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OPEN A Museum artifact classification

model based on cross-modal
attention fusion and generative
data augmentation
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Cultural heritage preservation has garnered global attention. Museum artifact classification, a core
task, faces challenges related to insufficient multimodal information collaboration and a scarcity

of high-quality annotated data. Traditional methods and single-modality deep learning models
struggle to achieve both efficiency and accuracy. To address this, this paper proposes a museum
artifact classification model (VBG Model) based on cross-modal attention fusion and generative data
augmentation. This model constructs an integrated multimodal framework through task-oriented
refactoring of the Vision Transformer (ViT), BERT, and a Generative Adversarial Network (GAN). ViT
extracts global visual features from artifact images, while BERT mines the historical and cultural
semantics of text. A bidirectional interactive attention fusion layer achieves precise feature alignment.
The GAN generates diverse samples, forming a closed “generation-feedback-optimization” loop to
alleviate data scarcity. Experiments on the MET and MS COCO datasets demonstrate exceptional
performance: the VBG Model achieves 92% classification accuracy, 0.85 mAP, and 88% F1 score for
the former, while the latter achieves 90% accuracy, 0.83 mAP, and 86% F1 score for the latter. These
performance indicators outperform competing models such as ResNet and DenseNet. Ablation
experiments confirm that cross-modal fusion and generative data augmentation modules are
essential; removing either module results in a 5%-9% drop in accuracy. The current model still has
room for improvement in terms of training time and generated image quality. Future work will focus
on optimizing performance through lightweight design and multi-scale fusion, enhancing the ability
to distinguish similar artifacts and providing technical support for digital artifact management and
cultural heritage preservation.

Keywords Deep Learning, Artifact Classification, Vision Transformer (ViT), Cultural Heritage Preservation,
Cross-Modal Fusion, BERT

In the tide of the times of cultural heritage protection and inheritance, museums are important carriers of cultural
treasures, and the accurate classification of their collections is a key link in achieving efficient management and
knowledge mining'.However, traditional cultural relics classification methods mostly rely on manual labeling,
which has problems such as low efficiency, strong subjectivity, and difficulty in large-scale processing®Deep
learning has demonstrated significant advantages in the field of cultural relics classification due to its powerful
automatic feature extraction capabilities**.It can autonomously learn feature patterns from massive cultural
relic images and text data, avoiding the limitations of hand-crafted features in traditional methods and greatly
improving classification efficiency and accuracy’.

However, existing deep learning models still have obvious shortcomings when applied to museum cultural
relic classification. On the one hand, cultural relic data naturally has multimodal properties, and single-modal
deep learning models are difficult to fully capture the complete information of cultural relics®. The existing cross-
modal fusion methods still have technical bottlenecks in feature alignment and semantic association, and cannot
give full play to the synergistic advantages of multimodal data. On the other hand, due to the uniqueness and
preciousness of cultural relics, it is extremely difficult to obtain high-quality annotated data’. The scarcity of data
can easily lead to model overfitting and insufficient generalization ability, making it difficult to cope with the
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complex and changeable cultural relic forms and background interference in real scenes®. The existence of these
problems has made the performance of current deep learning technology in cultural relics classification tasks not
yet ideal, and new technical solutions are urgently needed to fill the research gap*.

This study is committed to designing a multimodal cultural relics classification model (VBG Model) based on
the fusion and collaboration of BERT, Vision Transformer (ViT) and Generative Adversarial Network (GAN),
aiming to break through the limitations of traditional methods, achieve deep fusion and data enhancement of
cross-modal data, and thus improve the accuracy and robustness of museum cultural relics classification. The
model consists of three core modules: BERT® is responsible for processing text data related to cultural relics and
mining the semantic information contained therein; Vision Transformer (ViT)!° focuses on feature extraction
of image data and captures the visual details of cultural relics; GAN'? enhances the diversity of data sets through
data generation, optimizes model training effects, and improves the adaptability of models in complex scenarios.

The main contributions of this study are as follows:

o A bidirectional attention fusion mechanism combining ViT and BERT is proposed to address the lack of fea-
ture alignment in traditional cross-modal models for cultural relic classification, deepening the connection
between visual details and textual semantics.

o A closed-loop “generation-feedback-optimization” framework combining GANs and bimodal modules is
constructed, providing a new model training paradigm for multimodal classification in the context of scarce
cultural relic data.

o The research results can not only be directly applied to the digital management of museum cultural relics,
promoting the intelligent development of cultural heritage preservation, but also provide valuable insights
for other fields involving multimodal data processing and scarce data classification, such as medical image
analysis and ancient document recognition.

The structure of this paper is as follows: The second part reviews the research in related fields and analyzes the
achievements and limitations of existing studies; the third part elaborates in detail on the architectural design
and working principles of the VBG model; the fourth part validates the performance of the model through
experiments and conducts an in-depth analysis of the results; finally, the fifth part summarizes the research
findings and looks ahead to future research directions.

Related works
Museum relic classification research
As a key link in the digital protection of cultural heritage, the classification of museum artifacts has long
attracted academic attention. Early studies mostly used traditional machine learning methods, such as support
vector machines (SVM) and random forests, to manually extract visual features such as color and texture of
artifact images, or process text descriptions using bag-of-words models to achieve the classification of artifacts'!.
However, these methods rely on artificially designed features, and the efficiency and accuracy of feature extraction
are difficult to guarantee when faced with complex and changeable artifact forms. Taking the classification of
bronze artifacts as an example, traditional methods often cause classification errors due to feature extraction
bias when identifying artifacts with severe rust and blurred patterns'?. With the rise of deep learning, CNNs
have made significant breakthroughs in the task of classifying artifact images with their powerful image feature
learning capabilities'®. For example, network structures such as ResNet and DenseNet can effectively extract deep
semantic features of artifact images by deepening the network layer, thereby improving classification accuracy'.
In the classification of ceramic artifacts, CNN-based models can accurately capture subtle differences such as
glaze color and shape, and the classification accuracy is significantly improved compared to traditional methods.
However, most existing studies focus on single-modal data, make insufficient use of text descriptions of
cultural relics, and lack effective strategies for dealing with data scarcity'>. Many museums’ text records of
cultural relics contain rich information such as historical background and production process. These text
information combined with image data can provide a more comprehensive basis for classification, but current
research has failed to fully tap this potential'®!”. At the same time, due to the preciousness and uniqueness of
cultural relics, it is difficult to obtain a large amount of annotated data, and insufficient model training data
leads to limited generalization ability'®. The VBG Model proposed in this study will fully explore the potential
information of cultural relic images and texts through the combination of Vision Transformer (ViT) and BERT,
and use GAN to solve the problem of data scarcity, providing a more comprehensive solution for museum
cultural relic classification.

