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Cultural heritage preservation has garnered global attention. Museum artifact classification, a core 
task, faces challenges related to insufficient multimodal information collaboration and a scarcity 
of high-quality annotated data. Traditional methods and single-modality deep learning models 
struggle to achieve both efficiency and accuracy. To address this, this paper proposes a museum 
artifact classification model (VBG Model) based on cross-modal attention fusion and generative data 
augmentation. This model constructs an integrated multimodal framework through task-oriented 
refactoring of the Vision Transformer (ViT), BERT, and a Generative Adversarial Network (GAN). ViT 
extracts global visual features from artifact images, while BERT mines the historical and cultural 
semantics of text. A bidirectional interactive attention fusion layer achieves precise feature alignment. 
The GAN generates diverse samples, forming a closed “generation-feedback-optimization” loop to 
alleviate data scarcity. Experiments on the MET and MS COCO datasets demonstrate exceptional 
performance: the VBG Model achieves 92% classification accuracy, 0.85 mAP, and 88% F1 score for 
the former, while the latter achieves 90% accuracy, 0.83 mAP, and 86% F1 score for the latter. These 
performance indicators outperform competing models such as ResNet and DenseNet. Ablation 
experiments confirm that cross-modal fusion and generative data augmentation modules are 
essential; removing either module results in a 5%-9% drop in accuracy. The current model still has 
room for improvement in terms of training time and generated image quality. Future work will focus 
on optimizing performance through lightweight design and multi-scale fusion, enhancing the ability 
to distinguish similar artifacts and providing technical support for digital artifact management and 
cultural heritage preservation.
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In the tide of the times of cultural heritage protection and inheritance, museums are important carriers of cultural 
treasures, and the accurate classification of their collections is a key link in achieving efficient management and 
knowledge mining1.However, traditional cultural relics classification methods mostly rely on manual labeling, 
which has problems such as low efficiency, strong subjectivity, and difficulty in large-scale processing2.Deep 
learning has demonstrated significant advantages in the field of cultural relics classification due to its powerful 
automatic feature extraction capabilities3,4.It can autonomously learn feature patterns from massive cultural 
relic images and text data, avoiding the limitations of hand-crafted features in traditional methods and greatly 
improving classification efficiency and accuracy5.

However, existing deep learning models still have obvious shortcomings when applied to museum cultural 
relic classification. On the one hand, cultural relic data naturally has multimodal properties, and single-modal 
deep learning models are difficult to fully capture the complete information of cultural relics6. The existing cross-
modal fusion methods still have technical bottlenecks in feature alignment and semantic association, and cannot 
give full play to the synergistic advantages of multimodal data. On the other hand, due to the uniqueness and 
preciousness of cultural relics, it is extremely difficult to obtain high-quality annotated data7. The scarcity of data 
can easily lead to model overfitting and insufficient generalization ability, making it difficult to cope with the 
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complex and changeable cultural relic forms and background interference in real scenes8. The existence of these 
problems has made the performance of current deep learning technology in cultural relics classification tasks not 
yet ideal, and new technical solutions are urgently needed to fill the research gap4.

This study is committed to designing a multimodal cultural relics classification model (VBG Model) based on 
the fusion and collaboration of BERT, Vision Transformer (ViT) and Generative Adversarial Network (GAN), 
aiming to break through the limitations of traditional methods, achieve deep fusion and data enhancement of 
cross-modal data, and thus improve the accuracy and robustness of museum cultural relics classification. The 
model consists of three core modules: BERT9 is responsible for processing text data related to cultural relics and 
mining the semantic information contained therein; Vision Transformer (ViT)10 focuses on feature extraction 
of image data and captures the visual details of cultural relics; GAN10 enhances the diversity of data sets through 
data generation, optimizes model training effects, and improves the adaptability of models in complex scenarios.

The main contributions of this study are as follows:

•	 A bidirectional attention fusion mechanism combining ViT and BERT is proposed to address the lack of fea-
ture alignment in traditional cross-modal models for cultural relic classification, deepening the connection 
between visual details and textual semantics.

•	 A closed-loop “generation-feedback-optimization” framework combining GANs and bimodal modules is 
constructed, providing a new model training paradigm for multimodal classification in the context of scarce 
cultural relic data.

