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Research on the impact of climate
change on food production
resilience in China
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Climate polarization threatens the food production stabilization and economic development
worldwide. As a major agricultural producer, China faces increasing risks to its food security. This

study examines the effects of accumulated temperature and precipitation anomaly level on food
production resilience, with crop diversity potentially playing a moderating role. To this end, it uses
fixed-effects and moderating-effects models based on official statistics from 31 Chinese administrative
regions (2010-2022). First, China’s overall resilience in food production has shown an upward trend,
fluctuating from 0.376 in 2010 to 0.435 in 2022. Second, accumulated temperature has a suppressing
effect on food production resilience at the 5% significance level, while precipitation anomalies have a
similar effect at the 10% significance level. This inhibitory effect is most pronounced in major food-
producing areas, while it is less severe in major food-consuming areas and in regions with production-
consumption balanced areas. Third, crop diversity has an important moderating role, mitigating the
negative impact of precipitation anomalies on food production resilience, statistically significant at
10% level; conversely, its role in moderating accumulated temperature is insignificant. To cope with
climate shocks and safeguard food production security, the study proposes policy recommendations in
three areas: building a climate-smart agricultural system, optimizing the application of crop diversity,
and implementing targeted zoning strategies.
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Food and food security are fundamental to people’s well-being, national security, and sustainable development
of society and the economy. The escalating intensity and growing frequency of extreme weather events triggered
by global warming pose significant risks to food production worldwide'. Extreme weather conditions not only
disrupt agricultural production in directly affected regions, but also trigger fluctuations in agricultural exports
and ripple effects on food prices in other areas® through supply-demand transmission mechanisms within
global supply chains®. The State of Food Security and Nutrition in the World 2024 indicates that between 713 and
757 million people were undernourished in 2023. In addition, over 2.33 billion people experienced moderate
or severe food insecurity, with more than 864 million people facing severe levels of food insecurity*. Meeting
the growing nutritional needs of humanity amid resource scarcity and climate extremes is one of the greatest
humanitarian challenges in the twenty-first century".

Developing countries are substantially vulnerable to climate shocks because they rely on agriculture and
have limited access to capital, technology, and infrastructure®. As the largest developing country, China faces
significant challenges in food security due to its large population and high food demand. Despite steady growth
in food production, rapid urbanization and frequent natural disasters continue to threaten food security .
Therefore, studying China’s food production resilience (FPR) is essential for promoting supply-side structural
reform and stabilizing the grain supply-demand balance.

Research on climate change primarily focuses on its impacts on the ecological environment, social life, and
agricultural production. Climate change has altered regional evaporation and precipitation patterns, accelerating
the degradation of plateau glaciers and permafrost®. Global warming also exhibits clear regional differences,
with temperatures increasing two to three times faster than the global average in Eurasia and 3 to 4 times faster
in the Arctic and Antarctic Peninsula’. In terms of social impacts, climate change has increased morbidity and
mortality from infectious and respiratory diseases, while exacerbating socio-political tensions and conflicts'.
In agriculture, while yields may increase in certain regions, declining crop quality could outweigh these gains,
ultimately reducing farmers’ incomes'!.
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On climate change and food production, most research has focused on food access, utilization efficiency,
and food security, with relatively little attention to food production resilience. Research indicates that rising
temperatures and water stress decrease agricultural productivity by increasing food prices and threatening
agricultural livelihoods'2. Food production is highly sensitive to climatic anomalies, with droughts or extreme
temperatures significantly reducing output. Excessively high temperatures and diurnal temperature variation
indices have a significant and negative correlation with corn and soybean yields'®. Global investigations show
that grain yields are declining in about half of all countries under current climate trends'%. Moreover, climate
change intensifies the disruption caused by non-climate disasters to global food production systems'>, generating
complex chain reactions and opening up new avenues for research.

The aforementioned research provides a rich theoretical foundation for exploring the role of climate anomalies
in food production resilience, but it still has notable gaps and limitations. (1) Existing literature has primarily
investigated the resistance of food production to disasters, with limited research on the sustainability and
regenerative capacity of food production. (2) Current research has primarily concentrated on the direct impacts
of climatic anomalies on the food system, with little attention paid to how crop diversity plays a regulatory
role. To address these gaps, this paper develops an evaluation system for food production resilience indicators.
By introducing crop diversity as a moderating variable, it constructs a research framework that examines its
role in shaping the impacts of climate change on food production resilience. In this way, this study provides
significant contributions in the following three key aspects: (1) It examines the impact of climate change on food
production resilience through two dimensions—annual average accumulated temperature and precipitation
anomaly level—thus overcoming the limitations of single climate indicators and offering deeper insights into
the mechanism of composite climate effects on food production resilience; (2) It analyzes the moderating role
of crop diversity in the process of climate change influencing food production resilience, enriching the research
perspective; (3) It examines regional variations in climate change impacts on food production resilience and the
differing moderating effects of crop diversity, providing both theoretical foundations and empirical evidence to
support differentiated approaches to resilience governance.

Theoretical framework and proposed hypotheses

Conceptual definition of food production resilience

“Resilience” originally stems from materials physics, describing a material’s ability to return to its original state
after external stress. In the 1970s, ecologist Holling extended the concept to ecology, defining resilience as an
ecosystem's capacity to recover to a stable state and maintain normal functioning after disturbances'®. By the
early twenty-first century, resilience theory integrated human systems with ecological dynamics, achieving
expansion and reinforcement within sociology and economics. It is generally defined as a system’s capacity to
withstand disturbances, undergo reorganization, and maintain its essential functions, structure, identity, and
feedback loops while navigating change, thereby achieving dynamic objectives!'”. In economics, resilience has
been studied in terms of a system’s capacity to resist recessions, adapt to disruptions, and recover from external
shocks such as financial crises, geopolitical conflicts, or public health events, with analyses spanning urban!®,
regional'®, and macroeconomic scales. In agriculture, resilience describes the capacity of food systems to
withstand and respond to disruptions in production, supply, and distribution, encompassing three dimensions:
socioeconomic, biophysical, and production diversity?’. The Food and Agriculture Organization (FAO) of the
United Nations defines food production resilience as the food production system’s ability to ensure that all people
have access to adequate, safe, and nutritious food during disasters and to fulfill the livelihoods of food system
participants in agriculture?!. Scholars have decomposed resilience into dimensions of resistance, adaptability,
and innovation??, and examined how the food system relies on different factors such as urbanization rate?3,
digital villages construction, and agricultural insurance coverage®*.

