www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Vision language models versus
machine learning models
performance on polyp detection
and classification in colonoscopy
Images

Mohammad Amin Khalafit*1, Seyed Amir Ahmad Safavi-Naini*%31 Ameneh Salehi?,
Nariman Naderi?, Dorsa Alijanzadeh?, Pardis Ketabi Moghadam?, Kaveh Kavousi*,
Negar Golestani?, Shabnam Shahrokh?, Soltanali Fallah®, Jamil S. Samaan®,

Nicholas P. Tatonetti”®°, Nicholas Hoerter'?, Girish Nadkarni®3,

Hamid Asadzadeh Aghdaei'* & Ali Soroush%310><

Medical image analysis is central to clinical decision-making, and recent advances in vision-language
models (VLMs) have introduced promising capabilities for jointly processing visual and textual data.
This study evaluates zero-shot VLMs against convolutional neural networks (CNNs) and classical
machine learning (CML) models for polyp detection (CADe) and classification (CADXx) using 2,258
colonoscopy images from 428 patients with histopathological labels. We benchmarked 15 approaches
including ResNet50, five CMLs (random forest, support vector machine, logistic regression, decision
tree, Gaussian naive Bayes), two contrastive vision-language encoders (CLIP, BiomedCLIP), and
seven frontier VLMs (GPT-4, GPT-4.1, GPT-4.1-mini, Gemma-3-27b, Qwen-2.5-vl-72b, Gemini-1.5-Pro,
Claude-3-Opus). For polyp detection, the highest-performing VLMs (GPT-4.1 F1: 91.98%, GPT-4.1-
mini F1: 91.16%) matched CNN performance (ResNet50 F1: 91.35%), though substantial variability
existed across VLMs (F1 range: 19.37% to 91.98%). For classification, CNNs substantially outperformed
VLMs: ResNet50 achieved weighted F1 of 74.94% versus 55.07% for GPT-4.1-mini, with performance
gaps widening dramatically for rare polyp subtypes where VLMs often achieved 0% F1. External
validation on 75 images showed that while ResNet50 performance declined substantially, some VLMs
demonstrated more stable cross-institutional performance. These findings establish a task-dependent
performance hierarchy where VLMs match CNNs for detection but remain limited for classification,
suggesting distinct clinical roles for each approach.
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VLM  Vision language model

cVL contrastive vision-language encoders
AC Adenocarcinoma

TA Tubular adenoma

TVA Tubulovillous adenoma

VA Villous adenoma

HP Hyperplastic polyp

P Inflammatory polyp

Colonoscopy remains the gold standard for colorectal cancer screening, yet its effectiveness is fundamentally
limited by operator-dependent variability in polyp detection and characterization?. These limitations have
motivated the development of artificial intelligence systems to assist clinicians during colonoscopy: computer-
aided detection (CADe) systems that help identify polyps in real time, and computer-aided diagnosis (CADx)
systems that suggest the likely histological type based on visual appearance. Such tools aim to reduce missed
lesions, improve diagnostic accuracy, and help standardize the quality of colonoscopy across different practice
settings®.

Deep learning approaches have transformed colorectal cancer detection and diagnosis across multiple
clinical applications. Convolutional neural networks (CNN) pretrained on large image datasets and fine-tuned
on medical images have demonstrated robust performance not only for polyp detection and classification during
colonoscopy, but also for histopathological subtyping, prognostic prediction from tissue samples, and treatment
response assessment. Recent architectures including YOLO variants, enhanced U-Net models, and transformer-
based approaches have achieved detection sensitivities exceeding 90% and real-time processing capabilities
suitable for clinical deployment* (Table 1). However, the CNN paradigm imposes significant development
constraints. Each new model requires extensive labeled training data specific to the target population and
imaging equipment, iterative optimization of network architectures and hyperparameters, and validation across
multiple institutions to ensure generalizability. These requirements make CNN development resource-intensive
and create barriers to rapid adaptation as clinical needs or imaging technology evolve.

Advances in vision-language models (VLM) suggest an alternative approach that addresses data and
development barriers. Contrastive Language-Image Pre-training (CLIP) demonstrated that joint training
of visual and language encoders on large-scale image-text pairs enables zero-shot task performance through
natural language prompts alone!. Unlike CNNs that require fine-tuning on labeled medical images to adapt
pretrained features to specific tasks, CLIP-based models can be deployed directly through prompt specification.
BiomedCLIP extended this framework to the biomedical domain through pretraining on 15 million figure-
caption pairs from PubMed Central'!, improving medical imaging performance while maintaining zero-shot
deployment. More recently, large VLM such asGPT-4!%, Claude-3-Opus'?, and Gemini-1.5-Pro'* have integrated
sophisticated visual encoders with transformer-based language models, enabling complex reasoning about
medical images without any task-specific fine-tuning (Table 2)'>-21. These models represent a fundamentally
different deployment paradigm: rather than adapting model weights to each clinical task, the same pretrained
model is applied across diverse applications through natural language instructions.

The potential advantages of zero-shot VLM for CADe and CADx are substantial. Eliminating the fine-tuning
step removes the need for institution-specific labeled datasets and model optimization. Prompt-based interaction
allows flexible task specification without retraining. Pretraining on billions of diverse images may confer
robustness to the distribution shifts that degrade fine-tuned CNN performance across institutions. However,
these theoretical advantages remain unvalidated for colonoscopy applications. Whether zero-shot VLMs can
match the detection sensitivity of fine-tuned CNNs, how they perform across histological classification tasks
of varying difficulty, whether they generalize better to external datasets, and how sensitive they are to prompt
design are empirical questions with direct implications for clinical deployment strategies.

We systematically evaluated 15 computational approaches spanning classical machine learning (CML),
CNN, contrastive vision-language encoders, and state-of-the-art VLMs for frame-level polyp detection
and histological classification. Using 2,258 colonoscopy images with pathological confirmation and external
validation on 75 images from an independent institution, we compared zero-shot VLM performance against

First Author, Year VLM \Model Major Modality Performance/Contribution
Pecal, 20214 YOLOV3 + CSPNet, SILU Gastrqenterology, polyp Colonoscopy ImProved YOLOV3/YOLOv4 with highe_r Precision/fecall;
detection validated on large datasets, enhancing clinical usability.
5 L Gastroenterology, polyp ABC-tuned hyperparameters and activations;
Karaman, 2023b YOLOvS5 + ABC optimization detection Colonoscopy outperformed baseline YOLOV5 in accuracy and speed
Karaman, 2023a° Scaled-YOLOV4 + ABC Gastrqenterology, polyp Colonoscopy First systematic YOLO optimization; +3% mAP and + 2%
detection F1 across multiple variants.
Pecal and Karaboga, 20217 | YOLOv4 + CSPNet, Mish, ensemble Gastroenterology, polyp Colonoscopy State-of-the-art detection with precision 96%, recall 97%,
detection F1 96%; real-time applicability.
Hybrid CNN (ResNet-50, Achieved 98% accuracy, F1 = 0.98, precision = 97%, recall =
Narasimha Raju, 2025° DenseNet-201, VGG-16) + CRC (multi-class lesion Colonosco 99%. Addressed class imbalance, interpretability, and spatial
ke Transformer + Multi-class SVM + detection) Py complexity with explainable heatmaps; sets new benchmark
Grad-CAM for clinically interpretable Al-assisted colonoscopy

