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Medical image analysis is central to clinical decision-making, and recent advances in vision–language 
models (VLMs) have introduced promising capabilities for jointly processing visual and textual data. 
This study evaluates zero-shot VLMs against convolutional neural networks (CNNs) and classical 
machine learning (CML) models for polyp detection (CADe) and classification (CADx) using 2,258 
colonoscopy images from 428 patients with histopathological labels. We benchmarked 15 approaches 
including ResNet50, five CMLs (random forest, support vector machine, logistic regression, decision 
tree, Gaussian naive Bayes), two contrastive vision–language encoders (CLIP, BiomedCLIP), and 
seven frontier VLMs (GPT-4, GPT-4.1, GPT-4.1-mini, Gemma-3-27b, Qwen-2.5-vl-72b, Gemini-1.5-Pro, 
Claude-3-Opus). For polyp detection, the highest-performing VLMs (GPT-4.1 F1: 91.98%, GPT-4.1-
mini F1: 91.16%) matched CNN performance (ResNet50 F1: 91.35%), though substantial variability 
existed across VLMs (F1 range: 19.37% to 91.98%). For classification, CNNs substantially outperformed 
VLMs: ResNet50 achieved weighted F1 of 74.94% versus 55.07% for GPT-4.1-mini, with performance 
gaps widening dramatically for rare polyp subtypes where VLMs often achieved 0% F1. External 
validation on 75 images showed that while ResNet50 performance declined substantially, some VLMs 
demonstrated more stable cross-institutional performance. These findings establish a task-dependent 
performance hierarchy where VLMs match CNNs for detection but remain limited for classification, 
suggesting distinct clinical roles for each approach.
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VLM	� Vision language model
cVL	� contrastive vision-language encoders
AC	� Adenocarcinoma
TA	� Tubular adenoma
TVA	� Tubulovillous adenoma
VA	� Villous adenoma
HP	� Hyperplastic polyp
IP	� Inflammatory polyp

Colonoscopy remains the gold standard for colorectal cancer screening, yet its effectiveness is fundamentally 
limited by operator-dependent variability in polyp detection and characterization1,2. These limitations have 
motivated the development of artificial intelligence systems to assist clinicians during colonoscopy: computer-
aided detection (CADe) systems that help identify polyps in real time, and computer-aided diagnosis (CADx) 
systems that suggest the likely histological type based on visual appearance. Such tools aim to reduce missed 
lesions, improve diagnostic accuracy, and help standardize the quality of colonoscopy across different practice 
settings3.

Deep learning approaches have transformed colorectal cancer detection and diagnosis across multiple 
clinical applications. Convolutional neural networks (CNN) pretrained on large image datasets and fine-tuned 
on medical images have demonstrated robust performance not only for polyp detection and classification during 
colonoscopy, but also for histopathological subtyping, prognostic prediction from tissue samples, and treatment 
response assessment. Recent architectures including YOLO variants, enhanced U-Net models, and transformer-
based approaches have achieved detection sensitivities exceeding 90% and real-time processing capabilities 
suitable for clinical deployment4–9 (Table 1). However, the CNN paradigm imposes significant development 
constraints. Each new model requires extensive labeled training data specific to the target population and 
imaging equipment, iterative optimization of network architectures and hyperparameters, and validation across 
multiple institutions to ensure generalizability. These requirements make CNN development resource-intensive 
and create barriers to rapid adaptation as clinical needs or imaging technology evolve.

  
Advances in vision-language models (VLM) suggest an alternative approach that addresses data and 

development barriers. Contrastive Language-Image Pre-training (CLIP) demonstrated that joint training 
of visual and language encoders on large-scale image-text pairs enables zero-shot task performance through 
natural language prompts alone10. Unlike CNNs that require fine-tuning on labeled medical images to adapt 
pretrained features to specific tasks, CLIP-based models can be deployed directly through prompt specification. 
BiomedCLIP extended this framework to the biomedical domain through pretraining on 15 million figure-
caption pairs from PubMed Central11, improving medical imaging performance while maintaining zero-shot 
deployment. More recently, large VLM such asGPT-412, Claude-3-Opus13, and Gemini-1.5-Pro14 have integrated 
sophisticated visual encoders with transformer-based language models, enabling complex reasoning about 
medical images without any task-specific fine-tuning (Table 2)15–21. These models represent a fundamentally 
different deployment paradigm: rather than adapting model weights to each clinical task, the same pretrained 
model is applied across diverse applications through natural language instructions.

The potential advantages of zero-shot VLM for CADe and CADx are substantial. Eliminating the fine-tuning 
step removes the need for institution-specific labeled datasets and model optimization. Prompt-based interaction 
allows flexible task specification without retraining. Pretraining on billions of diverse images may confer 
robustness to the distribution shifts that degrade fine-tuned CNN performance across institutions. However, 
these theoretical advantages remain unvalidated for colonoscopy applications. Whether zero-shot VLMs can 
match the detection sensitivity of fine-tuned CNNs, how they perform across histological classification tasks 
of varying difficulty, whether they generalize better to external datasets, and how sensitive they are to prompt 
design are empirical questions with direct implications for clinical deployment strategies.

We systematically evaluated 15 computational approaches spanning classical machine learning (CML), 
CNN, contrastive vision-language encoders, and state-of-the-art VLMs for frame-level polyp detection 
and histological classification. Using 2,258 colonoscopy images with pathological confirmation and external 
validation on 75 images from an independent institution, we compared zero-shot VLM performance against 

First Author, Year VLM \Model Major Modality Performance/Contribution

Pecal, 20214 YOLOv3 + CSPNet, SiLU Gastroenterology, polyp 
detection Colonoscopy Improved YOLOv3/YOLOv4 with higher precision/recall; 

validated on large datasets, enhancing clinical usability.

Karaman, 2023b5 YOLOv5 + ABC optimization Gastroenterology, polyp 
detection Colonoscopy ABC-tuned hyperparameters and activations; 

outperformed baseline YOLOv5 in accuracy and speed

Karaman, 2023a6 Scaled-YOLOv4 + ABC Gastroenterology, polyp 
detection Colonoscopy First systematic YOLO optimization; +3% mAP and + 2% 

F1 across multiple variants.

Pecal and Karaboga, 20217 YOLOv4 + CSPNet, Mish, ensemble Gastroenterology, polyp 
detection Colonoscopy State-of-the-art detection with precision 96%, recall 97%, 

F1 96%; real-time applicability.

Narasimha Raju, 20259

Hybrid CNN (ResNet-50, 
DenseNet-201, VGG-16) + 
Transformer + Multi-class SVM + 
Grad-CAM

CRC (multi-class lesion 
detection) Colonoscopy

Achieved 98% accuracy, F1 = 0.98, precision = 97%, recall = 
99%. Addressed class imbalance, interpretability, and spatial 
complexity with explainable heatmaps; sets new benchmark 
for clinically interpretable AI-assisted colonoscopy

Table 1.  Overview of studies assessing the performance of deep learning models in medical imaging.
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fine-tuned CNNs and classical methods across both binary detection and multi-class classification tasks. We 
further investigated prompt engineering strategies, few-shot learning, computational requirements, and model 
interpretability to assess practical deployment considerations. Our results establish performance benchmarks 
across model families, reveal task-dependent capabilities and limitations, and provide evidence-based guidance 
for selecting appropriate approaches based on clinical requirements and available resources.