How climatic anomalies affect food production resilience

In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change stated that anthropogenic
emissions of greenhouse gases have contributed significantly to climate warming. The surface temperature
worldwide during 2011-2020 was 1.1°C above that during 1850-1900%. Climate stress has wide-ranging and
profound impacts on both the environment and human society, with particularly notable effects on agricultural
production.

Firstly, climate change is reducing both the quantity and quality of food production, while effective irrigation
resources continue to dwindle, thereby weakening the food systems’ resistance to external environmental
pressures. The increasing frequency of extreme weather events, like torrential rain and heat waves, has severely
disrupted agricultural environments and substantially decreased food output?. Research predicts that by the end
of the century, nearly all major staple crops, except for rice, are at risk of yield reductions due to extreme climate
change. Under high-emission scenarios, projected declines range within 12-27.8% for maize, 13.5-28.2% for
wheat, and 22.4-35.6% for soybean?’. Rising carbon dioxide emissions, higher temperatures, and increased light
intensity have led to shorter crop growth cycles, reduced accumulation of sugars and nutrients, and consequently,
low crop quality?®. For example, as carbon dioxide concentrations increase, the protein content of wheat grains
may decrease by 8.6%%°. Climate-driven depletion of alpine snowpacks will reshape downstream hydrological
systems, transforming both supply-demand dynamics and seasonal availability of glacial freshwater sources®.
Based on statistical modeling, Pinke found that droughts and heat waves, which reduce effective freshwater
irrigation resources in Eastern Europe, are degrading soils. Each 1°C increase in global average temperature will
result in a 4.1-6.4% decrease in European wheat production®!.

Secondly, climate change has reduced the sustainability of food systems, weakening their adaptability to
external environmental changes. Evidence shows that regional climate events have become more pronounced,
with erratic rainfall, prolonged droughts, and severe flooding, all of which negatively impact food production®.
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Less developed regions are often more vulnerable to climate disasters. Farmers in these areas typically have lower
incomes, limited knowledge, and restricted capacity to apply technologies that mitigate agricultural climate
risks®3. For example, Sub-Saharan Africa, highly dependent on agriculture, exhibits low utilization of modern
irrigation technologies and is particularly affected by high temperatures and reduced rainfall under global
warming®*. Climate change increases atmospheric carbon dioxide concentrations, temperature, and humidity,
which exacerbates pest and disease outbreaks in food crops. In order to increase food production, farmers often
respond by increasing the application of agricultural chemicals, including pesticides, fertilizers, and herbicides®.
Excessive use of agrochemicals can result in eutrophication, decreased crop output, soil salinization, and rising
soil pH?, creating a vicious cycle of agricultural pollution and declining productivity.

Thirdly, climate change has led to increased fixed asset investment in agriculture and insufficient total power
of agricultural machinery, thereby weakening the food system’s regenerative capacity. According to the Cobb-
Douglas production function, food output depends on a multifactor combination of land, labor, and capital®’.
In response to yield losses caused by climate change, farmers often increase inputs of labor, capital, materials,
and technology. Agricultural development requires infrastructure, encompassing both tangible assets such as
roads, irrigation systems, machinery, and repair facilities, as well as intangible components like credit systems,
insurance investments, and cooperatives®®. However, climate extremes can damage key agricultural infrastructure
and raise storage and transportation costs®. The interaction of climatic factors and soil conditions can lead
to waterlogging, which reduces soil permeability, impairs drainage, increases surface runoff and erosion, and
heightens susceptibility to compaction. Consequently, root depth is reduced, adversely affecting plant growth.
Excess moisture also means that machines can sink into the soil and wheels can slip, reducing the efficiency of
agricultural machinery use per unit area’’.

Given this analysis, the research proposes the following hypothesis:

H1: Climate change has a dampening effect on food production resilience.

Moderating effects of crop diversity

To mitigate the impacts of climate change, growers are adapting production strategies to new conditions.
Increasing crop diversity is one economically viable adaptation approach, which offers flexible forms and
scales, enabling farmers to both withstand disasters and enhance economic returns*!. Crop diversity creates a
selection effect: the more species present in an ecosystem, the greater the likelihood that at least one will tolerate
specific climatic conditions*?. Enhancing diversity is crucial for stabilizing food security, as practices such as
intercropping and crop rotation can improve overall productivity. Utilizing ecological niche differentiation
among crops within the same spatial scenario?> can improve resource use efficiency and promote sustainable
agricultural development. Additionally, crop diversity has been indicated to enhance the agricultural output
capacity and yield consistency of oilseed cropping systems across diverse settings**.

This analysis introduces the following hypothesis:

H2: Crop diversity mitigates the adverse effects of climate disruption on food production resilience.

Climatic factors such as elevated carbon dioxide levels, rising temperatures, and altered precipitation patterns
have expanded the geographical range of pests, increased overwintering survival and generation numbers, and
reduced the effectiveness of biological control measures*. Simultaneously, climate change directly affects soil
microbial systems; higher temperatures lead to the depletion of soil organic carbon, shifts in bacterial community
composition, and declines in fungal abundance. Thawing permafrost may also release novel viruses*. Crop
rotation and increased crop diversity reduce pathogen abundance and transmission through the host-absence
effect and ecological regulation by antagonistic organisms arising from the decomposition of diverse plant
residues within the soil 7. Additionally, higher crop diversity enhances inter-root carbon inputs to the soil
microbial community, supporting microbial growth that benefits crop development*®. Accordingly, hypothesis
H2a is proposed:

H2a: Crop diversity mitigates the adverse impact of rising accumulated temperature on food production
resilience.

Reduced precipitation lowers soil moisture, inhibiting plant and microbial activity*®, while excessive rainfall
during critical crop growth stages disrupts pollination and causes root oxygen deprivation and decay, ultimately
reducing yields. Crop diversity mitigates these impacts by enhancing soil quality and microbial activation®.
Crop diversity also optimizes agricultural production choices. Crops with diverse root systems of different
depths can effectively increase soil voids and precipitation infiltration rates, which can effectively cope with
extreme precipitation conditions®'. Combining high- and low-level shading systems can protect crops from
abnormal precipitation, as the upper canopy reduces soil evaporation and improves soil moisture infiltration?!.