Table 1. Overview of studies assessing the performance of deep learning models in medical imaging.
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First Author,
Year VLM \Model | Major Modality Performance/Contribution
Image/ Scenario
Pilia, 2024; and Prompt /Image + GPT-4 V accuracy: image-only: 54%/ text-only scenarios: 89%/ both image + scenario:
Hardin, 2024!° GPT-4 Dermatology Scenario 89%
Prompt
Laohawetwanti. Colorectal pol GPT-4 accuracy: 16% for non-specific changes / 36% for tubular adenomas
202416 > | custom GPT-4 | Histopathology hotomicr(l)g rzphs Sensitivity: 74% for adenoma detection
P srap specificity: 36% for adenoma detection
Chen, 2023V GPT-4V I;lzedrirc?rlle COVID-19 lung X-ray GPT4-V accuracy: ranged 72% to 85% based on different prompts.
General Clinical cases from the JAMA
Han, 20238 GPT-4 Medici Clinical Challenge and the GPT-4 V accuracy: 73.3% for JAMA and 88.7% for NEJM
edicine
NEJM Image Challenge
Examination
Identification :95.6%
Xu, 2024'° GPT-4 ophthalmology various _ocular imaging Lesion I(_ientlﬁcatlon.25.6A)
modalities Diagnosis
Capacity:16.1%
Decision Support:24%
General For questions with images: 86.2%, 73.1%, and 62.0% on USMLE, DRQCE, and AMBOSS.
Yang, 2023%° GPT-4 Medicine USMLE with Image For questions with image, GPT-4 achieved an accuracy of 84.2%, 85.7%, 88.9% in Step1,
Step2CK, and Step3 of USMLE questions
General Clinical cases from NEJM
Jin, 2024%! GPT-4 Medicine Image Challenges +scenario | GPT-4 accuracy: 81.6%, which outperformed physicians and medical students.
prompt

Table 2. Overview of studies assessing the performance of vision Language models in medical imaging.

fine-tuned CNNs and classical methods across both binary detection and multi-class classification tasks. We
further investigated prompt engineering strategies, few-shot learning, computational requirements, and model
interpretability to assess practical deployment considerations. Our results establish performance benchmarks
across model families, reveal task-dependent capabilities and limitations, and provide evidence-based guidance
for selecting appropriate approaches based on clinical requirements and available resources.

Methods
Ethical consideration
This study received ethical approval from the Institutional Review Board at the Research Ethics Committees of
the Research Institute for Gastroenterology & Liver Diseases at Shahid Beheshti University of Medical Sciences
(IR.SBMU.RIGLD.REC.1401.043). In accordance with the principles outlined in the Helsinki Declaration,
patient confidentiality and welfare was maintained throughout the study. All procedures involving patient data
and images were conducted using standardized protocols to safeguard patient privacy, with measures in place
to anonymize data and prevent identification. Explicit informed consent was obtained from all participants,
affirming their voluntary participation in the study.

The external dataset used in this study was anonymized and obtained under a signed data agreement. The
dataset provider had secured prior ethical approval for its collection and use, and is registered in National
Registry of Biobanks (B.0000140) and ISCIII Biomodels and Biobanks Platform (PT23/00013).

Experimental framework

This investigation followed a retrospective, comparative methodological design to evaluate multiple artificial
intelligence approaches for colonoscopy image analysis. We adhered to Consolidated reporting guidelines for
prognostic and diagnostic machine learning modeling studies®? and the transparent reporting of a multivariable
prediction model for Individual prognosis or diagnosis (TRIPOD-AI)?® guidelines for model development and
results reporting, ensuring methodological transparency and reproducibility. We structured our investigation as
a three-phase experimental program designed to systematically evaluate model performance:

1. Parameter Optimization Phase: We systematically identified optimal hyperparameters for each model
architecture through comprehensive grid search methodologies, establishing optimized configurations for
subsequent performance evaluation.

2. Detection Evaluation Phase: We conducted comparative assessments of model performance in identifying
polyp presence (CADe functionality), utilizing standardized metrics, including F1 scores and area under the
receiver operating characteristic curve (AUROC).

3. Classification Analysis Phase: We performed systematic evaluation of model efficacy in correctly classifying
polyp pathology types (CADx functionality) across six distinct histological categories, employing weighted
evaluation metrics to account for class distribution.

This structured approach enabled comprehensive, controlled comparison across diverse computational
methodologies while maintaining consistent evaluation standards.
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Dataset - Characteristics

Patient population and data collection

We examined colonoscopy data collected between December 2022 and April 2023 at Taleghani Hospital’s
gastroenterology clinic and Behbood clinic. The study population comprised 428 patients (mean age: 53+ 14
years; 48.6% male) who underwent colonoscopy for primary colorectal cancer screening, post-polypectomy
surveillance, evaluation following positive fecal immunochemical tests, or investigation of gastrointestinal
symptoms.

All procedures were performed by gastroenterologists with extensive experience (>2,000 screening
colonoscopies conducted). The endoscopists assessed bowel preparation quality using the validated Boston
Bowel Preparation Scale and confirmed cecal intubation through identification of the ileocecal valve and
appendix orifice.

Image collection and histopathological assessment

We compiled a comprehensive image dataset consisting of 1,129 colon polyp images and 1,129 randomly selected
normal colon images (from an original pool of 6,046) to address class imbalance. The initial classification was
derived from procedure pathology reports, followed by an expert review of stored images by an experienced
gastroenterologist (PKM) who assigned final labels.

Tissue samples underwent standard histopathological processing, including formalin fixation, paraffin
embedding, sectioning (4-5 microns thick), and hematoxylin-eosin staining. Histological classification followed
established criteria, with assessment of cellular atypia, glandular architecture, and dysplasia degree**. Our final
dataset comprised 2,258 images from 428 patients, including tubular adenoma (n = 771), hyperplastic polyp (n =
138), adenocarcinoma (n = 79), tubulovillous adenoma (n = 59), inflammatory polyp (n = 45), villous adenoma
(n =36), and normal colon (n = 1,129). Complete dataset characteristics are provided in Table 3.

External dataset for validation
Sample images and anonymized patient data used in this study were obtained from the PICCOLO database of
the Basque Biobank (www.biobancovasco.bioef.eus), which is registered in the National Registry of Biobanks
(B.0000140) and integrated into the ISCIII Biomodels and Biobanks Platform (PT23/00013). This dataset
contains 3433 images from clinical colonoscopy videos, including white light and narrow band imaging (NBI)
images, from colonoscopy procedures in human patients. It includes 76 different lesions from 48 patients. We
selected a total of 75 images, comprising 9 adenocarcinomas, 50 adenomatous polyps, and 16 hyperplastic
polyps from white light images.

Since the external dataset contains no normal images and only three distinct polyp classes, we adapted our
internal dataset by selecting and organizing it in the same way, allowing for a consistent comparison between
internal and external datasets.

Image preprocessing and data augmentation

We implemented a comprehensive preprocessing pipeline to optimize image quality and enhance model training.
All images underwent uniform resizing to 300 x 300 pixels, followed by normalization to standardize pixel value
distribution. To enhance model robustness and generalizability, we applied a systematic augmentation protocol
incorporating horizontal and vertical mirroring to diversify polyp orientation representation, brightness
variations to simulate diverse lighting conditions, Gaussian blur application to replicate optical aberrations,
additive Gaussian noise to build resilience against image artifacts, and linear contrast adjustments to enhance
structural differentiation. This augmentation strategy yielded a four-fold expansion of the effective training
dataset, simultaneously enhancing model exposure to diverse image acquisition parameters and reducing
overfitting to institution-specific imaging characteristics.

