing between data sampling methods and classification models, providing crucial insights for 
performance optimization in early air leakage detection. A critical observation emerges regarding the NearMiss 
method, which consistently underperforms across all classification models. Its F1-scores remain consistently 
below 10%, with accuracy rates failing to exceed 35%. This stark underperformance renders NearMiss unsuitable 
for the critical task of early air leakage detection.

The data reveals nuanced relationships between sampling methods and classification models. UEDSM 
demonstrates superior efficacy when paired with ALDNet and SVM, while TomekLinks significantly 
enhances the performance of Decision Tree, Random Forest, and KNN models. This variability in optimal 
pairings underscores the importance of tailored approaches in addressing class imbalance for different model 
architectures. Figure 3 illustrates the optimal combinations of classification models and data sampling methods. 
Notably, ALDNet coupled with UEDSM achieves the highest performance, boasting an accuracy of 98.69% and 
an F1-score of 84.00%. This combination outperforms all other pairings, including the second-best performer, 
Random Forest with TomekLinks. A quantitative comparison reveals that the ALDNet-UEDSM combination 

Classification model

Before UEDSM After UEDSM

Air compressor #1 Air compressor #2 Air compressor #1 Air compressor #2

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

ALDNet 98.55 82.60 94.68 72.06 98.69 84.00 95.54 80.10

Support vector machine 98.53 81.69 94.54 71.10 98.44 81.87 95.17 78.68

Decision tree 98.29 78.16 78.73 26.76 98.29 78.20 76.42 35.36

Random forest 98.50 82.45 93.45 62.67 98.56 82.25 94.54 73.26

Naive Bayes 97.11 72.16 93.21 74.63 95.58 64.05 90.19 68.01

K-Nearest neighbor 98.34 80.19 93.74 66.62 98.05 78.31 93.98 73.31

XGBoost 98.48 79.14 93.27 60.43 98.50 80.47 94.08 68.80

Table 2.  Classification accuracy and F1-score of seven classifiers on two air compressors, before and after 
applying UEDSM. Results show consistent improvement in performance with UEDSM, especially for ALDNet. 
Significant values are in [bold].
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ALDNet (%) SVM (%) Decision tree  (%) Random forest (%) Naive Bayes (%) KNN (%) XGBoost (%)

UEDSM
Accuracy 98.69 98.44 98.29 98.56 95.58 98.05 98.50

F1-score 84.00 81.87 78.20 82.25 64.05 78.31 80.47

ClusterCentroids
Accuracy 98.23 98.47 64.70 98.53 95.58 98.02 98.07

F1-score 79.92 81.53 15.40 81.81 64.09 77.83 75.62

NearMiss
Accuracy 34.07 17.00 5.66 5.98 6.81 21.67 21.69

F1-score 9.62 7.69 7.19 7.49 7.11 8.59 8.59

TomekLinks
Accuracy 98.63 98.39 98.32 98.63 97.14 98.33 98.54

F1-score 82.65 81.70 78.41 82.86 72.36 80.18 80.10

SMOTETomek
Accuracy 98.38 98.42 92.48 98.59 96.47 98.12 98.47

F1-score 81.59 81.77 43.78 81.96 68.42 78.57 79.49

ADASYN
Accuracy 98.26 98.16 97.23 98.56 95.46 98.03 97.81

F1-score 79.51 79.32 59.52 81.38 63.44 77.82 67.22

KMeansSMOTE
Accuracy 98.48 98.15 98.27 98.61 98.08 98.31 98.55

F1-score 81.58 78.44 78.03 82.77 77.77 80.06 81.03

BorderlineSMOTE
Accuracy 98.30 98.05 96.45 97.63 95.47 98.01 97.98

F1-score 80.63 78.71 34.37 63.62 63.50 77.54 70.49

Table 3.  Classification accuracy and F1-score of seven classifiers on the first air compressor dataset using 
different sampling methods. UEDSM consistently achieves the best overall balance, with ALDNet+UEDSM 
attaining the highest performance. Significant values are in [bold].