Accordingly, Hypothesis H2b is proposed:

H2b: Crop diversity attenuates the detrimental influence of precipitation anomalies on food production
resilience.

Building on these assumptions, this paper analyzes the disruptive effects of climate change on food
production resilience across three aspects: resistance, adaptability, and regenerative capacity. It further examines
the moderating role of crop diversity under two climate stressors: accumulated temperature and precipitation
anomalies. The study integrates the adverse impacts of climate change with the regulatory effects of crop diversity
to assess their combined influence on food production resilience. Figure 1 displays the overall framework.

Research design

Data sources

This research analyzes the impact of climate change on FPR based on panel data from 31 provincial-level
administrative regions in China (excluding Hong Kong, Macao, and Taiwan) between 2010 and 2022. Data
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Fig. 1. The mechanism of climate change impact on food production resilience.

primarily originate from the Statistical Yearbook of China (National Bureau of Statistics), the FAO database,
the National Meteorological Science Data Sharing Service Platform, and local statistical sources. For individual
missing data points, interpolation methods were employed to estimate. Additionally, the 31 provinces were
categorized into major food-producing areas, major food-consuming areas, and production-consumption
balanced areas based on The Outline of Medium-and Long-Term Plan for National Food Security (2008-2020).
Specifically, the major food-producing areas encompass 13 provinces: Liaoning, Jilin, Heilongjiang, Inner
Mongolia, Hebei, Shandong, Anhui, Jiangsu, Jiangxi, Henan, Hunan, Sichuan, and Hubei. The major food-
consuming areas include 7 provinces: Beijing, Shanghai, Tianjin, Zhejiang, Hainan, Guangdong, and Fujian.
The production-consumption balanced areas comprise 11 provinces: Shanxi, Guangxi, Chongging, Yunnan,
Guizhou, Shaanxi, Gansu, Qinghai, Tibet, Ningxia, and Xinjiang.

Selection and definition of variables

Dependent variable

Food production resilience (FPR) is the dependent variable. Based on the previous studies, this paper defines this
variable as the capacity of food production systems to maintain stability and resist various internal and external
shocks. To measure FPR, the FAO uses the Resilience Index Measurement and Analysis (RIMA) methodology,
which calculates the Food System Resilience Index (FSRI) via factor analysis and a Multi-Indicator Multi-Factor
(MIMIC) model, covering production, processing, and markets®?. Academically, FPR is often assessed through
multidimensional indicator systems, using weighting methods such as entropy, principal component analysis,
or analytic hierarchy process to calculate composite indices. Some studies employ the Pressure-State-Response
(PSR) framework, evaluating resilience through resistance, recovery, and transformation capacities®*. This paper
adopts a similar comprehensive approach, dividing FPR into three dimensions: resistance, adaptability, and
regenerative capacity. Meanwhile, on relevant research by Zhang Mingdou and Hui Mingwei®*, the resistance is
categorized into 2 dimensions of production foundation and production capacity. Adaptability is divided into
two dimensions: sustainability and recoverability. Regenerative capacity is segmented into 2 dimensions: diverse
collaboration and technological progress. A comprehensive evaluation framework for FPR was developed,
consisting of three primary indicators, six secondary indicators, and 18 tertiary indicators. Table 1 represents
the details.

Independent variable
The independent variables are the mean annual accumulated temperature (AT) and precipitation anomaly
magnitude (measured by the absolute value of the standardized precipitation index, abbreviated as |SPI|). Most
crops can only grow stably when the average daily temperature is above 10°C. The accumulated temperature refers
to the active accumulated temperature, i.e., the sum of temperatures obtained by accumulating the duration of
daily average temperature > 10°C in a year. For the calculation, daily temperature data from major meteorological
stations across all provinces were used to determine monthly accumulated temperatures, from which the annual
average accumulated temperature was derived for each province™. |SP]| is a kind of climate drought monitoring
indicator based on probability statistics. It centers on quantifying the extent to which precipitation deviates
from a long-term climate benchmark over a given time period through Gamma distribution fitting and normal
normalization. The formulae are as follows:

Assuming that the precipitation = obeys a Gamma distribution, Eq. (1) represents its probability density
function.
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Weights
Game theory
Objective Subjective combinatorial
empowerment | empowerment | empowerment
Tierl Tier2 Tier3 Unit method method method
Cultivated land area kha 0.1316 0.1113 0.1269
Production Effective irrigation rate % 0.0995 0.0701 0.0927
foundation 10th 1
Number of employees in primary sector ousan 0.1205 0.0884 0.1131
Resistance persons
Food production per unit area t/kha 0.0572 0.1113 0.0697
Production - -
capacity Food production per capita kg/cap 0.1189 0.0701 0.1076
Food production price index % 0.0187 0.0884 0.0348
Fertilizer application per unit area t/kha 0.0308 0.0495 0.0351
Sustainability | Pesticide application per unit area t/kha 0.0145 0.0495 0.0226
Amount of agricultural film applied per unit area t/kha 0.0232 0.0495 0.0293
Adaptability Multiple cropping index % 0.0602 0.0245 0.0520
Value added of gross agricultural output % 0.0248 0.0245 0.0247
Recoverability
Soil erosion control area kha 0.0182 0.0412 0.0235
Damage rate % 0.0229 0.0583 0.0311
Di Total power of agricultural machinery per unit area kW/kha 0.1226 0.0272 0.1006
1verse
collaboration Value added of agriculture, forestry, animal husbandry, o
and fishery services ¥ 100 million | 0.0492 0.0272 0.0441
f:g:gf;a“"e Investment in agricultural fixed assets ¥ 100 million | 0.0205 0.0357 0.0240
Technological | Share of financial support to agriculture ¥ 100 million | 0.0343 0.0450 0.0368
progressiveness P - -
{A;pphcatlgn for Plant Variety Rights and Grant of Plant pes 0.0323 0.0283 0.0314
ariety Rights
Table 1. Comprehensive evaluation indicator system for FPR.
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where a is the shape parameter, controlling for deviations from the distribution, B shows the scale parameter,
reflecting the degree of precipitation variability, 2 denotes the annual precipitation, and I" () signifies the
Gamma function.
Equations (2) and (3) represent the calculation of parameters o and [ using the method of maximum
likelihood estimator (MLE):
1++/14+4A/3 Az L = |
=—Y L A=lI--=- Z n; 2
4A ’ n i )
i=1
z
B=— A3)
o
where z is the annual precipitation, T denotes the precipitation time series mean, and n signifies the time series
length.
Equation (4) represents the cumulative probability function.
x f z a:cr— 1 e—m /B
G(z) = / fx)dr =20 — (4)
0 Bl (a)
Given that the Gamma function requires the independent variable to be a positive real number, the actual
precipitation data may be zero-valued, according to Eq. (5).
¢+(1-q)-Gx),z>0
H(z) = { - (5)
q¢z=0
where q is the probability of the occurrence of the value 0 in the precipitation series. Equation (6) shows the
Gaussian function used to convert the cumulative probability to a standard normal distribution variable Z (i.e.,
the SPI value)
SPI =o' (H (z)) (6)
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where @~ ! serves as the inverse function of the standard normal distribution. Equation (7) indicates the
calculation process using the approximate solution method:

When H (I)SO.S, let t= In (1/H (x)Q),then

7

co+ cit + 62t2
SPI ~—(t— -
( 1+ dit + dat? +d3t3>

When H (x)>0.5, substituting 1 — H (z) into Eq. (7) gives the opposite number. The constant values are as
follows:

co = 2.515517 c1 = 0.802853 c2 = 0.010328
d1 = 1.432788 dz = 0.189269 d3 = 0.001308

This paper employs |SPI| to reflect the level of precipitation irregularity. Higher absolute values indicate a
greater degree of precipitation anomaly. In concrete terms, |SPI| between [0.0, 1.0] indicates slight abnormality,
[1.0,1.5] shows moderate abnormality, [1.5,2.0] presents severe abnormality, and |SPI| > 2.0 denotes
extreme abnormality®®.

Moderating variables

Crop diversity is the moderating variable. This investigation utilizes the Simpson Index of Diversity (SID)® to
measure the level of crop diversity in a given region. By quantifying the probability of randomly selecting two
individuals from a sample to belong to the same species, a numerical value can be obtained to describe the
diversity level of the sample. Specifically, this can be expressed in the formula: SID =1 — > S;?, where is
the share of crop i in the total planted area. SID ranges between [0, 1], where a higher index represents a higher
diversity of crops and vice versa. The SID focuses diversity assessment more on the contribution of dominant
species by weighting species abundance (i.e., crop area share). Within agricultural ecosystems, this approach
sensitively captures shifts in the distribution of major crops, providing an accurate reflection of regional crop
diversity. This study focused on diversity indices for eight major crops: rice, wheat, maize, sorghum, legumes
(soybeans), and tubers (potatoes, sweet potatoes, and cassava).

Control variables

Building upon existing research®’, the paper adds additional variables effective in the FPR, including (1) the
level of agricultural trade openness, calculated through the proportion of total agricultural exports and imports
to total agricultural output; (2) rural electric power facilities, expressed by rural electricity consumption; (3)
the proportion of the non-agricultural economy, calculated as the sum of the value added by the secondary and
tertiary industries, divided by the regional gross domestic product; (4) the urbanization level, defined by the
ratio of the urban resident population to the total; (5) crop cultivation structure, expressed as the ratio of land
planted with food crops to that planted with non-food crops; (6) the urban-rural income disparity, qualified by
the ratio of urban national income per capita to rural national income. Table 2 presents the description of the
variables.

Model construction
FPR index measurement

Entropy value method

Average | Standard
Variable type | Variable name | Variable definition value error
Dependent s The food system’s capacity to sustain stable production and resilience against both internal and external shocks, measured
- Resilience . L E 0.41 0.09
variable by a comprehensive system of evaluation indicators
Monthly mean cumulative temperature obtained by summing and averaging the effective cumulative temperatures based

AT . o . . . 19.08 222
Independent on daily mean temperatures > 10 °C; monthly mean active cumulative temperatures averaged for the 12-month period
variable The extent of precipitation variation in a given time period relative to a long-term climate benchmark quantified b

precip g p g q Y
|sp1] L of precipitation var me | 0.80 0.60
Gamma distribution fitting with normal normalization

x?girlztmg SID Probability that two individuals randomly selected from the sample belong to the same species 0.58 0.18

Trade Logarithm of total agricultural exports and imports/total agricultural output value -2.15 1.70

Electricity Logarithmic value of rural electricity consumption 4.73 1.48
c . Non-farm share | (Secondary sector + tertiary sector)/GDP 90.27 5.08

ontro)

variable Urbanization Proportion of urban population to total population 58.57 13.21

Cropping Area under food crops/area under non-food crops 325 4.39

structure

Income gap Urban residents’ income/rural residents’ income 2.63 0.45

Table 2. Definition and Description of Variables.
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(1) Normalization: Eq. (8) represents the positive correlation indicators.

Zij = (Tij — Tmin)/ (Tmax — Tmin) (8)
Equation (9) shows the negative correlation indicators.

Zij = (Tmax — Zij)/ (Tmax — Tmin) )

(2) Equation (10) presents the calculation of indicator weights.

Pij = Ziz/ Z Zij (10)
i=1
(3) Eq.(11) indicates the calculation of the metric entropy value.
e; = —k’ZP»;j In P;; (11)
i=1

Equation (12) provides the redundancy of information entropy.

d]' =1- €j (12)
(4) Eq. (13) shows the calculation of the indicator weights.

W; = dj/Z::1 d; (13)

Game theory combinatorial empowerment approach Game theory-based weighting integrates indicator
weights derived from multiple methods to determine optimal values. This study used the Analytic Hierarchy
Process (AHP) and entropy method to measure subjective and objective weights, respectively, which were then
optimized via game theory to obtain final indicator weights. Subsequently, it applied a comprehensive evalua-
tion method to measure the food system resilience index. AHP captures decision-makers’ preferences through
pairwise comparisons, while entropy quantifies uncertainty in the data. This hybrid approach balances expert
judgment with empirical data, enhancing the rationality and robustness of the evaluation®®. The calculation
procedure is as follows:

The subjective weight vector of AHP is denoted as wl. The objective weight vector of the entropy method is
denoted as w2. The weight matrix obtained by both methods is optimized by linear combination to obtain the

minimum optimized value:
n =32, el
min = arWy
k=1
The first-order derivatives of the matrix are taken and expanded to obtain:
w1 wlT w1 wQT ay w1 1U1T
T T a | = T (15)
waw1 wawWso 2 wW2wWo
The above equation gives (a1, a2), and its normalization obtains the following linear coefficients, aj,.

