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P4HAL facilitates SPP1+ tumor-
associated macrophages by
activating the hypoxia pathway
in head and neck squamous cell
carcinoma

Yiding Liu%%%, Bing Yan%%5, Hui Dong*®, Yi Li%, Yuying Zhang'?, Yi Wang*2, Ni Kou™3" &
Lu Gao%?™

Tumor-associated macrophages (TAMs) with highly expressed secreted phosphoprotein 1 (SPP1) carry
immunosuppressive property as a potential target for tumor metastasis. However, the mechanisms
regulating SPP1+TAMs in head and neck squamous cell carcinoma (HNSCC) remain poorly understood.
This study employs a combination of single-cell and bulk RNA sequencing bioinformatics analysis to
confirm the impact of TAMs with high levels of SPP1 on patient prognosis. Additionally, Key genes
linked to SPP1 + macrophages were identified using weighted gene co-expression network analysis.

A prognostic model was built using the Random Forest algorithm. Here we show, P4HA1 is strongly
correlated with SPP1 + macrophages and holds significant value in predicting patient prognosis and
diagnosis. In vitro experiments demonstrated that TAMs educated by HNSCC cells with knockdown
P4HA1 expressed lower SPP1 level compared to the control group. Furthermore, Gene Set Variation
Analysis and Gene Set Enrichment Analysis indicated that P4HA1 mediates the hypoxia pathway in
HNSCC. In xenografts model, P4HA1 knockdown effectively suppressed tumor malignant progress,
confirming that P4HA1 was positive correlation with SPP1 +TAMs and could mediate tumor hypoxia
pathways. Overall, this study identified P4HA1 as a key gene involved in regulating SPP1 +TAMs
through modulating hypoxia, providing a potential macrophage-centered therapeutic target in
HNSCC.
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AUC Area under the curve

Cocl2 Cobalt chloride 2

GEO Gene expression omnibus

GSEA Gene set enrichment analysis

GSVA Gene set variation analysis

HNC Head and neck cancers

HIF-1a Hypoxia-inducible factor 1 alpha
P4HA1 Prolyl 4-hydroxylase subunit alpha 1
PLS-GLM  Partial least squares generalized linear models
PCA Principal component analysis

PDXs Patient-derived xenografts

ROS Reactive oxygen species
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SVM Support vector machine

SPP1 Secreted phosphoprotein 1

SGLM Stepwise generalized linear model

TAMs Tumor-associated macrophages

TME Tumor microenvironment

TCGA The cancer genome atlas

UMAP Uniform manifold approximation and projection algorithm
WGCNA Weighted gene co-expression network analysis
PHDs Oxygen-dependent dioxygenases

a-KG Alpha-ketoglutarate

CA9 Carbonic anhydrase 9

CM Confusion matrices

ROC Receiver operating characteristic curve

Head and neck squamous cell carcinoma (HNSCC) accounts for approximately 90% of head and neck cancers
(HNC) and is recognized as the sixth most common type of cancer worldwide!?. Despite multidisciplinary
treatment of locally advanced HNSCC by surgery combined with adjuvant chemoradiation or platinum-
based concurrent chemoradiation, less than 50% of patients can be cured®. HNSCC is characterized by the
heterogeneity of tumor tissues and the complexity of tumor microenvironment (TME)?. Tumor-associated
macrophages (TAMs), the main components of infiltrating leukocytes in the TME, have a substantial promoting
effect on malignant progression®®. Further research on the molecular mechanism of TAMs in HNSCC holds
great significance in terms of identifying therapeutic targets.

A large infiltration of macrophages in solid tumors not only contributes to treatment resistance but also has a
negative impact on patient prognosis’. Generally speaking, monocytes are recruited to the ‘field effect in cancer’
by a variety of chemokines and cytokines released by tumor cells, and they are educated and polarized into TAMs,
including the pro-inflammatory M1 and pro-tumorigenic M2 phenotypes®. However, with the advancement
of single-cell sequencing (scRNA-seq) technologies, it has become increasingly clear that the traditional
classification of TAMs into M1 (ITGAX, CD80) and M2 (CD163, MRC1) types is insufficient to account for the
complexity®. In certain types of cancers, TAMs isolated from patients have been found to express both M1 and
M2 markers, suggesting the presence of TAMs with high heterogeneity and dynamical phenotypes'’. Therefore,
the subtyping of TAMs based on scRNA-seq better reflects the complexity of the TME.

SPP1 (Secreted Phosphoprotein 1) is aberrantly expressed and exerts oncogenic roles in various cancers,
being produced not only by tumor cells but also secreted by immune cells such as macrophages!'""!2. SPP1 +
macrophages are closely associated with hypoxic microenvironments, with their high expression significantly
correlated with poor patient prognosis, co-infiltration with FAP + fibroblasts, reduced lymphocyte infiltration,
and accumulation of cancer stem cells'*!. Collagen prolyl 4-hydroxylase (P4H), an a-ketoglutarate (a-KG)-
dependent dioxygenase, facilitates proline hydroxylation in collagen, thereby promoting collagen synthesis
while releasing succinate as a byproduct!®. P4H subunit alpha 1 (P4HA1) is a key component of the P4H family,
which facilitates post-translational modifications crucial for protein folding and stability. As the main isoform
of this enzyme, PAHA1 is present in multiple human tissues and is essential for promoting P4H activity'.
Recent research on pancreatic ductal adenocarcinoma has identified PAHA1 as a vital regulator in glycolysis
and various oncogenic processes through hypoxia-inducible factor-1a (HIF-1a), including cell proliferation,
chemoresistance, and stem cell characteristics'’. Regulating the levels of alpha-ketoglutarate (a-KG) and
succinate can reduce prolyl hydroxylation on HIF-1a by modulating the expression of PAHALI in breast cancer
cells'®. Despite these insights, the relationship between PAHA1 expression and SPP1 + macrophage infiltration
in HNSCC remains unclear.