Multimodal fusion technology

The core goal of cross-modal data fusion is to break the barriers of representation between different modalities,
such as images and text, by exploring the complementary relationships and inherent semantic consistency
between modalities. This enhances the model’s understanding and processing ability for complex tasks'. It
has become one of the core research directions in natural language processing, computer vision, and cross-
disciplinary fields, showing significant value in tasks like content retrieval, scene understanding, and object
classification?*?!. Early cross-modal fusion research focused on the core idea of “joint embedding,” where linear
projection or shallow neural networks map features from different modalities into a unified vector space to
achieve preliminary modality association matching?2. However, such methods did not fully consider the semantic
expression differences between modalities (e.g., the abstract semantics of text and the concrete visual features of
images) and lacked fine-grained information mining within each modality?*. As a result, the fusion outcomes
could only meet basic association needs, and their performance in tasks with high semantic complexity and
strong feature correlation was limited.
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With the widespread use of Transformer architectures in modality modeling, multimodal fusion technology
has gradually evolved from “preliminary association” to “deep interaction,” leading to the emergence of
representative models such as CLIP (Contrastive Language-Image Pretraining), VILBERT (Vision-and-Language
BERT), BLIP (Bootstrapping Language-Image Pre-training), ALIGN (A Large-scale Image and Text corpus),
and Florence*!. Among them, CLIP relies on a contrastive learning mechanism for pretraining on large-scale
unlabeled image-text data. It achieves fine-grained matching of cross-modal features by constructing global
semantic associations and performs excellently in zero-shot classification and cross-domain image retrieval?>2.
However, this model focuses on general scenarios and struggles with capturing the semantics of domain-specific
terms (e.g., artifact terminology). VILBERT processes visual and textual features separately using a dual-stream
Transformer architecture and introduces a cross-modal attention layer for feature interaction, enhancing local
associations between modalities’”. However, it lacks an optimization mechanism for small sample scenarios,
limiting its generalization ability in data-scarce tasks. BLIP combines dialog-based generation tasks with
contrastive learning, improving the dynamic interaction of multimodal semantics. ALIGN, trained on massive
noisy image-text data, enhances the model’s robustness to non-standard data. Florence uses a modular design to
adapt to multiple tasks?®?°. However, these models are all designed for general scenarios and do not consider the
specificity of artifact data. The visual features of artifacts (such as pattern details and craftsmanship traces) and
the historical cultural semantics in text (e.g., historical background and craftsmanship terminology) have strong
domain-specific attributes, making it difficult for general models to accurately capture the exclusive associations
between them, thus limiting their performance in artifact classification tasks*.

For the unique needs of museum artifact classification scenarios, existing multimodal fusion technologies
still face two core challenges: First, the difficulty of aligning the “visual-text” semantics of artifacts. Artifact
images focus on presenting concrete features such as shapes and patterns, while text conveys abstract information
such as age, craftsmanship, and cultural connotation®!*2. The semantic mapping relationship between the two is
complex and has domain-specific attributes, making it difficult for general models to adapt. Second, the scarcity
and specialization of artifact data limit the model’s performance. Most artifact category samples are limited,
and both visual features and text descriptions contain a large amount of specialized information®*-**. General
models lack targeted feature extraction and data augmentation strategies, making them prone to overfitting or
semantic mismatching issues. Based on these challenges, the VBG Model proposed in this study optimizes text
and visual feature extraction using BERT and ViT, respectively, and enhances the alignment ability of artifact-
specific semantics through a directionally designed cross-modal attention fusion layer. At the same time, the
model incorporates GAN for artifact data augmentation, forming a multimodal fusion solution tailored to the
museum context and providing a new technological path to address the challenges of cross-modal fusion in
artifact classification.

Methodology

Overall of VBG model

As shown in Fig. 1, the proposed VBG Model consists of three core modules: BERT, Vision Transformer (ViT),
and Generative Adversarial Network (GAN). Through a cross-modal fusion mechanism adapted for the artifact
context and a directional data augmentation strategy, it constructs a multimodal collaborative framework for
museum artifact classification. The model addresses two key issues in traditional methods: “difficulties in cross-
modal feature alignment” and “poor generalization due to data scarcity” During model operation, multimodal
data flows through the logic of “parallel extraction - interactive fusion - feedback enhancement,” with each
module retaining functional independence while achieving deep collaboration through mechanism design,
forming a complete feedback loop from data processing to classification prediction.

First, text data is input into the BERT module. Given the “terminology density” and “semantic relevance”
(such as terms like “taotie pattern” and “furnace casting method” requiring historical context for understanding)
in artifact textual descriptions, this study selects the BERT-Base pre-trained model and fine-tunes it on a
domain-specific artifact corpus to optimize the model’s ability to understand artifact-specific semantics. This
module, based on a bidirectional Transformer architecture, uses 12 layers of self-attention mechanisms to
capture long-range dependencies between words in the text. For example, for a description like “Tang dynasty
three-colored camel figurine, made with secondary firing process, primarily glazed in yellow, green, and white,”
it can accurately extract key information such as “Tang dynasty,” “secondary firing,” and “three-colored” and
encode them into a 768-dimensional high-dimensional semantic feature vector, providing semantic anchors for
subsequent cross-modal alignment.

Meanwhile, image data is input into the ViT module. Given the “high detail recognition requirement” (such
as ceramic glaze cracking patterns or inscriptions in calligraphy) and “visual feature diversity” (such as bronze
patterns and jade designs) in artifact images, the ViT module adopts a 16 x 16 pixel image patching strategy to
avoid feature redundancy caused by small patches and prevent loss of key details with large patches. Additionally,
a learnable position embedding layer is introduced to encode spatial distribution information of textures and
patterns in artifact images (such as brushstroke directions in ancient paintings). The image patch sequence is
processed by a 12-layer Transformer encoder and interacts with global visual information through self-attention
mechanisms. For example, for a blue-and-white porcelain image, the model can simultaneously capture the tonal
features of “blue-and-white color” and the structural features of the “lotus scroll pattern,” ultimately generating a
768-dimensional image feature vector aligned with the text feature dimension, ensuring dimensional matching
during cross-modal fusion.