2
ay = ak/zkzl ag (16)

Equation (17) obtains the final combination weight matrix w".

(i=1,2) (14)
2

2

* * T
w = Zk:1 a"wy, (17)

Equation (18) shows the composite index of food system resilience.
n
U = X; X w; 18
>, Xixw 18)

Benchmark regression model

The FPR index in this study is based on annual observations from 31 provinces. A two-way fixed effects model
is employed to capture both provincial heterogeneity and temporal dynamics, providing a robust framework for
assessing the marginal impact of climate change on food production resilience. This model also accommodates
moderating variables, enabling evaluation of the effectiveness of adaptive measures. Based on the research
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hypotheses and analytical framework described above, the following two-way fixed effects model is constructed
to examine the impact of climate change on food production resilience:

Resiliencei = ao + a1 ATy + a2 |SPI|,, + a3 X + ui + ve + €a (19)

where Resilience;; represents the FPR in province i in year t; AT} and |SPI|;; are, respectively, the average
annual accumulated temperature and annual precipitation anomaly index in province i in year t; X;; is control
variable; u; represents the individual fixed effects; v; shows the time fixed effects; ao is a constant term; €44
indicates a random perturbation term; and a1, iz, and a3 are the parameters to be estimated.

Moderating effects model
Drawing on the models already set up®>, the following moderating effects model is constructed:

Resiliencei; = Bo + p1ATi + B2 |SPI|,, + p3SID;+

(20)
BaSID;y x ATy + B5SI1Dyy x |SPI|,, + v Xit + us + ve + €

where SIDj, represents the crop diversity index of area i in year t; SID;; x AT, and SID;; x |SPI|;; signify

the interaction terms; (o is a constant term; 31, B2, 83, B4, Bs, and -y are the parameters to be estimated.

Results of empirical analysis

Analysis of the present status

Trends in FPR

The FPR of different provinces was visualized using ArcMap 10.8.1. Given that FPR exhibits long-term trends,
short-term changes are less apparent. This analysis covers 2010-2022. As shown in Fig. 2, substantial spatial
variation exists. Higher FPR is concentrated in major food-producing provinces—Hebei, Henan, Heilongjiang,
Shandong, and Sichuan—benefiting from favorable geography, fertile soils, and strong agricultural output, as
well as preferential policy support. In contrast, production-consumption balanced areas face natural constraints.
For example, Gansu and Ningxia suffer from persistent drought and soil erosion, while Qinghai and Tibet are
hindered by high altitude, cold climate, and underdeveloped agricultural infrastructure. Major food-consuming
areas such as Shanghai and Tianjin exhibit high economic development but limited arable land; industrial
upgrading and urbanization have shifted labor away from agriculture, causing FPR to lag behind economic
growth.

Figure 3 displays the time-series evolution characteristics of different regions obtained by homogenizing.
FPR fluctuates between 0.25 and 0.55 during the study period. A peak in 2019 likely reflects favorable climatic
conditions, absence of droughts and floods during critical growing periods, and increased per-hectare yields. As
a whole, the change curve of the country’s FPR level is relatively flat and on an upward trend. It rose from 0.376
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Fig. 2. Spatial distribution of food production resilience in China. This map was created using the standard
map with review number GS(2020)4619, which was downloaded from the Standard Map Service website of
China’s Ministry of Natural Resources. The base map remains unmodified.
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Fig. 4. National climate trends from 2010 to 2022.

to 0.435, probably because agricultural technological progress and policy dissemination in agriculture have
improved the adaptability of crops to climate stress. The temporal patterns of FPR in the subregions mirror the
national trend, all exhibiting upward trajectories, but with notable spatial variation. The mean value of the major
food-producing areas is 0.496 (the whole country: 0.412), which is significantly higher than that of the major
food-consuming areas (0.324) and the balanced area (0.368). The main reason may be the obvious differences in
resource endowment and institutional environment of each functional sub-region.

Trends in climate change development

Processing the absolute value data of the AT and |SPI| obtains the climate change trend of the whole country
from 2010 to 2022, as depicted in Fig. 4. |SPI| experiences peak values in 2011, 2013, 2015, and 2021, indicating
the prominent degrees of precipitation anomalies in China within these years. AT shows a fluctuating upward
trend, ranging between 18.8 and 19.6. Four peak values occur in 2012, 2018, 2019, and 2022, and three low
minimum values are in 2010, 2014, and 2021. The primary characteristics of climate change during this period
are a general increase in cumulative temperature and erratic precipitation patterns. While higher temperatures
can promote a northward shift in crop maturity and increase regional grain yields®®, they can also intensify
water evaporation and exacerbate pest and disease outbreaks®. Both extreme precipitation and drought events
increase the vulnerability of food systems.

Analysis of baseline regression results

The data were used to acquire the baseline regression results, estimating the impacts of climate change on the level
of FPR (Table 3). Then, the Driscoll-Kraay test is employed to check the heteroskedasticity, serial correlation,
and cross-sectional correlation issues. In Table 3, Model 1, including only the independent variable, shows that
both AT and precipitation anomaly negatively affect FPR. Model 2, incorporating control variables, reveals that
both AT and precipitation anomalies have negative impacts on FPR, which are statistically significant at 5% and
10% levels, respectively. These results indicate that climate change considerably inhibits FPR, thereby supporting
Hypothesis H1.

In the control variables, rural electricity consumption has a significant and positive impact on the FPR,
indicating that electricity fuels modern agricultural technologies and rural informatization, thereby enhancing
the FPR. Urbanization level has a remarkable and negative effect on FPR. This result suggests that increased
urbanization accelerates the reallocation of resources, such as shifting land investment from low-value
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Modell Model2
Model Coefficient | Standard error | Coefficient | Standard error
AT -0.0026* 0.0013 -0.0027** | 0.0012
|SP1| -0.0030** 0.0012 -0.0024* 0.0012
Trade -0.0038 0.0023
Electricity 0.0030* 0.0016

Non-farm share

-0.0005 0.0012

Urbanization level

- 0.0026*** | 0.0004

Cropping structure

0.0026*** 0.0005

Urban-rural income gap

-0.0089 0.0056

Constant term

0.4272%* 0.0253

0.6052* 0.0599

N

403

403

RZ

0.6420

0.7050

Table 3. Benchmark regression results. *p <0.10, **p <0.05, ***p <0.01; the values in parentheses represent the

Driscoll-Kraay standard error.