 

Fig. 2.  Comparison of classification performance with and without UEDSM on two air compressors..
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surpasses the least effective pairing (Naive Bayes with KMeansSMOTE) by a substantial 6.23% in F1-score. This 
significant performance gap highlights the potential impact of choosing the optimal model-sampling method 
combination in practical applications. The superior performance of ALDNet with UEDSM can be attributed 
to several factors, including UEDSM’s ability to effectively balance the dataset while preserving the underlying 
data structure, ALDNet’s architecture, which appears particularly adept at leveraging the balanced dataset 
produced by UEDSM, and the potential synergy between ALDNet’s dropout mechanism and UEDSM’s data 
augmentation approach, enhancing model generalization. These findings have significant implications for the 
field of air leakage detection in smart manufacturing, suggesting that the combination of ALDNet and UEDSM 
could substantially improve early detection capabilities.

Classification performance with alternative data sampling methods for the second air compressor
Table  4 presents a comprehensive analysis of classification performance across eight data sampling methods 
applied to the second air compressor dataset. Consistent with the findings from the first dataset, the NearMiss 
method demonstrates a detrimental impact on most classification models, resulting in significantly reduced 
accuracy and F1-scores. This consistent underperformance across both datasets strongly suggests that NearMiss 
is ill-suited for the specific characteristics of air leakage detection data. A notable observation is the persistent 
challenge faced by the Decision Tree model, which fails to achieve accuracy above 90% or F1-scores exceeding 
70% regardless of the sampling method employed. In contrast, UEDSM shows broader efficacy in this scenario, 

ALDNet (%) SVM (%) Decision tree (%) Random forest (%) Naive Bayes (%) KNN (%) XGBoost (%)

UEDSM
Accuracy 95.54 95.17 76.42 94.54 90.19 93.98 94.08

F1-score 80.10 78.68 35.36 73.26 68.01 73.31 68.80

ClusterCentroids
Accuracy 95.35 94.98 79.51 94.11 88.21 94.27 93.65

F1-score 77.91 77.97 36.80 69.35 64.15 72.10 65.72

NearMiss
Accuracy 87.29 18.50 12.79 16.69 15.34 57.28 22.17

F1-score 55.34 17.48 16.29 17.17 8.95 28.43 19.34

TomekLinks
Accuracy 95.11 94.78 78.31 93.85 93.29 94.10 93.49

F1-score 75.44 72.94 25.11 66.42 74.81 69.42 62.89

SMOTETomek
Accuracy 95.41 94.81 78.74 94.14 92.89 94.55 93.16

F1-score 79.87 78.11 26.97 68.98 73.95 74.73 61.63

ADASYN
Accuracy 95.21 94.79 79.48 93.82 88.14 94.59 93.37

F1-score 79.37 78.44 32.12 66.61 64.23 75.13 63.12

KMeansSMOTE
Accuracy 94.98 94.62 79.11 94.11 94.88 94.57 94.08

F1-score 74.18 71.63 30.35 67.96 77.71 73.48 67.96

BorderlineSMOTE
Accuracy 95.02 94.62 76.76 93.71 88.01 94.56 92.90

F1-score 79.57 77.99 25.43 65.22 64.06 74.85 59.25

Table 4.  Classification accuracy and F1-score of seven classifiers on the second air compressor dataset using 
different sampling methods. UEDSM consistently achieves the best overall balance, with ALDNet+UEDSM 
attaining the highest performance. Significant values are in [bold].

 

Fig. 3.  Performance of classifier–sampling combinations on the first air compressor dataset.
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enhancing the performance of ALDNet, SVM, Random Forest, and XGBoost, underscoring its adaptability to 
different data distributions and potential as a robust sampling method across various model architectures.

The optimal combinations of classification models and sampling methods, as illustrated in Fig.  4, reveal 
interesting patterns. While UEDSM remains the preferred method for several models, other sampling 
techniques show specific strengths with certain models. For instance, ClusterCentroids pairs well with Decision 
Tree, KMeansSMOTE with Naive Bayes, and ADASYN with KNN. Notably, the ALDNet-UEDSM combination 
maintains its superior performance, achieving the highest accuracy (95.54%) and being the only model to 
surpass an 80% F1-score (80.10%). This consistent excellence across both datasets reinforces the robustness and 
generalizability of the ALDNet-UEDSM approach in air leakage detection. A comparative analysis reveals that 
the second-best performer, SVM with UEDSM, achieves an F1-score of 78.68%, which is 1.42% points lower 
than ALDNet with UEDSM.