Here, we conducted a combined analysis of scRNA-seq and bulk RNA-seq (RNA-seq) data of HNSCC,
revealing a subtype of macrophages with high expression SPP1 that has a detrimental impact on patient prognosis.
Through weighted gene co-expression network analysis (WGCNA), genes associated with SPP1 + macrophages
were identified. And a clinical prognostic model was established using various machine learning algorithms.
P4HA1 was strongly associated with the abundance of SPP1+macrophages and indicated poor prognosis
for patients with HNSCC. More importantly, both in vitro and in vivo experiments revealed that tumor cell-
derived P4HA1 orchestrates macrophage polarization toward the SPP1 + phenotype through hypoxia pathway.
This study identified PAHAL1 as a novel regulator of SPP1+TAM subtype differentiation, which promotes the
malignant progression of HNSCC through hypoxia pathway, thereby offering a promising immunotherapeutic
target for HNSCC treatment.

Results
The impact of different macrophage subtypes on the prognosis of HNSCC patients
A dataset was acquired from the GEO database, which comprised scRNA-seq data from 52 patients with
HNSCC, and was identified as GSE234933. Using the R package Seurat, a single-cell atlas for HNSCC cases was
constructed by integrating data and applying stringent quality control measures, resulting in a refined dataset of
172,569 cells for further analysis. PCA was then employed to reduce the dimensionality of the dataset (Fig. S1).
The cell types were visualized using UAMP, which displayed an extensive variety of cells in the dataset (Fig. 1A).
Cell classification was finalized by annotating cells with marker genes (Fig. 1B). Next, the macrophages were
further divided into 8 subtypes, and each subtype was named based on its specific marker genes (Fig. 1C and D).
To investigate the impact of subtype infiltration on patient survival outcomes in a large cohort study, we applied
the scRNA-seq data to TCGA-HNSCC cohort using the Bisque RNA-seq deconvolution algorithm (Fig. 1E). The
infiltration levels of Mac_SLC40A and Mac_SPP1 are significantly increased in head and neck cancer compared
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Fig. 1. The abundance of SPP1 + macrophages is negatively associated with patient prognosis in HNSCC. (A)
UMAP visualization showed 172,569 cells from 52 HNSCC patients, categorized into 10 distinct cell types.
(B) Heatmap exhibited the expression levels of marker genes for the 10 cell types. (C) UMAP plot showing 8
subtypes of macrophages. (D) The marker genes of macrophage subtypes are presented in a contour density
plot. (E) The immune infiltration of the 8 macrophage subtypes in the TCGA-HNSCC cohort. (F) The box
plot shows the infiltration ratios of eight macrophage subtypes in HNSCC and adjacent normal tissues. (G)
Univariate Cox regression analysis of eight macrophage subtypes. (H) Kaplan-Meier survival analysis of high
and low SPP1" macrophage infiltration groups.
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to normal tissue (Fig. 1F). Univariate Cox regression analyses indicated that SPP1 + macrophages were associated
with an unfavorable prognosis in patients with hazard ratios of 4.978 (p <0.001) (Fig. 1G). And survival curves
confirmed that high infiltration of SPP1 + macrophage subtypes was significantly associated with poor prognosis
in HNSCC patients (log-rank p <0.001; Fig. 1H).

WGCNA identified SPP1+ macrophage related genes

We used the WGCNA algorithm to identify coding genes that may influence the abundance of SPP1 + macrophages
in HNSCC. RNA-seq data of 502 HNSCC patients from TCGA was used for analysis. After removing the
outliers, 471 high-quality samples remained (Fig. 2A). Then we chose the optimal soft-thresholding power ()
of 6. At the B value, an R?>0.85, specifically 0.921, indicated that the network’s topological structure conforms
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«Fig. 2. WGCNA identifies module genes associated with SPP1 + macrophages. (A) Among 502 HNSCC-
TCGA data instances, after excluding outliers (red line=430), a total of 471 samples were analyzed. (B)
Analysis of the scale-free fitting index (left) and average connectivity (right) for different soft-thresholding
powers identified the optimal soft-thresholding power as 6 (RA2=0.921). (C) Dendrogram of 18,253 encoded
genes based on dissimilarity measure (1-TOM) clustering, with each module containing at least 30 genes.

(D) Heatmap depicting the correlation between module feature genes and SPP1 + macrophage abundance.

(E) Scatter plot showing the association between midnight blue and brown module membership and gene
expression correlation with Mac_SPP1 cell abundance. (F) Volcano plot of 2,872 differentially expressed genes
between tumor and adjacent normal tissue. (G) Venn diagram presenting 193 overlapping genes between
module genes and differentially expressed genes. (H) After applying Cox univariate regression analysis to

the intersection genes. 14 genes were identified as significantly associated with patient survival prognosis
(P<0.05).

to scale-free characteristics (Fig. 2B). Following the gene network analysis, we categorized the genes within the
network into 36 distinct modules, with each module containing at least 30 genes (Fig. 2C). Further evaluation
using Pearson’s correlation analysis was performed to assess the relationship between each module and the
proportion of SPP1+macrophages (Fig. 2D). The results showed that two modules, named “midnightblue”
and “brown,” exhibited significant correlation with coefficients exceeding 0.3. Therefore, genes from these two
modules were selected for further investigation, with thresholds for module membership and gene significance
deliberately established at 0.3 and 0.2, respectively, to minimize noise and ensure an adequate pool for selection
(Fig. 2E). Next, we performed differential analysis using the TCGA-HNSCC cohort. This analysis identified
2872 differentially expressed genes between tumor and normal samples (Fig. 2F). Ultimately, 193 genes were
identified at the intersection by comparing the genes from the modules with the differentially expressed genes
(Fig. 2G). To establish a clinical prognostic model and investigate the most valuable genes for further research,
we employed univariate Cox regression analysis, which identified 14 intersecting genes that were significantly
associated with clinical prognosis (Fig. 2H).