Model Model3 Model4 Model5 Model6
-0.0026* - 0.0027** -0.0027* - 0.0027**
AT (0.0013) (0.0012) (0.0013) (0.0012)
-0.0030** - 0.0029** -0.0025* -0.0024*
ISPl (0.0012) (0.0011) (0.0012) (0.0012)
Direct effect variable Not introducing | Not introducing | Introducing Introducing
Other control variables | Not introducing | Introducing Not introducing | Introducing
AT 19.47 35.49
|SP1| 21.10 28.57

Table 4. Omitted variable bias. Coefficient of variation & =|pn/(Pm-fn)|, ¢> 1 indicates that omitted variables
have a small effect, *p<0.1, **p <0.05, **p < 0.01.

agricultural uses to higher-value industries, resulting in reduced food production®!. The gradual shift toward
a “food-oriented” cropping structure has a substantial and beneficial effect on FPR. The policy, often coupled
with land transfers and large-scale operations, enhances resource use efficiency and farmers’ risk resilience.
Several factors may explain why agricultural trade openness, rural electricity consumption, the non-farm
economy share, and the urban-rural earnings inequality show insignificant impacts on FPR. China’s minimum
purchase price and tariff quota system buffer domestic food production from international price fluctuations.
Additionally, growth in the non-farm economy may compensate for agricultural labor shifts through industrial
income. Grain subsidy policies help secure farmers’ income, mitigating the impact of the urban-rural income
gap on FPR.

Robustness tests

Omitted variable bias

Referring to the method of Wang®?, this study constructs different models using existing variables to evaluate the
possible erroneous tendency introduced by variables not monitored. First, it develops Models 3 and 5. Model 3
introduces only explanatory variables. Considering that the proportion of the non-farm economy, urbanization
level, and cropping structure directly affect the validity of the FPR, Model 5 incorporates these three control
variables, so as to estimate coeflicients for the predictor variables under the two constrained models 3,,. Second,
the research constructs two complete models and introduces other control variables based on Models 3 and 5
to get Models 4 and 6. The estimated coefficients under the two complete models are /3,,. Finally, the coefficient
of variation is calculated € = |8,/ (Bm — Bn). The larger the coefficient is, the more it can indicate that the
potential impact of unobserved variables on the parameter estimation of predictor variables is smaller. Table 4
represents the specific test results. The coefficients of variation of AT and |SPI| are much larger than 1, indicating
that the estimation results of the explanatory variables are less likely to be affected by the bias of the omitted
variables. The results support the robustness of the model estimates.

Replacement models

The FPR values calculated by the indicator system are between [0, 1], which is consistent with the characteristics
of arestricted dependent variable. Therefore, the Tobit model is used to re-estimate Model 2. Column (1) of Table
5 shows the estimation results of the Tobit model. The direction of the influence of the estimated coefficients
on the AT and |SPI| in the Tobit model and the baseline regression model remains the same, and the statistical
significance does not change significantly, which further verifies the reliability of the baseline regression results.

Scientific Reports |

(2025) 15:45578

| https://doi.org/10.1038/541598-025-29661-4 natureportfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(1) (2) 3)
Project | Tobit Reduced samples | Replacement of variables
AT -0.0023** | - 0.0026** - 0.0002***
(0.0010) | (0.0010) (0.0001)
|SP1| -0.0024*** | - 0.0024** - 0.0027**
(0.0009) (0.0011) (0.0010)
_cons 0.5770%** | 0.6373*** 0.3943%*
(0.1396) (0.1777) (0.0059)
N 403 325 403
R? 0.6981 0.6523

Table 5. Robustness test. *p <0.1, **p <0.05, **p<0.01.

Model 7
Model Coefficient | Standard error
AT -0.0026** | 0.0012
|SPI| ~0.0026* | 0.0011
SID -0.0828** | 0.0303
SID*AT 0.0088 0.0056
SID*|SPI| 0.0099* 0.0053
Trade - 0.0044* 0.0022
Electricity 0.0031*** 0.0009
Non-farm share -0.0005 0.0005
Urbanization level -0.0022*** | 0.0006
Cropping structure 0.0030** 0.0012
Urban-rural income gap | - 0.0099* | 0.0056
Constant term 0.5297° | 0.0837
N 403
R? 0.7220

Table 6. Moderating effects model. *p <0.10, **p <0.05, **p < 0.01.

Rejecting samples

To focus on FPR, the analysis excludes six regions with low food production—Beijing, Tianjin, Shanghai,
Hainan, Qinghai, and Tibet. The remaining 325 samples are used for parameter estimation. Column (2) of
Table 5 presents the results of the model. Based on the results, the coefficients of AT and |SPI| are negative and
significant at 5% level, demonstrating the robustness of the estimates with the reduced sample size.

Replacement of the independent variable

The number of days with maximum daily temperatures exceeding the 90th percentile of a historical baseline
(HTD, or extreme high-temperature days) was used as an alternative to accumulated temperature as the
independent variable for temperature ®. As shown in column (3) of Table 5, HTD also had a significant and
negative effect on crop production resilience, confirming the robustness of the baseline regression results.

Moderation effects analysis

To examine the moderating effect of crop diversity, this study incorporates the SID as a moderator and introduces
interaction terms into the regression analysis. In Table 6, Model 7 presents the results after including SID and
the interaction terms SID x AT and SID x|SPI| with the independent variables. Precipitation anomalies show
a significantly negative effect on FPR at the 5% level, while the interaction with crop diversity is positive and
significant at 10% level, indicating that crop diversity mitigates the negative impact of precipitation anomalies
on FPR, supporting Hypothesis H2b. The effect of accumulated temperature on FPR is negative and significant
at 5% level, but its interaction with crop diversity is insignificant, failing to support Hypothesis H2a. Overall,
enhancing crop diversity reduces single-disaster risks, buffers climate shocks, and strengthens the stability and
security of food systems, consistent with Hypothesis H2.