The experimental results from both air compressor datasets consistently demonstrate the superior 
performance of the ALDNet-UEDSM combination in early air leakage detection. This robust performance 
across different datasets underscores the potential of this approach for practical implementation in diverse 
industrial settings, offering a promising solution for enhancing manufacturing efficiency via improved air 
leakage detection performance.

Hyperparameter selection and sensitivity
The two hyperparameters that most strongly affect the proposed framework are the removal ratio p in UEDSM 
and the dropout rate in ALDNet. Since the clustering procedure in UEDSM is inherently binary, the number of 
clusters k is fixed to two and does not require additional tuning.

We conducted a sensitivity analysis by varying the removal ratio p ∈ {0.35, 0.55, 0.75, 0.90, 0.95} and 
dropout rates ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The experimental results are summarized in Tables 5 and 6. On 
the first compressor, the best performance was obtained with p = 0.75 and dropout = 0.3, reaching 98.69% 
accuracy and 84.00% F1-score. On the second compressor, the same configuration yielded 95.54% accuracy and 
80.10% F1-score.

Beyond identifying the optimal setting, the analysis provides two important observations. First, performance 
remained relatively stable across neighboring configurations (e.g., p = 0.55–0.90 and dropout = 0.2–0.5), which 
indicates robustness of the framework to moderate parameter shifts. This stability is particularly relevant for 
industrial deployment, where precise hyperparameter re-tuning may not always be feasible. Second, extreme 

Dropout

0.35 0.55 0.75 0.90 0.95

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

0.1 98.56 82.17 98.59 82.26 98.65 83.19 98.50 82.31 98.56 82.64

0.2 98.43 81.67 98.56 82.49 98.57 82.69 98.48 82.14 98.53 82.40

0.3 98.63 82.97 98.58 82.77 98.69 84.00 98.33 80.78 98.30 80.42

0.4 98.54 82.53 98.60 82.91 98.54 82.90 98.42 81.51 98.40 81.42

0.5 98.48 82.09 98.52 82.63 98.58 82.94 98.56 82.88 98.49 82.26

0.6 98.20 79.61 98.52 82.51 98.57 82.71 98.53 82.40 98.50 82.15

Table 5.  Sensitivity analysis of dropout rate and removal ratio on the first air compressor. The overall best 
performance at dropout = 0.3, p = 0.75 (Accuracy=98.69%, F1-score=84.00%). Significant values are in 
[bold].

 

Fig. 4.  Performance of classifier–sampling combinations on the second air compressor dataset.
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parameter values degraded performance. For example, very low dropout (0.1) or very high dropout (0.6) reduced 
the F1-score, reflecting either under-regularization or excessive information loss.

Overall, these results justify the choice of p = 0.75 and dropout = 0.3 as the default setting. The sensitivity 
analysis confirms that the proposed framework is not only effective at its optimal parameters but also resilient 
across a broad range, ensuring reproducibility and practicality in real-world manufacturing environments.

Methods
The proposed architecture for air leakage detection, as depicted in Fig. 5, incorporates three key components. 
Firstly, air compressors serve as the cornerstone by capturing several numeric features that characterize their 
condition, including the blow-off valve (BOV), inlet guide vane (IGV), and air temperature. Subsequently, the 
edge server accommodates a customized model for air leakage detection in each air compressor, facilitating early 
notifications and anticipating potential incidents several minutes in advance. Lastly, the Amazon AWS cloud 
server is utilized for training the classification model, ALDNet, employing the data sampling method called 
UEDSM. After training, these models are deployed on the edge server for efficient inference. This concise and 
integrated architecture ensures the effective monitoring and timely prediction of air leakage incidents.

Fig. 5.  System architecture for air leakage detection.