•	 The research results can not only be directly applied to the digital management of museum cultural relics, 
promoting the intelligent development of cultural heritage preservation, but also provide valuable insights 
for other fields involving multimodal data processing and scarce data classification, such as medical image 
analysis and ancient document recognition.

The structure of this paper is as follows: The second part reviews the research in related fields and analyzes the 
achievements and limitations of existing studies; the third part elaborates in detail on the architectural design 
and working principles of the VBG model; the fourth part validates the performance of the model through 
experiments and conducts an in-depth analysis of the results; finally, the fifth part summarizes the research 
findings and looks ahead to future research directions.

Related works
Museum relic classification research
As a key link in the digital protection of cultural heritage, the classification of museum artifacts has long 
attracted academic attention. Early studies mostly used traditional machine learning methods, such as support 
vector machines (SVM) and random forests, to manually extract visual features such as color and texture of 
artifact images, or process text descriptions using bag-of-words models to achieve the classification of artifacts11. 
However, these methods rely on artificially designed features, and the efficiency and accuracy of feature extraction 
are difficult to guarantee when faced with complex and changeable artifact forms. Taking the classification of 
bronze artifacts as an example, traditional methods often cause classification errors due to feature extraction 
bias when identifying artifacts with severe rust and blurred patterns12. With the rise of deep learning, CNNs 
have made significant breakthroughs in the task of classifying artifact images with their powerful image feature 
learning capabilities13. For example, network structures such as ResNet and DenseNet can effectively extract deep 
semantic features of artifact images by deepening the network layer, thereby improving classification accuracy14. 
In the classification of ceramic artifacts, CNN-based models can accurately capture subtle differences such as 
glaze color and shape, and the classification accuracy is significantly improved compared to traditional methods.

However, most existing studies focus on single-modal data, make insufficient use of text descriptions of 
cultural relics, and lack effective strategies for dealing with data scarcity15. Many museums’ text records of 
cultural relics contain rich information such as historical background and production process. These text 
information combined with image data can provide a more comprehensive basis for classification, but current 
research has failed to fully tap this potential16,17. At the same time, due to the preciousness and uniqueness of 
cultural relics, it is difficult to obtain a large amount of annotated data, and insufficient model training data 
leads to limited generalization ability18. The VBG Model proposed in this study will fully explore the potential 
information of cultural relic images and texts through the combination of Vision Transformer (ViT) and BERT, 
and use GAN to solve the problem of data scarcity, providing a more comprehensive solution for museum 
cultural relic classification.

Multimodal fusion technology
The core goal of cross-modal data fusion is to break the barriers of representation between different modalities, 
such as images and text, by exploring the complementary relationships and inherent semantic consistency 
between modalities. This enhances the model’s understanding and processing ability for complex tasks19. It 
has become one of the core research directions in natural language processing, computer vision, and cross-
disciplinary fields, showing significant value in tasks like content retrieval, scene understanding, and object 
classification20,21. Early cross-modal fusion research focused on the core idea of “joint embedding,” where linear 
projection or shallow neural networks map features from different modalities into a unified vector space to 
achieve preliminary modality association matching22. However, such methods did not fully consider the semantic 
expression differences between modalities (e.g., the abstract semantics of text and the concrete visual features of 
images) and lacked fine-grained information mining within each modality23. As a result, the fusion outcomes 
could only meet basic association needs, and their performance in tasks with high semantic complexity and 
strong feature correlation was limited.
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With the widespread use of Transformer architectures in modality modeling, multimodal fusion technology 
has gradually evolved from “preliminary association” to “deep interaction,” leading to the emergence of 
representative models such as CLIP (Contrastive Language-Image Pretraining), ViLBERT (Vision-and-Language 
BERT), BLIP (Bootstrapping Language-Image Pre-training), ALIGN (A Large-scale Image and Text corpus), 
and Florence24. Among them, CLIP relies on a contrastive learning mechanism for pretraining on large-scale 
unlabeled image-text data. It achieves fine-grained matching of cross-modal features by constructing global 
semantic associations and performs excellently in zero-shot classification and cross-domain image retrieval25,26. 
However, this model focuses on general scenarios and struggles with capturing the semantics of domain-specific 
terms (e.g., artifact terminology). ViLBERT processes visual and textual features separately using a dual-stream 
Transformer architecture and introduces a cross-modal attention layer for feature interaction, enhancing local 
associations between modalities27. However, it lacks an optimization mechanism for small sample scenarios, 
limiting its generalization ability in data-scarce tasks. BLIP combines dialog-based generation tasks with 
contrastive learning, improving the dynamic interaction of multimodal semantics. ALIGN, trained on massive 
noisy image-text data, enhances the model’s robustness to non-standard data. Florence uses a modular design to 
adapt to multiple tasks28,29. However, these models are all designed for general scenarios and do not consider the 
specificity of artifact data. The visual features of artifacts (such as pattern details and craftsmanship traces) and 
the historical cultural semantics in text (e.g., historical background and craftsmanship terminology) have strong 
domain-specific attributes, making it difficult for general models to accurately capture the exclusive associations 
between them, thus limiting their performance in artifact classification tasks30.