Category Case (Total) | Train | Test | Control (Total) | Train | Test
Patients (n) 237 191

Age (mean+SD) 55+13 50+14

Male (n, %) 130 (54.8%) 78 (40.8%)

Images (n) 1232 1025

Normal (n) 82 22 805 220
Adenocarcinoma (n) 66 13 - -
Tubular adenoma (n) 650 121 - -
Tubulovillous adenoma (n) 48 11 - -
Villous adenoma (n) 30 6 - -
Hyperplastic polyp (n) 116 |22 - -
Inflammatory polyp (n) 38 7 - -

Table 3. Characteristics of the dataset at both patient and image levels.
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Model development and configuration

Classical machine learning approaches

We implemented five distinct classical machine learning algorithms, each optimized through systematic
hyperparameter tuning (Table 4). For the Decision Tree Classifier, we employed a comprehensive grid search
across multiple parameters, including criterion (‘gini, ‘entropy’), max_depth (None, 10, 20, 30), min_samples_
split (2, 5, 10), and min_samples_leaf (1, 2, 4). The optimal configuration identified was criterion=entropy,
max_depth=20, min_samples_leaf=2, and min_samples_split=2. For the Random Forest Classifier, our
hyperparameter optimization encompassed n_estimators (50, 100, 200), max_depth (None, 10, 20, 30),
min_samples_split (2, 5, 10), and min_samples_leaf (1, 2, 4). The optimal configuration was determined to
be n_estimators =200, min_samples_leaf=1, min_samples_split=10, and random_state =42. With the Support
Vector Machine (SVM), we systematically evaluated parameter combinations including C (0.1, 1, 10), kernel
(‘linear, ‘rbf’, ‘poly’), and gamma (‘scale; ‘auto’). The optimal configuration identified was kernel=rbf, C=10,
gamma='scale, probability=True, and random_state=42. For Logistic Regression, our grid search evaluated
C values (0.1, 1, 10) and solver options (‘newton-cg, ‘Ibfgs, ‘liblinear, ‘sag, ‘saga’). The optimal configuration
was determined to be C=0.1, solver="sag, and random_state=42. The Gaussian Naive Bayes algorithm was
implemented with default parameters as it does not feature adjustable hyperparameters.

Convolutional neural network: Resnet 50

We implemented ResNet50 based on its demonstrated superior performance in medical image classification
tasks®. To optimize performance, we conducted systematic hyperparameter tuning via GridSearchCV,
evaluating learning rate (0.01, 0.1, 1), epochs (5, 10, 15), and batch_size (32, 64). The grid search involved
dividing the dataset into training, validation, and testing subsets, training the model on various hyperparameter
combinations, and using cross-validation to evaluate performance and prevent overfitting. The optimal
configuration was determined to be learning_rate = 0.01, epochs = 15, and batch_size = 32.

Contrastive multimodal encoders

We evaluated two specialized contrastive learning models for our analysis. CLIP represents a general-purpose
multimodal model that associates images with corresponding textual descriptions through dual visual and
textual encoders trained on 400 million image-text pairs'’. We implemented the ViT-B/32 variant for zero-
shot evaluation in our experimental framework. Additionally, we assessed BiomedCLIP, a domain-specialized
adaptation of CLIP that underwent pretraining on PMC-15 M, a dataset comprising 15 million biomedical
figure-caption pairs from PubMed Central publications!!. This biomedical specialization potentially enhances
performance for medical imaging applications, making it particularly relevant for our colonoscopy image
analysis.

General-Purpose vision Language models
We evaluated seven state-of-the-art VLMs as part of our comprehensive assessment. GPT-4 represents an
enhanced iteration of OpenAT’s GPT-4 model that integrates advanced visual processing capabilities, enabling
interpretation of and response to image inputs?. In addition, we assessed the performance of state-of-the-art
OpenAl models, namely GPT-4.1 and GPT-4.1-mini. We also included Claude-3-Opus, developed by Anthropic,
which builds upon their Claude architecture with enhanced visual question answering capabilities'®. The fifth
and sixth models in our evaluation was Gemini-1.5-Pro, Google’s multimodal foundation model designed for
versatile tasks including visual comprehension, classification, and content generation across modalities!* and
Gemma-3-27B. The last model in our evaluation was Qwen-2.5-VL-72B. These general-purpose models were
evaluated without domain-specific fine-tuning to assess their zero-shot capabilities in medical image analysis.
We utilized the web-based API interface of GPT-4 (gpt-4-1106-vision-preview; Accessed: May 2024 via API),
GPT-4.1 (Created Apr 14, 2025; Accessed: August 2025 via API), GPT4.1-mini (Created Apr 14, 2025; Accessed:
August 2025 via API), Claude-3-Opus (claude-3-opus-20240229; Accessed: May 2024 via API ), Qwen-2.5-vl-
72B (Created Feb 1, 2025; Accessed: August 2025 via API), Gemma-3-27B (Created Mar 12, 2025; Accessed:
August 2025 via API) and Gemini-1.5-Pro (gemini-1.5-pro-001; Accessed: June 2024 via Google interface),.

Model Name Hyperparameters Best Hyperparameters Best Accuracy
e o > criterion="entropy’

Decision Tree cr;terlon (gind, egtropy )maxﬁdep th (None, 10, 20, 30) max_depth =20min_samples_split=2 0.6609

min_samples_split (2, 5, 10)min_samples_leaf (1, 2, 4) o -
min_samples_leaf=2

n_estimators (50, 100, 200)max_depth (None, 10, 20, 30) | n_estimators =200

Random Forest min_samples_split (2, 5, 10) max_depth=None 0.7707
min_samples_leaf (1, 2, 4) min_samples_leaf = 1min_samples_split = 10random_state =42
C(0.1,1,10) Cc=10

Support Vector Machine | kernel (‘linear’, ‘rbf} ‘poly’) kernel="rbf’ 0.7780
gamma (‘scale; ‘auto’) gamma='scale’

. . C(0.1,1,10) C=0.1,

Logistic Regression solver (‘newton-cg) ‘Ibfgs; ‘liblinear’, ‘sag) ‘saga’) solver =’sag’ 0.7512
learning_rate (0.01, 0.1, 1) learning_rate=0.01,

Resnet 50 epochs (5, 10, 15) epochs=15, 0.8842
batch_size (32, 64) batch_size=32

Table 4. Hyperparameter Tuning.
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Approximately 15% of our test dataset was allocated for the parameter optimization phase, while the remaining
85% was used for the detection and classification evaluation phase. All experiments were conducted with
standardized parameters (temperature = 1.0, maximum tokens =512, tool calls disabled, random seed =123) to
ensure consistent evaluation conditions. We renamed all image file names to avoid any data leakage from the
image metadata.

To assess the impact of prompt optimization, we first used the following raw prompt in a chat: “What is this
image?” accompanied by the image. Subsequently, in the same chat, we asked: “What is the pathology class of the
polyp? Give me only one answer.” In a separate chat, we then posed this engineered prompt:

“As an esteemed gastroenterologist specializing in colonoscopy evaluation, your expertise is crucial
in meticulously assessing a provided colonoscopy image. Your task is to discern and characterize any
irregularities present across the colonic mucosa, paying close attention to morphology, color variations, and
vascularity patterns. Drawing upon your wealth of experience, construct a comprehensive list of potential
diagnoses, including but not limited to inflammatory bowel disease, colorectal polyps, diverticulosis, and
colorectal cancer. Your discerning analysis and diagnostic acumen will guide subsequent clinical decisions,
emphasizing the importance of accurate interpretation and effective communication in delivering optimal
patient care.”

This was followed by the image. Then, in the same chat, we used the prompt:

“Analyze the provided image and select one of the following options that accurately describes the patient’s
diagnosis:

normal.

adenocarcinoma.
adenomatous-tubular polyp.
adenomatous-tubulovillous polyp.
adenomatous-villous polyp.
hyperplastic polyp.

inflammatory polyp.”