Methods
Ethical consideration
This study received ethical approval from the Institutional Review Board at the Research Ethics Committees of 
the Research Institute for Gastroenterology & Liver Diseases at Shahid Beheshti University of Medical Sciences 
(IR.SBMU.RIGLD.REC.1401.043). In accordance with the principles outlined in the Helsinki Declaration, 
patient confidentiality and welfare was maintained throughout the study. All procedures involving patient data 
and images were conducted using standardized protocols to safeguard patient privacy, with measures in place 
to anonymize data and prevent identification. Explicit informed consent was obtained from all participants, 
affirming their voluntary participation in the study.

The external dataset used in this study was anonymized and obtained under a signed data agreement. The 
dataset provider had secured prior ethical approval for its collection and use, and is registered in National 
Registry of Biobanks (B.0000140) and ISCIII Biomodels and Biobanks Platform (PT23/00013).

Experimental framework
This investigation followed a retrospective, comparative methodological design to evaluate multiple artificial 
intelligence approaches for colonoscopy image analysis. We adhered to Consolidated reporting guidelines for 
prognostic and diagnostic machine learning modeling studies22 and the transparent reporting of a multivariable 
prediction model for Individual prognosis or diagnosis (TRIPOD-AI)23 guidelines for model development and 
results reporting, ensuring methodological transparency and reproducibility. We structured our investigation as 
a three-phase experimental program designed to systematically evaluate model performance:

	1.	 Parameter Optimization Phase: We systematically identified optimal hyperparameters for each model 
architecture through comprehensive grid search methodologies, establishing optimized configurations for 
subsequent performance evaluation.

	2.	 Detection Evaluation Phase: We conducted comparative assessments of model performance in identifying 
polyp presence (CADe functionality), utilizing standardized metrics, including F1 scores and area under the 
receiver operating characteristic curve (AUROC).

	3.	 Classification Analysis Phase: We performed systematic evaluation of model efficacy in correctly classifying 
polyp pathology types (CADx functionality) across six distinct histological categories, employing weighted 
evaluation metrics to account for class distribution.

This structured approach enabled comprehensive, controlled comparison across diverse computational 
methodologies while maintaining consistent evaluation standards.

First Author, 
Year VLM \Model Major Modality Performance/Contribution

Pilia, 2024; and 
Hardin, 202415 GPT-4 Dermatology

Image/ Scenario
Prompt /Image +
Scenario
Prompt

GPT-4 V accuracy: image-only: 54%/ text-only scenarios: 89%/ both image + scenario: 
89%

Laohawetwanti, 
202416 custom GPT-4 Histopathology Colorectal polyp 

photomicrographs
GPT-4 accuracy: 16% for non-specific changes / 36% for tubular adenomas
Sensitivity: 74% for adenoma detection
specificity: 36% for adenoma detection

Chen, 202317 GPT-4 V Internal 
medicine COVID-19 lung X-ray GPT4-V accuracy: ranged 72% to 85% based on different prompts.

Han, 202318 GPT-4 General 
Medicine

Clinical cases from the JAMA 
Clinical Challenge and the 
NEJM Image Challenge

GPT-4 V accuracy: 73.3% for JAMA and 88.7% for NEJM

Xu, 202419 GPT-4 ophthalmology various ocular imaging 
modalities

Examination
Identification :95.6%
Lesion Identification:25.6%
Diagnosis
Capacity:16.1%
Decision Support:24%

Yang, 202320 GPT-4 General 
Medicine USMLE with Image

For questions with images: 86.2%, 73.1%, and 62.0% on USMLE, DRQCE, and AMBOSS.
For questions with image, GPT-4 achieved an accuracy of 84.2%, 85.7%, 88.9% in Step1, 
Step2CK, and Step3 of USMLE questions

Jin, 202421 GPT-4 General 
Medicine

Clinical cases from NEJM 
Image Challenges + scenario 
prompt

GPT-4 accuracy: 81.6%, which outperformed physicians and medical students.

Table 2.  Overview of studies assessing the performance of vision Language models in medical imaging.
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Dataset - Characteristics
Patient population and data collection
We examined colonoscopy data collected between December 2022 and April 2023 at Taleghani Hospital’s 
gastroenterology clinic and Behbood clinic. The study population comprised 428 patients (mean age: 53 ± 14 
years; 48.6% male) who underwent colonoscopy for primary colorectal cancer screening, post-polypectomy 
surveillance, evaluation following positive fecal immunochemical tests, or investigation of gastrointestinal 
symptoms.

All procedures were performed by gastroenterologists with extensive experience (> 2,000 screening 
colonoscopies conducted). The endoscopists assessed bowel preparation quality using the validated Boston 
Bowel Preparation Scale and confirmed cecal intubation through identification of the ileocecal valve and 
appendix orifice.

Image collection and histopathological assessment
We compiled a comprehensive image dataset consisting of 1,129 colon polyp images and 1,129 randomly selected 
normal colon images (from an original pool of 6,046) to address class imbalance. The initial classification was 
derived from procedure pathology reports, followed by an expert review of stored images by an experienced 
gastroenterologist (PKM) who assigned final labels.

Tissue samples underwent standard histopathological processing, including formalin fixation, paraffin 
embedding, sectioning (4–5 microns thick), and hematoxylin-eosin staining. Histological classification followed 
established criteria, with assessment of cellular atypia, glandular architecture, and dysplasia degree24. Our final 
dataset comprised 2,258 images from 428 patients, including tubular adenoma (n = 771), hyperplastic polyp (n = 
138), adenocarcinoma (n = 79), tubulovillous adenoma (n = 59), inflammatory polyp (n = 45), villous adenoma 
(n = 36), and normal colon (n = 1,129). Complete dataset characteristics are provided in Table 3.

External dataset for validation
Sample images and anonymized patient data used in this study were obtained from the PICCOLO database of 
the Basque Biobank (www.biobancovasco.bioef.eus), which is registered in the National Registry of Biobanks 
(B.0000140) and integrated into the ISCIII Biomodels and Biobanks Platform (PT23/00013). This dataset 
contains 3433 images from clinical colonoscopy videos, including white light and narrow band imaging (NBI) 
images, from colonoscopy procedures in human patients. It includes 76 different lesions from 48 patients. We 
selected a total of 75 images, comprising 9 adenocarcinomas, 50 adenomatous polyps, and 16 hyperplastic 
polyps from white light images.

Since the external dataset contains no normal images and only three distinct polyp classes, we adapted our 
internal dataset by selecting and organizing it in the same way, allowing for a consistent comparison between 
internal and external datasets.

Image preprocessing and data augmentation
We implemented a comprehensive preprocessing pipeline to optimize image quality and enhance model training. 
All images underwent uniform resizing to 300 × 300 pixels, followed by normalization to standardize pixel value 
distribution. To enhance model robustness and generalizability, we applied a systematic augmentation protocol 
incorporating horizontal and vertical mirroring to diversify polyp orientation representation, brightness 
variations to simulate diverse lighting conditions, Gaussian blur application to replicate optical aberrations, 
additive Gaussian noise to build resilience against image artifacts, and linear contrast adjustments to enhance 
structural differentiation. This augmentation strategy yielded a four-fold expansion of the effective training 
dataset, simultaneously enhancing model exposure to diverse image acquisition parameters and reducing 
overfitting to institution-specific imaging characteristics.

