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Accurately differentiating scaly erythematous rashes among psoriasis, eczema, and dermatophytosis
remains a clinical challenge, particularly for non-dermatologists. This study aimed to develop and
evaluate deep learning models using macroscopic clinical images to classify these conditions and
compare their performance with that of non-specialists. A total of 2940 images were sourced from
public datasets, the Siriraj Dermatology databank, and newly collected images from Thai participants.
Among sixteen evaluated models, the Swin demonstrated the best performance and interpretability.
Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations confirmed that the model
focused on clinically relevant lesion features. Most importantly, in a pilot comparison, the Swin
outperformed non-specialists in diagnostic accuracy. However, given the limited sample size of 30
images and 30 evaluators, these results should be interpreted as exploratory. Future studies with
larger datasets and diverse clinician cohorts are warranted to confirm these findings and to support
clinical integration.
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Psoriasis, eczema, and dermatophytosis are common skin diseases characterized by erythematous papules or
plaques with scales, frequently encountered in routine clinical practice!. Although these diseases have distinct
etiologies, psoriasis is an immune-mediated disorder with keratinocyte hyperproliferation?, eczema involving
skin barrier dysfunction and immune dysregulation’, and dermatophytosis caused by superficial fungal
infection?, they often present overlapping clinical features. This overlap contributes to diagnostic challenges,
particularly among non-specialists, where misdiagnosis can result in inappropriate treatments that may
exacerbate symptoms.s.

Diagnostic accuracy in general practice remains limited, with some studies reporting accuracy rates as low
as 50% for common skin diseases®. The increasing demand for dermatological care, especially in resource-
constrained and rural settings, underscores the need for diagnostic tools that support non-specialists in clinical
decision-making.

Recent advancements in artificial intelligence (AI) have demonstrated impressive capabilities in dermatologic
image classification, often surpassing human performance in identifying skin cancers and other defined
lesions’~!°. For instance, Al systems have achieved up to 99% accuracy in differentiating melanoma from benign
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lesions”!!, and have performed well in detecting psoriasis and multiple skin diseases across various tasks”!2.

However, accurate multiclass differentiation of erythematous scaly rashes, specifically psoriasis, eczema, and
dermatophytosis, remains underexplored, with reported accuracies ranging from 89.1 to 96.2%!%!4,

Limitations of current models include their reliance on dermoscopic images and training on predominantly
lighter skin phototypes, which may hinder generalizability to diverse populations and practical use in primary
care®. In contrast, macroscopic clinical images captured via smartphones represent a more accessible format
for real-world implementation, despite inherent quality variability. Leveraging Al to analyze such images could
enhance dermatologic support in broader clinical environments.

This study addresses these gaps by developing and evaluating an AI framework to classify psoriasis, eczema,
and dermatophytosis from macroscopic clinical images. We trained eight convolutional neural networks (CNNs)
and eight Transformer-based models on a dataset of 2940 images from both public sources and Thai patients.
Gradient-weighted Class Activation Mapping (Grad-CAM) was used to visualize model interpretability. Finally,
we compared the diagnostic performance of our best-performing deep learning model with that of non-specialist
clinicians to evaluate its practical utility.

Methods

The protocol for this study was approved by the Siriraj Institutional Review Board of the Siriraj Hospital of
the Faculty of Medicine of Mahidol University (MU-MOU COA no. 073/2023). This study complied with the
principles set forth in the Declaration of Helsinki of 1964 and all its subsequent amendments. The eligible skin
lesion images were clinical images of scaly, erythematous rashes, with the final diagnosis of plaque psoriasis,
eczema, or dermatophytosis (Figure 1). All patients contributing new images provided written informed consent
for the use of their images in research, academic publication, and anonymized data sharing. Skin lesions on the
face, neck, and groin, as well as tattoos or scars, were excluded due to the Personal Data Protection Act, which
has been enforced in Thailand since June 2022.

Fig. 1. The samples included three disease classes: (a, b) psoriasis, (¢, d) eczema, (e, f) dermatophytosis, from
Thai participants, Siriraj Dermatology Databank, Department of Dermatology, Faculty of Medicine Siriraj
Hospital, Mahidol University.
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Data acquisition

A total of 2940 photographs were included in this study, sourced from two primary categories: existing databanks
and newly collected patient images. The existing databanks contributed 1320 images, comprising 308 images
from the Siriraj Dermatology databank and 1012 images from public repositories, including DermNet'>. The
Siriraj Dermatology databank comprises images of Thai participants diagnosed with a range of skin diseases
by experienced dermatologists employing state-of-the-art diagnostic methods. Participants provided informed
consent for their images to be used in educational, research, and publication contexts. Dermatophytosis cases
in this databank were confirmed through clinical manifestations and positive potassium hydroxide (KOH)
examinations showing branching and septate hyphae.The diagnosis of psoriasis and eczema in the Siriraj
Dermatology databank were also made by three experienced dermatologists, each with over 10 years of
expertise in the field. For the public databank, the images were also reviewed and confirmed by the same three
dermatologists. Notably, the combined dataset captures a broad spectrum of image characteristics—such as
variation in quality, perspective, skin tone, and acquisition protocols. In the context of computer vision, training
deep learning models on such diverse conditions can enhance model robustness, as it encourages generalization
across real-world scenarios. Accordingly, the inclusion of diverse image sources may contribute to the stability
and reliability of the model’s performance across a wide range of clinical settings and input variations.

The newly collected dataset included 1620 images, obtained from Thai participants aged 18 years or older
with scaly erythematous rashes and a confirmed diagnosis of psoriasis. Participants were recruited from the
outpatient clinic at Siriraj Hospital and provided informed consent before inclusion in the study. Lesions were
photographed using three different smartphone models: iPhone 11, 13, and 14 Pro (Apple Inc., Cupertino, CA,
USA); Samsung Galaxy A33 (Samsung Electronics Co., Ltd., Suwon, South Korea); and Oppo A78 (Guangdong
Oppo Mobile Telecommunications Corp., Ltd., Dongguan, China). Images were taken under consistent ambient
lighting with a neutral green background and fixed distance ( 30 cm) to ensure reproducibility. Device flash was
used under controlled conditions to enhance lesion detail without overexposure. Autofocus and exposure-lock
features were used to maintain image sharpness and consistency across participants (Figure 2).

For each lesion, 18 photographs were captured: three angles (frontal, 30° left, 30° right) under both flash
and non-flash conditions, with duplicate shots for quality assurance. From this set, one representative image
per lesion was selected for inclusion, based on clarity, color balance, and lesion visibility. This selection was
conducted by three dermatologists with over 10 years of clinical experience, using a consensus process to ensure
diagnostic quality and consistency. An overview of the dataset is presented in Table 1.

