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Climate polarization threatens the food production stabilization and economic development 
worldwide. As a major agricultural producer, China faces increasing risks to its food security. This 
study examines the effects of accumulated temperature and precipitation anomaly level on food 
production resilience, with crop diversity potentially playing a moderating role. To this end, it uses 
fixed-effects and moderating-effects models based on official statistics from 31 Chinese administrative 
regions (2010–2022). First, China’s overall resilience in food production has shown an upward trend, 
fluctuating from 0.376 in 2010 to 0.435 in 2022. Second, accumulated temperature has a suppressing 
effect on food production resilience at the 5% significance level, while precipitation anomalies have a 
similar effect at the 10% significance level. This inhibitory effect is most pronounced in major food-
producing areas, while it is less severe in major food-consuming areas and in regions with production-
consumption balanced areas. Third, crop diversity has an important moderating role, mitigating the 
negative impact of precipitation anomalies on food production resilience, statistically significant at 
10% level; conversely, its role in moderating accumulated temperature is insignificant. To cope with 
climate shocks and safeguard food production security, the study proposes policy recommendations in 
three areas: building a climate-smart agricultural system, optimizing the application of crop diversity, 
and implementing targeted zoning strategies.
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Food and food security are fundamental to people’s well-being, national security, and sustainable development 
of society and the economy. The escalating intensity and growing frequency of extreme weather events triggered 
by global warming pose significant risks to food production worldwide1. Extreme weather conditions not only 
disrupt agricultural production in directly affected regions, but also trigger fluctuations in agricultural exports 
and ripple effects on food prices in other areas2 through supply–demand transmission mechanisms within 
global supply chains3. The State of Food Security and Nutrition in the World 2024 indicates that between 713 and 
757 million people were undernourished in 2023. In addition, over 2.33 billion people experienced moderate 
or severe food insecurity, with more than 864 million people facing severe levels of food insecurity4. Meeting 
the growing nutritional needs of humanity amid resource scarcity and climate extremes is one of the greatest 
humanitarian challenges in the twenty-first century5.

Developing countries are substantially vulnerable to climate shocks because they rely on agriculture and 
have limited access to capital, technology, and infrastructure6. As the largest developing country, China faces 
significant challenges in food security due to its large population and high food demand. Despite steady growth 
in food production, rapid urbanization and frequent natural disasters continue to threaten food security 7. 
Therefore, studying China’s food production resilience (FPR) is essential for promoting supply-side structural 
reform and stabilizing the grain supply–demand balance.

Research on climate change primarily focuses on its impacts on the ecological environment, social life, and 
agricultural production. Climate change has altered regional evaporation and precipitation patterns, accelerating 
the degradation of plateau glaciers and permafrost8. Global warming also exhibits clear regional differences, 
with temperatures increasing two to three times faster than the global average in Eurasia and 3 to 4 times faster 
in the Arctic and Antarctic Peninsula9. In terms of social impacts, climate change has increased morbidity and 
mortality from infectious and respiratory diseases, while exacerbating socio-political tensions and conflicts10. 
In agriculture, while yields may increase in certain regions, declining crop quality could outweigh these gains, 
ultimately reducing farmers’ incomes11.
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On climate change and food production, most research has focused on food access, utilization efficiency, 
and food security, with relatively little attention to food production resilience. Research indicates that rising 
temperatures and water stress decrease agricultural productivity by increasing food prices and threatening 
agricultural livelihoods12. Food production is highly sensitive to climatic anomalies, with droughts or extreme 
temperatures significantly reducing output. Excessively high temperatures and diurnal temperature variation 
indices have a significant and negative correlation with corn and soybean yields13. Global investigations show 
that grain yields are declining in about half of all countries under current climate trends14. Moreover, climate 
change intensifies the disruption caused by non-climate disasters to global food production systems15, generating 
complex chain reactions and opening up new avenues for research.

The aforementioned research provides a rich theoretical foundation for exploring the role of climate anomalies 
in food production resilience, but it still has notable gaps and limitations. (1) Existing literature has primarily 
investigated the resistance of food production to disasters, with limited research on the sustainability and 
regenerative capacity of food production. (2) Current research has primarily concentrated on the direct impacts 
of climatic anomalies on the food system, with little attention paid to how crop diversity plays a regulatory 
role. To address these gaps, this paper develops an evaluation system for food production resilience indicators. 
By introducing crop diversity as a moderating variable, it constructs a research framework that examines its 
role in shaping the impacts of climate change on food production resilience. In this way, this study provides 
significant contributions in the following three key aspects: (1) It examines the impact of climate change on food 
production resilience through two dimensions—annual average accumulated temperature and precipitation 
anomaly level—thus overcoming the limitations of single climate indicators and offering deeper insights into 
the mechanism of composite climate effects on food production resilience; (2) It analyzes the moderating role 
of crop diversity in the process of climate change influencing food production resilience, enriching the research 
perspective; (3) It examines regional variations in climate change impacts on food production resilience and the 
differing moderating effects of crop diversity, providing both theoretical foundations and empirical evidence to 
support differentiated approaches to resilience governance.

Theoretical framework and proposed hypotheses
Conceptual definition of food production resilience
“Resilience” originally stems from materials physics, describing a material’s ability to return to its original state 
after external stress. In the 1970s, ecologist Holling extended the concept to ecology, defining resilience as an 
ecosystem’s capacity to recover to a stable state and maintain normal functioning after disturbances16. By the 
early twenty-first century, resilience theory integrated human systems with ecological dynamics, achieving 
expansion and reinforcement within sociology and economics. It is generally defined as a system’s capacity to 
withstand disturbances, undergo reorganization, and maintain its essential functions, structure, identity, and 
feedback loops while navigating change, thereby achieving dynamic objectives17. In economics, resilience has 
been studied in terms of a system’s capacity to resist recessions, adapt to disruptions, and recover from external 
shocks such as financial crises, geopolitical conflicts, or public health events, with analyses spanning urban18, 
regional19, and macroeconomic scales. In agriculture, resilience describes the capacity of food systems to 
withstand and respond to disruptions in production, supply, and distribution, encompassing three dimensions: 
socioeconomic, biophysical, and production diversity20. The Food and Agriculture Organization (FAO) of the 
United Nations defines food production resilience as the food production system’s ability to ensure that all people 
have access to adequate, safe, and nutritious food during disasters and to fulfill the livelihoods of food system 
participants in agriculture21. Scholars have decomposed resilience into dimensions of resistance, adaptability, 
and innovation22, and examined how the food system relies on different factors such as urbanization rate23, 
digital villages construction, and agricultural insurance coverage24.