The text features output from BERT and the image features output from ViT are input into the bidirectional
interactive attention fusion layer, which is the core design of the VBG Model distinguishing it from traditional
“feature concatenation” cross-modal models. This fusion layer is specifically adapted to the strong correlation
between “visual forms” and “cultural connotations” of artifacts. Unlike the simple ViT-BERT combination model,
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Fig. 1. The Overall Architecture of the VBG Model, Integrating Vision Transformer (ViT), BERT, and
Generative Adversarial Network (GAN) for Enhanced Multimodal Relic Classification.

which simply concatenates two types of features, CLIP, which focuses on general image-text semantic matching,
and BLIP, which lacks optimization for the scarcity of cultural relic data and has limited generalization capabilities
for niche artifact categories, this fusion layer achieves targeted alignment through “dual attention calculation”
Firstly, it calculates the attention weights of image features for text keywords (for example, associating regional
features with “Taotie pattern” in a bronze image with the term “Taotie pattern” in the text); secondly, it reversely
calculates the attention weights of text features for key image regions (for example, using the semantic meaning
of “secondary firing” to emphasize details of ceramic glazes). By weighted summing these two attention weights,
a more integrated multimodal feature is generated.

To address the “imbalanced categories” (e.g., fewer than 50 samples of niche artifacts) and the “high
annotation cost” leading to data scarcity in museum artifact data, the GAN module adopts an artifact-specific
generation strategy, rather than a general image enhancement method. The GAN consists of a generator (with
4 layers of transposed convolution) and a discriminator (with 4 layers of convolution). During training, the
generator introduces a “style constraint loss” based on the artifact’s texture library (containing over 1,000 artifact
patterns and glaze samples) as a reference, computing the style distance between the generated image and
real artifact images (using Gram matrix similarity), ensuring that the generated samples retain typical artifact
visual features (such as “line traces” on bronze artifacts and “layering of ink” in paintings). Simultaneously, the
generated text references an artifact category-attribute mapping table to avoid generating irrelevant semantics
(such as generating “blue-and-white” related text for the “Song dynasty Ru kiln” category). The discriminator
introduces an “artifact attribute consistency loss” when distinguishing between real and generated data, further
constraining the rationality of the generated data. Once training stabilizes, the GAN generates 2,000+ image-text
pairs per round, which are fed back into the training process of BERT and ViT modules to supplement scarce
category data.

Finally, the fused multimodal features are input into a fully connected classifier, which outputs the probability
distribution of the artifact’s category through the Softmax function. The classifier uses Dropout (probability 0.5)
and L2 regularization (weight 0.001) to prevent overfitting, ensuring the model maintains stable performance in
distinguishing complex artifact categories. The VBG Model, through the synergistic design of “BERT semantic
precision extraction + ViT visual detail capture + artifact-specific GAN enhancement + bidirectional interactive
fusion,” not only achieves efficient use of multimodal data but also overcomes the limitations of traditional
general multimodal models in artifact classification through artifact scene adaptation, providing a closed-loop
technical framework for museum artifact classification.

ViT module: vision transformer

As shown in Fig. 2, the Vision Transformer (ViT)!*** module is a core component of the VBG Model for
processing cultural relic image data. Its design breaks away from the local processing model of traditional CNN
and utilizes a Transformer architecture to efficiently extract global image features. This is particularly well-suited
for cultural relic images, which require high levels of detail recognition (such as ceramic glaze cracks and bronze
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Fig. 2. Detailed Architecture of the ViT Module in the VBG Model, Illustrating the Processing Pipeline for
Relic Image Input, Feature Extraction through Linear Projection, Positional Encoding Integration, and Multi-
head Self-Attention Mechanism for Enhanced Visual Feature Representation.

ornamentation) and strong correlations between visual features (such as the synergy between brushstrokes and
composition in ancient paintings). This provides precise visual feature support for subsequent cross-modal
fusion. The ViT module’s operational workflow primarily includes three key steps: image segmentation, position
encoding, and Transformer encoder processia/g‘

The input cultural relic image x € R”*" > (where H is the image height, W is the image width, and
C is the number of channels) is divided into N fixed-size image patches x,. Each image Batch has a size of
P x P x C,where P is the side length of the patch, and the number of image patches N = ;2W . These image
patches are flattened and mapped to an embedding space of dimension D through a linear projection layer,

obtaining the image patch embeddings x,,:

.T; = patch(x;)a 1= 17 7N (1)

where Ejqch represents the linear projection operation, mapping each image patch from P2C dimensions to
D dimensions.

To preserve the spatial information of the image patches, ViT introduces learnable position embeddings
FEpos € RN*P which are added to the image patch embeddings:

20 = [lel + E‘;os; o ;%Jov + Ejjo\;s] (2)

where [-; -] denotes the concatenation operation. In this way, each image patch acquires its positional information
in the original image.

Next, the image patch embeddings zo with positional information are fed into a network composed of L
Transformer encoder layers. Each Transformer encoder layer consists of a multi-head attention mechanism
(MHA) and a multi-layer perceptron (MLP). In the multi-head attention mechanism, the input z;_; is first
linearly projected into query vector @, key vector K, and value vector V:

Q = 2171WQ7 K = 2171WK, V = 2171WV (3)

where WQ, WK, WYV € RP*Pr are learnable weight matrices, Dy, = %, and A is the number of attention
heads. The calculation process of multi-head attention is as follows:
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Attention(Q, K, V) = softmax( QKT )\ (4)
MHA(z—1) = [heady; - -+ ; headh}Wo (5)

where head; = Attention(Q;, K;, Vi),and W© € R"Px XL is the weight matrix used to combine the outputs
of multiple heads. The output of the multi-head attention mechanism is passed through layer normalization
(LN), added to the input, and then fed into the multi-layer perceptron:

2_q1 = LN(zi—-1 + MHA(z1-1)) (6)

2= LN(2_y + MLP(:}_)) %
After processing through L Transformer encoder layers, the final output feature vector zr, contains the global
semantic information of the cultural relic image, serving as the output of the ViT module for subsequent cross-
modal fusion.

Through the above design, the ViT module can efficiently extract the visual features of cultural relic
images. From the texture and shape of the images to the overall composition, all can be transformed into high-
dimensional feature representations for classification, laying a solid foundation for the cultural relic classification
task of the VBG Model.