NN E LD

The optimized prompt was developed through a human-in-the-loop refinement process whereby candidate
variations were generated using GPT-4, informed by prompt engineering techniques adapted from validated
gastroenterology-specific methodologies?’. These techniques included contextual embedding (providing task-
specific domain context), expert mimicry (emulating clinical specialist reasoning patterns), chain-of-thought
reasoning (eliciting stepwise analytical processes), exemplar anchoring (supplying representative clinical
scenarios), and constrained output formatting (defining structured response schemas). A domain expert
subsequently reviewed and refined the candidate to produce the final optimized prompt.

Exploring Few-Shot injection impact on General-Purpose vision Language models

For few-shot learning, we selected representative images directly from the training dataset to serve as illustrative
examples for the model. Specifically, we curated two sets of images with corresponding labels. The first set (1
image for ‘no-polyp and 1 image for ‘polyp’) focused on distinguishing between polyp and non-polyp cases,
providing general guidance on the presence or absence of polyps. The second set (one image for ‘normal’ and one
image for each polyp subtypes) concentrated on specific pathology classes. Each few-shot example consisted of
an image paired with a descriptive label, and these were included in the prompt to the model to facilitate accurate
and informed predictions on unseen test images. We applied few-shot learning to recently released, state-of-the-
art VLMs (GPT-4.1, GPT-4.1-mini, Qwen-2.5-vl-72b and Gemma-3-27b).

Performance evaluation

We developed an approach that converts unstructured text into structured classifications using GPT-4 to
facilitate the semi-automated evaluation of textual outputs. The model was configured with a temperature setting
of 0 and enabled to generate structured JSON outputs.

The extraction system was designed to categorize VLM responses into predefined labels with explicit handling
of uncertain or ambiguous cases. For polyp detection, the system classified responses into: (1) “Human evaluation
needed: I am unsure,” (2) “Human evaluation needed: More than one diagnosis is selected, or no option is
selected,” (3) “The unstructured answer selected: No polyp is detected in the image,” or (4) “The unstructured
answer selected: A polyp is detected in the image.” For polyp classification, an additional category was included:
(5) “The unstructured answer selected: The polyp type is classified as {polyp_type in polyp_types}”

This structured extraction approach enables automated classification while flagging ambiguous or uncertain
cases for human review, ensuring accuracy in the evaluation process. The system processes free-text responses
by identifying key diagnostic terminology, matching it to predefined categories, and assigning confidence scores.
Responses containing hedging language (“possibly;” “might be,” “unclear”) or multiple conflicting diagnoses
were automatically flagged for human review.

To validate this approach, we manually reviewed a random sample of 50 response-extraction pairs. GPT-4
correctly extracted and labeled all 43 unambiguous responses while appropriately flagging 7 cases requiring
human evaluation, demonstrating 100% accuracy for clear cases and appropriate conservative handling of
ambiguous outputs. All flagged cases were subsequently reviewed by a clinical expert (PKM) to assign final
labels.
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Statistical analysis

We performed comprehensive statistical analysis using Python (version 3.11.5), employing standardized machine
learning evaluation methodologies. We implemented the one-vs-all strategy for multiclass classification scenarios
to enable binary performance metrics for each class. We selected the F1 score as our primary evaluation metric
due to its balanced consideration of both precision and recall, making it particularly suitable for our dataset
where class imbalance was present, especially in the polyp classification tasks where some pathology types had
limited representation.

Performance was evaluated using multiple complementary metrics: F1 scores to balance precision and
recall considerations; AUROC to assess discriminative capability; confusion matrices to visualize classification
patterns and error types; and weighted metrics to account for class imbalance in overall performance assessment.
For weighted F1 scores in polyp classification tasks, we calculated values based on the proportion of each polyp
type in the test dataset, ensuring that performance metrics appropriately reflected the distribution of classes in
clinical settings.

TiLense: importance of tiles for vim’s Zero-Shot polyp detection

This proposed approach seeks to identify and visualize key image tiles in vision-language tasks by assessing the
significance of each tile through frequent responses across multiple prediction attempts. In contrast to complex
methods, it focuses on a single, dominant answer instead of the original model probability. The procedure involves
pinpointing the primary answer, evaluating tile significance, and then generating a heatmap to showcase these
important areas. This model-agnostic unsupervised technique elucidates essential regions in VLM classification
by juxtaposing tile-based results with a singular base answer after N iterations. By highlighting areas where
significant variations occur, it uncovers which sections of an image most influence model predictions, which is
beneficial for evaluation and improvement. We refer to this method as “TiLense” due to its capacity to highlight
importance across image tiles for zero-shot prediction tasks.

We implemented this tile masking technique to showcase GPT-4.1 and GPT-4’s vision capabilities in zero-
shot prediction tasks across four scenarios: the presence of a polyp, a polyp in a challenging background, a
standard image, and a standard image in a complex background. A systematic sliding window approach masked
specific regions of the images (see Fi.g. 3a). The original and masked images were evaluated by GPT-4 using a
standardized prompt, with a temperature setting of 1, a maximum token limit of 300, and no specified seed value,
with the process repeated five times to create response distributions. The base answers were established through
majority voting. The output is represented as a heatmap, where each tile is colored according to its impact on
altering the base answer. Since tiles can overlap, we scale each tile from 0 to 1, coloring them from white to red.

Libraries and local computing

For our VLM API calls, we used Python 3.11.5 in combination with the “requests” library, enabling efficient
interaction with computational resources. Local experiments for CMLs and ResNet50 training and testing were
conducted on a laptop equipped with a Ryzen 7-4800 H CPU and 16 GB of RAM, where we employed the scikit-
learn and TensorFlow libraries for model implementation and evaluation.

Results

Model optimization

Our initial experimental phase focused on optimizing model configurations and prompt strategies for VLM:s.
We observed that domain-specific prompts consistently outperformed simple queries across all VLMs tested.
For polyp detection, the smallest improvement was observed with Gemini-1.5-Pro (F1: from 0.715 to 0.731;
+2.2%), while the largest gain was achieved by Qwen-2.5-vl-72b (F1: from 0.531 to 0.802; +51.0%). For polyp
classification, the minimum improvement was seen in Claude-3-Opus (weighted F1: from 0.112 to 0.147;
+31.2%), whereas the maximum improvement occurred with Qwen-2.5-v1-72b (weighted F1: from 0.008 to 0.502;
+6175.0%). Table 5 provides a detailed comparison of performance improvements across prompting strategies,
which formed the foundation for our subsequent analyses and mention prompt engineering techniques that
we used. Supplementary Figures S1 and S2 present the confusion matrices of answers for polyp detection and
classification, respectively.

Polyp detection performance (CADe)

Polyp detection performance established a clear hierarchical distribution across models, as demonstrated by
confusion matrices (Fig. 1) and F1 scores (Table 6). GPT-4.1 achieved the highest performance (F1: 91.98%),
closely followed by ResNet50 (F1: 91.35%) and GPT-4.1-mini (F1: 91.16%), demonstrating that latest-generation
VLMs can match task-specific CNNs for binary detection. BiomedCLIP demonstrated strong results (F1:
88.68%), outperforming general CLIP (F1: 68.39%) by more than 20%. Traditional machine learning and earlier
VLMs formed the next tier: Random Forest and GPT-4 (both F1: 81.02%), SVM (F1: 77.92%), and Logistic
Regression (F1: 72.80%). Moderate capability was observed for Decision Tree (F1: 68.10%), Qwen-2.5-v1-72b
(F1: 68.59%), Gemma-3-27b (F1: 69.29%), and Claude-3-Opus (F1: 66.40%). The lowest detection capability was
exhibited by Gemini-1.5-Pro (F1: 19.37%) and Gaussian Naive Bayes (F1: 10.22%). Confusion matrices for all
models are presented in Fig. 1. AUROC analysis (Fig. 2) reinforced these findings, with top performers achieving
values above 0.95.