How climatic anomalies affect food production resilience
In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change stated that anthropogenic 
emissions of greenhouse gases have contributed significantly to climate warming. The surface temperature 
worldwide during 2011–2020 was 1.1℃ above that during 1850–190025. Climate stress has wide-ranging and 
profound impacts on both the environment and human society, with particularly notable effects on agricultural 
production.

Firstly, climate change is reducing both the quantity and quality of food production, while effective irrigation 
resources continue to dwindle, thereby weakening the food systems’ resistance to external environmental 
pressures. The increasing frequency of extreme weather events, like torrential rain and heat waves, has severely 
disrupted agricultural environments and substantially decreased food output26. Research predicts that by the end 
of the century, nearly all major staple crops, except for rice, are at risk of yield reductions due to extreme climate 
change. Under high-emission scenarios, projected declines range within 12–27.8% for maize, 13.5–28.2% for 
wheat, and 22.4–35.6% for soybean27. Rising carbon dioxide emissions, higher temperatures, and increased light 
intensity have led to shorter crop growth cycles, reduced accumulation of sugars and nutrients, and consequently, 
low crop quality28. For example, as carbon dioxide concentrations increase, the protein content of wheat grains 
may decrease by 8.6%29. Climate-driven depletion of alpine snowpacks will reshape downstream hydrological 
systems, transforming both supply–demand dynamics and seasonal availability of glacial freshwater sources30. 
Based on statistical modeling, Pinke found that droughts and heat waves, which reduce effective freshwater 
irrigation resources in Eastern Europe, are degrading soils. Each 1℃ increase in global average temperature will 
result in a 4.1–6.4% decrease in European wheat production31.

Secondly, climate change has reduced the sustainability of food systems, weakening their adaptability to 
external environmental changes. Evidence shows that regional climate events have become more pronounced, 
with erratic rainfall, prolonged droughts, and severe flooding, all of which negatively impact food production32. 
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Less developed regions are often more vulnerable to climate disasters. Farmers in these areas typically have lower 
incomes, limited knowledge, and restricted capacity to apply technologies that mitigate agricultural climate 
risks33. For example, Sub-Saharan Africa, highly dependent on agriculture, exhibits low utilization of modern 
irrigation technologies and is particularly affected by high temperatures and reduced rainfall under global 
warming34. Climate change increases atmospheric carbon dioxide concentrations, temperature, and humidity, 
which exacerbates pest and disease outbreaks in food crops. In order to increase food production, farmers often 
respond by increasing the application of agricultural chemicals, including pesticides, fertilizers, and herbicides35. 
Excessive use of agrochemicals can result in eutrophication, decreased crop output, soil salinization, and rising 
soil pH36, creating a vicious cycle of agricultural pollution and declining productivity.

Thirdly, climate change has led to increased fixed asset investment in agriculture and insufficient total power 
of agricultural machinery, thereby weakening the food system’s regenerative capacity. According to the Cobb–
Douglas production function, food output depends on a multifactor combination of land, labor, and capital37. 
In response to yield losses caused by climate change, farmers often increase inputs of labor, capital, materials, 
and technology. Agricultural development requires infrastructure, encompassing both tangible assets such as 
roads, irrigation systems, machinery, and repair facilities, as well as intangible components like credit systems, 
insurance investments, and cooperatives38. However, climate extremes can damage key agricultural infrastructure 
and raise storage and transportation costs39. The interaction of climatic factors and soil conditions can lead 
to waterlogging, which reduces soil permeability, impairs drainage, increases surface runoff and erosion, and 
heightens susceptibility to compaction. Consequently, root depth is reduced, adversely affecting plant growth. 
Excess moisture also means that machines can sink into the soil and wheels can slip, reducing the efficiency of 
agricultural machinery use per unit area40.

Given this analysis, the research proposes the following hypothesis:

H1:   Climate change has a dampening effect on food production resilience.

Moderating effects of crop diversity
To mitigate the impacts of climate change, growers are adapting production strategies to new conditions. 
Increasing crop diversity is one economically viable adaptation approach, which offers flexible forms and 
scales, enabling farmers to both withstand disasters and enhance economic returns41. Crop diversity creates a 
selection effect: the more species present in an ecosystem, the greater the likelihood that at least one will tolerate 
specific climatic conditions42. Enhancing diversity is crucial for stabilizing food security, as practices such as 
intercropping and crop rotation can improve overall productivity. Utilizing ecological niche differentiation 
among crops within the same spatial scenario43 can improve resource use efficiency and promote sustainable 
agricultural development. Additionally, crop diversity has been indicated to enhance the agricultural output 
capacity and yield consistency of oilseed cropping systems across diverse settings44.

This analysis introduces the following hypothesis:
H2: Crop diversity mitigates the adverse effects of climate disruption on food production resilience.
Climatic factors such as elevated carbon dioxide levels, rising temperatures, and altered precipitation patterns 

have expanded the geographical range of pests, increased overwintering survival and generation numbers, and 
reduced the effectiveness of biological control measures45. Simultaneously, climate change directly affects soil 
microbial systems; higher temperatures lead to the depletion of soil organic carbon, shifts in bacterial community 
composition, and declines in fungal abundance. Thawing permafrost may also release novel viruses46. Crop 
rotation and increased crop diversity reduce pathogen abundance and transmission through the host-absence 
effect and ecological regulation by antagonistic organisms arising from the decomposition of diverse plant 
residues within the soil 47. Additionally, higher crop diversity enhances inter-root carbon inputs to the soil 
microbial community, supporting microbial growth that benefits crop development48. Accordingly, hypothesis 
H2a is proposed:

H2a: Crop diversity mitigates the adverse impact of rising accumulated temperature on food production 
resilience.

Reduced precipitation lowers soil moisture, inhibiting plant and microbial activity49, while excessive rainfall 
during critical crop growth stages disrupts pollination and causes root oxygen deprivation and decay, ultimately 
reducing yields. Crop diversity mitigates these impacts by enhancing soil quality and microbial activation50. 
Crop diversity also optimizes agricultural production choices. Crops with diverse root systems of different 
depths can effectively increase soil voids and precipitation infiltration rates, which can effectively cope with 
extreme precipitation conditions51. Combining high- and low-level shading systems can protect crops from 
abnormal precipitation, as the upper canopy reduces soil evaporation and improves soil moisture infiltration41.