Category Case (Total) Train Test Control (Total) Train Test

Patients (n) 237 191

Age (mean ± SD) 55 ± 13 50 ± 14

Male (n, %) 130 (54.8%) 78 (40.8%)

Images (n) 1232 1025

Normal (n) 82 22 805 220

Adenocarcinoma (n) 66 13 - -

Tubular adenoma (n) 650 121 - -

Tubulovillous adenoma (n) 48 11 - -

Villous adenoma (n) 30 6 - -

Hyperplastic polyp (n) 116 22 - -

Inflammatory polyp (n) 38 7 - -

Table 3.  Characteristics of the dataset at both patient and image levels.
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Model development and configuration
Classical machine learning approaches
We implemented five distinct classical machine learning algorithms, each optimized through systematic 
hyperparameter tuning (Table 4). For the Decision Tree Classifier, we employed a comprehensive grid search 
across multiple parameters, including criterion (‘gini’, ‘entropy’), max_depth (None, 10, 20, 30), min_samples_
split (2, 5, 10), and min_samples_leaf (1, 2, 4). The optimal configuration identified was criterion=’entropy’, 
max_depth = 20, min_samples_leaf = 2, and min_samples_split = 2. For the Random Forest Classifier, our 
hyperparameter optimization encompassed n_estimators (50, 100, 200), max_depth (None, 10, 20, 30), 
min_samples_split (2, 5, 10), and min_samples_leaf (1, 2, 4). The optimal configuration was determined to 
be n_estimators = 200, min_samples_leaf = 1, min_samples_split = 10, and random_state = 42. With the Support 
Vector Machine (SVM), we systematically evaluated parameter combinations including C (0.1, 1, 10), kernel 
(‘linear’, ‘rbf ’, ‘poly’), and gamma (‘scale’, ‘auto’). The optimal configuration identified was kernel=’rbf ’, C = 10, 
gamma=’scale’, probability = True, and random_state = 42. For Logistic Regression, our grid search evaluated 
C values (0.1, 1, 10) and solver options (‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’). The optimal configuration 
was determined to be C = 0.1, solver=’sag’, and random_state = 42. The Gaussian Naive Bayes algorithm was 
implemented with default parameters as it does not feature adjustable hyperparameters.

Convolutional neural network: Resnet 50
We implemented ResNet50 based on its demonstrated superior performance in medical image classification 
tasks25. To optimize performance, we conducted systematic hyperparameter tuning via GridSearchCV, 
evaluating learning_rate (0.01, 0.1, 1), epochs (5, 10, 15), and batch_size (32, 64). The grid search involved 
dividing the dataset into training, validation, and testing subsets, training the model on various hyperparameter 
combinations, and using cross-validation to evaluate performance and prevent overfitting. The optimal 
configuration was determined to be learning_rate = 0.01, epochs = 15, and batch_size = 32.

Contrastive multimodal encoders
We evaluated two specialized contrastive learning models for our analysis. CLIP represents a general-purpose 
multimodal model that associates images with corresponding textual descriptions through dual visual and 
textual encoders trained on 400 million image-text pairs10. We implemented the ViT-B/32 variant for zero-
shot evaluation in our experimental framework. Additionally, we assessed BiomedCLIP, a domain-specialized 
adaptation of CLIP that underwent pretraining on PMC-15 M, a dataset comprising 15 million biomedical 
figure-caption pairs from PubMed Central publications11. This biomedical specialization potentially enhances 
performance for medical imaging applications, making it particularly relevant for our colonoscopy image 
analysis.

General-Purpose vision Language models
We evaluated seven state-of-the-art VLMs as part of our comprehensive assessment. GPT-4 represents an 
enhanced iteration of OpenAI’s GPT-4 model that integrates advanced visual processing capabilities, enabling 
interpretation of and response to image inputs26. In addition, we assessed the performance of state-of-the-art 
OpenAI models, namely GPT-4.1 and GPT-4.1-mini. We also included Claude-3-Opus, developed by Anthropic, 
which builds upon their Claude architecture with enhanced visual question answering capabilities13. The fifth 
and sixth models in our evaluation was Gemini-1.5-Pro, Google’s multimodal foundation model designed for 
versatile tasks including visual comprehension, classification, and content generation across modalities14 and 
Gemma-3-27B. The last model in our evaluation was Qwen-2.5-VL-72B. These general-purpose models were 
evaluated without domain-specific fine-tuning to assess their zero-shot capabilities in medical image analysis.

We utilized the web-based API interface of GPT-4 (gpt-4-1106-vision-preview; Accessed: May 2024 via API), 
GPT-4.1 (Created Apr 14, 2025; Accessed: August 2025 via API), GPT4.1-mini (Created Apr 14, 2025; Accessed: 
August 2025 via API), Claude-3-Opus (claude-3-opus-20240229; Accessed: May 2024 via API ), Qwen-2.5-vl-
72B (Created Feb 1, 2025; Accessed: August 2025 via API), Gemma-3-27B (Created Mar 12, 2025; Accessed: 
August 2025 via API) and Gemini-1.5-Pro (gemini-1.5-pro-001; Accessed: June 2024 via Google interface),. 

Model Name Hyperparameters Best Hyperparameters Best Accuracy

Decision Tree criterion (‘gini’, ‘entropy’)max_depth (None, 10, 20, 30)
min_samples_split (2, 5, 10)min_samples_leaf (1, 2, 4)

criterion=’entropy’
max_depth = 20min_samples_split = 2
min_samples_leaf = 2

0.6609

Random Forest
n_estimators (50, 100, 200)max_depth (None, 10, 20, 30)
min_samples_split (2, 5, 10)
min_samples_leaf (1, 2, 4)

n_estimators = 200
max_depth = None
min_samples_leaf = 1min_samples_split = 10random_state = 42

0.7707

Support Vector Machine
C (0.1, 1, 10)
kernel (‘linear’, ‘rbf ’, ‘poly’)
gamma (‘scale’, ‘auto’)

C = 10
kernel=’rbf ’
gamma=’scale’

0.7780

Logistic Regression C (0.1, 1, 10)
solver (‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’)

C = 0.1,
solver =’sag’ 0.7512

Resnet 50
learning_rate (0.01, 0.1, 1)
epochs (5, 10, 15)
batch_size (32, 64)

learning_rate = 0.01,
epochs = 15,
batch_size = 32

0.8842

Table 4.  Hyperparameter Tuning.
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Approximately 15% of our test dataset was allocated for the parameter optimization phase, while the remaining 
85% was used for the detection and classification evaluation phase. All experiments were conducted with 
standardized parameters (temperature = 1.0, maximum tokens = 512, tool calls disabled, random seed = 123) to 
ensure consistent evaluation conditions. We renamed all image file names to avoid any data leakage from the 
image metadata.

To assess the impact of prompt optimization, we first used the following raw prompt in a chat: “What is this 
image?” accompanied by the image. Subsequently, in the same chat, we asked: “What is the pathology class of the 
polyp? Give me only one answer.” In a separate chat, we then posed this engineered prompt:

“As an esteemed gastroenterologist specializing in colonoscopy evaluation, your expertise is crucial 
in meticulously assessing a provided colonoscopy image. Your task is to discern and characterize any 
irregularities present across the colonic mucosa, paying close attention to morphology, color variations, and 
vascularity patterns. Drawing upon your wealth of experience, construct a comprehensive list of potential 
diagnoses, including but not limited to inflammatory bowel disease, colorectal polyps, diverticulosis, and 
colorectal cancer. Your discerning analysis and diagnostic acumen will guide subsequent clinical decisions, 
emphasizing the importance of accurate interpretation and effective communication in delivering optimal 
patient care.”

This was followed by the image. Then, in the same chat, we used the prompt:

“Analyze the provided image and select one of the following options that accurately describes the patient’s 
diagnosis:

	1.	 normal.
	2.	 adenocarcinoma.
	3.	 adenomatous-tubular polyp.
	4.	 adenomatous-tubulovillous polyp.
	5.	 adenomatous-villous polyp.
	6.	 hyperplastic polyp.
	7.	 inflammatory polyp.”