 

Dropout

0.35 0.55 0.75 0.90 0.95

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

0.1 95.46 79.02 95.41 78.55 95.26 79.25 94.82 74.60 94.03 71.06

0.2 95.45 79.90 95.39 78.95 95.49 79.94 95.15 77.33 94.84 76.26

0.3 95.33 80.01 95.50 79.97 95.54 80.10 95.33 78.46 95.07 76.89

0.4 95.34 79.79 95.38 79.79 95.23 79.86 95.37 79.07 94.97 77.07

0.5 95.30 79.81 95.37 79.84 95.26 79.46 95.25 79.34 94.45 77.65

0.6 95.40 79.28 95.41 79.41 95.42 79.80 93.99 76.61 94.80 77.86

Table 6.  Sensitivity analysis of dropout rate and removal ratio on the second air compressor. The overall best 
performance at dropout = 0.3, p = 0.75 (Accuracy=95.54%, F1-score=80.10%). Significant values are in 
[bold].
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Time series data preprocessing
The data from each air compressor is fully treated as a multivariate time series, represented as an ordered 
sequence comprising M ∈ N streams, where am = (am,1, . . . , am,L). Mathematically, this is represented as

	 A = {a1, a2, . . . , aM } ∈ RM×L,� (3)

where M denotes the total number of features or variables, while L represents the length of the time series. Next, 
to mitigate challenges such as multicollinearity and high correlation45, known for inducing overfitting problems, 
we employ the pearson correlation coefficient. This coefficient is computed for all pairs of features, producing 
values within the range of [-1, 1]. The computation is expressed by

	

ρaiaj =
∑L

t=1(ai,t − āi)(aj,t − āj)√∑L

t=1(ai,t − āi)2
√∑L

t=1(aj,t − āj)2
,� (4)

where āi and āi denote the means of the respective features. A threshold τ  is set, such that if |ρaiaj | ≥ τ , it 
signifies high correlation between features ai and aj . We then define a set E containing n features to be eliminated. 
In the event of high correlation between two features, one of them is selected for removal, with the choice guided 
by domain knowledge. The final multivariate time series without highly correlated pairs is denoted as

	 A′ = {am|am /∈ E, 1 ≤ m ≤ M} ∈ R(M−n)×L.� (5)

In addition, its corresponding label yt at each time step t can be encoded as 0, signifying normal condition, or 1, 
indicating an air leakage incident. This encoding relies on two pivotal features, BOV and IGV, in our problem. 
Assuming ai and aj  respectively stand for the BOV and IGV features, the label yt is then determined by

	
yt =

{ 1, if ∀r, aj,t+r ≥ ai,t+r and ∃r, ai,t+r > 0
0, otherwise, � (6)

where 0 < r ≤ u and u ∈ W is the number of subsequent time steps. In this paper, the labeled set is thus 
denoted by

	 Y = {yt|t ∈ {1, 2, . . . , L}, yt ∈ {0, 1} = z} ∈ W1×L.� (7)

Data sampling method (UEDSM)
In general, the issue of imbalanced datasets emerges in classification, where the number of instances in one 
class is notably lower than in the others46,47. The primary challenge in addressing this imbalance is that smaller 
classes are often more informative, yet standard classifiers tend to be biased toward the larger classes, potentially 
overlooking the significance of the smaller ones. Consequently, class imbalance can significantly impair the 
performance of a classification model. In this paper, we propose an unsupervised-enhanced data sampling 
method (UEDSM) to tackle this challenge. As depicted in Fig. 6, the proposed UEDSM integrates three main 
components: principal component analysis, k-means clustering, and cluster similarity scoring.

Principal component analysis (PCA)
PCA serves as a linear dimensionality reduction method, transforming higher-dimensional data into a lower 
dimension by maximizing the variance of the lower dimension. This multivariate analysis technique reduces 
dataset complexity while preserving data covariance48. Initially, we perform feature scaling on A′ to obtain 
the standardized Â′, ensuring a distribution with a mean of zero and a standard deviation of one using 
StandardScaler49. Subsequently, PCA is applied to the standardized Â′ following the procedures outlined 
in Algorithm  1. These procedures involve computing the covariance matrix of the sample, decomposing 
eigenvalues, and selecting the eigenvectors corresponding to the largest k eigenvalues, which are then formed 
into a projection matrix50. In the end, a new multivariate time series with k-dimensional features, denoted by B, 
is created and later used in cluster similarity scoring. This is formally expressed as