Accordingly, Hypothesis H2b is proposed:
H2b: Crop diversity attenuates the detrimental influence of precipitation anomalies on food production 

resilience.
Building on these assumptions, this paper analyzes the disruptive effects of climate change on food 

production resilience across three aspects: resistance, adaptability, and regenerative capacity. It further examines 
the moderating role of crop diversity under two climate stressors: accumulated temperature and precipitation 
anomalies. The study integrates the adverse impacts of climate change with the regulatory effects of crop diversity 
to assess their combined influence on food production resilience. Figure 1 displays the overall framework.

Research design
Data sources
This research analyzes the impact of climate change on FPR based on panel data from 31 provincial-level 
administrative regions in China (excluding Hong Kong, Macao, and Taiwan) between 2010 and 2022. Data 
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primarily originate from the Statistical Yearbook of China (National Bureau of Statistics), the FAO database, 
the National Meteorological Science Data Sharing Service Platform, and local statistical sources. For individual 
missing data points, interpolation methods were employed to estimate. Additionally, the 31 provinces were 
categorized into major food-producing areas, major food-consuming areas, and production-consumption 
balanced areas based on The Outline of Medium-and Long-Term Plan for National Food Security (2008–2020). 
Specifically, the major food-producing areas encompass 13 provinces: Liaoning, Jilin, Heilongjiang, Inner 
Mongolia, Hebei, Shandong, Anhui, Jiangsu, Jiangxi, Henan, Hunan, Sichuan, and Hubei. The major food-
consuming areas include 7 provinces: Beijing, Shanghai, Tianjin, Zhejiang, Hainan, Guangdong, and Fujian. 
The production-consumption balanced areas comprise 11 provinces: Shanxi, Guangxi, Chongqing, Yunnan, 
Guizhou, Shaanxi, Gansu, Qinghai, Tibet, Ningxia, and Xinjiang.

Selection and definition of variables
Dependent variable
Food production resilience (FPR) is the dependent variable. Based on the previous studies, this paper defines this 
variable as the capacity of food production systems to maintain stability and resist various internal and external 
shocks. To measure FPR, the FAO uses the Resilience Index Measurement and Analysis (RIMA) methodology, 
which calculates the Food System Resilience Index (FSRI) via factor analysis and a Multi-Indicator Multi-Factor 
(MIMIC) model, covering production, processing, and markets52. Academically, FPR is often assessed through 
multidimensional indicator systems, using weighting methods such as entropy, principal component analysis, 
or analytic hierarchy process to calculate composite indices. Some studies employ the Pressure-State-Response 
(PSR) framework, evaluating resilience through resistance, recovery, and transformation capacities53. This paper 
adopts a similar comprehensive approach, dividing FPR into three dimensions: resistance, adaptability, and 
regenerative capacity. Meanwhile, on relevant research by Zhang Mingdou and Hui Mingwei54, the resistance is 
categorized into 2 dimensions of production foundation and production capacity. Adaptability is divided into 
two dimensions: sustainability and recoverability. Regenerative capacity is segmented into 2 dimensions: diverse 
collaboration and technological progress. A comprehensive evaluation framework for FPR was developed, 
consisting of three primary indicators, six secondary indicators, and 18 tertiary indicators. Table 1 represents 
the details.

Independent variable
The independent variables are the mean annual accumulated temperature (AT) and precipitation anomaly 
magnitude (measured by the absolute value of the standardized precipitation index, abbreviated as |SPI|). Most 
crops can only grow stably when the average daily temperature is above 10℃. The accumulated temperature refers 
to the active accumulated temperature, i.e., the sum of temperatures obtained by accumulating the duration of 
daily average temperature ≥ 10℃ in a year. For the calculation, daily temperature data from major meteorological 
stations across all provinces were used to determine monthly accumulated temperatures, from which the annual 
average accumulated temperature was derived for each province55. |SPI| is a kind of climate drought monitoring 
indicator based on probability statistics. It centers on quantifying the extent to which precipitation deviates 
from a long-term climate benchmark over a given time period through Gamma distribution fitting and normal 
normalization. The formulae are as follows:

Assuming that the precipitation x obeys a Gamma distribution, Eq.  (1) represents its probability density 
function.

Fig. 1.  The mechanism of climate change impact on food production resilience.
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f(x) = xα−1e−x/β

βαΓ(α) (x > 0)� (1)

where α is the shape parameter, controlling for deviations from the distribution, β shows the scale parameter, 
reflecting the degree of precipitation variability, x denotes the annual precipitation, and Γ (α) signifies the 
Gamma function.

Equations  (2) and (3) represent the calculation of parameters α and β using the method of maximum 
likelihood estimator (MLE):

	
α =

1 +
√

1 + 4A/3
4A

, A = ln x − 1
n

n∑
i=1

ln xi� (2)

	
β = x

α
� (3)

where x is the annual precipitation, x denotes the precipitation time series mean, and n signifies the time series 
length.

Equation (4) represents the cumulative probability function.

	
G (x) =

ˆ x

0
f (x)dx =

´ x

0 xα−1e−x/β

βαΓ (α)
� (4)

Given that the Gamma function requires the independent variable to be a positive real number, the actual 
precipitation data may be zero-valued, according to Eq. (5).

	
H (x) =

{
q + (1 − q) · G (x) , x > 0
q, x = 0 � (5)

where q is the probability of the occurrence of the value 0 in the precipitation series. Equation (6) shows the 
Gaussian function used to convert the cumulative probability to a standard normal distribution variable Z (i.e., 
the SPI value)

	 SP I = Φ−1 (H (x))� (6)

Tier1 Tier2 Tier3 Unit

Weights

Objective 
empowerment 
method

Subjective 
empowerment 
method

Game theory 
combinatorial 
empowerment 
method

Resistance

Production 
foundation

Cultivated land area kha 0.1316 0.1113 0.1269

Effective irrigation rate % 0.0995 0.0701 0.0927

Number of employees in primary sector 10 thousand 
persons 0.1205 0.0884 0.1131

Production 
capacity

Food production per unit area t/kha 0.0572 0.1113 0.0697

Food production per capita kg/cap 0.1189 0.0701 0.1076

Food production price index % 0.0187 0.0884 0.0348

Adaptability

Sustainability

Fertilizer application per unit area t/kha 0.0308 0.0495 0.0351

Pesticide application per unit area t/kha 0.0145 0.0495 0.0226

Amount of agricultural film applied per unit area t/kha 0.0232 0.0495 0.0293

Recoverability

Multiple cropping index % 0.0602 0.0245 0.0520

Value added of gross agricultural output % 0.0248 0.0245 0.0247

Soil erosion control area kha 0.0182 0.0412 0.0235

Damage rate % 0.0229 0.0583 0.0311

Regenerative 
capacity

Diverse 
collaboration

Total power of agricultural machinery per unit area kW/kha 0.1226 0.0272 0.1006

Value added of agriculture, forestry, animal husbandry, 
and fishery services ¥ 100 million 0.0492 0.0272 0.0441