The optimized prompt was developed through a human-in-the-loop refinement process whereby candidate 
variations were generated using GPT-4, informed by prompt engineering techniques adapted from validated 
gastroenterology-specific methodologies27. These techniques included contextual embedding (providing task-
specific domain context), expert mimicry (emulating clinical specialist reasoning patterns), chain-of-thought 
reasoning (eliciting stepwise analytical processes), exemplar anchoring (supplying representative clinical 
scenarios), and constrained output formatting (defining structured response schemas). A domain expert 
subsequently reviewed and refined the candidate to produce the final optimized prompt.

Exploring Few-Shot injection impact on General-Purpose vision Language models
For few-shot learning, we selected representative images directly from the training dataset to serve as illustrative 
examples for the model. Specifically, we curated two sets of images with corresponding labels. The first set (1 
image for ‘no-polyp’ and 1 image for ‘polyp’) focused on distinguishing between polyp and non-polyp cases, 
providing general guidance on the presence or absence of polyps. The second set (one image for ‘normal’ and one 
image for each polyp subtypes) concentrated on specific pathology classes. Each few-shot example consisted of 
an image paired with a descriptive label, and these were included in the prompt to the model to facilitate accurate 
and informed predictions on unseen test images. We applied few-shot learning to recently released, state-of-the-
art VLMs (GPT-4.1, GPT-4.1-mini, Qwen-2.5-vl-72b and Gemma-3-27b).

Performance evaluation
We developed an approach that converts unstructured text into structured classifications using GPT-4 to 
facilitate the semi-automated evaluation of textual outputs. The model was configured with a temperature setting 
of 0 and enabled to generate structured JSON outputs.

The extraction system was designed to categorize VLM responses into predefined labels with explicit handling 
of uncertain or ambiguous cases. For polyp detection, the system classified responses into: (1) “Human evaluation 
needed: I am unsure,” (2) “Human evaluation needed: More than one diagnosis is selected, or no option is 
selected,” (3) “The unstructured answer selected: No polyp is detected in the image,” or (4) “The unstructured 
answer selected: A polyp is detected in the image.” For polyp classification, an additional category was included: 
(5) “The unstructured answer selected: The polyp type is classified as {polyp_type in polyp_types}.”

This structured extraction approach enables automated classification while flagging ambiguous or uncertain 
cases for human review, ensuring accuracy in the evaluation process. The system processes free-text responses 
by identifying key diagnostic terminology, matching it to predefined categories, and assigning confidence scores. 
Responses containing hedging language (“possibly,” “might be,” “unclear”) or multiple conflicting diagnoses 
were automatically flagged for human review.

To validate this approach, we manually reviewed a random sample of 50 response-extraction pairs. GPT-4 
correctly extracted and labeled all 43 unambiguous responses while appropriately flagging 7 cases requiring 
human evaluation, demonstrating 100% accuracy for clear cases and appropriate conservative handling of 
ambiguous outputs. All flagged cases were subsequently reviewed by a clinical expert (PKM) to assign final 
labels.
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Statistical analysis
We performed comprehensive statistical analysis using Python (version 3.11.5), employing standardized machine 
learning evaluation methodologies. We implemented the one-vs-all strategy for multiclass classification scenarios 
to enable binary performance metrics for each class. We selected the F1 score as our primary evaluation metric 
due to its balanced consideration of both precision and recall, making it particularly suitable for our dataset 
where class imbalance was present, especially in the polyp classification tasks where some pathology types had 
limited representation.

Performance was evaluated using multiple complementary metrics: F1 scores to balance precision and 
recall considerations; AUROC to assess discriminative capability; confusion matrices to visualize classification 
patterns and error types; and weighted metrics to account for class imbalance in overall performance assessment. 
For weighted F1 scores in polyp classification tasks, we calculated values based on the proportion of each polyp 
type in the test dataset, ensuring that performance metrics appropriately reflected the distribution of classes in 
clinical settings.

TiLense: importance of tiles for vlm’s Zero-Shot polyp detection
This proposed approach seeks to identify and visualize key image tiles in vision-language tasks by assessing the 
significance of each tile through frequent responses across multiple prediction attempts. In contrast to complex 
methods, it focuses on a single, dominant answer instead of the original model probability. The procedure involves 
pinpointing the primary answer, evaluating tile significance, and then generating a heatmap to showcase these 
important areas. This model-agnostic unsupervised technique elucidates essential regions in VLM classification 
by juxtaposing tile-based results with a singular base answer after N iterations. By highlighting areas where 
significant variations occur, it uncovers which sections of an image most influence model predictions, which is 
beneficial for evaluation and improvement. We refer to this method as “TiLense” due to its capacity to highlight 
importance across image tiles for zero-shot prediction tasks.

We implemented this tile masking technique to showcase GPT-4.1 and GPT-4’s vision capabilities in zero-
shot prediction tasks across four scenarios: the presence of a polyp, a polyp in a challenging background, a 
standard image, and a standard image in a complex background. A systematic sliding window approach masked 
specific regions of the images (see Fi.g. 3a). The original and masked images were evaluated by GPT-4 using a 
standardized prompt, with a temperature setting of 1, a maximum token limit of 300, and no specified seed value, 
with the process repeated five times to create response distributions. The base answers were established through 
majority voting. The output is represented as a heatmap, where each tile is colored according to its impact on 
altering the base answer. Since tiles can overlap, we scale each tile from 0 to 1, coloring them from white to red.

Libraries and local computing
For our VLM API calls, we used Python 3.11.5 in combination with the “requests” library, enabling efficient 
interaction with computational resources. Local experiments for CMLs and ResNet50 training and testing were 
conducted on a laptop equipped with a Ryzen 7–4800 H CPU and 16 GB of RAM, where we employed the scikit-
learn and TensorFlow libraries for model implementation and evaluation.

Results
Model optimization
Our initial experimental phase focused on optimizing model configurations and prompt strategies for VLMs. 
We observed that domain-specific prompts consistently outperformed simple queries across all VLMs tested. 
For polyp detection, the smallest improvement was observed with Gemini-1.5-Pro (F1: from 0.715 to 0.731; 
+2.2%), while the largest gain was achieved by Qwen-2.5-vl-72b (F1: from 0.531 to 0.802; +51.0%). For polyp 
classification, the minimum improvement was seen in Claude-3-Opus (weighted F1: from 0.112 to 0.147; 
+31.2%), whereas the maximum improvement occurred with Qwen-2.5-vl-72b (weighted F1: from 0.008 to 0.502; 
+6175.0%). Table 5 provides a detailed comparison of performance improvements across prompting strategies, 
which formed the foundation for our subsequent analyses and mention prompt engineering techniques that 
we used. Supplementary Figures S1 and S2 present the confusion matrices of answers for polyp detection and 
classification, respectively.

Polyp detection performance (CADe)
Polyp detection performance established a clear hierarchical distribution across models, as demonstrated by 
confusion matrices (Fig. 1) and F1 scores (Table 6). GPT-4.1 achieved the highest performance (F1: 91.98%), 
closely followed by ResNet50 (F1: 91.35%) and GPT-4.1-mini (F1: 91.16%), demonstrating that latest-generation 
VLMs can match task-specific CNNs for binary detection. BiomedCLIP demonstrated strong results (F1: 
88.68%), outperforming general CLIP (F1: 68.39%) by more than 20%. Traditional machine learning and earlier 
VLMs formed the next tier: Random Forest and GPT-4 (both F1: 81.02%), SVM (F1: 77.92%), and Logistic 
Regression (F1: 72.80%). Moderate capability was observed for Decision Tree (F1: 68.10%), Qwen-2.5-vl-72b 
(F1: 68.59%), Gemma-3-27b (F1: 69.29%), and Claude-3-Opus (F1: 66.40%). The lowest detection capability was 
exhibited by Gemini-1.5-Pro (F1: 19.37%) and Gaussian Naive Bayes (F1: 10.22%). Confusion matrices for all 
models are presented in Fig. 1. AUROC analysis (Fig. 2) reinforced these findings, with top performers achieving 
values above 0.95.