Prognosis model was established using the SPP1+ macrophages related genes

To validate the clinical prognostic value of the 14 key SPP1+macrophage-related genes, we established a
clinical prognosis model based on a training set from TCGA-HNSCC cohort (n=502) and used GSE41613
(n=97), GSE65858 (1=270), and GSE117973 (n="77) as testing sets. This model was developed by employing
12 classical machine learning methods integrated into 113 algorithmic combinations. PCA conducted before
and after correction suggested that the effect of sequencing batch effects was adequately mitigated (Fig. S2).
Among the 113 combined algorithms, the fusion of glmBoost and RF achieved the highest composite score
0.715 (Fig. 3A). Next, we employed glmBoost-RF for optimal feature selection, which identified the following
nine genes as most predictive: P4HAI, SPOCKI1, CCL26, STCI, TRIMY, PTPRN, TPM4, DGKG, and CLDN8
(Fig. 3B). Finally, a RF algorithm with ten-fold cross-validation was implemented. The error rate was minimized,
and the model was stabilized when the number of trees was set to 1000 (Fig. 3C). Each feature was scored by
calculating the mean decrease in accuracy and Gini impurities (Fig. 3D). To accurately assess the predictive
and generalization capabilities of the final model, we utilized confusion matrices (CM) and Receiver Operating
Characteristic Curve (ROC) to evaluate its performance on both training and validation datasets (Fig. 3E). The
CM analysis revealed that the clinical prognostic model demonstrated a higher degree of predictive precision
for living patients, whereas its predictive capacity for deceased individuals was less accurate. Evaluation of the
AUC scores indicated that the model exhibited robust predictive accuracy on the TCGA training set and showed
a reasonable degree of generalizability to the GSE41613 dataset. We then established a correlation between
these 9 genes and the proportion of SPP1+macrophages using Pearson’s correlation analysis (Fig. S3A). The
correlation between expression of PAHA1 and infiltration of SPP1+ macrophage is 0.32 (p <0.0001). We also
evaluated the diagnostic potential of nine SPP1+macrophage related genes using ROC curves in the TCGA-
HNSCC and GSE6631 datasets (Fig. S3B). PAHA1 consistently exhibited the highest AUC scores of 0.89 and
0.91, highlighting its strong diagnostic capability.

The expression of P4HA1 in HNSCC was positively correlated with SPP1+ macrophages

To explore the association between P4HA1 and SPP1+ macrophages, we conducted an analysis of P4HA1
mRNA expression in 502 HNSCC samples and 44 adjacent normal tissues in the TCGA-HNSCC. Our findings
revealed a significantly elevated expression of PAHA1 in HNSCC tissues compared to the adjacent normal tissues
(p<0.0001, Fig. 4A). Next, we categorized HNSCC samples based on P4HA1 expression levels. The Wilcoxon
rank-sum test demonstrated a significant correlation between high expression of PAHA1 (cutoff=0.5) and an
increased proportion of SPP1 + macrophages in patients (p <0.0001; Fig. 4B). Kaplan-Meier analysis showed that
patients with high P4HA1 expression had significantly lower 10-year overall survival compared to those with
low P4HA1 expression (1n=260, p<0.0001, log-rank test, Fig. 4C). Additionally, we induced M0 macrophages
with conditioned media of CAL27 and SCC25 cells and then detected the expression of SPP1 in TAMs by IE,
which was significantly higher in TAMs than that in MO macrophages (Fig. 4D).

To further explore the effect of PAHA1 in SCC25, CAL27 and FaDu cells on the expression of SPP1 in TAMs,
we used siRNA targeting the human P4HA1 sequence to knockdown P4HA1 in SCC25, CAL27 and FaDu cells,
and the transfection efficiency was verified using RT-qPCR and western blotting (p < 0.05; Fig. S4A and B). Then,
SCC25, CAL27 and FaDu cells were co-cultured with macrophages through a 0.4-um pore Transwell chamber
(Fig. S4C). Compared to the control group, 72 h after the co-culture of P4HA1-knockdown SCC25, CAL27 and
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Fig. 3. Constructing a clinical prognosis model of SPP1 + macrophages related genes. (A) The heatmap

shows the AUC scores of various machine learning ensemble prognostic models on the TCGA training set
and different GEO datasets. (B) Importance scores of 15 feature genes evaluated using the glmBoost machine
learning algorithm. (C) The line graph illustrates the error rates of three cross. (D) The scatter plot visually
demonstrates the average decrease in accuracy and average decrease in Gini impurity of the 9 genes with
glmBoost feature engineering scores greater than 0 in the random forest model. (E) The confusion matrix and
ROC curve of RF model, including the TCGA dataset and the GSE41613, GSE65658, and GSE117973 datasets.
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FaDu cells with macrophages, the mRNA expression level of SPPI in TAMs was significantly decreased (p < 0.05,
Fig. S4D). And then the fluorescence intensity of SPP1 in TAMs induced by siP4HA1 tumor cells was detected
by IF, which was significantly downregulated compared to the si-Control group (p<0.05, Figs. 4E, S5A and
S6A). TAMs can enhance the migration and invasion of tumor cells, while we found that this promoting effect
was significantly reduced when macrophages were induced by SCC25, CAL27 and FaDu cells with siP4HA1
(p<0.05, Figs. 4F and G, S5B and C, S6B and C). In summary, the expression of P4AHA1 in tumor cells is
positively correlated with the level of SPP1 in TAMs, which can mediate the migration and invasion of HNSCC
cells by regulating SPP1 + TAMs.