Data preparation and data augmentation
To ensure that the training data were standardized, diverse, and suitable for effective training of both CNN
and Transformer models, four steps of data preparation and augmentation (as shown in Fig. 2) were applied as
follows. To minimize inter-device color variability and ensure consistency, all images underwent pixel intensity
normalization to zero mean and unit variance, a standard procedure in deep learning workflows. This process
adjusts brightness and contrast automatically without altering clinical features. No manual color correction or
enhancement was applied. Although Figure 2 illustrates natural color variation due to lighting and skin tone,
normalization ensured that models were not biased by these differences.

Step 1: Zero-padding to square image

To ensure consistency in input dimensions, we applied zero-padding to convert all images to a square shape.
Zero-padding involves adding rows or columns of zeros around the image to make it square without altering the
original content. This step helps maintain the aspect ratio and prevents distortion when resizing images later!®.

Step 2: Random horizontal flip

Random horizontal flipping with a probability of 0.5 was performed to augment the dataset. This technique
introduces variability by flipping images along the vertical axis, which can help the model become invariant to
horizontal orientations of the skin lesions. Such augmentation can prevent the model from overfitting to specific
orientations in the training data!’.

Step 3: Resize image after padding and flipping

All images were resized to a specific resolution required by each model to ensure compatibility and consistent
input dimensions during training. The original images before preprocessing ranged from 720 x 447 to 4024 x
6048 pixels, reflecting variability due to different devices and imaging conditions. This preprocessing step helped
standardize the input format, facilitating batch processing and improving computational efficiency. The chosen

Zero-padding Random Resize Image Normalize Image
to Square Image Horizontal Flip

Image

Fig. 2. Workflow of data preparation and augmentation: zero-padding, flip, resize, and normalize.
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Disease ‘ Public data | Siriraj Dermatology Databank | New collected image | Total
Training and validation set

Psoriasis 73 80 1289 1442
Dermatophytosis | 300 75 0 375
Eczema 428 83 0 511
Total 801 238 1289 2328
Testing set

Psoriasis 18 21 321 360
Dermatophytosis | 75 19 0 94
Eczema 107 21 0 128
Total 200 61 321 582
A pilot study

Psoriasis 0 0 10 10
Dermatophytosis | 8 2 0 10
Eczema 3 7 0 10
Total 11 9 10 30
Grand Total 1012 308 1620 2940

Table 1. Dataset overview.

resolution represented a trade-off between preserving essential visual features and maintaining a reasonable
computational cost!®.

Step 4: Normalize image

The images were normalized to have a consistent mean and standard deviation. Normalization scales the
pixel values to a standard range, which helps to accelerate convergence during training and improves numerical
stability. This step ensures that the neural network or convolutional neural network treats all input features
equally®.

The final images for the development and testing of the algorithms had varying illumination effects and were
divided into three sets: (i) training, (ii) validation, and (iii) testing data sets.

Implementation of Swin for skin lesion classification

An effective algorithm was developed based on CNN and Transformer architectures. The CNN models included
eight existing architectures: AlexNet?®, DenseNet-1212!, EfficientNetV2?2, GoogLeNet?, MobileNetV324,
SqueezeNet?®, VGG-19%, and ResNet-50?". Additionally, the eight Transformer-based models included ViT%,
Swin®, CvTI*, DaViT*, MaxViT?%, GC ViT?, FastViT-S12*, and SHViT-S1°°. These architectures were trained
and validated to classify each skin disease from skin images, and subsequently evaluated on a separate test set to
confirm that their performance remained consistent. The parameters of both the CNN and Transformer models
are shown in Table 2. To evaluate reasonable or unreasonable predictions by the architectures, Grad-CAM
visualizations were generated to highlight which important regions of the image correspond to any decision of
interest by an architecture.

The architecture of the Swin used for classifying skin lesion images was shown in Figure 3. Swin® is a
hierarchical vision Transformer that introduces a novel shifted windowing mechanism for self-attention. It
processes input images by dividing them into non-overlapping patches, which are then embedded into a sequence
of tokens. The model consists of four stages, each comprising Swin Blocks that use either window-based multi-
head self-attention (W-MSA) or shifted window-based self-attention (SW-MSA). These mechanisms allow the
model to capture both local and global contextual information efficiently. Patch merging operations are applied
between stages to progressively reduce spatial resolution and increase feature representation depth.

After feature extraction through the Swin blocks, the output is passed through an adaptive average pooling
layer, which transforms variable-sized spatial features into a fixed-length feature vector. This vector is then
input to a final fully connected layer that maps the features to class scores. In this study, we modified the final
layer to contain three output nodes corresponding to the target classes: dermatophytosis, eczema, and psoriasis.
The Swin is designed to be both computationally efficient and highly effective in capturing fine-grained image
features relevant to medical imaging tasks such as skin lesion detection.

We used a pre-trained Swin model with weights from the ImageNet dataset®®. To adapt it to our skin disease
classification task, we applied transfer learning. This technique allowed a model that was trained on a large
dataset, like ImageNet, to be reused for a different but related task. Instead of training from scratch, the model
was fine-tuned on a smaller, specific dataset. This approach helped reduce training time, improves accuracy, and
works well even when only a limited number of labeled medical images are available. Images of skin lesions were
fed into the model to predict the corresponding disease class. To reduce overfitting and random split bias, the
k-fold cross-validation technique was adopted, with the number of folds set to k = 5.
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Method Batch size | Loss function Optimizer | Learning rate | Parameters | GFLOPs
AlexNet (2012) 4 Cross entropy loss | SGD 0.001 57.01 M 1.42
VGG19 (2014) 4 Cross entropy loss | SGD 0.001 139.58 M 39.28
GoogLeNet (2015) 4 Cross entropy loss | SGD 0.001 5.60 M 3.00
SqueezeNet (2016) 4 Cross entropy loss | SGD 0.001 0.73 M 1.47
ResNet-50 (2016) 4 Cross entropy loss | SGD 0.001 2351 M 8.18
DenseNet-121 (2017) | 4 Cross entropy loss | SGD 0.001 6.95M 5.66
MobileNetV3 (2019) |4 Cross entropy loss | SGD 0.001 1.52 M 0.11
EfficientNetV2 (2021) | 4 Cross entropy loss | SGD 0.001 20.18 M 5.70
ViT (2020) 4 Cross entropy loss | SGD 0.001 85.80 M 24.04
Swin (2021) 4 Cross entropy loss | SGD 0.001 86.74 M 21.10
CvT (2021) 4 Cross entropy loss | SGD 0.001 19.61 M 8.18
DaViT (2022) 4 Cross entropy loss | SGD 0.001 86.93 M 30.56
MaxViT (2022) 4 Cross entropy loss | SGD 0.001 3040 M 10.96
GC ViT (2023) 4 Cross entropy loss | SGD 0.001 89.29 M 27.78
FastViT-S12 (2023) 4 Cross entropy loss | SGD 0.001 8.45M 2.80
SHVIT-S1 (2024) 4 Cross entropy loss | SGD 0.001 13.79 M 1.21

Table 2. Comparison of CNN and Transformer-based models in terms of parameter configuration,
computational requirements, and structural complexity for skin disease image analysis. GFLOPs, Giga Floating
Point Operations per second; M, million; SGD, Stochastic Gradient Descent.
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Fig. 3. Illustration of the Swin architecture, showing patch embedding, Swin blocks, and the classification
pipeline.