We applied the TiLense tile-based importance mapping method to elucidate model decision-making
processes for GPT-4.1 and GPT-4. Figure 3 presents attention heatmaps across four diagnostically relevant
scenarios: normal mucosa (3b), standard polyp (3¢c), poorly prepared normal mucosa (3d), and subtle polyp
(3e). GPT-4.1 demonstrated clinically appropriate attention allocation, with high-importance tiles accurately
localizing polyp regions in clear cases (3¢) and maintaining focus on pathologically relevant features across
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Prompt Engineering Gemma-
Technique GPT-4 Claude-3-Opus | Gemini-1.5-Pro | GPT-4.1 | GPT-4.1mini Qwen-2.5-vl-72b | 3-27b
F1 score F1 score F1 score F1 score
(change) | F1 score (change) | F1 score (change) | (change) | (change) F1 score (change) | (change)
Polyp a 0.652
Detection Raw Prompt 0.636 (ref) | 0.266 (ref) 0.715 (ref) 0.915 (ref) | 0.915 (ref) 0.531 (ref) (ref)
Contextual Embedding,
Expert Mimicry,
Polyp . 0.748 0.935 0.798
Detection Chain o.f'l'ho.ught, (+17.6%) 0.458 (+72.2%) 0.731 (+2.2%) (+2.2%) 0.956 (+4.5%) 0.802 (+51.0%) (+22.4%)
Anchorm§ with
Examples
Polyp Raw Prompt® 0.126 (ref) | 0.112 (ref) 0.0 (ref) 0.156 (ref) | 0.169 (ref) 0.008 (ref) 0.190
Classification . . ’ . . : (ref)
Polyp . 4 |0548 . 0.594 . o 10350
Classification Constrained Output! (+434.9%) 0.147 (+31.2%) 0.437 (NA) (+280.7%) 0.711 (+320.7%) | 0.502 (+6175.0% (+84.2%)

Table 5. Impact of prompt engineering on vision Language model performance. a: “What is this image?” b: “As
an esteemed gastroenterologist specializing in colonoscopy evaluation, your expertise is crucial in meticulously
assessing a provided colonoscopy image. Your task is to discern and characterize any irregularities present
across the colonic mucosa, paying close attention to morphology, color variations, and vascularity patterns.
Drawing upon your wealth of experience, construct a comprehensive list of potential diagnoses, including

but not limited to inflammatory bowel disease, colorectal polyps, diverticulosis, and colorectal cancer.

Your discerning analysis and diagnostic acumen will guide subsequent clinical decisions, emphasizing the
importance of accurate interpretation and effective communication in delivering optimal patient care” c:
“What is the pathology class of the polyp? Give me only one answer.” d: “Analyze the provided image and select
one of the following options that accurately describes the patient’s diagnosis: \nnormal \nadenocarcinoma

\n adenomatous-tubular polyp \n adenomatous-tubulovillous polyp \n adenomatous-villous polyp \n
hyperplastic polyp \n inflammatory polyp.

varying image quality conditions. In contrast, GPT-4 exhibited attention misallocation in challenging scenarios,
incorrectly prioritizing artifacts in poorly prepared images (3d) and displaying dispersed attention patterns
for subtle lesions (3e), revealing susceptibility to image quality degradation and low-contrast pathology. These
attention pattern differences align with the models’ respective classification accuracies, suggesting that GPT-4.1s
performance gains reflect improved capacity to focus on clinically meaningful anatomical features rather than
confounding visual elements.

Polyp classification performance (CADx)

Classification performance revealed a different hierarchy than detection, with CNNs substantially outperforming
VLMs for fine-grained histological discrimination (Fig. 4). ResNet50 achieved the highest weighted F1 (74.94%),
establishing a 20-percentage-point advantage over the best VLMs: GPT-4.1-mini (55.07%) and GPT-4.1 (54.74%).
SVM was the only other model exceeding 55% (55.63%). Mid-tier performers included Random Forest (43.67%),
Qwen-2.5-vl-72b (42.13%), GPT-4 (41.18%), Logistic Regression (40.32%), and Decision Tree (40.42%). Earlier
VLMs and contrastive encoders showed weaker performance: Gemma-3-27b (35.50%), BiomedCLIP (27.74%),
Claude-3-Opus (25.54%), Gemini-1.5-Pro (6.17%), and CLIP (1.69%). Notably, BiomedCLIP’s strong detection
(88.68%) did not translate to classification (27.74%), suggesting zero-shot classification of subtle histological
variants is substantially more challenging. Table 6 presents overall weighted F1 scores, while Supplementary
TableS1 details performance by polyp type.

Tubular adenoma (TA) images (650 training, 121 test) achieved the most consistent classification performance
across models. The best results were obtained by ResNet50 (F1: 0.85), followed by Support Vector Machine (F1:
0.68) and Random Forest (F1: 0.64). Among VLMs, GPT-4 (F1: 0.58) outperformed Claude-3-Opus (F1: 0.33).
However, other recent VLMs such as Gemma-3-27B (F1: 0.48) and Qwen-2.5-VL-72B (F1: 0.57) showed weaker
performance. Notably, the latest multimodal models, GPT-4.1 (F1: 0.71) and GPT-4.1-mini (F1: 0.73), narrowed
the gap with CNN and CML methods, underscoring rapid progress in VLM-based polyp subtype recognition.

Adenocarcinoma (AC) images (66 training, 13 test) were best classified by GPT-4.1-mini (F1: 0.69), closely
followed by ResNet50 (F1: 0.67); GPT-4.1 (F1: 0.61) trailed both. Among other models, BiomedCLIP (F1: 0.56)
and SVM (F1: 0.45) performed reasonably, while tree-based methods were low (Decision Tree: 0.06; Random
Forest: 0.00). Other VLMs were modest: GPT-4 (F1: 0.30), Qwen-2.5-VL-72B (F1: 0.25), Gemma-3-27B (F1:
0.24), Claude-3-Opus (F1: 0.19), Gemini-1.5-Pro (F1: 0.00).