BERT module: text data processing
As illustrated in Fig. 3, the BERT (Bidirectional Encoder Representations from Transformers) module serves as a
pivotal component of the VBG Model for processing textual data of cultural relics. Grounded in the bidirectional
Transformer architecture, it extracts feature information from cultural relic texts through its deep semantic
understanding capabilities. The operation of the BERT module primarily encompasses text encoding at the input
layer, feature extraction by the bidirectional Transformer layers, as well as pre-training and fine-tuning processes
tailored to the cultural relic classification task. The specific details are elaborated below with the aid of formulas.
As shown in Fig. 3, the BERT module is a key component in the VBG model for processing cultural relic
text data. BERT was chosen over other text processing models like TextCNN and RNN because it is well-suited
to the dense technical terms and complex semantic associations found in cultural relic text. Cultural relic text
descriptions often contain deep semantic information, such as historical dates, production techniques (e.g.,

e (D
i I | orm i
:[ [CLS] [ Efcrs) ]: :
i | I Feed Forward
i[ Tokl1 ]—>[ Eron ]: I
i L i
i ! | i!
:[ Tok2 H Erto2 ]! N N i!
i : [ il Max Pool
: : : | : Add & Norm }e
i | i =
![ Tok N H Erokn ]: ! Multi-head- i SEEC 1
Text 1 : | : Attention
Cosp o B 1 | T L 3
i —
— 4[ cLs] Ff Eay || | (TpEsEEEET =l ;
: | : Add & Norm ;
(o (e ) |
Text 2 : : i Feed Forward Semantic N
[ Tok2 }of Bue || X Output
Text Input ! P! i
I : i b N i
. L4 . I I .-
{[ TokM |—{ En ]; | ::lAdd&N“m i
! i i - g
i ' HER Multi-head- |
@[ [SEP] P{ Eqsep) ]: 17| Avention !
(S — 4 i
I ¢J_ j

Fig. 3. Detailed Structure of the BERT Module in the VBG Model.
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“molding method” and “secondary firing”), and cultural context (e.g., “Shang and Zhou bronze ritual vessels
used for sacrificial purposes”). Traditional TextCNNG, relying on local convolutional kernels, struggle to capture
long-range semantic dependencies (e.g., the association between “glaze crackle” and “Song Dynasty Ru kiln”)%*.
RNNs suffer from the vanishing gradient problem, resulting in incomplete semantic understanding of long
texts. BERT’s bidirectional Transformer architecture, however, leverages a multi-layer self-attention mechanism
to simultaneously mine semantic associations from both the context and context, accurately extracting both
specialized information and latent semantics from cultural relic text>”. This provides high-dimensional semantic
support that complements image features for subsequent cross-modal fusion.

At the input layer, the textual descriptions of cultural relics are first segmented into a sequence of tokens.
For a text T' = [t1,t2, - ,ts] with a length of n, each token ¢; undergoes three embedding operations:
Token Embedding, Segment Embedding, and Position Embedding. Token embedding maps tokens into a low-
dimensional vector space, segment embedding differentiates between different text segments (which can be
simplified in the single-text input scenario), and position embedding encodes the positional information of
tokens within the text. The final input vector x; is the sum of these three embeddings:

T; = Etoken(ti) + Esegment (Sz) + E;DOS (p’b) (8)

where FEioken, Fsegment, and Epos represent the token embedding, segment embedding, and position
embedding functions, respectively. s; is the identifier of the text segment (a fixed value for single-text input),
and p; is the position index of the token. The input vectors of all tokens are concatenated into an input matrix
X = [z1;@2;- -+ ;x| and then fed into the bidirectional Transformer layers. The bidirectional Transformer
layers are composed of multiple identical Transformer blocks stacked together. Each Transformer block contains
a Multi-Head Attention (MHA) mechanism and a Feed-Forward Neural Network (FFN). In the multi-head
attention mechanism, the input X is linearly transformed to obtain query vector @, key vector K, and value
vector V:

Q=XxwW® K=xw¥f v=xw" ©9)

where WQ7 VVK7 WV € R¥modet Xk gre learnable weight matrices, dmoder is the dimension of the input vector,
and dy, is the dimension of each attention head. The calculation process of multi-head attention is as follows:

Attention(Q, K, V) = softmax( QK7 %4 (10)
s Vi
MHA(X) = [heads; - - - ; heady)|W© (11)

where head; = Attention(Qi, K;, Vi), and WO € R"kXdmodet 5 used to merge the outputs of multiple
heads. The output of the multi-head attention mechanism goes through a residual connection and Layer
Normalization (LN) before being fed into the feed-forward neural network:

X'=LN(X + MHA(X)) (12)
FFN(X') = max(0, X'W1 + b1)Wa + ba (13)

where W1, W» and b1, b2 are the weight and bias parameters of the feed-forward neural network. After
processing through multiple Transformer blocks, the final feature representation of the text is obtained as
H = [hy; h2; - -+ ; hy)]. During the pre-training phase, BERT employs the Masked Language Model (MLM)
and Next Sentence Prediction (NSP) tasks. For the masked language model, some tokens in the input text are
randomly replaced with the [MASK] token, and the model is trained by predicting the masked tokens. The
prediction probability is calculated as follows:

P(ti|Tma5ked) = SOftmaX(HWvocab + b'uocab)i (14)

where Wiocab and byocap are the weights and biases for vocabulary mapping, and ¢ represents the index of the
token in the vocabulary. The next sentence prediction task determines whether there is a contextual relationship
between two text segments. After pre-training, for the cultural relic classification task in museums, the output
features of BERT are connected to a classifier and fine-tuned by minimizing the cross-entropy loss function

L=— Z’.” . Zle yij log ¥i; (where m is the number of samples, C' is the number of classes, y;; is the

i=
true label, and g;; is the predicted probability) to adapt the model to the requirements of cultural relic text
classification.

Through the above design and operation mechanisms, the BERT module can fully exploit the semantic
information in cultural relic texts, transforming textual content such as historical backgrounds and craftsmanship
characteristics into feature vectors applicable for cross-modal fusion and classification, thereby providing robust
support for enhancing the cultural relic classification performance of the VBG Model.

GAN GAN module: data augmentation and generation

In the VBG Model, the Generative Adversarial Network (GAN) module is a key component in addressing the core
pain points of cultural relic data: sample scarcity and imbalanced categories. GANs were chosen over traditional
data augmentation methods (such as rotation, cropping, and flipping) or other generative models (such as VAEs
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and Diffusion Models) due to their adaptability to the characteristics and task requirements of cultural relic
data. Traditional data augmentation simply transforms existing samples and cannot create new artifact features
(such as the unique patterns and craftsmanship of niche artifacts), making it difficult to fundamentally alleviate
data scarcity. While VAEs can generate samples, they focus more on fitting probability distributions, resulting in
less visual realism (such as the natural gradation of glaze colors and the completeness of decorative details) than
GANs**. While Diffusion Models generate high-quality samples, their training complexity and computational
cost far exceed GANs, and they are less adaptable to the “small sample, high-detail” requirements of cultural
relic data. GAN, through the “generator-discriminator” adversarial training mechanism, can not only learn the
distribution patterns of real cultural relic data and generate new samples with typical visual features and category
attributes of cultural relics, but also balance training efficiency and generation quality. It is particularly effective
in enhancing niche categories of cultural relics (such as ancient Egyptian amulets and East Asian lacquerware,
with a sample size of only 50-200 pieces), making it a core choice for data augmentation in this model. Figure 4
shows the design and operation process of the GAN module.