SID x AT is insignificant, which may be due to the non-linear and threshold effects of high temperatures on
crops. Once a certain temperature is exceeded, all crops are reduced, resulting in the interaction being masked®*.
The buffering effect of crop diversity is highly dependent on differences in crop functional traits. Even species
richness may fail to regulate if crop functional traits converge®. For example, a region with high crop diversity
but similarity in key heat tolerance traits (e.g., all C3 crops) fails to show differentiated adaptive responses to
increasing AT®®.
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Analysis of regional heterogeneity

The paper further analyzes the spatial heterogeneity to measure the influence of climatic shocks on the FPR in
the three principal functional food zones. As shown in Table 7, in major food-producing areas, AT and |SP]|
have negative coefficients, which are statistically significant at 10% and 1% levels, implying the considerable
inhibitory effects of climate change on FPR. This is mainly because the main food-producing provinces are
located in the Central China region, Northeast China region, and East China region, within climate transition
zones (e.g., warm temperate to mesothermal, semi-moist to semi-arid). Small climate changes in these areas can
exceed crop adaptation thresholds. The predominance of monoculture staple crops in these regions also increases
vulnerability to climatic shocks. In major food-consuming areas, AT has a prominent negative effect on FPR,
while |SPI| is insignificant, which can be explained by the limited arable land resources of these areas, including
the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei regions. These regions have advanced
urbanization and development, and the heat island effect exacerbates the rise in nighttime temperatures,
inhibiting the accumulation of sugar in grain crops. These areas can regulate water demand through facility-
based agriculture, buffering the dampening effect of precipitation fluctuations on FPR. The coefficients of AT
and |SPI| on FPR in production-consumption balanced areas are insignificant because most of these places
are located in arid or high-cold zones, where long-term climatic stresses have contributed to the formation of
inherent crop resilience. Drought and cold-resistant technologies for grain cultivation have been promoted.
Some examples are drought-tolerant potatoes in Gansu and barley-rape rotation in Tibet’s river valleys. Water
conservation projects such as Karez in Xinjiang and rainwater harvesting cellars in Shanxi effectively buffer the
effects of climate disruption.

Table 8 represents the spatial differences in the effects of crop diversity in the three regions. The results show
that the interaction term coefficient between crop diversity and |SPI| in the major food-producing regions is
positive and significant at 10% level, while the interaction term between AT and crop diversity is insignificant.
This suggests that crop diversity significantly mitigates the suppressive impact of anomalous precipitation on FPR
in the major food-producing areas, but insignificantly moderates the AT. Most main production areas are located
in plains with deep soil layers. A three-dimensional pattern of water use is formed through the construction of
a “deep-rooted system-shallow-rooted system” multi-type crop vertical complementary system. Together with
improvements in irrigation systems, this effectively mitigates the impact of precipitation anomalies. The main
crops in these areas are mostly high-light-efficiency crops. As a result of the convergence effect of photosynthetic
efficiency, the optimal temperature ranges for photosynthesis among crops are highly overlapping, and the
range of temperature adaptation cannot be expanded through crop diversity®’. The lack of vertical topographic
differentiation in the plains limits the compensation of diversity for AT. The coeflicient associated with the AT
and FPR interaction item is not significantly positive but significantly negative in major food-consuming areas.
The |SPI| and FPR interaction item is insignificant because of the limited and fragmented distribution of arable
land in the main consumption area, which hinders the formation of large-scale crop diversity. Even if localized
diversification occurs, the total area and spatial continuity are insufficient to effectively diversify the systemic
risk of precipitation anomalies. The regulatory effect of crop diversity in production-consumption balanced

(1) (2) (3)
Variable Major-production | Major-consumption | Balanced areas
AT -0.0026** - 0.0044** 0.0031

(0.0011) (0.0015) (0.0020)

- 0.0038*** -0.0023 0.0001
|SP1|

(0.0009) (0.0021) (0.0020)

-0.0013 0.0151 -0.0039
Trade

(0.0063) (0.0145) (0.0036)

0.0092 0.0016 0.0025
Electricity

(0.0062) (0.0016) (0.0076)

-0.0014 0.0098** 0.0023
Non-farm share

(0.0014) (0.0029) (0.0017)

- 0.0067*** -0.0033 0.0000
Urbanization level

(0.0012) (0.0026) (0.0014)

0.0017 0.0044 0.0037
Cropping structure

(0.0010) (0.0036) (0.0043)

-0.0263 -0.0165 0.0145**
Urban-rural income gap

(0.0187) (0.0236) (0.0065)

0.9751°* -0.2763 -0.0057
Constant term

(0.1916) (0.3256) (0.2289)
N 169 91 143
R? 0.8006 0.8087 0.7500

Table 7. Difference analysis of the three functional zoning districts. *, **, and *** denote statistical significance
at 10%, 5%, and 1% levels, respectively.
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(1) (2) (3)
Variable Major-production | Major-consumption | Balanced areas
AT -0.0004 - 0.0085*** 0.0041

(0.0018) (0.0031) (0.0033)

-0.0031* —-0.0044 -0.0008
|SP1]

(0.0018) (0.0033) (0.0026)

—-0.2525%** -0.0132 - 0.1835%**
SID

(0.0616) (0.0372) (0.0661)

-0.0016 -0.0342* -0.0032
SID*AT

(0.0126) (0.0182) (0.0177)

0.0234* -0.0218 0.0085
SID*|SPI]|

(0.0130) (0.0194) (0.0168)

0.0010 0.0366*** - 0.0099**
Trade

(0.0049) (0.0053) (0.0041)

0.0004 0.0030 0.0048
Electricity

(0.0044) (0.0019) (0.0054)

- 0.0039%** 0.0087** 0.0025**
Non-farm share

(0.0009) (0.0034) (0.0012)

0.0018*** 0.0024* 0.0016***
Urbanization level

(0.0006) (0.0013) (0.0005)

-0.0302%* 0.0094 -0.0075
Cropping structure

(0.0131) (0.0162) (0.0075)

0.7896*** -0.7288** 0.0606
Urban-rural income gap

(0.0959) (0.2788) (0.1224)

-0.0004 - 0.0085*** 0.0041
Constant term

(0.0018) (0.0031) (0.0033)
N 169 91 143
R? 0.6610 0.7911 0.6757

Table 8. Analysis of regional differences in regulatory effects. *** p<0.01, ** p<0.05, * p<0.1.

areas is insignificant. The balanced areas rely more on traditional cultivation modes and lack technological
means such as precision irrigation and intelligent monitoring, preventing the full activation of crop diversity’s
climate adaptation potential. As young and middle-aged laborers migrate to cities, the farmers tend to simplify
the planting structure to reduce labor intensity, further limiting the effectiveness of crop diversity.