We applied the TiLense tile-based importance mapping method to elucidate model decision-making 
processes for GPT-4.1 and GPT-4. Figure  3 presents attention heatmaps across four diagnostically relevant 
scenarios: normal mucosa (3b), standard polyp (3c), poorly prepared normal mucosa (3d), and subtle polyp 
(3e). GPT-4.1 demonstrated clinically appropriate attention allocation, with high-importance tiles accurately 
localizing polyp regions in clear cases (3c) and maintaining focus on pathologically relevant features across 
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varying image quality conditions. In contrast, GPT-4 exhibited attention misallocation in challenging scenarios, 
incorrectly prioritizing artifacts in poorly prepared images (3d) and displaying dispersed attention patterns 
for subtle lesions (3e), revealing susceptibility to image quality degradation and low-contrast pathology. These 
attention pattern differences align with the models’ respective classification accuracies, suggesting that GPT-4.1’s 
performance gains reflect improved capacity to focus on clinically meaningful anatomical features rather than 
confounding visual elements.

Polyp classification performance (CADx)
Classification performance revealed a different hierarchy than detection, with CNNs substantially outperforming 
VLMs for fine-grained histological discrimination (Fig. 4). ResNet50 achieved the highest weighted F1 (74.94%), 
establishing a 20-percentage-point advantage over the best VLMs: GPT-4.1-mini (55.07%) and GPT-4.1 (54.74%). 
SVM was the only other model exceeding 55% (55.63%). Mid-tier performers included Random Forest (43.67%), 
Qwen-2.5-vl-72b (42.13%), GPT-4 (41.18%), Logistic Regression (40.32%), and Decision Tree (40.42%). Earlier 
VLMs and contrastive encoders showed weaker performance: Gemma-3-27b (35.50%), BiomedCLIP (27.74%), 
Claude-3-Opus (25.54%), Gemini-1.5-Pro (6.17%), and CLIP (1.69%). Notably, BiomedCLIP’s strong detection 
(88.68%) did not translate to classification (27.74%), suggesting zero-shot classification of subtle histological 
variants is substantially more challenging. Table 6 presents overall weighted F1 scores, while Supplementary 
TableS1 details performance by polyp type.

Tubular adenoma (TA) images (650 training, 121 test) achieved the most consistent classification performance 
across models. The best results were obtained by ResNet50 (F1: 0.85), followed by Support Vector Machine (F1: 
0.68) and Random Forest (F1: 0.64). Among VLMs, GPT-4 (F1: 0.58) outperformed Claude-3-Opus (F1: 0.33). 
However, other recent VLMs such as Gemma-3-27B (F1: 0.48) and Qwen-2.5-VL-72B (F1: 0.57) showed weaker 
performance. Notably, the latest multimodal models, GPT-4.1 (F1: 0.71) and GPT-4.1-mini (F1: 0.73), narrowed 
the gap with CNN and CML methods, underscoring rapid progress in VLM-based polyp subtype recognition.

Adenocarcinoma (AC) images (66 training, 13 test) were best classified by GPT-4.1-mini (F1: 0.69), closely 
followed by ResNet50 (F1: 0.67); GPT-4.1 (F1: 0.61) trailed both. Among other models, BiomedCLIP (F1: 0.56) 
and SVM (F1: 0.45) performed reasonably, while tree-based methods were low (Decision Tree: 0.06; Random 
Forest: 0.00). Other VLMs were modest: GPT-4 (F1: 0.30), Qwen-2.5-VL-72B (F1: 0.25), Gemma-3-27B (F1: 
0.24), Claude-3-Opus (F1: 0.19), Gemini-1.5-Pro (F1: 0.00).

Hyperplastic polyp (HP) images (116 training, 22 test) presented a challenging classification task. Among 
CML methods, SVM (F1: 0.31) and Decision Tree (F1: 0.22) outperformed Random Forest (F1: 0.08), Logistic 
Regression (F1: 0.07), and Gaussian Naive Bayes (F1: 0.07). The CNN ResNet50 achieved the highest overall 
performance with an F1 of 0.49, highlighting the strength of deep learning for this subtype. VLMs generally 
performed poorly: GPT-4 and GPT-4.1-mini (F1: 0.00), Gemini-1.5-Pro (F1: 0.00), while GPT-4.1 (F1: 0.14), 
Claude-3-Opus (F1: 0.14), Qwen-2.5-vl-72b (F1: 0.09), and Gemma-3-27b (F1: 0.05) performed slightly better. 
Among contrastive VLMs, BiomedCLIP (F1: 0.21) outperformed CLIP (F1: 0.04) but still lagged behind CNN 
and CML models.

Prompt Engineering 
Technique GPT-4 Claude-3-Opus Gemini-1.5-Pro GPT-4.1 GPT-4.1mini Qwen-2.5-vl-72b

Gemma-
3-27b

F1 score 
(change) F1 score (change) F1 score (change)

F1 score 
(change)

F1 score 
(change) F1 score (change)

F1 score 
(change)

Polyp 
Detection Raw Prompta 0.636 (ref) 0.266 (ref) 0.715 (ref) 0.915 (ref) 0.915 (ref) 0.531 (ref) 0.652 

(ref)

Polyp 
Detection

Contextual Embedding,
Expert Mimicry,
Chain of Thought,
Anchoring with 
Examplesb

0.748 
(+ 17.6%) 0.458 (+ 72.2%) 0.731 (+ 2.2%) 0.935 

(+ 2.2%) 0.956 (+ 4.5%) 0.802 (+ 51.0%) 0.798 
(+ 22.4%)

Polyp 
Classification Raw Promptc 0.126 (ref) 0.112 (ref) 0.0 (ref) 0.156 (ref) 0.169 (ref) 0.008 (ref) 0.190 

(ref)

Polyp 
Classification Constrained Outputd 0.548 

(+ 434.9%) 0.147 (+ 31.2%) 0.437 (NA) 0.594 
(+ 280.7%) 0.711 (+ 320.7%) 0.502 (+ 6175.0% 0.350 

(+ 84.2%)

Table 5.  Impact of prompt engineering on vision Language model performance. a: “What is this image?” b: “As 
an esteemed gastroenterologist specializing in colonoscopy evaluation, your expertise is crucial in meticulously 
assessing a provided colonoscopy image. Your task is to discern and characterize any irregularities present 
across the colonic mucosa, paying close attention to morphology, color variations, and vascularity patterns. 
Drawing upon your wealth of experience, construct a comprehensive list of potential diagnoses, including 
but not limited to inflammatory bowel disease, colorectal polyps, diverticulosis, and colorectal cancer. 
Your discerning analysis and diagnostic acumen will guide subsequent clinical decisions, emphasizing the 
importance of accurate interpretation and effective communication in delivering optimal patient care.” c: 
“What is the pathology class of the polyp? Give me only one answer.” d: “Analyze the provided image and select 
one of the following options that accurately describes the patient’s diagnosis: \nnormal \nadenocarcinoma 
\n adenomatous-tubular polyp \n adenomatous-tubulovillous polyp \n adenomatous-villous polyp \n 
hyperplastic polyp \n inflammatory polyp.”