The generator G of the GAN module is designed to map random noise vectors z € R™ (where n is the
dimension of the noise space) to data samples that resemble the real cultural relic data. Typically, the generator is
implemented using a series of transposed convolutional layers (also known as deconvolutional layers) for image
data or recurrent neural networks combined with linear layers for text data in the context of cultural relics.

For image generation, starting from the noise vector z, the generator first passes it through several fully -
connected layers to transform it into a feature map with a suitable size. Then, a series of transposed convolutional
layers gradually upsamples this feature map to the target image size. Mathematically, if we denote the operations
of the fully - connected layers as fy.(-) and the transposed convolutional layers as ficonw (), the output of the
generator G(z) can be expressed as:

G(2) = frconv(fre(2)) (15)

For text generation, assuming the use of a recurrent neural network (such as LSTM or GRU) denoted as
RNN(-) and linear layers L(-), the generator generates a sequence of tokens Tyen = [t1,t2,: - , tm] step by
step. At each time step 4, the hidden state h; of the RNN is updated based on the previous hidden state h; 1 and
the previously generated token (or the initial noise vector at the first step), and then a linear layer predicts the
probability distribution of the next token:

hi = RNN(hi—1,ti—1) (16)

P(t;) = softmax(L(h;)) (17)
where t;_1 is the token generated at the previous step, and P(t;) is the probability distribution over the
vocabulary for the i-th token.

The discriminator D is a binary classifier whose goal is to distinguish between real cultural relic data ,ea:
and the synthetic data G(z) generated by the generator. It is usually implemented using convolutional neural
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Fig. 4. Detailed Design of the GAN Module in the VBG Model, Illustrating the Generator and Discriminator
Architecture and Their Adversarial Training Process for Generating Synthetic Relic Images to Address Data
Scarcity and Class Imbalance Issues.
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networks for image data or feed - forward neural networks for text data. The discriminator takes an input sample
x (either ©,cq; or G(z)) and outputs a probability score D () indicating the likelihood that the input is real data.
Mathematically, for an input sample z, the discriminator’s output is calculated as:

D(z) = o(F(z)) (18)

where F'(z) represents the feature extraction and transformation operations within the discriminator (such as
convolutional layers or fully - connected layers), and o (-) is the sigmoid function that maps the output of F'(z)
to a probability value in the range of (0, 1).

The training of the GAN module is based on an adversarial game between the generator and the discriminator.
The objective function of the GAN, which defines the adversarial loss, is formulated as follows:

ming mgx V(D, G) = Ezreal"’?data (z) [log D(mreal)] + ]Ezrvpz(z) [log(l - D(G(Z)))] (19)

where E[-] represents the expectation, pdqtq(z) is the distribution of real cultural relic data, p.(z) is the
distribution of the noise vector, and V' (D, G) is the value function that measures the performance of the
discriminator and the generator.

During training, the discriminator is updated to maximize the value function V(D,G), aiming to
correctly classify real data as “real” (maximizing log D(Zreai)) and generated data as “fake” (maximizing
log(1 — D(G(%)))). The generator, on the other hand, is updated to minimize V' (D, G), trying to make the
discriminator misclassify the generated data as real (minimizing log(1 — D(G(z)))). Through iterative updates
of the generator and discriminator, the generator gradually learns to produce data that is indistinguishable from
real cultural relic data, effectively augmenting the dataset for training the VBG Model.

In the context of museum cultural relic classification, the synthetic data generated by the GAN module,
whether images or texts, is integrated into the training process of the BERT and ViT modules. This augmentation
enriches the diversity of the training data, enabling the overall model to learn more comprehensive features and
improving its performance in classifying cultural relics with limited real - world data.

Expertment

Dataset selection and preprocessing

In the research of museum artifact classification, the quality and diversity of datasets directly influence the
training effect and generalization ability of the model. To fully verify the effectiveness of the VBG Model in
multi-modal data processing and artifact classification tasks, this study carefully selects two datasets: The MET
Dataset and MS COCO. The former focuses on the field of artworks, while the latter covers a wide range of
object detection and image captioning scenarios. The combination of these two datasets provides rich and
complementary data support for model training. To ensure experimental reproducibility and reliable results,
both datasets used a stratified sampling strategy, splitting the training, validation, and test sets into a ratio of
8:1:1. In the MET dataset, samples were distributed according to this ratio within each major category of artifacts
(e.g., paintings, sculptures, and bronzes) to avoid concentrating samples of niche categories (e.g., East Asian
lacquerware and Ancient Egyptian amulets) in a single partition. The MS COCO dataset used stratified sampling
by object category to ensure that the distribution of categories within each partition was consistent with that
of the original dataset. A fixed random seed of 42 was used to control the randomness of the data partitioning
process. The detailed information of the datasets is shown in Table 1.

The MET Dataset*® contains over 100,000 images of artworks, covering various types of artifacts such as
paintings and sculptures. Its extensive range of categories offers sufficient samples for the model to learn the
characteristic differences among artifacts. This dataset not only includes images of artifacts but also detailed
textual descriptions, covering information about artists, creation periods, and art styles. These textual and image
data form high-quality multi-modal data pairs, which can effectively support the model in jointly learning the
historical and cultural connotations and visual features of artifacts. It is particularly suitable for cultural heritage
classification and art style analysis tasks.

The MS COCO dataset!! consists of more than 330,000 images, covering 80 object categories, with each
image paired with five textual descriptions. Although this dataset is not specifically designed for artifacts, its
abundant image-text pairs and diverse object scenes enable the model to learn general cross-modal data fusion
methods and enhance its feature extraction capabilities under complex backgrounds and different object forms.
Combining it with The MET Dataset can improve the robustness of the model in multi-modal data processing
and provide a broader perspective for feature learning in artifact classification tasks. Through the collaborative

captioning

Number
Dataset Field of Images | Number of Categories | Description
. . - Multiple types . o . . . . . .
MET z\krtworks\(mcludlng palptlngs, 100,000+ | (paintings, sculptures, Detallefi descrlptlgfls of artworkg mcludmg artist, creatlon‘perlod, and art style. Suitable
sculptures, and other artifacts) etc.) for art style analysis, cultural heritage classification, and research.
MS COCO Object detection and image 330,000+ | 80 object categories Each image is paired with 5 text descriptions, covering a variety of objects such as animals,

furniture, and people. Mainly used for object detection and image captioning tasks.

Table 1. Detailed Information of The MET Dataset and MS COCO, Highlighting Their Characteristics, Image-
Text Pairing, and Relevance to Multimodal Learning Tasks.
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use of these two datasets, this study can construct diverse training and testing scenarios to comprehensively
evaluate the performance of the VBG Model.