Comparing the performance results between non-dermatologists and the deep learning
model

To evaluate and compare the diagnostic accuracy of the best-performing CNN and Transformer models against
clinicians without specialized dermatology training, a pilot study was conducted. For this purpose, 10 images
per disease category, representing cases of psoriasis, eczema, and dermatophytosis, were selected. These images
were not used during any training, validation, or testing processes to ensure unbiased evaluation. Participants
were presented with the question, “What is the most likely diagnosis?” along with the options: “A. Psoriasis, B.
Eczema, C. Dermatophytosis” The images were randomly integrated into an online questionnaire created using
Google Forms.

The set of 30 images (10 per diagnostic class) used in the human-AI comparison was selected based on
equal class representation and diagnostic clarity, rather than formal sample size calculation. This design aimed
to facilitate a focused pilot comparison rather than a fully powered inferential study. Each image represented
a distinct case from the test set, ensuring no overlap with the training or validation data. While the sample
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enabled qualitative and quantitative benchmarking across physician groups and Al, we acknowledge that it may
be underpowered for detecting smaller inter-group differences and should be interpreted as exploratory.

Thirty clinicians without specialized dermatology training were recruited to voluntarily provide diagnoses
for the 30 images. Participants were divided into two groups based on their clinical experience: the intern group,
consisted of medical interns in their first postgraduate year of clinical training. These individuals had recently
graduated from medical school and were working under supervision in hospital-based settings as part of their
national service. And the internist group (n = 15) included board-certified internal medicine physicians with at
least three years of clinical experience. They were involved in both outpatient and inpatient care at secondary
hospitals but had no formal dermatology fellowship or extended dermatology rotations.

This comparison was designed to capture the influence of clinical experience on diagnostic performance
among non-dermatologists. Interns represent entry-level clinical exposure, while internists embody more
seasoned generalists. By including both, we aimed to assess how Al performance compares across different
experience levels typical in primary and secondary care settings, where dermatology expertise is often limited.

Statistical analysis
Performance was evaluated using four metrics: precision, recall, F1 score, and accuracy, each ranging from 0
(very poor) to 1 (perfect). where TP = True Positives, FP = False Positives, TN = True Negatives, and FN = False
Negatives. The formulas and interpretations of these metrics are provided below.

Precision is the ratio of correctly predicted positive observations to the total predicted positives.

TP
oo TP I
Precision TP £ FP (1)

where TP is True Positives and F'P is False Positives. Precision is critical when the cost of false positives is high.
For example, in medical diagnosis, predicting a disease when it is not present can lead to unnecessary treatment
and anxiety. Precision helps ensure that when the model predicts a positive class, it is very likely to be correct.
High precision indicates that the model has a low false positive rate, which is crucial for applications where false
positives can be particularly costly.

Recall (or Sensitivity) is the ratio of correctly predicted positive observations to all observations in the actual
class.

TP
Recall = m (2)

where FN is False Negatives. Recall is important when the cost of false negatives is high. For instance, in the
same medical diagnosis example, missing a disease (false negative) can be very dangerous. Recall ensures that
the model identifies as many actual positives as possible. High recall means that the model has a low false
negative rate, which is essential in applications where missing a positive case could have serious consequences™.

F1 Score is the harmonic mean of Precision and Recall. It provides a single metric that balances both concerns.

€)

F1 Score = 2 x (Precwlon X Recall)

Precision + Recall

The F1 Score is useful when you need to find a balance between Precision and Recall. It is particularly valuable
when the classes are imbalanced and one class is significantly rarer than the other. It provides a single measure
that accounts for both false positives and false negatives, making it a good indicator of the model’s overall
effectiveness in identifying positive instances without being biased by the majority class®®.
Accuracy is the ratio of correctly predicted observations to total observations.
TP + TN

A - 4
COUraCY = TP T TN + FP + FN @

where TN is True Negatives. Accuracy is a straightforward metric that provides an overall view of the model’s
performance. However, it can be misleading in cases of class imbalance. For example, if 95% of the data belongs
to one class, a model that predicts the majority class all the time will have high accuracy but poor performance in
terms of Precision, Recall, and F1 Score for the minority class. Thus, while accuracy gives a general performance
measure, it should be considered alongside the other metrics to get a full picture of model performance®.

Using these four metrics together provides a comprehensive evaluation of the model’s performance, ensuring
it performs well not only overall but also across different aspects of classification performance.

To assess human diagnostic performance, evaluators’ responses were analyzed to calculate true positives, false
positives, true negatives, and false negatives for each diagnostic category. Confusion matrices were constructed
to visualize the distribution of predictions across actual categories, providing insights into patterns of correct
and incorrect diagnoses. The matrices highlighted areas where human evaluators struggled most, particularly
when differentiating eczema from psoriasis or distinguishing dermatophytosis from other conditions. Statistical
p-values were calculated using two-proportion tests to evaluate whether differences in diagnostic accuracy
between evaluator groups—including interns and internists—were significant.

In parallel, the diagnostic performance of the deep learning model was evaluated using the same test dataset.
A confusion matrix was generated to compare its predictions with the ground truth labels. The deep learning
model’s confusion matrix was directly compared with those of interns and internists to identify areas where the
Al showed superior or inferior performance relative to human evaluators. Key performance metrics including
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overall accuracy, precision, recall, and F1 score were derived from all confusion matrices. One-proportion tests
were applied to assess statistically significant differences between AI and human performance across these key
diagnostic metrics.

All statistical analyses were conducted using MedCalc Statistical Software, version 22.013 (MedCalc Software
Ltd., Ostend, Belgium) and IBM Statistical Package for the Social Sciences (SPSS) Statistics, version 26 (IBM
Corp., Armonk, NY, USA).

Results

Performance of deep learning models in diagnosing skin lesions from images

To identify the CNN and Transformer architectures that performs best for skin lesion classification in skin images.
Table 2 presented the main parameters of sixteen models, which were considered during the selection process.
Batch Size represents the number of training examples used in a single iteration. The Loss Function measures the
error in the model’s predictions. The Optimizer is the algorithm used to update the model’s weights. Learning
Rate indicates the step size during each iteration, as the model seeks to minimize the loss function. Parameters
refer to the total number of learnable parameters in the model. Finally, Giga Floating Point Operations per
second (GFLOPs) reflect the computational complexity of the model. All models in the comparison use a batch
size of 4, ensuring a fair and consistent training process. They all employ the cross-entropy loss function and
the stochastic gradient descent optimizer with a learning rate of 0.001. This consistency allows for a direct
comparison of their inherent capabilities without variability in the training setup. We used the k-fold cross-
validation technique to avoid overfitting and random split bias. We set k to 5.