P4HA1 mediates the SPP1+TAM phenotype of macrophages by activating hypoxia pathway
in HNSCC

To investigate the role of PAHA1 in the TME and elucidate how PAHA1 promotes the polarization of macrophages
towards the SPP1 phenotype, gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were
used to analyze TCGA-HNSCC cohorts. The results revealed that PAHA1 mediated cellular hypoxia within
the TME (NES=2.279, p.adjust<0.001; Fig. 5A and B). According to the high and low P4HAI expression
groups, differential gene expression analysis conducted using the limma package identified 331 genes that varied
significantly between the two groups (Fig. 5C). The 331 intersecting with 200 hypoxia-associated genes from
the hallmark gene set yielded a common set of 26 intersecting hypoxia-related genes (Fig. 5D). The intersecting
genes were subsequently imported into a protein-protein interaction (PPI) network, from which the proteins that
interact with P4HA1 were chosen for further experimental validation (Fig. 5E and F). GAPDH, which served
as a housekeeping gene, was excluded from the experiment. Likewise, PAHA2, owing to its functional similarity
to P4HA1, was not subjected to validation assays. The other four proteins were detected at the mRNA level, and
the results showed that knockdown of PAHA1 in SCC25 or CAL27 resulted in concomitant downregulation of
ANGPTL4, COL5A1, SLC2A1, and NDRGI1 transcripts (Figs. 5G, S7A). Next, reactive oxygen species (ROS)
levels and HIF-1a protein expression were detected using western blotting and ROS assays, respectively. The
results showed that a notable reduction in intracellular ROS accumulation and a decrease in HIF-1a protein
levels were observed in the si-P4HA1 groups, substantiating the role of P4AHA1 in promoting cellular hypoxia
(Figs. 5H and I, S7B and C). Finally, macrophages treated with tumor cells and CoCI2 for 72 h showed a notable
elevation in SPP1 expression relative to the control group (Figs. 5], S7D). These results indicated that P4HA1
could activate the HIF-1a pathway in tumor cells to polarize SPP1 +macrophages in HNSCC.

P4HA1 knockdown decreases SPP1+ macrophages through regulating hypoxia pathway in
VIVO

Subcutaneously inoculating nude mice with SCC25 cells transfected with sh-P4HA1 and the negative control,
and subsequently dissecting the tumors four weeks post-injection, revealed that PAHA 1 knockdown significantly
inhibited tumor growth in vivo (Fig. 6A and D). To investigate the impact of PAHA1 knockdown on SPP1
expression, we performed HE staining and IHC analysis across various experimental groups (Fig. 6E). Given that
the expression levels of SPP1 were reduced in the sh-P4HA1 group compared to the NC group. By performing
co-IF staining of SPP1 and CD68, we found a reduction in the number of SPP1-positive macrophages in the
P4HAI1 knockdown group (Fig. 6F). This indicates that the knockdown of PAHA1 inhibits tumor growth and
reduces the level of SPP1 in vivo. Additionally, to validate that P4AHA1 knockdown suppresses hypoxia in
HNSCC tumors, we evaluated hypoxia markers HIF-1a using IHC and co-IF. The results indicated that in the
P4HAI1 knockdown group, HIF-1aexpressions were significantly reduced (Fig. 6E and G). And we analyzed the
correlation of HIF-1a and SPP1 expression in different groups using Pearson’s test (Fig. 6G), demonstrating that
tumor hypoxia induced by PAHA1 was positively correlated with SPP1 expression.

Discussion

TAMs play a pivotal role in the stroma of most cancers, responding to tumor stimuli with a unique set of
factors and enzymes that influence tumor growth, angiogenesis, and possibly metastasis'*2’. Within the tumor
microenvironment (TME), the M1-like TAMs, which exert antitumor effects, and the M2-like, which fosters a
pro-tumorigenic milieu, significantly shape the dynamics of cancer progression. The interplay between these
M1/M2 subsets substantially affects the development of strategies aimed at enhancing antitumor immune
responses'’. However, with the advancement of scRNA-seq technologies, an increasing number of research
indicates that traditional markers used to differentiate macrophage subsets are insufficient to effectively
categorize macrophage populations effectively”?!. To gain a more nuanced understanding of macrophage
diversity in the TME of HNSCC, we meticulously categorized macrophages from an scRNA-seq dataset of
52 HNSCC specimens into 12 distinct subtypes. Next, using deconvolution techniques, we ascertained the
relative proportions of infiltration of the 12 macrophage subtypes across 502 cases in TCGA-HNSCC cohort.
The top five subtypes with the highest cell infiltration rankings were selected based on the median values. Cox
regression analysis, both in its univariate and multivariate forms, substantiated the profound influence of SPP1
+ macrophages on patient prognosis.

Recent studies on TAMs have primarily utilized the infiltration abundance of M2 macrophages based
on their signature genes as phenotypic data. WGCNA was employed and Pearson correlation analysis was
conducted to identify genes associated with M2 macrophages®. In this study, we used trait data derived from
highly prognostic and finely delineated macrophage subpopulations identified using scRNA-seq. WGCNA was
then used to identify genes specifically associated with these distinct macrophage subsets. We further integrated
more than ten classical machine learning algorithms with 113 random combinations to select the optimal model
ensemble for predicting clinical outcomes based on genes associated with SPP1 + macrophages. The final model
of the Random Forest algorithm was employed by leveraging a panel of nine SPP1 + macrophage-associated
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genes, particularly PAHA1. This gene signature provided enhanced prediction of patient prognosis across the
TCGA test dataset and three additional GEO test datasets.