Technological 
progressiveness

Investment in agricultural fixed assets ¥ 100 million 0.0205 0.0357 0.0240

Share of financial support to agriculture ¥ 100 million 0.0343 0.0450 0.0368

Application for Plant Variety Rights and Grant of Plant 
Variety Rights pcs 0.0323 0.0283 0.0314

Table 1.  Comprehensive evaluation indicator system for FPR.
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where Φ−1 serves as the inverse function of the standard normal distribution. Equation  (7) indicates the 
calculation process using the approximate solution method:

When H (x)≤0.5, let t =
√

ln
(
1/H (x)2)

, then

	
SP I ≈ −

(
t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
� (7)

When H (x) > 0.5, substituting 1 − H (x) into Eq. (7) gives the opposite number. The constant values are as 
follows:

	 c0 = 2.515517 c1 = 0.802853 c2 = 0.010328

	 d1 = 1.432788 d2 = 0.189269 d3 = 0.001308

This paper employs |SPI| to reflect the level of precipitation irregularity. Higher absolute values indicate a 
greater degree of precipitation anomaly. In concrete terms, |SPI| between [0.0, 1.0] indicates slight abnormality, 
[1.0, 1.5] shows moderate abnormality, [1.5, 2.0] presents severe abnormality, and |SP I| > 2.0 denotes 
extreme abnormality56.

Moderating variables
Crop diversity is the moderating variable. This investigation utilizes the Simpson Index of Diversity (SID)6 to 
measure the level of crop diversity in a given region. By quantifying the probability of randomly selecting two 
individuals from a sample to belong to the same species, a numerical value can be obtained to describe the 
diversity level of the sample. Specifically, this can be expressed in the formula: SID = 1 −

∑
Si

2, where is 
the share of crop i in the total planted area. SID ranges between [0, 1], where a higher index represents a higher 
diversity of crops and vice versa. The SID focuses diversity assessment more on the contribution of dominant 
species by weighting species abundance (i.e., crop area share). Within agricultural ecosystems, this approach 
sensitively captures shifts in the distribution of major crops, providing an accurate reflection of regional crop 
diversity. This study focused on diversity indices for eight major crops: rice, wheat, maize, sorghum, legumes 
(soybeans), and tubers (potatoes, sweet potatoes, and cassava).

Control variables
Building upon existing research57, the paper adds additional variables effective in the FPR, including (1) the 
level of agricultural trade openness, calculated through the proportion of total agricultural exports and imports 
to total agricultural output; (2) rural electric power facilities, expressed by rural electricity consumption; (3) 
the proportion of the non-agricultural economy, calculated as the sum of the value added by the secondary and 
tertiary industries, divided by the regional gross domestic product; (4) the urbanization level, defined by the 
ratio of the urban resident population to the total; (5) crop cultivation structure, expressed as the ratio of land 
planted with food crops to that planted with non-food crops; (6) the urban–rural income disparity, qualified by 
the ratio of urban national income per capita to rural national income. Table 2 presents the description of the 
variables.

Model construction
FPR index measurement

Entropy value method

Variable type Variable name Variable definition
Average 
value

Standard 
error

Dependent 
variable Resilience The food system’s capacity to sustain stable production and resilience against both internal and external shocks, measured 

by a comprehensive system of evaluation indicators 0.41 0.09

Independent 
variable

AT Monthly mean cumulative temperature obtained by summing and averaging the effective cumulative temperatures based 
on daily mean temperatures ≥ 10 °C; monthly mean active cumulative temperatures averaged for the 12-month period 19.08 2.22

|SPI| The extent of precipitation variation in a given time period relative to a long-term climate benchmark quantified by 
Gamma distribution fitting with normal normalization 0.80 0.60

Moderating
variable SID Probability that two individuals randomly selected from the sample belong to the same species 0.58 0.18

Control 
variable

Trade Logarithm of total agricultural exports and imports/total agricultural output value -2.15 1.70

Electricity Logarithmic value of rural electricity consumption 4.73 1.48

Non-farm share (Secondary sector + tertiary sector)/GDP 90.27 5.08

Urbanization Proportion of urban population to total population 58.57 13.21

Cropping 
structure Area under food crops/area under non-food crops 3.25 4.39

Income gap Urban residents’ income/rural residents’ income 2.63 0.45

Table 2.  Definition and Description of Variables.
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	(1)	 Normalization: Eq. (8) represents the positive correlation indicators.

	 Zij = (xij − xmin)/ (xmax − xmin)� (8)

Equation (9) shows the negative correlation indicators.

	 Zij = (xmax − xij)/ (xmax − xmin)� (9)

	(2)	 Equation (10) presents the calculation of indicator weights.

	
Pij = Zij/

m∑
i=1

Zij � (10)

	(3)	 Eq. (11) indicates the calculation of the metric entropy value.

	
ej = −k

m∑
i=1

Pij ln Pij � (11)

Equation (12) provides the redundancy of information entropy.

	 dj = 1 − ej � (12)

	(4)	 Eq. (13) shows the calculation of the indicator weights.

	
Wj = dj/

∑n

j=1
dj � (13)

Game theory combinatorial empowerment approach  Game theory-based weighting integrates indicator 
weights derived from multiple methods to determine optimal values. This study used the Analytic Hierarchy 
Process (AHP) and entropy method to measure subjective and objective weights, respectively, which were then 
optimized via game theory to obtain final indicator weights. Subsequently, it applied a comprehensive evalua-
tion method to measure the food system resilience index. AHP captures decision-makers’ preferences through 
pairwise comparisons, while entropy quantifies uncertainty in the data. This hybrid approach balances expert 
judgment with empirical data, enhancing the rationality and robustness of the evaluation58. The calculation 
procedure is as follows:

The subjective weight vector of AHP is denoted as w1. The objective weight vector of the entropy method is 
denoted as w2. The weight matrix obtained by both methods is optimized by linear combination to obtain the 
minimum optimized value:

	
min =

∥∥∥
∑i

k=1
akwT

k

∥∥∥
2

(i = 1, 2)� (14)

The first-order derivatives of the matrix are taken and expanded to obtain:

	

(
w1wT

1 w1wT
2

w2wT
1 w2wT

2

) (
a1
a2

)
=

(
w1wT

1
w2wT

2

)
� (15)

The above equation gives (a1, a2), and its normalization obtains the following linear coefficients, a∗
k .

	
a∗

k = ak

/∑2

k=1
ak � (16)

Equation (17) obtains the final combination weight matrix w*.

	
w∗ =

∑2

k=1
a∗wT

k � (17)

Equation (18) shows the composite index of food system resilience.