Table 3 presents the performance comparison of CNN and Transformer-based architectures on both training
and validation datasets for the classification of dermatophytosis, eczema, and psoriasis. The table includes
precision, recall, F1-score, and accuracy values for each class, as well as the overall classification performance
of each model. To make the results easier to follow, the models were grouped into three categories based on
validation accuracy: high-performing models (accuracy>0.900), moderate-performing models (accuracy
between 0.800 and 0.899), and low-performing models (accuracy<0.800). The high-performance group
comprised ten models—VGG19, SqueezeNet, ResNet-50, MobileNetV3, EfficientNetV2, ViT, Swin, DaViT,
MaxViT, and GC ViT—all of which achieved an accuracy of 0.900 or higher. This group included both advanced
CNNs and most Transformer-based architectures. Their strong performance highlights the ability of these
models to capture complex visual features from macroscopic skin images. Among them, Swin and ViT achieved
the highest accuracy scores, demonstrating the growing effectiveness of Transformer-based models in medical
image classification. Specifically, Swin and ViT achieved F1 scores above 0.82 for dermatophytosis, 0.87 for
eczema, and 0.97 for psoriasis, reflecting their consistent and robust performance across all target classes. The
moderate-performance group included five models: AlexNet, GoogLeNet, DenseNet-121, CvT, and FastViT-S12.
With accuracies ranging from 0.800 to 0.899, these models achieved acceptable performance but fell short of the
top-performing architectures. Although relatively efficient in terms of computational cost, they may have limited
ability to capture the subtle and complex visual patterns necessary for distinguishing between clinically similar
conditions, particularly dermatophytosis and eczema. The low-performance group contained only one model,

Dermatophytosis Eczema Psoriasis All classes
Method Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1 Accuracy
AlexNet 0.731 0.741 |0.735 | 0.815 0.796 | 0.805 | 0.968 0.972 | 0.970 | 0.838 0.836 | 0.837 | 0.896
VGG19 0.813 0.759 |0.783 | 0.843 0.877 | 0.858 | 0.981 0.982 |0.982 |0.879 0.873 10.874 | 0.923
GoogLeNet 0.686 0.919 |0.783 | 0.807 0.761 |0.773 | 0.991 0.898 | 0.937 |0.828 0.859 |0.831 | 0.871
SqueezeNet 0.707 0.811 | 0.755 | 0.850 0.773 1 0.809 |0.978 0.972 | 0.975 | 0.845 0.852 | 0.846 | 0.902
ResNet-50 0.731 0.903 | 0.806 | 0.934 0.810 | 0.867 |0.987 0.972 | 0.979 | 0.884 0.895 |0.884 | 0.925
DenseNet-121 | 0.585 0911 |0.691 | 0.825 0.789 | 0.794 | 0.987 0.792 | 0.857 | 0.799 0.831 |0.781 | 0.810
MobileNetV3 | 0.807 0.770 | 0.776 | 0.836 0.847 1 0.834 | 0.980 0.974 |0.977 | 0.874 0.864 |0.862 | 0.914
EfficientNetV2 | 0.731 0.922 | 0.809 | 0.892 0.861 |0.874 | 0.994 0.929 |0.959 |0.872 0.904 |0.881 | 0.913
ViT 0.835 0.814 |0.822 | 0.863 0.879 |0.870 | 0.976 0.974 |0.975 | 0.891 0.889 |0.889 | 0.928
Swin 0.845 0.819 |0.831 | 0.882 0.894 |0.888 |0.983 0.985 |0.984 | 0.904 0.899 |0.901 | 0.938
CvT 0.714 0.532 | 0.576 | 0.694 0.798 10.736 | 0.954 0.951 |0.952 |0.787 0.761 |0.755 | 0.851
DaViT 0.799 0.757 | 0.774 | 0.836 0.861 |0.847 |0.979 0.979 |0.979 | 0.871 0.866 | 0.867 | 0.918
MaxViT 0.798 0.749 | 0.766 | 0.813 0.871 |0.838 | 0.977 0.963 |0.970 | 0.863 0.861 | 0.858 | 0.909
GCViT 0.800 0.786 | 0.791 | 0.859 0.847 10.852 | 0.975 0.981 |0.978 | 0.878 0.872 | 0.874 | 0.921
FastViT-S12 0.704 0.692 | 0.696 | 0.749 0.814 |0.779 | 0.981 0.953 |0.967 | 0.811 0.820 |0.814 | 0.881
SHVIT-S1 0.582 0.254 |0.333 | 0.556 0.769 |0.642 | 0.915 0913 |0.914 | 0.684 0.646 | 0.630 | 0.777

Table 3. Performance comparison of CNN and Transformer-based architectures on the training and validation
datasets for classifying dermatophytosis, eczema, and psoriasis, along with overall classification performance.
Results in this table represent internal validation performance only. The results are shown as average values.
CNN, Convolutional Neural Network.
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SHVIT-S1, which achieved an accuracy of 0.777. Its relatively poor performance suggests that the model’s design
may not be well suited to this classification task.

Table 4 presents the test set performance of CNN and Transformer-based models, confirming the trends
observed during validation (Table 3). Overall, most models demonstrated consistent generalization, with top-
performing architectures retaining high accuracy and F1 scores across all classes. Swin and ViT, which achieved
the highest validation accuracy in Table 3, remained the best-performing models on the test set, both achieving
perfect or near-perfect scores for psoriasis (F1 = 1.000) and high F1 scores for dermatophytosis and eczema.
Their overall test accuracies were 0.967 and 0.960, respectively, demonstrating stable performance when applied
to unseen data.

Among the evaluated models, the Swin has a parameter count of 86.74 million and requires 21.10 GFLOPs,
placing it among the more resource-intensive models in the comparison. When compared with other
Transformer-based models, Swin demonstrates a balanced trade-off between model size and computational
demand. For instance, DaViT and GC ViT have slightly higher parameter counts (86.93 M and 89.29 M,
respectively), yet require more computation (30.56 and 27.78 GFLOPs). Similarly, ViT has a comparable
parameter count (85.80 M) but consumes more computational resources (24.04 GFLOPs), suggesting that
Swin is relatively more efficient in terms of design. On the other hand, lightweight Transformers such as CvT,
MaxViT, FastViT-S12, and SHViT-S1 operate with fewer than 20 million parameters and under 10 GFLOPs,
making them more suitable for environments with limited computational capacity—though typically with
some compromise in performance. Compared to CNN models, Swin requires higher resource consumption
than compact architectures like SqueezeNet (0.73 M, 1.47 GFLOPs), MobileNetV3 (1.52 M, 0.11 GFLOPs), and
GoogLeNet (5.60 M, 3.00 GFLOPs), but this is offset by its stronger classification performance in complex tasks
such as skin disease recognition.