 

Scientific Reports |        (2025) 15:45484 8| https://doi.org/10.1038/s41598-025-29566-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 1.  Polyp detection performance across machine learning and vision language models. Confusion matrices 
depicting polyp detection performance across various models in test set (internal validation): classical machine 
learning algorithms—Decision Tree (a), Random Forest (b), Support Vector Machine (c), Logistic Regression 
(d), Gaussian Naive Bayes (e); convolutional neural network—ResNet-50 (f); vision-language models—GPT-4 
(g), GPT-4.1 (h); GPT-4.1-mini (i), Claude-3-Opus (j), Gemini-1.5-Pro (k), Qwen-2.5-vl-72b (l), Gemma-3-
27b (m); and contrastive vision-language encoders—CLIP (n), BiomedCLIP (o). Each matrix illustrates model 
predictions relative to ground-truth labels.
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The most challenging classifications were observed for tubulovillous adenoma (TVA, 48 training, 11 test), 
villous adenoma (VA, 30 training, 6 test), and inflammatory polyp (IP, 38 training, 7 test) images. For TVA, 
ResNet50 achieved the highest F1 of 0.55, with Decision Tree (F1: 0.27) and SVM (F1: 0.25) showing limited 
effectiveness. Most other models, including VLMs and contrastive VLMs, performed at or near random chance, 
except for BiomedCLIP (F1: 0.17), Gemma-3-27b (F1: 0.15), and GPT-4.1-mini (F1: 0.07), which provided small 
improvements. For VA, ResNet50 (F1: 0.25) was the only model with moderate performance; most other models 
failed, with minor gains from Claude-3-Opus (F1: 0.04), GPT-4.1 (F1: 0.20), and Qwen-2.5-vl-72b (F1: 0.09). 
For IP, ResNet50 (F1: 0.71) performed best, followed by SVM (F1: 0.36) and Logistic Regression (F1: 0.20), while 
most VLMs were ineffective, except GPT-4.1-mini (F1: 0.12) and GPT-4.1 (F1: 0.08); contrastive models CLIP 
and BiomedCLIP (F1: 0.04 each) contributed minimally.

Figure 4 displays confusion matrices for polyp classification utilizing Random Forest (CML’s top performer), 
ResNet50, GPT-4.1 (the leading VLM), and BiomedCLIP. Adenoma subtypes showed substantial confusion 
across all models, with tubulovillous and villous adenomas frequently misclassified as tubular adenomas. 
ResNet50 demonstrated the best discrimination but still showed considerable uncertainty. Complete ROC 
curves and confusion matrices for all models are in Supplementary Figures S3 and S4.

Polyp classification performance (CADx) on external validation dataset
External validation on 75 images from the PICCOLO database revealed varying performance degradation 
across model types. ResNet50 showed the largest decline (internal: 0.83, external: 0.49, Δ = -0.34), suggesting 
overfitting to institution-specific characteristics. VLMs demonstrated smaller drops: GPT-4.1-mini (0.75 to 0.59, 
Δ = -0.16), GPT-4.1 (0.72 to 0.58, Δ = -0.14), and Gemma-3-27B (0.72 to 0.53, Δ = -0.19). Notably, Qwen-
2.5-vl-72B exhibited the smallest decline among high-performing models (0.66 to 0.61, Δ = -0.05), suggesting 
superior cross-institutional generalization. CML models showed intermediate degradation: SVM (0.69 to 0.52, 
Δ = -0.17), Logistic Regression (0.59 to 0.48, Δ = -0.11), Random Forest (0.63 to 0.53, Δ = -0.10), and Decision 
Tree (0.55 to 0.53, Δ = -0.02). Gaussian Naive Bayes showed apparent improvement (0.08 to 0.12, Δ = +0.04), 
likely reflecting statistical noise given its poor baseline. These results suggest that while CNN achieves superior 
internal performance, pretrained VLMs may offer generalization advantages. F1 scores are presented in Table 7, 
with confusion matrices provided in Supplementary Figure S5.

Exploring Few-Shot injection impact on VLM prediction
Performance of Few-shot prompting produced heterogeneous effects for polyp detection (F1 scores in Table 6; 
confusion matrices in Supplementary Figure S6). Gemma-3-27B showed the largest improvement (F1: 0.69 
to 0.81), followed by Qwen-2.5-VL-72B (F1: 0.69 to 0.75). GPT-4.1 exhibited only a marginal gain (F1: 0.92 to 
0.93), suggesting near-optimal baseline performance, while GPT-4.1-mini experienced a slight decline (F1: 0.91 
to 0.89).

Model Family Model Polyp Detection Polyp Classification AC (N = 79) TA (N = 771) TVA (N = 59) VA (N = 36) HP (N = 138) IP (N = 45)

F1 Weighted F1 F1 F1 F1 F1 F1 F1

CML Decision tree 0.681 0.4042 0.06 0.53 0.27 0.00 0.22 0.14

CML Random forest 0.8102 0.4367 0.00 0.64 0.00 0.00 0.08 0.00

CML Support vector machine 0.7792 0.5563 0.45 0.68 0.25 0.00 0.31 0.36

CML Logistic regression 0.728 0.4032 0.10 0.56 0.00 0.00 0.07 0.20

CML Gaussian naive bayes 0.1022 0.0764 0.08 0.09 0.00 0.00 0.07 0.00

CNN ResNet50 0.9135 0.7494 0.67 0.85 0.55 0.25 0.49 0.71

VLM GPT-4 0.8102 0.4118 0.30 0.58 0.00 0.00 0.00 0.00

VLM Claude-3-Opus 0.664 0.2554 0.19 0.33 0.06 0.04 0.14 0.00

VLM Gemini-1.5-Pro 0.1937 0.0617 0.00 0.09 0.00 0.00 0.00 0.00

VLM GPT-4.1 0.9198 0.5474 0.61 0.71 0.00 0.20 0.14 0.08

VLM GPT-4.1-mini 0.9116 0.5507 0.69 0.73 0.07 0.00 0.00 0.12

VLM Qwen-2.5-vl-72b 0.6859 0.4213 0.25 0.57 0.09 0.00 0.09 0.00

VLM Gemma-3-27b 0.6929 0.3550 0.24 0.48 0.15 0.00 0.05 0.00

VLM + few shot GPT-4.1 0.9267 0.4261 0.47 0.52 0.00 0.00 0.30 0.04

VLM + few shot GPT-4.1-mini 0.8904 0.4940 0.46 0.62 0.12 0.00 0.30 0.00

VLM + few shot Qwen-2.5-vl-72b 0.7464 0.3630 0.35 0.46 0.10 0.13 0.14 0.03

VLM + few shot Gemma-3-27b 0.8083 0.3827 0.05 0.51 0.22 0.00 0.17 0.00

cVL CLIP 0.6839 0.0169 0.19 0.00 0.00 0.00 0.00 0.04

cVL BiomedCLIP 0.8868 0.2774 0.56 0.29 0.17 0.00 0.21 0.04

Table 6.  Comparative analysis of machine learning models in polyp detection and Classification. Performance 
comparison of classical machine learning (CML) models, ResNet-50, vision Language models (VLMs), and 
specialized VLMs for polyp detection and classification tasks. The bolded values represent the highest F1 
scores for each task in the column.
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Few-shot prompting also produced mixed effects on classification performance across models. While 
overall weighted F1 often declined (GPT-4.1: 0.55 to 0.43, GPT-4.1-mini: 0.55 to 0.49, Qwen-2.5-vl-72b: 0.42 
to 0.36), certain underrepresented categories benefited substantially. For example, GPT-4.1-mini improved HP 
classification F1 score from 0.00 to 0.30, and Qwen-2.5-vl-72b increased AC from 0.25 to 0.35 and VA from 
0.00 to 0.13. Gemma-3-27b also demonstrated consistent gains, raising weighted F1 from 0.36 to 0.38, with HP 
classification F1 score improving from 0.05 to 0.17 and TVA from 0.15 to 0.22. However, these improvements 
were often offset by declines in high-prevalence classes such as AC and TA (e.g., GPT-4.1 F1 score for AC: 0.61 
to 0.47, TA: 0.71 to 0.52). This trade-off suggests few-shot learning requires careful calibration, as improvements 
for rare classes may come at the cost of common category accuracy.