P4HA1 serves as a critical regulatory component of prolyl 4-hydroxylase (P4H), an enzyme imperative for
the hydroxylation of procollagen and the subsequent synthesis and secretion of collagen?*. In our bioinformatics
analysis, there was a positive association between P4HA1 levels and the count of SPP1 + macrophages. Further
analysis using immunohistochemical techniques revealed that within HNSCC tissues, the presence of P4AHA1
was consistently linked to elevated SPPI levels. The vitro and in vivo experiments indicated that P4HA1
knockdown in tumor cells effectively inhibited the polarization of SPP1 + macrophages, suggesting that PAHA1
mediates SPP1 expression in TAMs in HNSCC. Research reported that PAHA1 stimulated the HIF-1a signaling
pathway by inhibiting the proteolysis of HIF-1a. This regulatory mechanism was facilitated by the metabolic
byproducts of alpha-ketoglutarate(a-KG) and succinate'®. The HIF-1a signaling cascade triggers a metabolic
reprogramming and boosts the angiogenesis, both are pivotal in facilitating cancer progression?!. The oxygen-
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«Fig. 4. The expression of SPP1 in HNSCC positively correlates with PAHA1. (A) The box plot illustrates
the distribution of PAHA1 gene expression in normal tissues and HNSCC tissues from the TCGA-HNSCC
cohort, and the differences were analyzed using the Wilcoxon rank-sum test (P<0.001). (B) The box plot
displays the abundance of SPP1 + macrophage infiltration in the high P4AHA1 expression group and low P4HA1
expression group (cut-oft =0.5) among 502 TCGA-HNSCC patients, and the differences were analyzed using
the Wilcoxon rank-sum test (P<0.001). (C) Kaplan-Meier survival analysis was conducted on HNSCC samples
(n=499), and the log-rank test revealed a significant difference (P<0.0001). (D) The macrophages were treated
with SCC25 or CAL27 conditioned media for 48 h. And then the expression of SPP1 in the macrophages
was detected using cell immunofluorescence (left panel), and the cell skeleton was labeled using F-actin (left
panel). The proportion of macrophages with SPP1 expression was quantified relative to the total number of
macrophages (right panel). (E) Immunofluorescence staining was performed to detect the levels of SPP1 in
macrophages after 72 h of indirect co-culture with SCC25 (transfected with si-Ctrl or si-P4HA1), and the
proportion of macrophages with SPP1 expression was quantified relative to the total number of macrophages.
(F) Transwell migration and invasion assays were conducted to assess the number of tumor cells at the bottom
of the chamber within 24 h after addition of conditioned medium of macrophages. (G) Wound healing
assay was performed to detect the migration of tumor cells. Error bars, SEM, **, p <0.01; ***, p <0.001; ****,
p<0.0001.

dependent dioxygenases (PHDs) could hydroxylate HIF-1a, leading to HIF-1a ubiquitination and subsequent
degradation?>2°. However, PAHA1 might modulate the functionality of PHD through alterations in the levels of
a-KG and succinate, thereby suppressing the hydroxylation of HIF-1a and enhancing HIF-1a stability.

Hypoxic environments in vitro lead to increased SPP1 expression in macrophages'. It is plausible that SPP1
+ macrophage-associated genes have a potential regulatory relationship with hypoxia pathway. Cobalt chloride
(CoCl,) can be used to mimic the stabilization of HIF-1a, thereby facilitating studies on cellular behavior under
hypoxic conditions without the reducing oxygen concentration in the culture environment. In this study, after
co-culturing HNSCC tumor cells with macrophages for 72 h, western blot analysis demonstrated an increase
in SPP1 expression in macrophages from the CoCl2- treated group, in contrast to the levels observed in the
control group. Xu et al. indicated that SPP1 mediates TAMs through the SPP1-CD44 ligand-receptor axis?’,
which promotes the secretion of more pro-tumorigenic and anti-inflammatory factors, such as TGF-p, IL-10,
and VEGE. Therefore, we collected conditioned media from TAMs induced by tumor cells with high PAHA1 or
low P4HA1 expression. Transwell and wound healing assays in HNSCC tumor cells demonstrated that TAMs
induced by tumor cells with high PAHAL significantly promoted the migration and invasion of tumor cells,
indicating PAHA1 regulates SPP1 + macrophages through hypoxic pathways, thereby promoting tumor invasion
and metastasis (Fig. 7). However, in the TME, tumor cells and macrophages interact to form a feedback loop,
which promotes the malignant progression. So, whether inhibiting SPP1 in macrophages may affect PAHA1
expression in tumor cells, thereby affecting the hypoxic pathway in the TME, remains to be further explored.

In this study, the integration of RNA-seq and scRNA-seq data revealed a positive correlation between the
key factor PAHALI and the infiltration of SPP1 + macrophages. While recent studies have increasingly utilized
transcriptomic approaches to characterize the molecular features of SPP1 + macrophages, relying solely on
transcriptomics remains insufficient to fully reflect the in vivo protein level and the protein activity situation
within the complexity of the tumor microenvironment?’-3°. Therefore, multi-omics approaches, such as
proteomics, metabolomics, epigenomics, and spatial transcriptomics, would be valuable to further validate the
functional relationship between P4HA1 and SPP1 in HNSCC. Additionally, although we demonstrated that
P4HAL induces cellular hypoxia and HIF-1a stabilization in HNSCC tumor cells, which in turn increases the
expression of SPP1 in TAMs at both the transcriptional and translational levels, the specific pathway by which
P4HA1 regulates hypoxia and the exact mechanism of the secreted cytokines that result in the upregulation
of SPP1 in TAMs require further investigation. Furthermore, while the in vivo experiments utilizing human
cell lines in immunodeficient mice enabled us to evaluate cell-intrinsic mechanisms, they were unable to
fully replicate the complexities of the human tumor immune microenvironment®!, particularly limiting in-
depth investigation of the interaction mechanisms between tumor cells and macrophages. Subsequent studies
employing immunocompetent models or humanized patient-derived xenografts (PDXs)*? would help to confirm
these findings in a more physiologically relevant context. Nonetheless, the current work provides a valuable
foundation and clear direction for understanding the mechanisms of HNSCC progression.