Figure 4 presents confusion matrices for all CNN and Transformer-based models evaluated on the test
dataset for three-class skin condition classification. The color intensity in each cell represents the proportion of
predictions, with darker shades indicating higher frequencies. These matrices visualize both correct predictions
(diagonal elements) and misclassification patterns, providing insights into each model’s classification behavior.
The visualizations were generated using predictions from the best-performing fold, representing the highest-
performing results of each model during evaluation.

The analysis reveals notable performance differences across architectures. The Swin shows a perfectly
diagonal matrix, meaning all test cases were correctly classified with no misidentifications. This suggests Swin is
highly effective at distinguishing between challenging skin conditions—particularly between dermatophytosis
and eczema, which are frequently misclassified by both deep learning models and human observers. In contrast,
several CNN architectures exhibited varying degrees of classification confusion. AlexNet and GoogLeNet showed
substantial misclassification between dermatophytosis and eczema categories, while more recent architectures
like EfficientNetV2, MobileNetV3, and ResNet-50 demonstrated improved but imperfect performance
with occasional classification errors. Among other Transformer models, ViT, DaViT, and GC ViT generally
performed well but still showed some confusion between eczema and dermatophytosis classes. Notably, only
the Swin achieved perfect separation across all three diagnostic categories, highlighting its superior ability to
capture subtle visual distinctions in clinical skin images. As illustrated in Figure 4, the Swin achieved perfect
diagonal separation across all diagnostic classes, with no misclassifications observed. By contrast, several CNN

Dermatophytosis Eczema Psoriasis All classes
Method Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1 Accuracy
AlexNet 0.813 0.840 | 0.822 | 0.896 0.680 | 0.765 | 0.836 1.000 | 0.910 | 0.848 0.840 |0.832 | 0.840
VGG19 0.833 0.820 | 0.821 | 0.887 0.820 |0.846 |0.927 1.000 | 0.962 | 0.883 0.880 |0.876 | 0.880
GoogLeNet 0.810 1.000 | 0.894 | 0.945 0.760 | 0.836 | 1.000 0.940 | 0.965 | 0.918 0.900 | 0.898 | 0.900
SqueezeNet 0.842 0.820 | 0.827 | 0.861 0.820 |0.834 | 0.927 0.980 |0.951 |0.877 0.873 1 0.871 | 0.873
ResNet-50 0.808 1.000 | 0.893 | 1.000 0.760 | 0.863 | 1.000 1.000 | 1.000 | 0.936 0.920 |0.919 | 0.920
DenseNet-121 | 0.802 1.000 | 0.888 | 0.907 0.800 | 0.838 | 1.000 0.800 | 0.857 |0.903 0.867 | 0.861 | 0.867
MobileNetV3 | 0.881 0.880 | 0.879 | 0.863 0.860 | 0.860 |0.980 0.980 | 0.980 | 0.908 0.907 | 0.906 | 0.907
EfficientNetV2 | 0.821 1.000 | 0.901 | 1.000 0.800 | 0.888 | 1.000 0.980 | 0.989 | 0.940 0.927 10.926 | 0.927
ViT 0.897 1.000 | 0.945 | 1.000 0.880 | 0.935 | 1.000 1.000 | 1.000 | 0.966 0.960 | 0.960 | 0.960
Swin 0.925 0.980 | 0.951 | 0.980 0.920 |0.948 | 1.000 1.000 | 1.000 | 0.968 0.967 |0.967 | 0.967
CvT 0.795 0.640 | 0.692 | 0.789 0.600 | 0.661 |0.742 1.000 | 0.847 | 0.775 0.747 10.733 | 0.747
DaViT 0.962 0.900 |0.927 | 0.947 0.900 |0.919 |0.917 1.000 | 0.955 | 0.942 0.933 10.934 | 0.933
MaxViT 0.879 0.820 | 0.844 | 0.881 0.860 | 0.869 | 0.930 1.000 | 0.963 | 0.897 0.893 |0.892 | 0.893
GCViT 0.900 0.840 | 0.867 | 0.906 0.900 |0.898 |0.948 1.000 | 0.972 | 0.918 0.913 10.913 | 0913
FastViT-S12 0.874 0.720 | 0.783 | 0.832 0.880 | 0.851 |0.895 0.980 |0.935 | 0.867 0.860 | 0.857 | 0.860
SHVIT-S1 0.510 0.160 | 0.229 | 0.573 0.700 |0.619 |0.673 1.000 | 0.803 | 0.585 0.620 | 0.550 | 0.620

Table 4. Performance comparison of CNN and transformer-based architectures on the independent test
dataset for classifying dermatophytosis, eczema, and psoriasis, along with overall classification performance.
These results confirm generalizability on unseen data. The results are shown as average values. CNN,
Convolutional Neural Network.
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Fig. 4. Confusion matrices for CNN and Transformer models on three-class skin condition classification.

and Transformer models demonstrated residual confusion, particularly between eczema and dermatophytosis.
To complement these results, Figure 11 depicts the confusion matrix of physician responses, showing frequent
misclassification of eczema as psoriasis or dermatophytosis. Taken together with Figure 4, which demonstrates
perfect diagonal separation by the Swin, these findings underscore the contrast between Al and human evaluators,
while the model consistently achieved flawless classification across all categories, physicians which include both
interns and internists struggled most with eczema, often confusing it with other erythematous conditions. This
pictorial comparison highlights not only the superior accuracy of the Swin but also its potential to address
recurrent diagnostic blind spots in clinical practice. This visual comparison underscores the robustness of
the Swin relative to both other architectures and human evaluators. Although Swin and ViT have comparable
parameter counts (86.74M vs. 85.80M, respectively), Swin consistently outperformed ViT across all evaluation
metrics (Tables 3, 4). This performance gap can be attributed to Swin’s architectural innovations, particularly its
shifted window self-attention mechanism and hierarchical feature representation. While ViT applies global self-
attention at a single resolution, Swin introduces local window-based attention with overlapping regions through
shifting windows, which enables efficient modeling of both local and long-range dependencies. Furthermore,
Swin’s hierarchical design—progressively merging patches across layers—allows the model to capture multiscale
contextual features that are crucial in dermatological imaging, where lesions often exhibit fine-grained textures
and spatial variability. This design not only improves computational efficiency but also enhances the model’s
ability to focus on clinically meaningful regions, leading to improved classification performance across all skin
disease categories in our study. This result supports previous findings (Tables 3, 4), where Swin achieved the
highest F1 scores and accuracy, further confirming its robustness and precision in clinical image-based skin
disease classification.