Discussion
Our systematic evaluation established a performance hierarchy across computational paradigms. For polyp 
detection, the highest-performing zero-shot VLMs achieved parity with task-specific CNN. GPT-4.1 (F1: 91.98%) 
and GPT-4.1-mini (91.16%) performed comparably to ResNet50 (91.35%), demonstrating that frontier VLM 
architectures can match specialized CNN for binary classification tasks. The 11-percentage-point improvement 
from GPT-4 (81.02%) to GPT-4.1 within a single model generation suggests rapid architectural evolution, 

Fig. 2.  ROC curves and AUROC values for polyp detection. Receiver operating characteristic curves for polyp 
detection, with the corresponding AUROC values. AUROC values greater than 0.8 are shown in bold.
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Fig. 3.  Tile-level importance analysis of GPT-4.1 and GPT-4 polyp detection using TiLense. Evaluation 
of GPT-4.1 and GPT-4 for polyp detection using TiLense, focusing on tile-level importance. The method 
includes five runs with vision-language models (VLMs) on original and masked images, using 9 masked tiles 
per image. Each tile receives an importance score from 0 to 5, indicated by a color gradient from white to red, 
where red denotes a tile whose removal alters the base answer significantly. A reference answer for each image 
is established, and deviations are scored as 1 point. The final answer was considered by voting among five 
answers. Panels (a–e) show tile-level predictions across image conditions: standard image without polyp (b), 
standard image with polyp (c), challenging image without polyp and poor preparation (d), and challenging 
image with hard-to-see polyp (e).
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though proprietary models preclude definitive attribution. However, this performance was not universal across 
VLMs. Qwen-2.5-vl-72b (68.59%), Gemma-3-27b (69.29%), Claude-3-Opus (66.40%), and Gemini-1.5-Pro 
(19.37%) performed substantially worse, with some scoring at or below CMLs baselines (Random Forest: 
81.02%, SVM: 77.92%). This 72-point performance range across VLMs (GPT-4.1: 91.98% to Gemini-1.5-Pro: 
19.37%) underscores that VLM does not denote uniform capability, but rather encompasses architectures with 
markedly different medical imaging performance.

For polyp classification, even the highest-performing VLMs underperformed CNN. ResNet50 (weighted 
F1: 74.94%) substantially outperformed GPT-4.1-mini (55.07%), the best VLM for this task. This 20-point 
performance gap widened substantially for rare polyp subtypes, as detailed below. CML approaches consistently 
underperformed deep learning methods for both detection and classification, validating the shift toward neural 
architectures in medical imaging.

This detection-classification dichotomy likely reflects fundamental task differences. Polyp detection requires 
distinguishing abnormal mucosal protrusions from normal tissue based on features such as texture variations, 
color changes, and surface irregularities visible during endoscopy. VLMs’ broad pretraining on diverse visual 
domains may enable recognition of these general visual patterns. In contrast, polyp classification requires 
discrimination between subtle morphological variants visible on the polyp surface. Distinguishing different polyp 
classes based on colonoscopy images probably requires recognition of surface pit patterns, vascular patterns, 
color variations, shape characteristics, and surface texture that correlate with underlying histology28,29. These 

Fig. 4.  Polyp classification performance of top-performing models. Confusion matrices of polyp classification 
are provided for the top-performing classical machine learning model (a: Random Forest), convolutional 
neural network (b: ResNet-50), highest-performing vision-language model (c: GPT-4.1), and the contrastive 
vision-language encoder fine-tuned on external general medical imaging data (d: BiomedCLIP). Abbreviations: 
AC, Adenocarcinoma; TA, Tubular Adenoma; TVA, Tubulovillous Adenoma; VA, Villous Adenoma; HP, 
Hyperplastic Polyp; IP, Inflammatory Polyp; No-A: No answer provided; 2OP: two options (polyp type) were 
selected.
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domain-specific visual-histological correlations, likely absent from general pretraining datasets, may explain 
why VLMs struggle with fine-grained histological prediction despite achieving strong detection performance.

Performance on rare polyp types revealed the magnitude of this classification limitation. For TA (650 training 
images, 121 test images), GPT-4.1 and GPT-4.1-mini achieved 71–73% F1 for endoscopic histological prediction. 
However, performance declined substantially for rarer subtypes: VA (30 training, 6 test) both models ≤ 20% F1; 
TVA (48 training, 11 test) both ≤ 7% F1; IP (38 training, 7 test) both ≤ 12% F1. For HP (116 training, 22 test), 
both achieved 0% F1. In contrast, ResNet50 maintained non-zero performance across all categories: HP 49%, 
VA 25%, TVA 55%, IP 71%. Even CML models (SVM: 31% for HP) outperformed the leading VLMs on these 
categories. This pattern extends beyond simple class imbalance, as classical models trained on the same limited 
rare examples maintained non-zero performance. The findings suggest that zero-shot transfer, while effective 
for common polyp types with abundant visual similarity to general pretraining data, fails for rare histological 
presentations requiring domain-specific pattern recognition.

The substantial performance variability across VLMs noted above warrants investigation. These findings are 
consistent with emerging evidence from other clinical domains showing wide variability in VLM performance 
across medical imaging tasks30–35. Several factors likely contribute. First, architectural differences across 
proprietary models affect visual-language integration. GPT-4.1-mini achieving nearly identical detection 
performance (91.16%) to GPT-4.1 (91.98%) despite presumably fewer parameters suggests architectural 
innovations rather than scale drive improvements. Second, pretraining data composition varies. BiomedCLIP 
(88.68% F1) substantially outperformed general CLIP (68.39%) for polyp detection as a result of its additional 
training on 15 million biomedical figure-caption pairs from PubMed Central11, providing direct evidence that 
medical content exposure improves performance. General-purpose VLMs likely contain varying amounts of 
incidental medical imaging in their pretraining corpora, partially explaining performance differences. Third, 
instruction-following capability varies substantially, as demonstrated by our prompt engineering experiments.

Prompt engineering revealed substantial performance sensitivity. For polyp detection, improvements with 
engineered prompts ranged from 2.2% (GPT-4.1, Gemini-1.5-Pro) to 51.0% (Qwen-2.5-vl-72b). For classification, 
improvements were substantial: GPT-4.1 (15.6% to 59.4%, + 280.7%), GPT-4.1-mini (16.9% to 71.1%, + 320.7%), 
and Qwen-2.5-vl-72b (0.8% to 50.2%, + 6175%). These magnitudes underscore that systematic prompt design is 
critical for medical VLM deployment17,36. Few-shot prompting showed variable effects. For detection, Gemma-
3-27B improved substantially (+ 17.4%) while GPT-4.1 showed minimal gain (+ 1.1%), consistent with baseline 
performance near ceiling. GPT-4.1-mini declined slightly (-2.2%), suggesting few-shot examples may introduce 
noise for high-performing models. This outcome may also be attributed to our selection of examples: we primarily 
included clear and unambiguous cases that the model could process effectively, whereas its performance may 
decline when confronted with more ambiguous images. For classification, few-shot prompting often improved 
rare categories while reducing common category performance, yielding limited overall gains. Our results exceed 
previously reported prompt-dependent performance variations and reinforce that effective prompt engineering 
is critical for clinical VLM implementation17,36. In addition, these findings reaffirm that prompt optimization 
benefits mid-performing models most, while top performers show diminishing returns37–39.