	 B = {b1, . . . , bk} ∈ Rk×L,� (8)

where k is fixed at two, given that the classification is binary in this paper.
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Algorithm 1.  PCA

K-means clustering
The k-means approach is a widely adopted unsupervised modeling technique, known for its simplicity and 
frequent use in dividing datasets into k classes51. Its effectiveness lies in categorizing objects into groups with 
distinct characteristics, making it especially valuable for labeling unlabeled datasets. In this paper, a labeled set 
Y ′ completely derived from k-means clustering is utilized for comparison with the initially predefined labeled 
set Y. Thus, given Â′, the k-means clustering algorithm, as outlined in Algorithm 2, is executed to partition a set 
of samples based on their attributes into k clusters. The principal steps of k-means clustering include initializing 
cluster centers, assigning data points to clusters, and updating cluster centers until convergence52.

Fig. 6.  Data preprocessing and the proposed UEDSM.
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Algorithm 2.  K-MEANS

As a consequence of the k-means clustering process, a new set Y ′ is obtained, which will be further used 
in cluster similarity scoring phase. This labeled set not only captures the inherent patterns within the data but 
also serves as a tool for improving the understanding of the underlying structure. The iterative nature of the 
algorithm ensures the refinement of clusters to accurately represent the data distribution, making Y ′ a reliable 
foundation for subsequent analyses. For this specific problem, k is set to two, as the choice of k = 2 aligns 
undoubtedly with the binary nature of the classification task in our problem, simplifying the interpretation of 
outcomes and facilitating meaningful comparisons with the original labeled set Y.

Cluster similarity scoring
To address class imbalance, this paper introduces the concept of cluster similarity scoring, a method designed 
to selectively remove a fraction p of instances from the majority class that overlaps with the unsupervised 
cluster showing the highest similarity. Given Y and Y ′, the newly transformed multivariate time series with 
k-dimensional features B facilitates the identification of each cluster corresponding to its binary class. These 
clusters are denoted as cY

z  and cY ′
z , as illustrated in Fig. 7, providing a visual representation of the concept.

Herein, the cluster similarity score (CSS) can be mathematically computed as

	
CSS(z) = 1

1 +
∥∥cY

h − cY ′
z

∥∥
2

,� (9)

where the score ranges between 0 and 1, h represents the majority class from Y, and both cY
h  and cY ′

z , represented 
as vectors, denote the mean values of their respective clusters. The class with the highest similarity score, denoted 
by zmax, can be determined as

	
zmax = arg max

z∈{0,1}
CSS(z).� (10)

Now, consider I as the representation of the intersection of indices between the clusters cY
h  and cY ′

zmax  for the 
class of interest. In the subsequent step, a specified fraction p of the common indices within I is randomly 
deleted. Following this, both Â′ and Y undergo an update by removing these common indices, ensuring that the 
dataset reflects the altered distribution.

Lastly, to address any remaining imbalances, the synthetic minority over-sampling technique (SMOTE) 
method53 is applied to achieve a balanced overall dataset. The comprehensive procedure of the proposed 
unsupervised-enhanced data sampling method (UEDSM) is explicitly outlined in Algorithm 3 for clarity and 
reproducibility. Next, we delve into the classification model, which we refer to as ALDNet.
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Algorithm 3.  UEDSM

Classification model (ALDNet)
The paper introduces ALDNet, a dropout-enabled deep neural network specially designed for air leakage 
detection. ALDNet leverages Monte Carlo Dropout (MC Dropout)54, an advanced extension of the dropout 

Fig. 7.  Four different clusters from cY
z  and cY ′

z ; left (class: 0) and right (class: 1).
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regularization technique renowned for its efficacy in enhancing generalization and mitigating overfitting in 
neural networks.