Asmentioned above, we can conclude that the Swin consistently outperformed all other models across multiple
evaluation metrics. It achieved the highest test accuracy of 0.967 with strong F1 scores for all three conditions
(Tables 3, 4). Most importantly, Figure 4 shows that Swin was the only model to achieve perfect classification
with zero misclassifications, successfully distinguishing between the visually similar dermatophytosis and
eczema conditions that challenge other models. While Swin requires moderate computational resources (86.74M
parameters, 21.10 GFLOPs), it is more efficient than comparable Transformers like ViT and DaViT (Table 2).
This demonstrates Swin’s suitability for skin lesion classification tasks.
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Clinical interpretation and evaluation of Grad-CAM outputs

Purpose and interpretability of Grad-CAM

Grad-CAM is a widely used method for visualising which regions of an input image influence a model’s
prediction. In medical applications—where accountability and transparency are critical—such spatial attention
visualisations offer an interpretability layer that bridges deep learning outputs with clinician intuition. By tracing
the internal reasoning process of convolutional and Transformer-based models, Grad-CAM provides insight
not just into what was predicted, but why. In dermatology, where lesion localisation is diagnostic, Grad-CAM is
particularly valuable in assessing whether a model’s prediction is rooted in clinically meaningful regions. This
contextual interpretability is crucial for building trust in Al-assisted skin disease classification.

Observed attention patterns across model families
Figures 5, 6, 7, 8, 9 and 10 display Grad-CAM visualisations for 16 models (eight CNN-based and eight
Transformer-based) across three skin disease categories: dermatophytosis, eczema, and psoriasis. These
heatmaps show distinct patterns of spatial attention between architectural families. Among CNN-based models,
architectures such as AlexNet, GoogLeNet, DenseNet-121, and SqueezeNet were more prone to misclassification.
Their Grad-CAM visualizations often revealed attention directed toward irrelevant background or unaffected
skin regions—especially in conditions like dermatophytosis and eczema—suggesting a tendency to rely on
artefactual or contextual cues. Correct classifications in CNNs were generally associated with narrowly focused
red highlights on a portion of the lesion, whereas incorrect predictions frequently occurred when lesion areas
were neglected or highlighted in cooler colours. By contrast, Transformer-based models generally demonstrated
stronger alignment with clinically meaningful regions. Swin and ViT, in particular, consistently generated
accurate predictions with heatmaps focused squarely on lesion zones. Grad-CAM visualizations with clinical
annotations further illustrate this alignment, highlighting hallmark diagnostic cues such as silvery scales in
psoriasis, diffuse erythema in eczema, and the raised peripheral rim with central clearing in dermatophytosis.
These annotated comparisons reinforce that the highlighted regions correspond to features routinely used by
clinicians in diagnostic reasoning. Swin maintained precise attention on pathologic areas across all three disease
categories. Other Transformer models—such as DaViT, MaxViT, and GC ViT—also showed reliable localisation
but occasionally included surrounding non-lesional skin within their focus. Across the board, correct predictions
were associated with red-highlighted lesion centres, while failures typically involved dispersed or misplaced
focus. These findings underscore the critical role of spatial attention in dermatologic Al classification.

To move beyond architectural trends, we further examined how these attention patterns aligned with clinical
reasoning through structured expert review.

Clinical review of Grad-CAM outputs

To assess the clinical plausibility of the Grad-CAM visualisations, two board-certified dermatologists (C.W. and
C.C.) jointly reviewed a representative subset of Grad-CAM heat-maps through a structured discussion. The
reviewers assessed whether attention maps corresponded to key diagnostic features for psoriasis, eczema, and
dermatophytosis, and whether the visual patterns aligned with real-world clinical reasoning.

Overall, CNN models tended to produce narrower, more localized attention focused on high-contrast
features such as silvery scales or annular borders. These maps were generally easier to interpret but occasionally
failed to capture the full lesion extent, particularly for diffuse conditions like eczema. In contrast, Transformer
models demonstrated broader spatial coverage and were more likely to capture composite lesion patterns, such
as both peripheral rim and central clearing in dermatophytosis. However, this breadth sometimes came at the
expense of specificity, with occasional attention spillover into non-lesional skin or background artefacts.

The reviewers concluded that while CNN models are often more intuitive, Transformer models better mimic
holistic diagnostic strategies used in practice. A structured summary of these observations across all disease
categories and model types is provided in Table 5.

Performance of novices and experienced non-dermatologists in diagnosing skin lesions from
images

Among non-dermatologist physicians, internists demonstrated moderately higher diagnostic performance
than interns across all disease categories (see Supplementary Table S1, Figure 11). While both groups showed
similar trends in misclassification patterns, internists achieved higher recall and F1 scores in eczema and
dermatophytosis, likely reflecting their broader clinical experience.

Comparing the performance results between nondermatologists and the deep learning
model in classifying the skin diseases

Table 6 presents a performance comparison between 30 physicians (comprising interns and internists) and
the Swin model in diagnosing dermatophytosis, eczema, and psoriasis from clinical images. Across all disease
categories, Swin consistently outperformed human evaluators in precisions, recall and F1 score. Differences
between AI and human performance were statistically significant for nearly all metrics (all p < 0.001), except for
dermatophytosis precision (p = 0.467). Notably, the largest performance gap was observed in recall for psoriasis
(Swin: 1.000 vs. physicians: 0.716; p < 0.001; 95% CI: 0.722 to 0.974).

For dermatophytosis, the Swin outperformed physicians across all evaluation metrics, achieving a recall
(0.980), precision (0.925), and F1 score (0.951). In comparison, physicians attained a recall (0.737), precision
(0.890), and F1 score (0.774).

In the classification of eczema, the Swin demonstrated superior performance, achieving higher precision
(0.980), recall (0.920), and F1 score (0.948). In contrast, physicians recorded lower scores across all metrics, with
a precision of 0.864, recall of 0.694, and F1 score of 0.843.
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Fig. 5. Comparative Grad-CAM visualizations across CNN models for dermatophytosis case, illustrating focus
areas associated with model decisions.

For psoriasis, Swin obtained perfect scores in all three metrics including precision, recall, and F1 score (1.000
each). Physicians demonstrated lower performance, with a precision of 0.877, recall of 0.716, and F1 score of
0.807.