	
U =

∑n

i=1
Xi × wi� (18)

Benchmark regression model
The FPR index in this study is based on annual observations from 31 provinces. A two-way fixed effects model 
is employed to capture both provincial heterogeneity and temporal dynamics, providing a robust framework for 
assessing the marginal impact of climate change on food production resilience. This model also accommodates 
moderating variables, enabling evaluation of the effectiveness of adaptive measures. Based on the research 
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hypotheses and analytical framework described above, the following two-way fixed effects model is constructed 
to examine the impact of climate change on food production resilience:

	 Resilienceit = α0 + α1ATit + α2 |SP I|it + α3Xit + ui + vt + εit� (19)

where Resilienceit represents the FPR in province i in year t; ATit and |SP I|it are, respectively, the average 
annual accumulated temperature and annual precipitation anomaly index in province i in year t; Xit is control 
variable; ui represents the individual fixed effects; vt shows the time fixed effects; α0 is a constant term; εit 
indicates a random perturbation term; and α1, α2, and α3 are the parameters to be estimated.

Moderating effects model
Drawing on the models already set up55, the following moderating effects model is constructed:

	

Resilienceit = β0 + β1ATit + β2 |SP I|it + β3SIDit+
β4SIDit × ATit + β5SIDit × |SP I|it + γXit + ui + vt + εit

� (20)

where SIDit represents the crop diversity index of area i in year t; SIDit × ATit and SIDit × |SP I|it signify 
the interaction terms; β0 is a constant term; β1, β2, β3, β4, β5, and γ are the parameters to be estimated.

Results of empirical analysis
Analysis of the present status
Trends in FPR
The FPR of different provinces was visualized using ArcMap 10.8.1. Given that FPR exhibits long-term trends, 
short-term changes are less apparent. This analysis covers 2010–2022. As shown in Fig. 2, substantial spatial 
variation exists. Higher FPR is concentrated in major food-producing provinces—Hebei, Henan, Heilongjiang, 
Shandong, and Sichuan—benefiting from favorable geography, fertile soils, and strong agricultural output, as 
well as preferential policy support. In contrast, production-consumption balanced areas face natural constraints. 
For example, Gansu and Ningxia suffer from persistent drought and soil erosion, while Qinghai and Tibet are 
hindered by high altitude, cold climate, and underdeveloped agricultural infrastructure. Major food-consuming 
areas such as Shanghai and Tianjin exhibit high economic development but limited arable land; industrial 
upgrading and urbanization have shifted labor away from agriculture, causing FPR to lag behind economic 
growth.

Figure 3 displays the time-series evolution characteristics of different regions obtained by homogenizing. 
FPR fluctuates between 0.25 and 0.55 during the study period. A peak in 2019 likely reflects favorable climatic 
conditions, absence of droughts and floods during critical growing periods, and increased per-hectare yields. As 
a whole, the change curve of the country’s FPR level is relatively flat and on an upward trend. It rose from 0.376 

Fig. 2.  Spatial distribution of food production resilience in China. This map was created using the standard 
map with review number GS(2020)4619, which was downloaded from the Standard Map Service website of 
China’s Ministry of Natural Resources. The base map remains unmodified.
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to 0.435, probably because agricultural technological progress and policy dissemination in agriculture have 
improved the adaptability of crops to climate stress. The temporal patterns of FPR in the subregions mirror the 
national trend, all exhibiting upward trajectories, but with notable spatial variation. The mean value of the major 
food-producing areas is 0.496 (the whole country: 0.412), which is significantly higher than that of the major 
food-consuming areas (0.324) and the balanced area (0.368). The main reason may be the obvious differences in 
resource endowment and institutional environment of each functional sub-region.

Trends in climate change development
Processing the absolute value data of the AT and |SPI| obtains the climate change trend of the whole country 
from 2010 to 2022, as depicted in Fig. 4. |SPI| experiences peak values in 2011, 2013, 2015, and 2021, indicating 
the prominent degrees of precipitation anomalies in China within these years. AT shows a fluctuating upward 
trend, ranging between 18.8 and 19.6. Four peak values occur in 2012, 2018, 2019, and 2022, and three low 
minimum values are in 2010, 2014, and 2021. The primary characteristics of climate change during this period 
are a general increase in cumulative temperature and erratic precipitation patterns. While higher temperatures 
can promote a northward shift in crop maturity and increase regional grain yields59, they can also intensify 
water evaporation and exacerbate pest and disease outbreaks60. Both extreme precipitation and drought events 
increase the vulnerability of food systems.

Analysis of baseline regression results
The data were used to acquire the baseline regression results, estimating the impacts of climate change on the level 
of FPR (Table 3). Then, the Driscoll-Kraay test is employed to check the heteroskedasticity, serial correlation, 
and cross-sectional correlation issues. In Table 3, Model 1, including only the independent variable, shows that 
both AT and precipitation anomaly negatively affect FPR. Model 2, incorporating control variables, reveals that 
both AT and precipitation anomalies have negative impacts on FPR, which are statistically significant at 5% and 
10% levels, respectively. These results indicate that climate change considerably inhibits FPR, thereby supporting 
Hypothesis H1.

In the control variables, rural electricity consumption has a significant and positive impact on the FPR, 
indicating that electricity fuels modern agricultural technologies and rural informatization, thereby enhancing 
the FPR. Urbanization level has a remarkable and negative effect on FPR. This result suggests that increased 
urbanization accelerates the reallocation of resources, such as shifting land investment from low-value 

Fig. 4.  National climate trends from 2010 to 2022.