In conventional dropout, neurons are randomly excluded during both forward and backward passes in each 
training iteration. MC Dropout extends this concept to the prediction phase, executing multiple forward passes 
with dropout activation. This results in an ensemble of predictions for each input, with the final prediction 
derived through aggregation. Formally, for a neural network with weight matrix Q, the dropout operation can 
be mathematically expressed as

	 Q̃ = λ ⊙ Q,� (11)

where λ is a binary mask with elements drawn from a Bernoulli distribution with probability s, and ⊙ denotes 
element-wise multiplication. Now, MC Dropout extends this concept to the inference phase, performing T 
stochastic forward passes through the network. For an input x, the MC Dropout prediction is given by

	
γ̂ = 1

T

T∑
d=1

fQ(x, λd),� (12)

where fQ represents the neural network function, and λd is the dropout mask for the d-th forward pass.
As depicted in Fig. 8, the architecture of ALDNet comprises four hidden layers with 32, 32, 16, and 9 neurons, 

respectively. Each hidden layer is followed by a dropout layer with a retention probability of 0.7 (dropout rate of 
0.3). The hyperbolic tangent activation function is employed in each hidden layer, defined as

	 ωl = tanh(Qlωl−1 + bl),� (13)

where ωl is the output of the l-th layer, Ql is the weight matrix, and bl is the bias vector. The incorporation of MC 
Dropout during inference enables uncertainty estimation, crucial for assessing model confidence in air leakage 
detection. The predictive uncertainty can be approximated using the variance of the MC samples:

	
Var(γ̂) ≈ 1

T

T∑
d=1

fQ(x, λd)2 −

(
1
T

T∑
d=1

fQ(x, λd)

)2

.� (14)

This approach provides a measure of epistemic uncertainty, reflecting the model’s uncertainty in its parameters55.
Overall, the implementation of MC Dropout in ALDNet offers several advantages over alternative methods, 

particularly in terms of model robustness and reliability in air leakage detection scenarios. By providing 
both predictions and associated uncertainties, ALDNet enables more informed decision-making in critical 
manufacturing environments where early and accurate detection of air leakage is paramount.

Conclusion
The digital transformation of manufacturing companies has emerged as a critical focus in strategic management, 
as highlighted by recent studies56,57. This shift presents significant opportunities for optimizing operational 
efficiency and reducing costs. Our research directly addresses this trend by introducing a pioneering methodology 

Fig. 8.  Overall structure of the proposed ALDNet.
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for the early detection of air leakage in air compressors, a persistent and costly issue in manufacturing plants. 
By developing an automated solution for proactive air leakage identification, we not only mitigate resource 
wastage but also minimize human intervention, thereby enhancing overall operational efficiency. This aligns 
with the broader goals of Industry 4.0 and smart manufacturing initiatives, where data-driven decision-making 
and predictive maintenance are key pillars.

The efficacy of our approach is rigorously validated through comprehensive experiments utilizing real-
time physical monitoring of two air compressors within a South Korean manufacturing plant. In particular, 
the proposed unsupervised-enhanced data sampling method (UEDSM) proved effective in alleviating class 
imbalance, a major obstacle in industrial anomaly detection. When combined with the dropout-enabled ALDNet 
classifier, the unified framework consistently outperformed conventional models and alternative sampling 
techniques. This integration delivered robust, reliable predictions for early leakage detection, demonstrating its 
practical value in improving operational reliability and reducing maintenance costs.

While the proposed framework demonstrates strong performance, certain limitations remain. The 
experiments were limited to two air compressors in a single industrial site, which may affect generalizability to 
broader manufacturing contexts. Additionally, the framework does not explicitly address long-term data drift 
or evolving machine behavior. Future work could expand validation across multiple industrial sites, incorporate 
adaptive mechanisms for handling temporal drift, and extend uncertainty modeling to include aleatoric as well 
as epistemic components. Furthermore, integrating concepts from active learning, such as uncertainty-guided 
sample selection, may further enhance applicability in scenarios where labeled data are scarce or costly to obtain.

Data availibility
The data that support the findings of this study are available from ETRI and Hyundai Infracore but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. However, data are available upon reasonable request by contacting the corresponding author, Prof. 
Kim (jk.kim@sejong.ac.kr), and with permission of ETRI and Hyundai Infracore.
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