Hyperplastic polyp (HP) images (116 training, 22 test) presented a challenging classification task. Among
CML methods, SVM (F1: 0.31) and Decision Tree (F1: 0.22) outperformed Random Forest (F1: 0.08), Logistic
Regression (F1: 0.07), and Gaussian Naive Bayes (F1: 0.07). The CNN ResNet50 achieved the highest overall
performance with an F1 of 0.49, highlighting the strength of deep learning for this subtype. VLMs generally
performed poorly: GPT-4 and GPT-4.1-mini (F1: 0.00), Gemini-1.5-Pro (F1: 0.00), while GPT-4.1 (F1: 0.14),
Claude-3-Opus (F1: 0.14), Qwen-2.5-v1-72b (F1: 0.09), and Gemma-3-27b (F1: 0.05) performed slightly better.
Among contrastive VLMs, BiomedCLIP (F1: 0.21) outperformed CLIP (F1: 0.04) but still lagged behind CNN
and CML models.
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Fig. 1. Polyp detection performance across machine learning and vision language models. Confusion matrices
depicting polyp detection performance across various models in test set (internal validation): classical machine
learning algorithms—Decision Tree (a), Random Forest (b), Support Vector Machine (c), Logistic Regression
(d), Gaussian Naive Bayes (e); convolutional neural network—ResNet-50 (f); vision-language models—GPT-4
(g), GPT-4.1 (h); GPT-4.1-mini (i), Claude-3-Opus (j), Gemini-1.5-Pro (k), Qwen-2.5-vl-72b (1), Gemma-3-
27b (m); and contrastive vision-language encoders—CLIP (n), BiomedCLIP (o). Each matrix illustrates model
predictions relative to ground-truth labels.
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Model Family | Model Polyp Detection | Polyp Classification | AC (N=79) | TA (N=771) | TVA (N=59) | VA (N=36) | HP (N=138) | IP (N=45)
F1 Weighted F1 F1 F1 F1 F1 F1 F1
CML Decision tree 0.681 0.4042 0.06 0.53 0.27 0.00 0.22 0.14
CML Random forest 0.8102 0.4367 0.00 0.64 0.00 0.00 0.08 0.00
CML Support vector machine | 0.7792 0.5563 0.45 0.68 0.25 0.00 0.31 0.36
CML Logistic regression 0.728 0.4032 0.10 0.56 0.00 0.00 0.07 0.20
CML Gaussian naive bayes 0.1022 0.0764 0.08 0.09 0.00 0.00 0.07 0.00
CNN ResNet50 0.9135 0.7494 0.67 0.85 0.55 0.25 0.49 0.71
VLM GPT-4 0.8102 0.4118 0.30 0.58 0.00 0.00 0.00 0.00
VLM Claude-3-Opus 0.664 0.2554 0.19 0.33 0.06 0.04 0.14 0.00
VLM Gemini-1.5-Pro 0.1937 0.0617 0.00 0.09 0.00 0.00 0.00 0.00
VLM GPT-4.1 0.9198 0.5474 0.61 0.71 0.00 0.20 0.14 0.08
VLM GPT-4.1-mini 09116 0.5507 0.69 0.73 0.07 0.00 0.00 0.12
VLM Qwen-2.5-vl-72b 0.6859 0.4213 0.25 0.57 0.09 0.00 0.09 0.00
VLM Gemma-3-27b 0.6929 0.3550 0.24 0.48 0.15 0.00 0.05 0.00
VLM + few shot | GPT-4.1 0.9267 0.4261 0.47 0.52 0.00 0.00 0.30 0.04
VLM + few shot | GPT-4.1-mini 0.8904 0.4940 0.46 0.62 0.12 0.00 0.30 0.00
VLM + few shot | Qwen-2.5-vl-72b 0.7464 0.3630 0.35 0.46 0.10 0.13 0.14 0.03
VLM + few shot | Gemma-3-27b 0.8083 0.3827 0.05 0.51 0.22 0.00 0.17 0.00
cVL CLIP 0.6839 0.0169 0.19 0.00 0.00 0.00 0.00 0.04
cVL BiomedCLIP 0.8868 0.2774 0.56 0.29 0.17 0.00 0.21 0.04

Table 6. Comparative analysis of machine learning models in polyp detection and Classification. Performance
comparison of classical machine learning (CML) models, ResNet-50, vision Language models (VLMs), and
specialized VLMs for polyp detection and classification tasks. The bolded values represent the highest F1
scores for each task in the column.

The most challenging classifications were observed for tubulovillous adenoma (TVA, 48 training, 11 test),
villous adenoma (VA, 30 training, 6 test), and inflammatory polyp (IP, 38 training, 7 test) images. For TVA,
ResNet50 achieved the highest F1 of 0.55, with Decision Tree (F1: 0.27) and SVM (F1: 0.25) showing limited
effectiveness. Most other models, including VLMs and contrastive VLMs, performed at or near random chance,
except for BiomedCLIP (F1: 0.17), Gemma-3-27b (F1: 0.15), and GPT-4.1-mini (F1: 0.07), which provided small
improvements. For VA, ResNet50 (F1: 0.25) was the only model with moderate performance; most other models
failed, with minor gains from Claude-3-Opus (F1: 0.04), GPT-4.1 (F1: 0.20), and Qwen-2.5-vl-72b (F1: 0.09).
For IP, ResNet50 (F1: 0.71) performed best, followed by SVM (F1: 0.36) and Logistic Regression (F1: 0.20), while
most VLMs were ineffective, except GPT-4.1-mini (F1: 0.12) and GPT-4.1 (F1: 0.08); contrastive models CLIP
and BiomedCLIP (F1: 0.04 each) contributed minimally.

Figure 4 displays confusion matrices for polyp classification utilizing Random Forest (CMLs top performer),
ResNet50, GPT-4.1 (the leading VLM), and BiomedCLIP. Adenoma subtypes showed substantial confusion
across all models, with tubulovillous and villous adenomas frequently misclassified as tubular adenomas.
ResNet50 demonstrated the best discrimination but still showed considerable uncertainty. Complete ROC
curves and confusion matrices for all models are in Supplementary Figures S3 and S4.

Polyp classification performance (CADx) on external validation dataset

External validation on 75 images from the PICCOLO database revealed varying performance degradation
across model types. ResNet50 showed the largest decline (internal: 0.83, external: 0.49, A = -0.34), suggesting
overfitting to institution-specific characteristics. VLMs demonstrated smaller drops: GPT-4.1-mini (0.75 to 0.59,
A = -0.16), GPT-4.1 (0.72 to 0.58, A = -0.14), and Gemma-3-27B (0.72 to 0.53, A = -0.19). Notably, Qwen-
2.5-v1-72B exhibited the smallest decline among high-performing models (0.66 to 0.61, A = -0.05), suggesting
superior cross-institutional generalization. CML models showed intermediate degradation: SVM (0.69 to 0.52,
A =-0.17), Logistic Regression (0.59 to 0.48, A = -0.11), Random Forest (0.63 to 0.53, A = -0.10), and Decision
Tree (0.55 to 0.53, A = -0.02). Gaussian Naive Bayes showed apparent improvement (0.08 to 0.12, A = +0.04),
likely reflecting statistical noise given its poor baseline. These results suggest that while CNN achieves superior
internal performance, pretrained VLMs may offer generalization advantages. F1 scores are presented in Table 7,
with confusion matrices provided in Supplementary Figure S5.

Exploring Few-Shot injection impact on VLM prediction

Performance of Few-shot prompting produced heterogeneous effects for polyp detection (F1 scores in Table 6;
confusion matrices in Supplementary Figure S6). Gemma-3-27B showed the largest improvement (F1: 0.69
to 0.81), followed by Qwen-2.5-VL-72B (F1: 0.69 to 0.75). GPT-4.1 exhibited only a marginal gain (F1: 0.92 to
0.93), suggesting near-optimal baseline performance, while GPT-4.1-mini experienced a slight decline (F1: 0.91
t0 0.89).

Scientific Reports |

(2025) 15:45484

| https://doi.org/10.1038/s41598-025-29566-2 natureportfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1.0 |
0.8 |

[0)

d

©

o 06 |

)

=

‘0

o)

a

v 04

-}

| -

|_
0.2 |
0.0

ResNet50

; Decision Tree(AUC = 0.69)
i 4 Random Forest (AUC = 0.87)

/’/ ,/" — Support Vector Machine (AUC = 0.86)
1 Logistic Regression (AUC = 0.81)
I y ,/’ — Gaussian Naive Bayes (AUC = 0.51)
yd —— ResNet50 (AUC = 0.98)
A V4 —— GPT4V (AUC = 0.83)
. —— Claude-3-opus (AUC = 0.51)
- —— Gemini 1.5 Pro (AUC = 0.59)
—— GPT4.1 (AUC = 0.92)
—— GPT4.1-mini (AUC = 0.91)
—— Qwen2.5-vl-72b (AUC = 0.70)
Gaussian Naive Bayes —— Gemma3-27b-it (AUC = 0.71)
CLIP (AUC = 0.50)
Random Guessing Biomed CLIP (AUC = 0.88)
---- Random Guessing
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 2. ROC curves and AUROC values for polyp detection. Receiver operating characteristic curves for polyp
detection, with the corresponding AUROC values. AUROC values greater than 0.8 are shown in bold.