In conclusion, we conducted a comprehensive bioinformatics analysis and in vitro and in vivo experiments
to elucidate the role of the SPP1+TAM subtype in the initiation and progression of HNSCC. Using WGCNA,
we identified 14 genes that significantly correlated with SPP1 + macrophages and developed a clinical prognostic
model using machine learning. Notably, PAHA1 played a critical role in inducing HIF-1a stabilization and tumor
cell hypoxia, which in turn promoted the polarization of TAMs towards the SPP1 phenotype. These findings
suggest that the biomarker PAHA1 is involved in targeting SPP1 + TAMs and is a promising therapeutic strategy
for HNSCC.

Methods

Dataset source

RNA expression data and clinical annotation of The Cancer Genome Atlas (TCGA)-HNSCC were obtained from
the UCSC Cancer Genome Atlas®®. Additionally, RNA expression data of HNSCC (GSE41613%, GSE65858%,
GSE117973%, and GSE6631°7) along with their corresponding clinical data were retrieved from the NCBI Gene
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Expression Omnibus (GEO) database. Raw scRNA-seq data for 52 patients of GSE234933!3 were also acquired
from NCBI GEO database. All datasets are summarized in Supplementary Table S1.

scRNA-seq data preparation and cell annotation

We processed the single-cell RNA sequencing data using Seurat (v4.3.0)*. Quality control filters were applied
to remove low-quality cells (retaining those with 500-5,000 expressed genes and < 20% mitochondrial reads)
and genes (requiring detection in = 3 cells), resulting in 172,569 high-quality cells and 26,695 genes. After
normalization, we identified the top 2,000 highly variable genes for downstream analysis. Dimensionality
reduction was performed using Principal Component Analysis (PCA), followed by cell clustering with the
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«Fig. 5. P4HA1 polarizes macrophages into the SPP1 phenotype through mediating hypoxia pathway. (A)
GSVA analysis revealed differential pathway activity between the low P4HA1 expression group and the high
P4HA1 expression group in HNSCC. Higher t-values indicate higher pathway activity. (B) GSEA analysis
revealed an association between P4HA1 and the hypoxia pathway (NES=2.279, p.adjust<0.001). (C) Volcano
plot displayed the differentially expressed genes between the high and the low P4HA1 expression groups in
HNSCC (abs (logFC) > 0.5, p.adjust < 0.05). (D) Venn diagram showed the intersection of 26 genes between
the differentially expressed genes (left side) and the Harlmark hypoxia gene set (right side). (E) Protein-
protein interaction network composed of the 26 intersection genes. (F) Protein-protein interaction network
centered around P4HA1 and the intersection genes. (G) Rt-qPCR was used to measure the expression levels of
ANGPTL4, COL5A1, NDRG], and SLC2A1 genes in SCC25 cells. (H) Activity assay kit was used to measure
the level of reactive oxygen species in SCC25 cells (transfected with si-Ctrl or si-P4HA1. (I) Western blot
analysis was performed to detect the expression level of HIF-1a in SCC25 cells (transfected with si-Ctrl or
si-P4HAT1). (J) Western blot analysis was conducted to examine the expression of SPP1 in macrophages after
72 h of co-culture with SCC25 cells (with or without CoCl2). Error bars, SEM; **, p <0.01; ***, p <0.001, ****,
p<0.0001.

FindNeighbors function, Uniform Manifold Approximation and Projection algorithm (UMAP)* visualization.
Cell types were annotated based on established marker genes from previous studies*.

Cellular deconvolution
The Bisque algorithm, implemented using the R package Bisque RNA (v1.0.5)*!, was used to analyze scRNA-seq
data from 8 macrophage subtypes and infer the infiltration proportion of macrophages TCGA-HNSCC cohort.

Survival analysis

Cox proportional hazards models (R survival v3.5-5) estimated the relative risk (RR) and 95% confidence
intervals (CI) for cell infiltration and gene expression. Optimal stratification cutoffs were determined using the
surv-cutpoint function (max-rank statistic), and Kaplan-Meier curves (survfit) compared Overall survival (OS)
between groups, visualized with survminer (v0.4.9).

Construction of a WGCNA and selection of module genes

The initial phase of the analysis involved Spearman’s rank correlation to assess pairwise gene relationships
using the WGCNA package (v1.69)*2. We then determined the optimal soft-thresholding power to be 6, which
was chosen to achieve a network topology that closely approximates a scale-free network, as evidenced by the
index of scale-free fit and the average connectivity. The adjacency matrix was subsequently transformed into a
topological overlap matrix*3, which better reflected the intricate pattern of gene co-expression. We employed
hierarchical clustering to identify modules of co-expressed genes, ensuring robustness and biological relevance
by setting a minimum module size of 30.

Differential gene expression analysis

Differential analysis was performed using limma (v3.50.3)* and visualized with ggVolcano (v2.8). Comparing
502 HNSCC and 44 normal samples (AveExpr>10, |log2FC| >1, FDR<0.05), we identified differentially
expressed genes. The HNSCC cohort was then stratified by median P4AHA1 expression, with SPP1 differences
analyzed using relaxed thresholds (AveExpr > 5, [log2FC| >1, FDR <0.05).

Development of a prognostic mode

We systematically evaluated twelve classical machine learning algorithms (Table S2) and an ensemble of 113
prediction models* to construct clinical prognostic models for 14 SPP1 + macrophage-related genes. Using a
rigorous 10-fold cross-validation framework, we calculated AUC values for all models across validation datasets,
enabling comprehensive performance comparison. An ensemble consisting of glmboost and RF was identified
as the optimal combination with a superior average performance score of 0.715.