When evaluating overall classification performance across all classes, Swin again outperformed human
physicians, achieving a precision of 0.968, recall of 0.967, F1 score of 0.967, and overall accuracy of 0.967. In
comparison, physicians achieved 0.801 precision, 0.800 recall, 0.800 F1 score, and 0.867 accuracy.
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Fig. 6. Comparative Grad-CAM visualizations across Transformer-based models for dermatophytosis case,
illustrating focus areas associated with model decisions.
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Fig. 7. Comparative Grad-CAM visualizations across CNN models for eczema case, illustrating focus areas
associated with model decisions.
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Fig. 8. Comparative Grad-CAM visualizations across Transformer-based models for eczema case, illustrating
focus areas associated with model decisions.
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Fig. 9. Comparative Grad-CAM visualizations across CNN models for psoriasis case, illustrating focus areas
associated with model decisions.

Scientific Reports | (2026) 16:245 | https://doi.org/10.1038/s41598-025-29562-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/
Original
Lesion
ViT
CvT
DaViT
MaxViT
GC ViT
FastViT-S12

SHVIT-S1

Fig. 10. Comparative Grad-CAM visualizations across Transformer-based models for psoriasis case,
illustrating focus areas associated with model decisions.
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Disease

CNN models

Transformer models Expert summary

Psoriasis

Focused on silvery scale; localized attention on Outlined full plaque area; broader focus Both model types captured key plaque features;
hyperkeratotic zones; occasionally incomplete including shadows or non-lesional skin CNN more focal, Transformer more comprehensive

Eczema

Captured focal inflammation but often missed Highlighted diffuse erythema and excoriations; | Transformers better at capturing diffuse patterns;
peripheral cues better coverage of flexural skin CNN limited in scope

Dermatophytosis

Focused on segment of annular border; strong local | Highlighted both peripheral rim and central Transformers mimicked expert reasoning more
contrast recognition clearing closely; CNNs more selective

Table 5. Expert summary of Grad-CAM attention patterns across model types and skin diseases.
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Fig. 11. Comparative confusion matrices for interns and internists in diagnosing three skin conditions.

Discussion

The results of this study underscore the considerable promise of transformer-based architectures, particularly
the hierarchical Swin, as diagnostic tools for dermatological conditions such as psoriasis, dermatophytosis,
and eczema. In our experiments, Swin consistently outperformed every comparator model and the physician
cohort across precision, recall, and F1 metrics. These findings corroborate a growing body of evidence: Mohan
et al. reported that a Swin-based pipeline achieved a macro-F1 of 0.95 and 93 % accuracy on a 31-class skin-
disease dataset, clearly surpassing CNN baselines®, a recent systematic review likewise concluded that vision-
transformer families set the current state of the art in cutaneous-image recognition*! and a conference study
that applied Swin to 24 skin conditions documented> 5 % accuracy gains over ResNet-50 and EfficientNet
benchmarks*2. Collectively, these lines of evidence position hierarchical vision transformers as leading candidates
for real-world dermatological decision support and justify further prospective clinical validation.

Beyond architecture design, the integration of meta-heuristic optimization algorithms with deep learning
models has shown significant promise in a variety of medical-imaging tasks. Saber et al.** employed a
hybrid ensemble framework that combined deep networks with meta-heuristic algorithms for breast-tumor
classification, achieving notable improvements in diagnostic accuracy. Elbedwehy et al.*! likewise incorporated
advanced optimization strategies with neural networks to enhance kidney-disease detection, underscoring
the value of feature selection and hyper-parameter tuning. Khaled et al.** further demonstrated that coupling
adaptive CNNs with the grey-wolf optimizer boosted breast-cancer diagnostic performance. Taken together,
these studies suggest that optimization-driven enhancements could further strengthen models like Swin in
future dermatologic applications.

Moreover, Swin also outperformed non-dermatologists which are interns and internists, across key metrics
like diagnostic precision, recall, F1 scores, and overall accuracy. This performance demonstrates its ability to
bridge gaps in clinical expertise, particularly for complex and variable conditions like eczema.

An important characteristic of advanced Transformer and CNN models, such as Swin, can be observed
through the use of Grad-CAM, which provides insights into the regions of an image that the model prioritizes for
its predictions. Annotated Grad-CAM visualizations explicitly mark clinically meaningful features as confirmed
by expert dermatologists, demonstrating that the model’s attention is not arbitrary but grounded in features
fundamental to diagnosis. This alignment with clinical reasoning strengthens clinician trust and supports
integration of such models into medical education and teledermatology workflows. Apart from accurately
identifying lesioned areas, the model’s predictions align closely with clinical reasoning principles taught in
medical education. For instance, in cases of dermatophytosis, clinical training emphasizes recognizing a central
clearing with an active, raised border. Grad-CAM visualizations from Swin effectively focus on these diagnostic
features. For eczema, the attention maps highlight diffuse and inflamed patches, consistent with the condition’s
varied presentations and clinical complexity. For psoriasis, the Grad-CAM emphasize well-demarcated plaques
with scaling, features that are central to its clinical identification. These observed attentions mimicked the
reasoning patterns used by human experts. The insights provide a clear and interpretable basis for the model’s
predictions while ensuring consistency with established clinical practices.

The diagnostic superiority of Swin can be attributed to its extensive and diverse training dataset of 2,940
images, enabling it to capture subtle distinctions between dermatological conditions. While the combined
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dataset used in this study included images from both public sources (e.g., DermNet) and Thai patients, we did
not conduct a formal ablation analysis to isolate the impact of dataset origin on model performance. Informal
observations during model development indicated that networks trained solely on lighter-skinned datasets (e.g.,
DermNet) yielded reduced accuracy on images from Thai patients, particularly in conditions such as eczema,
where erythema presents less prominently. This underscores the need for training datasets that reflect a diversity
of skin tones and lesion morphologies to ensure generalizability. In contrast, non-dermatologists, whose clinical
training primarily involves history taking and physical examination, were limited in this study to interpreting
photographic images without access to contextual patient histories or additional diagnostic tools. This reliance
on static images highlights the advantage of data-driven deep learning models in standardizing and enhancing
diagnostic accuracy. Similar insights were reported in a study by Liu et al., which demonstrated that a deep
learning system achieved diagnostic accuracy comparable to dermatologists and surpassed that of primary care
physicians and nurse practitioners in classifying skin conditions?. Additionally, a study by Venkatesh et al.,
found that deep learning models exhibited higher diagnostic accuracy than non-dermatologists in dermatology,
further supporting the collaborative potential of Al in clinical workflows?’.

While internists outperformed interns, reflecting the value of clinical experience, their diagnostic accuracy
remained below that of Swin, particularly for conditions with complex presentations like eczema. This
discrepancy highlights the need for structured dermatology training to ensure high diagnostic accuracy.

The prevalence of dermatophytosis (20-25%) and eczema (up to 20%) compared to psoriasis (1-10%) may
influence diagnostic familiarity among non-dermatologists in real-world settings!*. Despite this, eczema
remains the most challenging condition for non-dermatologists due to its varied clinical presentations.