 

Fig. 3.  Trends in FPR in China’s three major functional subregions from 2010 to 2022.
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agricultural uses to higher-value industries, resulting in reduced food production61. The gradual shift toward 
a “food-oriented” cropping structure has a substantial and beneficial effect on FPR. The policy, often coupled 
with land transfers and large-scale operations, enhances resource use efficiency and farmers’ risk resilience. 
Several factors may explain why agricultural trade openness, rural electricity consumption, the non-farm 
economy share, and the urban–rural earnings inequality show insignificant impacts on FPR. China’s minimum 
purchase price and tariff quota system buffer domestic food production from international price fluctuations. 
Additionally, growth in the non-farm economy may compensate for agricultural labor shifts through industrial 
income. Grain subsidy policies help secure farmers’ income, mitigating the impact of the urban–rural income 
gap on FPR.

Robustness tests
Omitted variable bias
Referring to the method of Wang62, this study constructs different models using existing variables to evaluate the 
possible erroneous tendency introduced by variables not monitored. First, it develops Models 3 and 5. Model 3 
introduces only explanatory variables. Considering that the proportion of the non-farm economy, urbanization 
level, and cropping structure directly affect the validity of the FPR, Model 5 incorporates these three control 
variables, so as to estimate coefficients for the predictor variables under the two constrained models βm. Second, 
the research constructs two complete models and introduces other control variables based on Models 3 and 5 
to get Models 4 and 6. The estimated coefficients under the two complete models are βn. Finally, the coefficient 
of variation is calculated ε = |βn/(βm − βn) . The larger the coefficient is, the more it can indicate that the 
potential impact of unobserved variables on the parameter estimation of predictor variables is smaller. Table 4 
represents the specific test results. The coefficients of variation of AT and |SPI| are much larger than 1, indicating 
that the estimation results of the explanatory variables are less likely to be affected by the bias of the omitted 
variables. The results support the robustness of the model estimates.

Replacement models
The FPR values calculated by the indicator system are between [0, 1], which is consistent with the characteristics 
of a restricted dependent variable. Therefore, the Tobit model is used to re-estimate Model 2. Column (1) of Table 
5 shows the estimation results of the Tobit model. The direction of the influence of the estimated coefficients 
on the AT and |SPI| in the Tobit model and the baseline regression model remains the same, and the statistical 
significance does not change significantly, which further verifies the reliability of the baseline regression results.

Model Model3 Model4 Model5 Model6

AT
– 0.0026* – 0.0027** – 0.0027* – 0.0027**

(0.0013) (0.0012) (0.0013) (0.0012)

|SPI|
– 0.0030** – 0.0029** – 0.0025* – 0.0024*

(0.0012) (0.0011) (0.0012) (0.0012)

Direct effect variable Not introducing Not introducing Introducing Introducing

Other control variables Not introducing Introducing Not introducing Introducing

AT 19.47 35.49

|SPI| 21.10 28.57

Table 4.  Omitted variable bias. Coefficient of variation ε =|βn/(βm-βn)|, ε > 1 indicates that omitted variables 
have a small effect, *p < 0.1, **p < 0.05, ***p < 0.01.

 

Model

Model1 Model2

Coefficient Standard error Coefficient Standard error

AT -0.0026* 0.0013 – 0.0027** 0.0012

|SPI| -0.0030** 0.0012 – 0.0024* 0.0012

Trade – 0.0038 0.0023

Electricity 0.0030* 0.0016

Non-farm share – 0.0005 0.0012

Urbanization level – 0.0026*** 0.0004

Cropping structure 0.0026*** 0.0005

Urban–rural income gap – 0.0089 0.0056

Constant term 0.4272*** 0.0253 0.6052*** 0.0599

N 403 403

R2 0.6420 0.7050

Table 3.  Benchmark regression results. *p < 0.10, **p < 0.05, ***p < 0.01; the values in parentheses represent the 
Driscoll-Kraay standard error.
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Rejecting samples
To focus on FPR, the analysis excludes six regions with low food production—Beijing, Tianjin, Shanghai, 
Hainan, Qinghai, and Tibet. The remaining 325 samples are used for parameter estimation. Column (2) of 
Table 5 presents the results of the model. Based on the results, the coefficients of AT and |SPI| are negative and 
significant at 5% level, demonstrating the robustness of the estimates with the reduced sample size.

Replacement of the independent variable
The number of days with maximum daily temperatures exceeding the 90th percentile of a historical baseline 
(HTD, or extreme high-temperature days) was used as an alternative to accumulated temperature as the 
independent variable for temperature 63. As shown in column (3) of Table 5, HTD also had a significant and 
negative effect on crop production resilience, confirming the robustness of the baseline regression results.

Moderation effects analysis
To examine the moderating effect of crop diversity, this study incorporates the SID as a moderator and introduces 
interaction terms into the regression analysis. In Table 6, Model 7 presents the results after including SID and 
the interaction terms SID × AT and SID ×|SPI| with the independent variables. Precipitation anomalies show 
a significantly negative effect on FPR at the 5% level, while the interaction with crop diversity is positive and 
significant at 10% level, indicating that crop diversity mitigates the negative impact of precipitation anomalies 
on FPR, supporting Hypothesis H2b. The effect of accumulated temperature on FPR is negative and significant 
at 5% level, but its interaction with crop diversity is insignificant, failing to support Hypothesis H2a. Overall, 
enhancing crop diversity reduces single-disaster risks, buffers climate shocks, and strengthens the stability and 
security of food systems, consistent with Hypothesis H2.

SID × AT is insignificant, which may be due to the non-linear and threshold effects of high temperatures on 
crops. Once a certain temperature is exceeded, all crops are reduced, resulting in the interaction being masked64. 
The buffering effect of crop diversity is highly dependent on differences in crop functional traits. Even species 
richness may fail to regulate if crop functional traits converge65. For example, a region with high crop diversity 
but similarity in key heat tolerance traits (e.g., all C3 crops) fails to show differentiated adaptive responses to 
increasing AT66.

Model

Model 7

Coefficient Standard error

AT – 0.0026** 0.0012

|SPI| – 0.0026** 0.0011

SID – 0.0828** 0.0303

SID*AT 0.0088 0.0056

SID*|SPI| 0.0099* 0.0053

Trade – 0.0044* 0.0022

Electricity 0.0031*** 0.0009

Non-farm share – 0.0005 0.0005

Urbanization level – 0.0022*** 0.0006

Cropping structure 0.0030** 0.0012

Urban–rural income gap – 0.0099* 0.0056

Constant term 0.5297*** 0.0837

N 403
0.7220R2

Table 6.  Moderating effects model. *p < 0.10, **p < 0.05, ***p < 0.01.