GSVA and GSEA

Both Gene Set Variation Analysis (GSVA)?® and Gene Set Enrichment Analysis (GSEA) used the hallmark gene
sets downloaded from the Broad Institute’s Molecular Signatures Database (MSigDB, GSEA, gsea-msigdb.org)*’.
Then the limma package was utilized to calculate the statistical significance between the two groups and the R
package clusterProfile*® was employed to analysis GSEA.

PPl network

To assess the hypoxia-related genes mediated by PAHA1, the PPI network was constructed using STRING
database (https://string-db.org/)*. Subsequently, the Cytoscape plugin CytoHubba was used to identify genes
closely associated with PAHA1 within the PPI network™.

Cell transfection

Cells were added to six-well plates (1.5x 10 cells per well) until they reached 70-80% confluence. Next, si-
P4HA1 (A10001, GenePharma, Shanghai, China) was transfected into CAL27, SCC25 and FaDu cells using
Lipofectamine 3000 Reagent (L3000015, Thermo Fisher Scientific, USA). The transfection process was carried

Scientific Reports |

(2026) 16:356 | https://doi.org/10.1038/s41598-025-29651-6 nature portfolio


https://string-db.org/
http://www.nature.com/scientificreports

www.nature.com/scientif

A

icreports/

NC-Ctrl Subcutaneous
Martigel [ Sh-P4HA1#] —toection " } ' s
SCC25 ;
(SCC25) L gppsnatsy  BALBle L S —
B C
800+ » NC-Ctrl ) D 1500
Sh-P4HA1#1 o NC-Ctrl =
cE) 6001 -« Sh-P4HA1#2 i ’ g ' , ° £ 1000
% = s " ) E"
2 & 4001 . AT shraan @ @ O S =
£E200] , A g
= Pt (,/ 2 IE
. o o s shraial2 @) @ @ @ o
0 5 10 15 20 25
Time(days)
E HE (10X) SPP1
* sk
NC-Ctrl 5 0204 5. 020 5 X
2_(”5- S é)g 0.15 = r
iz i
2 L0104 2 010
Sh-P4HA1#1 o S«
2 005+ S 005+
0.00 -
; A, > o W
5 g 3 X . :\\ N F
Sh-PAHAT#2 [ &S &S
: & &
F Merge
5 — sokok
e
NC-Crl > =
; 4 — N
= s
HE 2 l
§<
Sh-P4HA 1#1 2z 2- FEE
o 3 -
SR P -
3
=
Sh-P4HA1#2 0 = 1 T
iy NC-CUl papary pana12
G Merge
ey 107 pearson r=0.7269
NC-Ctrl 2 g JP=0.0021 &
o L
% = 64 o /'//
B
g gl % g0
Sh-P4HA1#1 &3 e
= .
g 24 _#* o
§ * o
0 T T T 1
Sh-P4HA1#2 0 2 4 6 8
i Mean Optional Density of HIF-1a
Fig. 6. P4HA1 knockdown inhibited SPP1+ TAMs by regulating the hypoxia pathway in vivo. (A) Schematic
diagram of the nude mouse tumor model using SCC25 cell line, grouped as NC-Ctrl, sh-P4HA1#1, and sh-
P4HA1#2. (B) Tumor volume growth curves in nude mice for each group. (C) The image of xenografts in nude
mice for each group. (D) Tumor weights in different groups. (E) HE and immunohistochemical staining for
SPP1 and HIF-1a, along with statistical analysis of their mean optical density. (F) Fluorescent double staining
of CD68 and SPP1 was performed, along with statistical analysis of the merging average optical density. (G)
Following fluorescent double staining of HIF-1a and SPP1, the correlation was analyzed using Pearson’s test.
Error bars, SEM; *, p<0.05, **, p<0.01; ***, p<0.001, ****, p<0.0001.
Scientific Reports | (2026) 16:356 | https://doi.org/10.1038/s41598-025-29651-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

\

L5hY
sucaar) (€0

Ubiquitination
degradation

Induce hypoxia

 Tumor cells

Macrophages
SPP1+Macrophages

Fig. 7. Graphic abstract of P4AHA1-mediated SPP1 + tumor-associated macrophages through activating the
HIF-1a signaling pathway in HNSCC. The enhancement of PAHA1 affects the levels of a-KG and succinate,
which in turn reduces PHD-induced hydroxylation of HIF-1a and leads to increasing its stabilization. This
regulatory mechanism activates the hypoxic pathway, resulting in the upregulation of SPP1 expression in
TAMs. The elevated secretion of SPP1 from TAMs binds to CD44 on tumor cells, facilitating their migration
and invasion in HNSCC.

Al

out for a duration of 8 h at a temperature of 37 °C. Further experimental procedures were initiated 24 h post-
transfection. The specific sequences for the siRNA are detailed in Table S3.

Stable cell line construction

We first generated lentivirus by transfecting 293T cells with PAHA1-targeting shRNA vectors using Lipofectamine
3000. After 48 h, we collected and filtered the viral supernatant, then used it to infect SCC25 cells in the presence
of polybrene (6-8 ug/mL). Following another 48-hour incubation, we selected transduced cells with puromycin
for 1-2 weeks to establish stable lines. The specific sShRNA target sequences are provided in Table S4.

Cell cultures

The human tongue squamous carcinoma cell lines SCC25 (CVCL_1682) and CAL27 (CVCL_1107) and FaDu
(CVCL_1218) were obtained from ATCC and cultured in DMEM, while THP-1 monocytes (CVCL_0006) from
Cellcook were maintained in RPMI-1640. All cells were grown at 37 °C with 5% CO, in medium supplemented
with 10% FBS and 1% penicillin-streptomycin. For macrophage differentiation, THP-1 cells were treated with
100 nM PMA (Sigma 524400) for 24 h. Mycoplasma-free status was confirmed for all cell lines.