Experimental setup and parameter configuration

To ensure effective training and efficient execution of the VBG model, this study meticulously configured the
experimental hardware and software environments, as well as model hyperparameters. Regarding the hardware
environment, the experiment utilized a high-performance GPU server to meet the requirements of multimodal
data processing and model training. The GPUs, equipped with ample video memory and compute cores,
supported parallel computation of the ViT, BERT, and GAN modules, effectively shortening the training cycle.
Furthermore, the combination of a high-speed CPU and large-capacity memory ensured smooth data reading,
preprocessing, and model parameter updates.

The software environment was built on the Ubuntu 20.04 operating system, using PyTorch 1.9.0 as the
deep learning framework. Its flexible tensor operations and modular design facilitated the development and
debugging of various model components. GPU-accelerated computing, leveraging CUDA 11.1, significantly
improved training efficiency. Python 3.8 was used as the programming language, combined with NumPy and
Pandas for data preprocessing, Matplotlib for visualization, the Transformers library for loading pre-trained
BERT and ViT models, and Scikit-learn for calculating evaluation metrics, forming a complete experimental
toolchain.

The model hyperparameter settings are determined by combining the characteristics of each module with
experimental debugging and optimization, as shown in Table 2.

Evaluation metrics

To assess the performance of the VBG Model in classifying museum artifacts, multiple evaluation metrics are
employed, including Accuracy, mean Average Precision (mAP), F1-Score, Recall, and Area Under the Curve
(AUC). These metrics offer a comprehensive quantification of the model’s classification effectiveness when
handling multi-modal artifact data.
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Training loss and validation loss
As can be seen from Fig. 5, as the training progresses, the training loss of the two datasets gradually decreases,
indicating that the model effectively learns the characteristics of the data during the training process.

Module | Hyperparameter Value Description
Image size 224 x 224 | Image input size for the ViT module.
Patch size 16 X 16 Each image is divided into patches of 16 X 16 pixels.
ViT Hidden dimension 768 The size of the token embedding space in ViT.
Number of layers 12 The number of transformer layers used in ViT.
Number of heads 12 The number of attention heads in each transformer layer.
Max sequence length 128 The maximum length of the tokenized text sequence.
BERT Hidden size 768 The size of BERT’s hidden layer.
Number of layers 12 The number of transformer layers used in BERT.
Batch size 32 The batch size for text input during training.
Latent space dimension 100 The dimensionality of the noise vector input to the generator.
Generator learning rate 10~ 4 Learning rate for the generator.
GAN Discriminator learning rate | 10~4 Learning rate for the discriminator.
Batch size 64 The batch size for both generator and discriminator.

Table 2. Hyperparameter Settings for VBG Model’s ViT, BERT, and GAN Modules.
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For the MET Dataset, training loss gradually decreased between epochs 5 and 10 and began to stabilize.
However, validation loss showed a slower decline and exhibited some fluctuations at certain times. Subsequent
statistical analysis of the model’s performance on the validation set (e.g., the coeflicient of variation of validation
accuracy was 3.2%, which is relatively low) indicates that while the model exhibited local fluctuations, it was
not severely overfitted overall and still generalized well to the validation data. Similar trends were observed in
the training and validation loss curves for the MS COCO Dataset, with particularly pronounced fluctuations in
validation loss. We further compared the performance of the model on the test set at different training epochs
and found that after epoch 15, fluctuations in test accuracy remained within 2%, demonstrating that the model
also possesses stable generalization capabilities on this dataset, and that validation loss fluctuations are not due
to overfitting. Overall, the volatility and gradual convergence of training and validation loss indicate that the
VBG model’s training process on both datasets is stable. Additional analysis of performance on the validation
and test sets confirms that the model does not suffer from significant overfitting. The steady decline in training
loss and the fluctuations in validation loss provide important feedback, helping us better understand the model’s
training dynamics and optimization directions.

Confusion matrix
Figure 6 presents confusion matrices that illustrate the classification accuracy and error patterns of the model
on the two datasets.

On The MET Dataset, the model demonstrates high classification accuracy across most categories. In
particular, for the “Painting” and “Sculpture” categories, the model achieves near-perfect classification without
any misclassifications. The “Crafts” category also yields favorable results, although there are some instances of
misclassification into the “Other” category. The classification performance for “Animals” and “Buildings” remains
stable, with only a few misclassifications observed in the “Crafts” category. Overall, the VBG Model performs
commendably on The MET Dataset, accurately identifying various artworks, especially in typical categories.

Regarding the MS COCO Dataset, the model showcases robust classification capabilities, particularly in
categories such as “Person’, “Animal’, and “Furniture”, where misclassifications are almost non-existent. For
other categories, while the majority are correctly classified, some misclassifications occur in specific categories
like “Technology” and “Music”. These inaccuracies primarily stem from the visual similarities among certain
categories, posing challenges for the model to distinguish precisely. Nevertheless, the VBG Model maintains
stable performance on the MS COCO Dataset, effectively differentiating most categories.

Comparative experiments

Baseline model selection

To comprehensively evaluate the performance of the VBG model (ViT-BERT-GAN model), we selected eight
existing classification methods as baseline models, covering different types of models, including convolutional
neural networks (CNNs), visual transformers (ViT), and traditional machine learning methods. Among them,
SWIM-ViT*, a popular and efficient ViT variant in recent years, uses a windowed attention mechanism to
balance feature extraction capabilities and computational efficiency. This allows for a targeted comparison of
the synergistic advantages of the ViT module and cross-modal fusion mechanism in this study’s VBG model.
ResNet*? and DenseNet*!, as deep CNNs, were chosen for comparison due to their powerful image feature
extraction capabilities. The former avoids gradient vanishing through residual connections, while the latter
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Fig. 5. Training and Validation Loss Curves for The MET Dataset and MS COCO Dataset: This figure displays
the volatility and convergence trends of the training and validation losses during the training process, and
compares them with ideal training and validation loss curves to help analyze the model’s performance and
stability at different stages.
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Fig. 6. Confusion matrices optimized for the MET and MS COCO datasets, showing the match between
the predicted and true labels for each category in the optimized classification model, highlighting the high
accuracy and robustness of the model in handling multi-class artifact and object classification tasks.

improves feature reuse through dense connections. To compare lightweight models, we selected SqueezeNet*’,
which is suitable for scenarios with limited computational resources due to its reduction in parameters and
computational complexity. Additionally, considering textual information, Text CNN“® was selected as a baseline
model, as it extracts text features using convolution operations, making it suitable for processing relic description
text. To further compare the performance of different CNN architectures, Inception-V3*” and VGG-16*® were
also chosen as baseline models. The former utilizes multi-scale convolutions for feature extraction, while the
latter performs well in standard classification tasks with its simple and effective structure. To contrast deep
learning methods with traditional ones, XGBoost**? was selected as an ensemble learning model, which uses
gradient boosting decision trees for efficient classification, suitable for structured data analysis. These baseline
models will help us compare the performance of the VBG Model in terms of classification accuracy, training
time, and other aspects.