 

Project

(1) (2) (3)

Tobit Reduced samples Replacement of variables

AT -0.0023** – 0.0026** – 0.0002***

(0.0010) (0.0010) (0.0001)

|SPI| -0.0024*** – 0.0024** – 0.0027**

(0.0009) (0.0011) (0.0010)

_cons 0.5770*** 0.6373*** 0.3943***

(0.1396) (0.1777) (0.0059)

N 403 325 403

R2 0.6981 0.6523

Table 5.  Robustness test. *p < 0.1, **p < 0.05, ***p < 0.01.
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Analysis of regional heterogeneity
The paper further analyzes the spatial heterogeneity to measure the influence of climatic shocks on the FPR in 
the three principal functional food zones. As shown in Table 7, in major food-producing areas, AT and |SPI| 
have negative coefficients, which are statistically significant at 10% and 1% levels, implying the considerable 
inhibitory effects of climate change on FPR. This is mainly because the main food-producing provinces are 
located in the Central China region, Northeast China region, and East China region, within climate transition 
zones (e.g., warm temperate to mesothermal, semi-moist to semi-arid). Small climate changes in these areas can 
exceed crop adaptation thresholds. The predominance of monoculture staple crops in these regions also increases 
vulnerability to climatic shocks. In major food-consuming areas, AT has a prominent negative effect on FPR, 
while |SPI| is insignificant, which can be explained by the limited arable land resources of these areas, including 
the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei regions. These regions have advanced 
urbanization and development, and the heat island effect exacerbates the rise in nighttime temperatures, 
inhibiting the accumulation of sugar in grain crops. These areas can regulate water demand through facility-
based agriculture, buffering the dampening effect of precipitation fluctuations on FPR. The coefficients of AT 
and |SPI| on FPR in production-consumption balanced areas are insignificant because most of these places 
are located in arid or high-cold zones, where long-term climatic stresses have contributed to the formation of 
inherent crop resilience. Drought and cold-resistant technologies for grain cultivation have been promoted. 
Some examples are drought-tolerant potatoes in Gansu and barley-rape rotation in Tibet’s river valleys. Water 
conservation projects such as Karez in Xinjiang and rainwater harvesting cellars in Shanxi effectively buffer the 
effects of climate disruption.

Table 8 represents the spatial differences in the effects of crop diversity in the three regions. The results show 
that the interaction term coefficient between crop diversity and |SPI| in the major food-producing regions is 
positive and significant at 10% level, while the interaction term between AT and crop diversity is insignificant. 
This suggests that crop diversity significantly mitigates the suppressive impact of anomalous precipitation on FPR 
in the major food-producing areas, but insignificantly moderates the AT. Most main production areas are located 
in plains with deep soil layers. A three-dimensional pattern of water use is formed through the construction of 
a “deep-rooted system–shallow-rooted system” multi-type crop vertical complementary system. Together with 
improvements in irrigation systems, this effectively mitigates the impact of precipitation anomalies. The main 
crops in these areas are mostly high-light-efficiency crops. As a result of the convergence effect of photosynthetic 
efficiency, the optimal temperature ranges for photosynthesis among crops are highly overlapping, and the 
range of temperature adaptation cannot be expanded through crop diversity67. The lack of vertical topographic 
differentiation in the plains limits the compensation of diversity for AT. The coefficient associated with the AT 
and FPR interaction item is not significantly positive but significantly negative in major food-consuming areas. 
The |SPI| and FPR interaction item is insignificant because of the limited and fragmented distribution of arable 
land in the main consumption area, which hinders the formation of large-scale crop diversity. Even if localized 
diversification occurs, the total area and spatial continuity are insufficient to effectively diversify the systemic 
risk of precipitation anomalies. The regulatory effect of crop diversity in production-consumption balanced 

Variable

(1) (2) (3)

Major-production Major-consumption Balanced areas

AT
– 0.0026** – 0.0044** 0.0031

(0.0011) (0.0015) (0.0020)

|SPI|
– 0.0038*** – 0.0023 0.0001

(0.0009) (0.0021) (0.0020)

Trade
– 0.0013 0.0151 – 0.0039

(0.0063) (0.0145) (0.0036)

Electricity
0.0092 0.0016 0.0025

(0.0062) (0.0016) (0.0076)

Non-farm share
– 0.0014 0.0098** 0.0023

(0.0014) (0.0029) (0.0017)

Urbanization level
– 0.0067*** – 0.0033 0.0000

(0.0012) (0.0026) (0.0014)

Cropping structure
0.0017 0.0044 0.0037

(0.0010) (0.0036) (0.0043)

Urban–rural income gap
-0.0263 – 0.0165 0.0145**

(0.0187) (0.0236) (0.0065)

Constant term
0.9751*** – 0.2763 – 0.0057

(0.1916) (0.3256) (0.2289)

N 169 91 143

R2 0.8006 0.8087 0.7500

Table 7.  Difference analysis of the three functional zoning districts. *, **, and *** denote statistical significance 
at 10%, 5%, and 1% levels, respectively.
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areas is insignificant. The balanced areas rely more on traditional cultivation modes and lack technological 
means such as precision irrigation and intelligent monitoring, preventing the full activation of crop diversity’s 
climate adaptation potential. As young and middle-aged laborers migrate to cities, the farmers tend to simplify 
the planting structure to reduce labor intensity, further limiting the effectiveness of crop diversity.

Discussion
This study aims to examine the impact of climate change on the food production resilience. Building on a 
traditional analytical framework, the research develops a comprehensive indicator system to quantify FPR 
across three dimensions: resistance, adaptability, and regenerative capacity. Using this framework, the study 
validates the findings of Su Fang et al., which established a food security indicator system using the standardized 
range method. This system assesses availability, accessibility, usability, and stability, highlighting the negative 
impact of temperature and precipitation on food security in China55. Furthermore, building on the framework 
developed by Zhou Mi et al., this paper examines regional differences in food production resilience across 
China’s three major food-producing regions, which are categorized based on food policies68. These findings 
resonate with the existing literature, which indicates that climate change results in reduced yields of key food 
crops13, increased variability in production, and a heightened risk of simultaneous crop failures69. Collectively, 
these studies highlight the complex relationship between climate change and food production systems70. The 
extensive research on the effects of climate change on yields and food security provides important support for 
this study, further underscoring the need to investigate resilience in food production.