Migration and invasion assays

Cell migration and invasion assays were performed using 24-well transwell plates (8 um pore size; Corning,
NY, USA), with invasion assays using Matrigel-coated inserts (BD, NJ, USA). Cells (5x 10*/well) in 250 pL
serum-free medium were seeded in upper chambers, with 700 pL 20% FBS medium in lower chambers as
chemoattractant. After 24 h incubation, non-migrated cells were removed. Migrated/invaded cells were fixed
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with 4% paraformaldehyde (Solarbio) for 20 min, stained with 1% crystal violet (Coolibo Technology, China) for
15 min, and counted in five random fields per membrane using an inverted microscope.

Wound healing assay

SCC25, CAL27 and FaDu cell lines were seeded in 6-well plates at a density of 5x 10° cells per well. When the
cell density reached 75-80%, a 200 ul pipette tip was used to create scratches in the cell monolayer. After washing
with PBS, different groups (si-NC and si-P4HA1) of macrophage-conditioned media were added. Images were
obtained using a light microscope (Olympus Corporation) at 0 and 24 h to record the wound area. Finally, the
area of cell migration was quantified using Image-Pro Plus software.

RT-gPCR

Total RNA was extracted using RNAkey reagent (SM139-02, Seven, Beijing, China), followed by reverse
transcription with SevenFast Two-Step RT&qPCR Kit (SM143-01, Seven). qPCR was performed using ChamQ
Universal SYBR Green Master Mix (SM143-01, Seven) on a Dice Real-Time System (TP800, Takara, Japan),
with GAPDH as reference. Reactions were run in triplicate, and relative expression was calculated using the 2/ (-
AACt) method. Primer sequences are listed in Table S5.

Western blotting

Cells were lysed on ice using lysis buffer (RIPAR0010; Solarbio), and protein concentration was determined
with a dicysteine assay kit (BCAP0009; Beyotime, Shanghai, China). After denaturation (95 °C, 5 min), proteins
were separated by SDS-PAGE and transferred to PVDF membranes (Millipore, Merck KGaA, Darmstadt,
Germany). Membranes were blocked with 5% skim milk (1 h, RT), then incubated with primary antibodies
(4 °C overnight) and HRP-conjugated secondary antibodies (1 h, RT). Protein bands were visualized using ECL
(PE0010, Solarbio) and imaged with a FluorChem system (Bio-Rad Laboratories, Hercules, CA, USA). Antibody
details are provided in Table S6.

ROS detection

Using a previously established transfection protocol, either si-Ctrl or si-PH4A1 was introduced into SCC25
or CAL27 cells and allowed to express for 48 h. After the original culture medium was removed, a medium
containing a green fluorescent redox probe (CA1410,10 pmol/L, Solarbio) was added. After incubation at 37 °C
for 30 min, the cells were rinsed with DMEM on three separate occasions. The Reactive Oxygen Species (ROS)
level of tumor cells was detected and photographed under a fluorescence microscope at 10x magnification.

Hypoxia induction by CoCl,

SCC25 and CAL27 were seeded at a density of 5x 10° cells/well in a 6-well plate. On the subsequent day, the
culture medium was refreshed, followed by the addition of CoCl, to reach a final concentration of 800uM for
48 h, thus creating a chemically induced hypoxic environment.

Animal experiment

To establish the tumor model, 15 female BALB/c nude mice (4 weeks, 18-20 g) from Dalian Medical University
were randomized into sh-control, sh-P4HA1#1, and sh-P4HA1#2 groups (n=4). SCC25 cells (5 x 106) transfected
with respective shRNAs were suspended in 100 ul Matrigel and injected subcutaneously. Mouse weights were
recorded biweekly (Table S7), and tumor volume was calculated (lengthxwidth?/2). Xenografts were harvested
at day 28 post-injection for analysis. At the experimental endpoint, mice were intraperitoneally injected with
an appropriate dose of tribromoethanol (250 mg/kg; TargetMol, Shanghai, China) based on their body weights.
Following the confirmation of deep anesthesia, as determined by the absence of foot pinch and corneal reflexes,
euthanasia was performed by cervical dislocation. The study is reported in accordance with ARRIVE guidelines.
And all the animal experiments were approved by the Institutional Animal Care and Use Committee of Dalian
Medical University (No. AEE23070).

Histological staining
We processed tumor tissue of mice by fixing in 10% formalin for 24 h followed by standard paraffin embedding.
Six-micrometer sections were dewaxed and underwent antigen retrieval in citrate buffer. After blocking
endogenous peroxidase activity with 3% H,O, (10 min), we incubated sections with primary antibodies overnight
at 4 °C and corresponding secondary antibodies for 1 h at room temperature. Detection was performed using
DAB with hematoxylin counterstaining.

For immunofluorescence staining, antibody incubations were conducted at 37 °C (2 h for primaries, 1 h for
secondaries) followed by DAPI nuclear staining. All images were acquired and analyzed using Image-Pro Plus
software. Detailed antibody information is provided in Table S6.

Statistical analysis

All statistical analyses were performed using R (v4.1.3) and GraphPad Prism 7.0. Group comparisons used
Wilcoxon test (two groups) or t-test, with p<0.05 considered significant. Survival analysis employed log-rank
test and Cox proportional hazards (Wald test). Correlations were assessed by Pearson’s test. Data are presented
as mean + SD.

Data availability
The original contributions presented in the study are included in the article/Supplementary Material. Further
inquiries can be directed to the corresponding author.
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