Beyond internal performance patterns observed in our test set, cross-institutional generalization represents 
a critical consideration for clinical deployment. External validation on 75 images from the PICCOLO database 
assessed cross-institutional generalization. ResNet50 showed substantial performance decline (weighted F1: 
0.83 to 0.49), potentially reflecting overfitting to institution-specific characteristics such as imaging equipment 
settings, acquisition protocols, or patient population differences. VLMs also experienced decreases, with GPT-
4.1 (0.72 to 0.58), GPT-4.1-mini (0.75 to 0.59), and Gemma-3-27B (0.72 to 0.53) showing larger declines than 
Qwen-2.5-vl-72B (0.66 to 0.61). The relatively stable performance of some VLMs compared to ResNet50’s 

Model Family Model Polyp Classification AC (N = 79) A (N = 50) HP (N = 138) Polyp Classification AC (N = 9) A (N = 50) HP (N = 16)

Test (Internal Validation) External Validation

Weighted F1 F1 F1 F1 Weighted F1 F1 F1 F1

CML Decision tree 0.55 0.16 0.64 0.27 0.53 0.00 0.73 0.22

CML Random forest 0.63 0.00 0.78 0.07 0.53 0.00 0.80 0.00

CML Support vector machine 0.69 0.38 0.78 0.31 0.52 0.00 0.78 0.00

CML Logistic regression 0.59 0.11 0.72 0.07 0.48 0.00 0.65 0.25

CML Gaussian naive bayes 0.08 0.09 0.08 0.07 0.12 0.00 0.07 0.36

CNN ResNet50 0.83 0.71 0.89 0.52 0.49 0.62 0.53 0.32

VLM GPT-4.1 0.72 0.64 0.83 0.14 0.58 0.59 0.77 0.00

VLM GPT-4.1-mini 0.75 0.72 0.87 0.00 0.59 0.75 0.75 0.00

VLM Qwen-2.5-vl-72b 0.66 0.37 0.76 0.16 0.61 0.55 0.71 0.32

VLM Gemma-3-27b 0.72 0.50 0.84 0.12 0.53 0.30 0.66 0.27

Table 7.  Comparative analysis of machine learning models in polyp classification in external Dataset. 
Performance comparison of classical machine learning (CML) models, ResNet-50 and vision Language models 
(VLMs) for polyp classification tasks. The bolded values represent the highest F1 scores for each task in the 
column. Abbreviations: CML, Classical Machine Learning; VLM, Vision Language Model; cVL, contrastive 
Vision-Language encoders; AC, Adenocarcinoma; A, Adenomatous; HP, Hyperplastic Polyp.
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larger degradation may suggest that zero-shot models pretrained on diverse data possess some cross-domain 
robustness. However, our limited external sample (75 images, one institution, three polyp classes versus six in 
internal data) precludes definitive conclusions.

These performance characteristics, together with fundamental differences in computational requirements, 
have direct implications for clinical deployment strategies. Computational requirements differ fundamentally 
between model families with direct implications for clinical applicability. CNNs require dataset annotation, 
model training (several hours on our hardware for ResNet50), and validation testing. However, once deployed, 
CNNs enable rapid local inference (milliseconds per image on CPU) with zero recurring costs and no network 
dependencies. This computational profile makes CNNs suitable for real-time intra-procedural applications, 
where frame-by-frame analysis during endoscope advancement can provide immediate feedback to endoscopists. 
VLMs eliminate training requirements through zero-shot deployment, substantially reducing barriers to entry. 
However, current API-based VLMs introduce per-image costs and network latency (seconds per image in our 
implementation), making them unsuitable for real-time use during live procedures. Network dependencies 
also introduce reliability concerns. The computational profile of current API-based VLMs restricts them to 
retrospective applications such as post-procedure quality assurance, batch analysis of stored images, or second-
opinion consultation on challenging cases.

These computational constraints shape institutional deployment decisions. Academic centers with AI 
infrastructure may favor CNN development for real-time applications despite upfront costs, benefiting from 
zero marginal inference costs and real-time deployment capability for both detection and optical diagnosis. 
Community practices lacking machine learning expertise might find API-based VLMs useful for retrospective 
quality assurance despite recurring costs, as zero-training deployment enables immediate adoption for post-
procedure review. However, institutions seeking real-time procedural guidance must pursue CNN-based 
approaches given current technological constraints. The substantial performance gap for rare polyp classification 
further indicates that current-generation VLMs should not be relied upon for optical diagnosis decisions without 
further technological advancement.

Several immediate research directions emerge from these findings. First, evaluation on video colonoscopy 
sequences rather than still frames would assess temporal reasoning capabilities and enable analysis of dynamic 
polyp characteristics across multiple viewing angles. Second, expansion of external validation to additional 
institutions with diverse endoscopy equipment, patient populations, and polyps would better characterize cross-
institutional generalization and identify specific factors affecting model transferability. Third, investigation 
of spatial localization capabilities, particularly for VLMs through region-specific prompting or coordinate 
generation, would address a critical requirement for clinical applicability. Fourth, our choice of examples for 
few-shot prompting may have influenced the results; therefore, future studies should explore alternative methods 
for example selection. Finally, systematic analysis of model performance stratified by polyp size, morphology, 
and location would reveal potential biases affecting clinical safety and identify subgroups requiring targeted 
algorithmic improvements.

Several methodological limitations should be considered. First, natural prevalence disparities influenced our 
dataset composition despite our augmentation efforts, potentially impacting model performance for several rare 
polyp categories. Second, our evaluation used still colonoscopy images rather than video sequences, eliminating 
temporal continuity, polyp motion tracking, and multi-angle visualization available during actual procedures. 
Third, our study focuses on polyp detection (presence/absence) and classification (histological type) rather 
than spatial localization, which would be necessary for complete clinical implementation. Fourth, our external 
validation provides initial cross-institutional evidence but represents a small sample from a single additional 
institution with three polyp classes compared to our internal dataset’s six classes. Larger-scale multi-institutional 
validation is necessary to establish robust generalizability benchmarks.

Conclusion
This systematic comparison of VLM and CNN for colonoscopy polyp analysis reveals a clear task-dependent 
performance hierarchy. While the highest-performing VLMs matched CNNs for binary polyp detection, CNNs 
maintained substantial advantages for polyp classification, particularly for rare polyp subtypes where VLMs failed 
entirely. These findings suggest that current zero-shot VLMs may serve retrospective quality assurance roles 
but remain unsuitable for real-time clinical deployment requiring histological discrimination. Computational 
constraints further restrict API-based VLMs to post-procedure applications, while CNNs enable real-time intra-
procedural guidance. As both architectural families continue to evolve, understanding their complementary 
strengths and limitations will inform appropriate deployment strategies across diverse clinical settings.

Data availability
The datasets created and analyzed in this study cannot be accessed publicly due to IRB requirements; however, 
anonymized data can be obtained from the corresponding author (HAA) and SAASN ( [sdamirsa@gmail.com]) 
upon request by providing the IRB code. The external dataset is accessible after signing data transfer agreement 
from [https://www.biobancovasco.bioef.eus/].The code for the generation and evaluation of responses is publicly 
available at: [https:​​​//gith​ub.​com/aminkha​laf​i/​CML​-v​s-LL​M​-on-Polyp-Detection].
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