Unlike the aforementioned scholars, this study incorporates both heat stress (measured by accumulated 
temperature) and moisture stress (evaluated through precipitation anomalies) into a composite climate 
indicator. This integrated approach addresses the limitations associated with relying on a single or simple 
climatic variable, thereby offering a more holistic assessment of climate-related threats to agricultural 
productivity. Methodologically, a game-theoretic weighting approach is employed to integrate subjective and 
objective weights, addressing the limitations of entropy-based methods and enhancing the robustness of FPR 
measurement. The study further examines heterogeneity in climate impacts across major production regions 
and the moderating role of crop diversity, revealing interaction mechanisms and marginal effects among climate 
change, FPR, and crop diversity. These insights offer policymakers evidence for differentiated, region-specific 
climate governance strategies, improving the feasibility and effectiveness of policy implementation.Although this 
study yields findings of practical significance, it has several limitations. First, it primarily investigates provincial-
level samples in China. Analysis at this scale, based on macroeconomic indicators, may obscure intra-provincial 

Variable

(1) (2) (3)

Major-production Major-consumption Balanced areas

AT
– 0.0004 – 0.0085*** 0.0041

(0.0018) (0.0031) (0.0033)

|SPI|
– 0.0031* – 0.0044 – 0.0008

(0.0018) (0.0033) (0.0026)

SID
– 0.2525*** – 0.0132 – 0.1835***

(0.0616) (0.0372) (0.0661)

SID*AT
– 0.0016 – 0.0342* – 0.0032

(0.0126) (0.0182) (0.0177)

SID*|SPI|
0.0234* – 0.0218 0.0085

(0.0130) (0.0194) (0.0168)

Trade
0.0010 0.0366*** – 0.0099**

(0.0049) (0.0053) (0.0041)

Electricity
0.0004 0.0030 0.0048

(0.0044) (0.0019) (0.0054)

Non-farm share
– 0.0039*** 0.0087** 0.0025**

(0.0009) (0.0034) (0.0012)

Urbanization level
0.0018*** 0.0024* 0.0016***

(0.0006) (0.0013) (0.0005)

Cropping structure
– 0.0302** 0.0094 – 0.0075

(0.0131) (0.0162) (0.0075)

Urban–rural income gap
0.7896*** -0.7288** 0.0606

(0.0959) (0.2788) (0.1224)

Constant term
– 0.0004 – 0.0085*** 0.0041

(0.0018) (0.0031) (0.0033)

N 169 91 143

R2 0.6610 0.7911 0.6757

Table 8.  Analysis of regional differences in regulatory effects. *** p < 0.01, ** p < 0.05, * p < 0.1.
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variations and micro-level mechanisms. Future research could refine the sample to finer regional levels, such 
as cities or counties, to more comprehensively explore the local dynamics and boundary conditions of climate 
change impacts on food production. Second, this study focuses on macro-level climate variables, leaving the 
resilience mechanisms for specific types of climate disasters underexplored. Future work could investigate these 
mechanisms to inform more targeted and precise policy interventions. Third, this study focuses mainly on 
China. Future research could strengthen international comparative studies to more deeply understand China’s 
relative position in global FPR and to formulate more effective food security strategies.

Conclusion and implications
Main conclusions
This paper analyzes the mechanism of climate anomalies’ effect on FPR and the mitigating effects of crop 
diversity through empirical data. The principal conclusions are outlined as follows. First, the overall trend of 
FPR is upward in Chinese provinces, with the major food-producing areas higher than the national average, the 
major food-consuming areas, and the balanced areas. Second, AT and |SPI| show a significant and inhibitory 
effect on FPR. Improving crop diversity can effectively mitigate the inhibitory effect of climate change on FPR, 
mainly by significantly weakening the negative effect of extreme precipitation, but not that of AT. Third, the 
inhibitory effect of climate change is most statistically significant in the major food-producing areas. The major 
food-consuming areas rely significantly on the negative effect of precipitation anomalies, while the effect of AT 
is insignificant. Neither AT nor precipitation anomalies have significantly negative effects in the balanced areas. 
The moderating role of crop diversity on FPR is reflected in its mitigation of precipitation anomalies. This effect 
is most pronounced in the major food-producing areas and is insignificant in the major food-consuming areas 
and balanced areas.

Policy implications
The following policy implications are relevant for stabilizing food security production:

First, addressing the inhibitory effects of rising AT and precipitation anomalies on the FPR requires 
implementing many policies, for example, building a climate-smart agricultural production system. Another 
policy is the establishment of a climate monitoring and early warning platform based on the big data wisdom 
platform to enhance the ability to forecast and mitigate meteorological disasters. In terms of technological 
empowerment, the focus should be on developing crop breeding and improvement for flood and drought 
resistance, as well as smart water management technologies. Regarding engineering prevention and control, 
initiatives should be undertaken to enhance the multi-dimensional disaster early warning and response system 
and food production infrastructure, starting with drainage systems, water storage projects, and wind and sand 
control projects.

Second, regarding the regulatory role of crop diversity, it is crucial to develop policies for the promotion of 
regionally differentiated crop planting structures. By combining modern biological breeding with traditional 
cultivation methods, emphasis should be placed on cultivating crops with advantageous traits, such as resistance 
to humidity, drought, salinity, and alkalinity. Additionally, a systematic promotion system for high-quality seeds 
should be established. Through policy subsidies, insurance, and other tools, farmers should be encouraged to 
adopt diversified cultivation practices to enhance the adaptability of food crops to extreme climate stresses. 
The moderating effect of crop diversity is significant for precipitation anomalies but not for rising accumulated 
temperatures, indicating that China’s current crop diversity is uneven in responding to different climate stressors. 
Its capacity to buffer high-temperature stress remains underutilized. Strengthening China’s crop diversity system 
requires further refinement in variety breeding, cultivation pattern optimization, and technical support.

Third, regionally differentiated food security measures should be implemented. Given the strategic 
importance of the main producing areas, policy preferences and investments in resources and technology should 
be strengthened. Emphasis should be placed on supporting the establishment of high-standard farmland and 
the research and development of superior crop varieties. Agricultural infrastructure and equipment should be 
upgraded rapidly to enhance the comprehensive grain production capacity. Due to their economic development 
and high urbanization, the main marketing areas should fully leverage their economic advantages. Focus should 
be on developing capital- and technology-intensive agriculture, facilitating the integration of new energy 
technologies in food production systems, promoting intensive and modernized agricultural models, increasing 
food self-sufficiency, and reducing dependence on foreign food supplies. Since the ecological balance in the 
production-marketing balance areas is more fragile, the government should increase policy support, especially 
by collaborating with financial institutions to provide agricultural loans and insurance support for grain farmers. 
Attempts should be made to strengthen the agricultural industrial route and enhance the market competitiveness 
of food products.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on rea-
sonable request.
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