From the confusion matrix, interns show considerable difficulty in diagnosing eczema, with 22% of eczema
cases being misclassified as dermatophytosis and 10% as psoriasis. While interns perform relatively well in
identifying psoriasis (85%) and dermatophytosis (81%), the clinical variability of eczema introduces significant
errors. In contrast, internists demonstrate improved diagnostic accuracy, with 71% correct predictions for
eczema, though 20% of eczema cases are still misclassified as psoriasis. The challenges with eczema persist even
for experienced internists, highlighting its complexity in clinical practice. Figure 11 shows the confusion matrix
for novices and experts in diagnosing three skin diseases)

The ability of Swin to consistently outperform non-dermatologists across all conditions, supported by
Grad-CAM visualizations that enhance interpretability, underscores its potential as a transformative tool in
dermatology. These visualizations enhance clinician trust and facilitate Al integration into clinical workflows.
Furthermore, the challenges highlighted in this study, including reliance on photographic data and limited
contextual information, advocate for integrating deep learning models into dermatological training to
complement clinical expertise and improve patient outcomes. To translate these findings into practical
deployment, the Swin could serve as a triage or decision-support tool in telemedicine,assisting primary care
providers in identifying high-risk cases or confirming suspected diagnoses. For real-world deployment, model
explainability, clinician oversight, and medicolegal frameworks are essential to ensure safety and accountability.
Clear governance protocols and human-in-the-loop safeguards should be established to address diagnostic
liability and maintain clinician trust. These elements will be critical for transitioning AI systems like the Swin
from research to clinical implementation. These steps are essential to move from proof-of-concept to reliable
and safe adoption in everyday practice. In real-world workflows, the Swin’s interpretability via Grad-CAM
could be integrated as a visual overlay during telemedicine consultations or electronic health record systems,
allowing physicians to cross-check AI focus with clinical features. Such interpretability not only enhances
clinician trust but also provides educational value for trainees. To ensure patient safety, a human-in-the-loop
framework is envisioned, where ambiguous or low-confidence cases trigger clinician review, and user feedback
on Al-assisted decisions is collected to iteratively refine the model’s deployment. The model’s robustness and
interpretability make it an appealing candidate for deployment in general practice and telemedicine workflows.
However, the current study did not evaluate performance under real-world telemedicine conditions, such as
uncontrolled lighting, motion blur, or low-resolution images from patient-owned devices. These variables may
impact classification reliability and should be investigated in prospective validation. Additionally, the evaluation
of human performance was conducted as a pilot study using 30 clinical images assessed by 30 non-dermatologist
participants. While this design allowed for a direct comparison with the deep learning models, its limited sample
size may restrict statistical power and reduce the generalizability of findings. The human-AI comparison in
this study was intentionally designed as a pilot, using 30 clinical images and 30 non-dermatologist participants.
While this design allowed for a controlled, qualitative benchmark, its limited scale reduces statistical power
and restricts the generalizability of conclusions. Therefore, these findings should be considered exploratory
and hypothesis-generating rather than definitive. To address this limitation, future research will incorporate
larger sample sizes, a broader range of evaluator expertise, and more heterogeneous image sets to strengthen the
reliability and applicability of comparative analyses.

By incorporating findings from comparative studies, this discussion underscores the potential of Swin
and similar deep learning models to enhance diagnostic workflows in dermatology while addressing existing
challenges in clinical and Al integration

Strengths and limitations

This study offers several notable strengths. First, it utilized a diverse dataset drawn from a public source,
DermNet’ and a local Thai clinical dataset. This diversity enhances the model’s generalizability and ensures
representation across a wide range of dermatologic conditions. Second, the inclusion of Asian patients, who
generally have darker skin types than Caucasians!, increases the relevance of our findings for populations that
are often underrepresented in dermatologic Al studies. Third, all clinical images were captured using various
smartphone models under realistic conditions, reflecting the quality and variability typical of teledermatology
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environments. Lastly, model interpretability was addressed using Grad-CAM, which demonstrated that the
model consistently attended to clinically meaningful regions, providing transparency that may enhance clinician
trust and educational utility. Nevertheless, this study has limitations. Differences in skin pigmentation can alter
the visual characteristics of dermatologic lesions?, and both deep learning models and physicians have shown
reduced diagnostic accuracy in darker-skinned populations®. Additionally, to comply with the Thai Personal
Data Protection Act, we excluded lesions from the face, neck, and groin. While this approach was necessary for
ethical and legal compliance, it restricts the generalizability of our model to clinically important areas, such as
inverse psoriasis, seborrheic dermatitis, and intertriginous eczema®!. These anatomical sites often pose diagnostic
challenges due to overlapping morphologies, and their exclusion represents a meaningful limitation of this work.
Future studies should aim to incorporate such regions through carefully designed, privacy-compliant protocols
to enhance applicability in real-world practice. The human-AI comparison was conducted as a pilot study
with 30 clinical images reviewed by 30 non-dermatologists. While this design provided an initial benchmark,
the limited sample size reduces statistical power and generalizability. Additionally, the study did not evaluate
medicolegal risks associated with AI misdiagnosis or the operational implications of deploying such models
in clinical practice. This study did not evaluate performance under real-world telemedicine conditions, such as
uncontrolled lighting, motion blur, or low-resolution images from patient-owned devices. Device variability,
including differences in smartphone models, camera quality, and ambient lighting, can substantially affect
image appearance and diagnostic reliability. These factors limit direct applicability of our results to telemedicine
environments, underscoring the need for future validation under uncontrolled, real-world imaging conditions.

Future research should include larger, more diverse clinician cohorts and broader anatomical coverage,
validated under real-world telemedicine conditions. Moreover, efforts should be made to stratify performance
across skin phototypes and establish clinical oversight frameworks for safe AT deployment, including mechanisms
to flag uncertain or ambiguous cases. These steps are essential to ensure both the scalability and safety of AI-
assisted dermatologic diagnosis in routine care.

Conclusions

This study developed a deep learning framework leveraging CNN and Transformer architectures to classify
dermatophytosis, psoriasis, and eczema. Swin outperformed all models, demonstrating the highest accuracy
and F1 scores, minimal misclassification, and interpretable predictions via Grad-CAM, enhancing its clinical
applicability.

Swin also surpassed non-dermatologists in diagnostic performance, particularly for challenging conditions
like eczema, highlighting its potential as a diagnostic aid in primary care and telemedicine. The model’s robustness
across diverse datasets, including Thai skin phototypes, underscores its suitability for varied populations, though
its exclusion of facial, neck, and groin lesions limits generalizability.

These findings support integrating Al tools like the Swin Transformer into clinical practice to enhance
diagnostic accuracy and educate non-specialists. Further large-scale validation across diverse populations is
warranted.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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