Results analysis

From the comparative results shown in Table 3, it is evident that the VBG Model outperforms other baseline
models in classification performance on both The MET Dataset and MS COCO Dataset. Particularly in key
metrics such as accuracy, mAP, F1 score, recall, and AUC-ROC, the VBG Model achieves the best performance,
demonstrating its powerful capability in relic classification tasks.

On the MET Dataset (museum artifact-specific dataset), the VBG Model demonstrates superior performance
across all evaluation metrics, fully validating its advantages in the multimodal artifact classification task. The
accuracy (Acc.) reaches 92%, which is 3 percentage points higher than the enhanced SWIM-ViT (89%) and
4 percentage points higher than the original second-ranked Inception-V3 (88%), showing stronger artifact
category differentiation capabilities. The mean Average Precision (mAP) is 0.85, which improves by 0.04 and
0.06 over SWIM-ViT (0.81) and Inception-V3 (0.79), respectively. This indicates that the VBG Model can more
accurately match target categories, reducing category confusion when processing diverse artifact types like
paintings and sculptures. The F1 score (88%), recall (Rec., 89%), and AUC-ROC (0.94) also outperform other
models by a large margin. For example, the F1 score is 5 percentage points higher than SWIM-ViT (83%) and 10
percentage points higher than the traditional image model ResNet (78%). This advantage stems from the VBG
Model’s use of a bidirectional attention fusion layer to deeply correlate the visual details of artifact images with
the historical semantics in text, capturing a more comprehensive set of classification features. Notably, the VBG
Model’s training time is only 12 hours, shorter than SWIM-ViT (17 hours) and Inception-V3 (16 hours), while
still maintaining high accuracy and training efficiency. This prevents resource consumption issues caused by
excessively complex models.

On the MS COCO Dataset (a general image-text dataset), the VBG Model maintains stable performance,
further demonstrating its generalization capability. The accuracy reaches 90%, 4 percentage points higher than
SWIM-ViT (86%) and 7 percentage points higher than DenseNet, which is focused on image classification (83%).
The AUC-ROC is 0.92, improving by 0.02 and 0.06 over SWIM-ViT (0.90) and DenseNet (0.86), respectively.
Despite the MS COCO Dataset containing 80 complex object categories with some visual similarity (such as
between “Technology” and “Music”), the VBG Model effectively overcomes this challenge through its cross-
modal fusion mechanism and GAN data augmentation module. The diverse samples generated by GAN provide
richer training data for ViT and BERT, reducing misclassifications caused by category similarity. Compared to
the lightweight model SqueezeNet, the VBG Model achieves an 11 percentage point improvement in accuracy
and a 14 percentage point increase in F1 score (86%) while maintaining similar training time (12 hours vs. 8
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DataSet Model Acc. (%) | mAP | F1 (%) | Rec. (%) | AUC | Train Time (hrs)
ResNet 85 0.75 |78 77 0.88 |15
DenseNet 87 0.77 | 80 79 0.89 |14
SqueezeNet 83 072 |74 74 085 |8
TextCNN 82 071 |73 72 0.84 |10

The MET Dataset | Inception-V3 88 0.79 |81 80 091 |16
VGG-16 84 074 |76 75 0.87 |14
XGBoost 80 0.69 |72 70 083 |6
SWIM-ViT 89 0.81 |83 82 092 |17
VBG Model (ours) | 92 0.85 |88 89 094 |12
ResNet 81 073 |76 75 084 |15
DenseNet 83 075 |78 77 0.86 |14
SqueezeNet 79 0.70 |72 71 0.82 |8
TextCNN 78 0.68 |70 69 0.80 |10

MS COCO Dataset | Inception-V3 85 0.77 |79 78 0.88 |16
VGG-16 80 072 |74 73 0.83 |14
XGBoost 76 0.65 |69 68 079 |6
SWIM-ViT 86 0.79 |81 80 0.90 |17
VBG Model (ours) | 90 0.83 |86 85 092 |12

Table 3. Comparison of the performance results of the VBG Model and six other advanced models in terms of
accuracy, mAP, F1 score, recall, and AUC-ROC on The MET and MS COCO datasets.

DataSet Model Acc. (%) | mAP | F1 (%) | Rec. (%) | AUC | Train Time (hrs)
VBG Model (ours) 92 0.85 |88 89 094 |12
without ViT 88 0.81 |84 85 090 |10
without BERT 89 082 |85 86 091 |10

The MET Dataset | without GAN 83 0.74 |78 79 0.84 |8
without ViT & BERT | 85 0.77 |81 82 088 |9
without BERT & GAN | 84 0.75 |80 81 086 |8
without ViT & GAN 86 0.78 |82 83 0.89 |9
VBG Model (ours) 90 0.83 |86 85 092 |12
without ViT 86 0.78 |81 80 0.88 |10
without BERT 87 079 |82 81 0.89 |10

MS COCO Dataset | without GAN 80 072 |74 73 081 |8
without ViT & BERT | 82 0.75 |77 76 084 |9
without BERT & GAN | 81 073 |75 74 083 |8
without ViT & GAN 83 076 |78 79 086 |9

Table 4. Ablation Experiment Results: Performance comparison of the VBG Model with different components
removed on The MET and MS COCO datasets.

hours), highlighting the superiority of its “cross-modal synergy + data augmentation” architecture design over
simple reliance on model complexity.

Whether on the MET Dataset or the MS COCO Dataset, the VBG Model leverages the synergistic effect of
BERT, ViT, and GAN to play a unique role in multimodal feature fusion and scarce data augmentation. Even
when compared with advanced models like SWIM-VIiT, it still exhibits significant overall advantages in accuracy,
efficiency, and generalization. This provides a reliable technical solution for digital classification of museum
artifacts and handling of multimodal sparse data in the field of cultural heritage.

Ablation experiments
The results of the ablation experiment shown in Table 4 clearly show how each core component of the VBG
model contributes to the model’s performance on the MET and MS COCO datasets.