Few-shot prompting also produced mixed effects on classification performance across models. While
overall weighted F1 often declined (GPT-4.1: 0.55 to 0.43, GPT-4.1-mini: 0.55 to 0.49, Qwen-2.5-v1l-72b: 0.42
to 0.36), certain underrepresented categories benefited substantially. For example, GPT-4.1-mini improved HP
classification F1 score from 0.00 to 0.30, and Qwen-2.5-vl-72b increased AC from 0.25 to 0.35 and VA from
0.00 to 0.13. Gemma-3-27b also demonstrated consistent gains, raising weighted F1 from 0.36 to 0.38, with HP
classification F1 score improving from 0.05 to 0.17 and TVA from 0.15 to 0.22. However, these improvements
were often offset by declines in high-prevalence classes such as AC and TA (e.g., GPT-4.1 F1 score for AC: 0.61
10 0.47, TA: 0.71 to 0.52). This trade-off suggests few-shot learning requires careful calibration, as improvements
for rare classes may come at the cost of common category accuracy.

Discussion

Our systematic evaluation established a performance hierarchy across computational paradigms. For polyp
detection, the highest-performing zero-shot VLMs achieved parity with task-specific CNN. GPT-4.1 (F1:91.98%)
and GPT-4.1-mini (91.16%) performed comparably to ResNet50 (91.35%), demonstrating that frontier VLM
architectures can match specialized CNN for binary classification tasks. The 11-percentage-point improvement
from GPT-4 (81.02%) to GPT-4.1 within a single model generation suggests rapid architectural evolution,
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Fig. 3. Tile-level importance analysis of GPT-4.1 and GPT-4 polyp detection using TiLense. Evaluation

of GPT-4.1 and GPT-4 for polyp detection using TiLense, focusing on tile-level importance. The method
includes five runs with vision-language models (VLMs) on original and masked images, using 9 masked tiles
per image. Each tile receives an importance score from 0 to 5, indicated by a color gradient from white to red,
where red denotes a tile whose removal alters the base answer significantly. A reference answer for each image
is established, and deviations are scored as 1 point. The final answer was considered by voting among five
answers. Panels (a-e) show tile-level predictions across image conditions: standard image without polyp (b),
standard image with polyp (c), challenging image without polyp and poor preparation (d), and challenging
image with hard-to-see polyp (e).
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Fig. 4. Polyp classification performance of top-performing models. Confusion matrices of polyp classification
are provided for the top-performing classical machine learning model (a: Random Forest), convolutional
neural network (b: ResNet-50), highest-performing vision-language model (¢: GPT-4.1), and the contrastive
vision-language encoder fine-tuned on external general medical imaging data (d: BiomedCLIP). Abbreviations:
AC, Adenocarcinoma; TA, Tubular Adenoma; TVA, Tubulovillous Adenoma; VA, Villous Adenoma; HP,
Hyperplastic Polyp; IP, Inflammatory Polyp; No-A: No answer provided; 20P: two options (polyp type) were
selected.

though proprietary models preclude definitive attribution. However, this performance was not universal across
VLMs. Qwen-2.5-vl-72b (68.59%), Gemma-3-27b (69.29%), Claude-3-Opus (66.40%), and Gemini-1.5-Pro
(19.37%) performed substantially worse, with some scoring at or below CMLs baselines (Random Forest:
81.02%, SVM: 77.92%). This 72-point performance range across VLMs (GPT-4.1: 91.98% to Gemini-1.5-Pro:
19.37%) underscores that VLM does not denote uniform capability, but rather encompasses architectures with
markedly different medical imaging performance.

For polyp classification, even the highest-performing VLMs underperformed CNN. ResNet50 (weighted
F1: 74.94%) substantially outperformed GPT-4.1-mini (55.07%), the best VLM for this task. This 20-point
performance gap widened substantially for rare polyp subtypes, as detailed below. CML approaches consistently
underperformed deep learning methods for both detection and classification, validating the shift toward neural
architectures in medical imaging.

This detection-classification dichotomy likely reflects fundamental task differences. Polyp detection requires
distinguishing abnormal mucosal protrusions from normal tissue based on features such as texture variations,
color changes, and surface irregularities visible during endoscopy. VLMs’ broad pretraining on diverse visual
domains may enable recognition of these general visual patterns. In contrast, polyp classification requires
discrimination between subtle morphological variants visible on the polyp surface. Distinguishing different polyp
classes based on colonoscopy images probably requires recognition of surface pit patterns, vascular patterns,
color variations, shape characteristics, and surface texture that correlate with underlying histology*®*. These
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Model Family | Model Polyp Classification AC (N=79) | A(N=50) | HP (N=138) | Polyp Classification | AC (N=9) | A (N=50) | HP (N=16)

Test (Internal Validation) External Validation

Weighted F1 F1 F1 F1 Weighted F1 F1 F1 F1
CML Decision tree 0.55 0.16 0.64 0.27 0.53 0.00 0.73 0.22
CML Random forest 0.63 0.00 0.78 0.07 0.53 0.00 0.80 0.00
CML Support vector machine | 0.69 0.38 0.78 0.31 0.52 0.00 0.78 0.00
CML Logistic regression 0.59 0.11 0.72 0.07 0.48 0.00 0.65 0.25
CML Gaussian naive bayes 0.08 0.09 0.08 0.07 0.12 0.00 0.07 0.36
CNN ResNet50 0.83 0.71 0.89 0.52 0.49 0.62 0.53 0.32
VLM GPT-4.1 0.72 0.64 0.83 0.14 0.58 0.59 0.77 0.00
VLM GPT-4.1-mini 0.75 0.72 0.87 0.00 0.59 0.75 0.75 0.00
VLM Qwen-2.5-v1-72b 0.66 0.37 0.76 0.16 0.61 0.55 0.71 0.32
VLM Gemma-3-27b 0.72 0.50 0.84 0.12 0.53 0.30 0.66 0.27

Table 7. Comparative analysis of machine learning models in polyp classification in external Dataset.
Performance comparison of classical machine learning (CML) models, ResNet-50 and vision Language models
(VLMs) for polyp classification tasks. The bolded values represent the highest F1 scores for each task in the
column. Abbreviations: CML, Classical Machine Learning; VLM, Vision Language Model; cVL, contrastive
Vision-Language encoders; AC, Adenocarcinoma; A, Adenomatous; HP, Hyperplastic Polyp.

domain-specific visual-histological correlations, likely absent from general pretraining datasets, may explain
why VLMs struggle with fine-grained histological prediction despite achieving strong detection performance.

Performance on rare polyp types revealed the magnitude of this classification limitation. For TA (650 training
images, 121 test images), GPT-4.1 and GPT-4.1-mini achieved 71-73% F1 for endoscopic histological prediction.
However, performance declined substantially for rarer subtypes: VA (30 training, 6 test) both models <20% F1;
TVA (48 training, 11 test) both <7% F1; IP (38 training, 7 test) both <12% F1. For HP (116 training, 22 test),
both achieved 0% F1. In contrast, ResNet50 maintained non-zero performance across all categories: HP 49%,
VA 25%, TVA 55%, IP 71%. Even CML models (SVM: 31% for HP) outperformed the leading VLMs on these
categories. This pattern extends beyond simple class imbalance, as classical models trained on the same limited
rare examples maintained non-zero performance. The findings suggest that zero-shot transfer, while effective
for common polyp types with abundant visual similarity to general pretraining data, fails for rare histological
presentations requiring domain-specific pattern recognition.