Discussion

This study aims to examine the impact of climate change on the food production resilience. Building on a
traditional analytical framework, the research develops a comprehensive indicator system to quantify FPR
across three dimensions: resistance, adaptability, and regenerative capacity. Using this framework, the study
validates the findings of Su Fang et al., which established a food security indicator system using the standardized
range method. This system assesses availability, accessibility, usability, and stability, highlighting the negative
impact of temperature and precipitation on food security in China®. Furthermore, building on the framework
developed by Zhou Mi et al., this paper examines regional differences in food production resilience across
China’s three major food-producing regions, which are categorized based on food policies®®. These findings
resonate with the existing literature, which indicates that climate change results in reduced yields of key food
crops'?, increased variability in production, and a heightened risk of simultaneous crop failures®. Collectively,
these studies highlight the complex relationship between climate change and food production systems’®. The
extensive research on the effects of climate change on yields and food security provides important support for
this study, further underscoring the need to investigate resilience in food production.

Unlike the aforementioned scholars, this study incorporates both heat stress (measured by accumulated
temperature) and moisture stress (evaluated through precipitation anomalies) into a composite climate
indicator. This integrated approach addresses the limitations associated with relying on a single or simple
climatic variable, thereby offering a more holistic assessment of climate-related threats to agricultural
productivity. Methodologically, a game-theoretic weighting approach is employed to integrate subjective and
objective weights, addressing the limitations of entropy-based methods and enhancing the robustness of FPR
measurement. The study further examines heterogeneity in climate impacts across major production regions
and the moderating role of crop diversity, revealing interaction mechanisms and marginal effects among climate
change, FPR, and crop diversity. These insights offer policymakers evidence for differentiated, region-specific
climate governance strategies, improving the feasibility and effectiveness of policy implementation. Although this
study yields findings of practical significance, it has several limitations. First, it primarily investigates provincial-
level samples in China. Analysis at this scale, based on macroeconomic indicators, may obscure intra-provincial
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variations and micro-level mechanisms. Future research could refine the sample to finer regional levels, such
as cities or counties, to more comprehensively explore the local dynamics and boundary conditions of climate
change impacts on food production. Second, this study focuses on macro-level climate variables, leaving the
resilience mechanisms for specific types of climate disasters underexplored. Future work could investigate these
mechanisms to inform more targeted and precise policy interventions. Third, this study focuses mainly on
China. Future research could strengthen international comparative studies to more deeply understand China’s
relative position in global FPR and to formulate more effective food security strategies.

Conclusion and implications

Main conclusions

This paper analyzes the mechanism of climate anomalies’ effect on FPR and the mitigating effects of crop
diversity through empirical data. The principal conclusions are outlined as follows. First, the overall trend of
FPR is upward in Chinese provinces, with the major food-producing areas higher than the national average, the
major food-consuming areas, and the balanced areas. Second, AT and |SPI| show a significant and inhibitory
effect on FPR. Improving crop diversity can effectively mitigate the inhibitory effect of climate change on FPR,
mainly by significantly weakening the negative effect of extreme precipitation, but not that of AT. Third, the
inhibitory effect of climate change is most statistically significant in the major food-producing areas. The major
food-consuming areas rely significantly on the negative effect of precipitation anomalies, while the effect of AT
is insignificant. Neither AT nor precipitation anomalies have significantly negative effects in the balanced areas.
The moderating role of crop diversity on FPR is reflected in its mitigation of precipitation anomalies. This effect
is most pronounced in the major food-producing areas and is insignificant in the major food-consuming areas
and balanced areas.

Policy implications
The following policy implications are relevant for stabilizing food security production:

First, addressing the inhibitory effects of rising AT and precipitation anomalies on the FPR requires
implementing many policies, for example, building a climate-smart agricultural production system. Another
policy is the establishment of a climate monitoring and early warning platform based on the big data wisdom
platform to enhance the ability to forecast and mitigate meteorological disasters. In terms of technological
empowerment, the focus should be on developing crop breeding and improvement for flood and drought
resistance, as well as smart water management technologies. Regarding engineering prevention and control,
initiatives should be undertaken to enhance the multi-dimensional disaster early warning and response system
and food production infrastructure, starting with drainage systems, water storage projects, and wind and sand
control projects.

Second, regarding the regulatory role of crop diversity, it is crucial to develop policies for the promotion of
regionally differentiated crop planting structures. By combining modern biological breeding with traditional
cultivation methods, emphasis should be placed on cultivating crops with advantageous traits, such as resistance
to humidity, drought, salinity, and alkalinity. Additionally, a systematic promotion system for high-quality seeds
should be established. Through policy subsidies, insurance, and other tools, farmers should be encouraged to
adopt diversified cultivation practices to enhance the adaptability of food crops to extreme climate stresses.
The moderating effect of crop diversity is significant for precipitation anomalies but not for rising accumulated
temperatures, indicating that China’s current crop diversity is uneven in responding to different climate stressors.
Its capacity to buffer high-temperature stress remains underutilized. Strengthening China’s crop diversity system
requires further refinement in variety breeding, cultivation pattern optimization, and technical support.

Third, regionally differentiated food security measures should be implemented. Given the strategic
importance of the main producing areas, policy preferences and investments in resources and technology should
be strengthened. Emphasis should be placed on supporting the establishment of high-standard farmland and
the research and development of superior crop varieties. Agricultural infrastructure and equipment should be
upgraded rapidly to enhance the comprehensive grain production capacity. Due to their economic development
and high urbanization, the main marketing areas should fully leverage their economic advantages. Focus should
be on developing capital- and technology-intensive agriculture, facilitating the integration of new energy
technologies in food production systems, promoting intensive and modernized agricultural models, increasing
food self-sufficiency, and reducing dependence on foreign food supplies. Since the ecological balance in the
production-marketing balance areas is more fragile, the government should increase policy support, especially
by collaborating with financial institutions to provide agricultural loans and insurance support for grain farmers.
Attempts should be made to strengthen the agricultural industrial route and enhance the market competitiveness
of food products.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on rea-
sonable request.
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