On the MET dataset, when we remove ViT, the model’s accuracy drops to 88% and the mAP drops to 0.81.
This indicates that ViT plays an essential role in extracting the overall features of cultural artifact images and
capturing visual details. Without this component, the model’s ability to process image information is weakened,
leading to poor classification accuracy. When we remove BERT, the accuracy drops to 89% and the mAP drops
to 0.82, indicating that BERT can deeply mine semantic information in text, which is crucial for supplementing
image features and refining multimodal representations of cultural artifacts. Without BERT, the model cannot
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fully utilize the important information contained in the text. When we remove GAN, the model’s performance
drops significantly, with the accuracy dropping to 83% and the mAP dropping to 0.74. This highlights the
important role of GANs in addressing data scarcity and increasing data diversity. The drawback of GAN is
insufficient training data, which makes it difficult for the model to learn comprehensive feature patterns and
affects the generalization ability. In addition, removing two or three components simultaneously further reduces
the model performance. For example, removing ViT and BERT reduces the accuracy to 85%, which also proves
that multimodal feature fusion is necessary to improve the model performance.

On the MS COCO dataset, a similar trend is observed in the ablation experiments. When ViT is removed,
the accuracy drops to 86% and the mAP is 0.78, which indicates that ViT is very important in extracting effective
visual features when processing complex image scenes. When BERT is removed, the accuracy is 87% and the
mAP is 0.79, which indicates that BERT is essential for integrating cross-modal information. After removing
GAN, the accuracy is only 80% and the mAP is 0.72. This proves the importance of GAN in data augmentation
and improving the robustness of the model. Furthermore, by observing the training time, we can see that the
training time is reduced after removing the components, but the model performance also decreases accordingly.
This indicates that although the training time of the VBG model is relatively long, the joint efforts of various
components can improve the performance.

The results of the ablation experiment fully demonstrate the irreplaceable nature of ViT, BERT, and GAN in
the VBG model. These synergistic effects greatly improve the model’s performance in the multimodal cultural
relics classification task, providing a solid foundation for the model’s effectiveness and stability.

Visualization results

Figure 7 illustrates the attention regions of the VBG Model on images of different artifact categories (such as
paintings and sculptures) during the classification process. Through the heatmaps, it is evident that the model
can accurately identify and focus on the key areas within the images. For instance, when classifying paintings, the
model’s attention is concentrated on the facial features and hand details of the figures. In the case of sculptures,
the model pays more attention to the facial features and overall morphology. This indicates that the VBG Model
effectively integrates the important features in the images with category information, capturing the visual cues
that distinguish different types of cultural relics. The results of these heatmaps further validate the model’s

Painting

Sculpture

Sculpture Sculpture

Fig. 7. Heatmap of Areas Focused on by the VBG Model, which shows the areas of focus by the model in relic
classification for different categories of relic images (painting and sculpture). Note: The photographs in Figure
7 were taken by the corresponding author for this study and no permissions were required for the same.
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Fig. 8. Visualization of Image and Text Feature Fusion: This figure shows the distribution of image and text
features in the same feature space.

meticulousness and powerful capabilities in handling complex images, especially in the classification of artifact
images, where it can focus on the details crucial for classification decisions.

Figure 8 presents the visualization results of the fusion of image and text features. The figure shows an
example where image features and text features exist in the same feature space. It can be seen that image features
of different types (e.g., painting, plastic, ceramic, jewel, etc.) and their corresponding text features exist in the
same feature space. The features of paint, plastic, ceramic, and beads are prominently formed between them,
which shows that the VBG model can effectively integrate modular information. The model can more accurately
capture the features of each document type during multi-mode data processing, which improves the separation
rate and robustness. The spatial distribution shows the superiority of the VBG model in terms of fusion image
and document features, which demonstrates the use power of the model within document types.

The observed results prove the effectiveness and standardity of this model in document segmentation work,
and subsequent application research provides theoretical foundations and technical support for this model.

Conclusion

This study addresses the challenges in museum artifact classification and proposes a multimodal artifact
classification model, VBG Model, which integrates BERT, Vision Transformer (ViT), and Generative Adversarial
Network (GAN). The effectiveness of the model is validated through experiments on the MET and MS COCO
datasets. In the comparison experiments, the VBG Model significantly outperforms six advanced models,
including ResNet and DenseNet, in terms of accuracy, mAP, F1 score, and other metrics. The accuracy of VBG
Model reaches 92% on the MET dataset and 90% on the MS COCO dataset. Ablation experiments show that the
three core components, ViT, BERT, and GAN, are essential for performance improvement. Together, they enable
the deep fusion of image and text features and data augmentation. Visualization results intuitively demonstrate
the model’s precise capture of key image features and the efficiency of cross-modal information fusion.

The advantages of the VBG Model can be summarized in three points: First, the combination of BERT and
ViT allows for the deep fusion of artifact image and textual information across modalities, enabling the model
to capture artifact features more comprehensively than single-modality models. Second, the introduction of
GAN for data augmentation alleviates the issue of data scarcity in artifact datasets, enhancing the model’s
generalization ability in small-sample scenarios. Third, the model’s strong performance across multiple metrics
and datasets proves its stability and reliability. However, the model also has some limitations. On one hand, the
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complex structure leads to longer training times and higher computational resource consumption. On the other
hand, the ability to finely differentiate highly similar artifact categories still needs improvement.

Subsequent research will further deepen its focus on model optimization and application expansion.
Regarding model optimization, the team will explore more efficient network architectures and lightweight
designs to reduce complexity and shorten training time. Advanced feature extraction and fusion techniques
will also be employed to enhance the ability to distinguish between similar artifact categories. Metadata such
as age, origin, and material will be incorporated into structured feature vectors and integrated with visual and
textual features to enhance classification accuracy. Furthermore, cross-domain feature transfer will be optimized
through techniques such as domain adversarial training and domain-adaptive pre-training, bridging the
semantic gap between artifacts and general objects. Regarding application expansion, the VBG Model will be
deployed in more real-world museum classification scenarios. Feedback from non-technical staff will be used
to refine the visual decision-making report and lightweight interface for linked image and text annotation. This
will enhance decision-making credibility by displaying the key artifact regions targeted by the model and their
correlation with text, as well as recommending similar examples from the collection. Furthermore, the team
will explore integrating the Internet of Things and virtual reality technologies to build an intelligent artifact
management system, promoting the digital development of cultural heritage preservation. Furthermore, during
the targeted optimization of sample quality, qualitative evaluation by experts in the field of artifacts will be
incorporated to verify the authenticity of GAN samples, enabling the model to be applied in more scenarios.

Data availability

The datasets used in this study are publicly available at the following locations: The MET Dataset:https://www.k
aggle.com/datasets/metmuseum/the-met; MS COCO Dataset: MSCOCODataset: https://huggingface.co/data
sets/shunk031/MSCOCO.
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