The substantial performance variability across VLMs noted above warrants investigation. These findings are
consistent with emerging evidence from other clinical domains showing wide variability in VLM performance
across medical imaging tasks®*~*>. Several factors likely contribute. First, architectural differences across
proprietary models affect visual-language integration. GPT-4.1-mini achieving nearly identical detection
performance (91.16%) to GPT-4.1 (91.98%) despite presumably fewer parameters suggests architectural
innovations rather than scale drive improvements. Second, pretraining data composition varies. BiomedCLIP
(88.68% F1) substantially outperformed general CLIP (68.39%) for polyp detection as a result of its additional
training on 15 million biomedical figure-caption pairs from PubMed Central'!, providing direct evidence that
medical content exposure improves performance. General-purpose VLMs likely contain varying amounts of
incidental medical imaging in their pretraining corpora, partially explaining performance differences. Third,
instruction-following capability varies substantially, as demonstrated by our prompt engineering experiments.

Prompt engineering revealed substantial performance sensitivity. For polyp detection, improvements with
engineered prompts ranged from 2.2% (GPT-4.1, Gemini-1.5-Pro) to 51.0% (Qwen-2.5-vl-72b). For classification,
improvements were substantial: GPT-4.1 (15.6% to 59.4%, + 280.7%), GPT-4.1-mini (16.9% to 71.1%, + 320.7%),
and Qwen-2.5-vI-72b (0.8% to 50.2%, + 6175%). These magnitudes underscore that systematic prompt design is
critical for medical VLM deployment!”. Few-shot prompting showed variable effects. For detection, Gemma-
3-27B improved substantially (+ 17.4%) while GPT-4.1 showed minimal gain (+ 1.1%), consistent with baseline
performance near ceiling. GPT-4.1-mini declined slightly (-2.2%), suggesting few-shot examples may introduce
noise for high-performing models. This outcome may also be attributed to our selection of examples: we primarily
included clear and unambiguous cases that the model could process effectively, whereas its performance may
decline when confronted with more ambiguous images. For classification, few-shot prompting often improved
rare categories while reducing common category performance, yielding limited overall gains. Our results exceed
previously reported prompt-dependent performance variations and reinforce that effective prompt engineering
is critical for clinical VLM implementation!”*®. In addition, these findings reaffirm that prompt optimization
benefits mid-performing models most, while top performers show diminishing returns®’->°.

Beyond internal performance patterns observed in our test set, cross-institutional generalization represents
a critical consideration for clinical deployment. External validation on 75 images from the PICCOLO database
assessed cross-institutional generalization. ResNet50 showed substantial performance decline (weighted FI:
0.83 to 0.49), potentially reflecting overfitting to institution-specific characteristics such as imaging equipment
settings, acquisition protocols, or patient population differences. VLMs also experienced decreases, with GPT-
4.1 (0.72 to 0.58), GPT-4.1-mini (0.75 to 0.59), and Gemma-3-27B (0.72 to 0.53) showing larger declines than
Qwen-2.5-vl-72B (0.66 to 0.61). The relatively stable performance of some VLMs compared to ResNet50’s
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larger degradation may suggest that zero-shot models pretrained on diverse data possess some cross-domain
robustness. However, our limited external sample (75 images, one institution, three polyp classes versus six in
internal data) precludes definitive conclusions.

These performance characteristics, together with fundamental differences in computational requirements,
have direct implications for clinical deployment strategies. Computational requirements differ fundamentally
between model families with direct implications for clinical applicability. CNNs require dataset annotation,
model training (several hours on our hardware for ResNet50), and validation testing. However, once deployed,
CNNs enable rapid local inference (milliseconds per image on CPU) with zero recurring costs and no network
dependencies. This computational profile makes CNNs suitable for real-time intra-procedural applications,
where frame-by-frame analysis during endoscope advancement can provide immediate feedback to endoscopists.
VLMs eliminate training requirements through zero-shot deployment, substantially reducing barriers to entry.
However, current API-based VLMs introduce per-image costs and network latency (seconds per image in our
implementation), making them unsuitable for real-time use during live procedures. Network dependencies
also introduce reliability concerns. The computational profile of current API-based VLMs restricts them to
retrospective applications such as post-procedure quality assurance, batch analysis of stored images, or second-
opinion consultation on challenging cases.

These computational constraints shape institutional deployment decisions. Academic centers with AI
infrastructure may favor CNN development for real-time applications despite upfront costs, benefiting from
zero marginal inference costs and real-time deployment capability for both detection and optical diagnosis.
Community practices lacking machine learning expertise might find API-based VLMs useful for retrospective
quality assurance despite recurring costs, as zero-training deployment enables immediate adoption for post-
procedure review. However, institutions seeking real-time procedural guidance must pursue CNN-based
approaches given current technological constraints. The substantial performance gap for rare polyp classification
further indicates that current-generation VLMs should not be relied upon for optical diagnosis decisions without
further technological advancement.

Several immediate research directions emerge from these findings. First, evaluation on video colonoscopy
sequences rather than still frames would assess temporal reasoning capabilities and enable analysis of dynamic
polyp characteristics across multiple viewing angles. Second, expansion of external validation to additional
institutions with diverse endoscopy equipment, patient populations, and polyps would better characterize cross-
institutional generalization and identify specific factors affecting model transferability. Third, investigation
of spatial localization capabilities, particularly for VLMs through region-specific prompting or coordinate
generation, would address a critical requirement for clinical applicability. Fourth, our choice of examples for
few-shot prompting may have influenced the results; therefore, future studies should explore alternative methods
for example selection. Finally, systematic analysis of model performance stratified by polyp size, morphology,
and location would reveal potential biases affecting clinical safety and identify subgroups requiring targeted
algorithmic improvements.

Several methodological limitations should be considered. First, natural prevalence disparities influenced our
dataset composition despite our augmentation efforts, potentially impacting model performance for several rare
polyp categories. Second, our evaluation used still colonoscopy images rather than video sequences, eliminating
temporal continuity, polyp motion tracking, and multi-angle visualization available during actual procedures.
Third, our study focuses on polyp detection (presence/absence) and classification (histological type) rather
than spatial localization, which would be necessary for complete clinical implementation. Fourth, our external
validation provides initial cross-institutional evidence but represents a small sample from a single additional
institution with three polyp classes compared to our internal dataset’s six classes. Larger-scale multi-institutional
validation is necessary to establish robust generalizability benchmarks.

Conclusion

This systematic comparison of VLM and CNN for colonoscopy polyp analysis reveals a clear task-dependent
performance hierarchy. While the highest-performing VLMs matched CNNs for binary polyp detection, CNNs
maintained substantial advantages for polyp classification, particularly for rare polyp subtypes where VLM:s failed
entirely. These findings suggest that current zero-shot VLMs may serve retrospective quality assurance roles
but remain unsuitable for real-time clinical deployment requiring histological discrimination. Computational
constraints further restrict API-based VLMs to post-procedure applications, while CNNs enable real-time intra-
procedural guidance. As both architectural families continue to evolve, understanding their complementary
strengths and limitations will inform appropriate deployment strategies across diverse clinical settings.

Data availability

The datasets created and analyzed in this study cannot be accessed publicly due to IRB requirements; however,
anonymized data can be obtained from the corresponding author (HAA) and SAASN ( [sdamirsa@gmail.com])
upon request by providing the IRB code. The external dataset is accessible after signing data transfer agreement
from [https://www.biobancovasco.bioef.eus/]. The code for the generation and evaluation of responses is publicly
available at: [https://github.com/aminkhalafi/ CML-vs-LLM-on-Polyp-Detection].
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