For the unique needs of museum artifact classification scenarios, existing multimodal fusion technologies 
still face two core challenges: First, the difficulty of aligning the “visual-text” semantics of artifacts. Artifact 
images focus on presenting concrete features such as shapes and patterns, while text conveys abstract information 
such as age, craftsmanship, and cultural connotation31,32. The semantic mapping relationship between the two is 
complex and has domain-specific attributes, making it difficult for general models to adapt. Second, the scarcity 
and specialization of artifact data limit the model’s performance. Most artifact category samples are limited, 
and both visual features and text descriptions contain a large amount of specialized information33,34. General 
models lack targeted feature extraction and data augmentation strategies, making them prone to overfitting or 
semantic mismatching issues. Based on these challenges, the VBG Model proposed in this study optimizes text 
and visual feature extraction using BERT and ViT, respectively, and enhances the alignment ability of artifact-
specific semantics through a directionally designed cross-modal attention fusion layer. At the same time, the 
model incorporates GAN for artifact data augmentation, forming a multimodal fusion solution tailored to the 
museum context and providing a new technological path to address the challenges of cross-modal fusion in 
artifact classification.

Methodology
Overall of VBG model
As shown in Fig. 1, the proposed VBG Model consists of three core modules: BERT, Vision Transformer (ViT), 
and Generative Adversarial Network (GAN). Through a cross-modal fusion mechanism adapted for the artifact 
context and a directional data augmentation strategy, it constructs a multimodal collaborative framework for 
museum artifact classification. The model addresses two key issues in traditional methods: “difficulties in cross-
modal feature alignment” and “poor generalization due to data scarcity.” During model operation, multimodal 
data flows through the logic of “parallel extraction - interactive fusion - feedback enhancement,” with each 
module retaining functional independence while achieving deep collaboration through mechanism design, 
forming a complete feedback loop from data processing to classification prediction.

First, text data is input into the BERT module. Given the “terminology density” and “semantic relevance” 
(such as terms like “taotie pattern” and “furnace casting method” requiring historical context for understanding) 
in artifact textual descriptions, this study selects the BERT-Base pre-trained model and fine-tunes it on a 
domain-specific artifact corpus to optimize the model’s ability to understand artifact-specific semantics. This 
module, based on a bidirectional Transformer architecture, uses 12 layers of self-attention mechanisms to 
capture long-range dependencies between words in the text. For example, for a description like “Tang dynasty 
three-colored camel figurine, made with secondary firing process, primarily glazed in yellow, green, and white,” 
it can accurately extract key information such as “Tang dynasty,” “secondary firing,” and “three-colored” and 
encode them into a 768-dimensional high-dimensional semantic feature vector, providing semantic anchors for 
subsequent cross-modal alignment.

Meanwhile, image data is input into the ViT module. Given the “high detail recognition requirement” (such 
as ceramic glaze cracking patterns or inscriptions in calligraphy) and “visual feature diversity” (such as bronze 
patterns and jade designs) in artifact images, the ViT module adopts a 16 × 16 pixel image patching strategy to 
avoid feature redundancy caused by small patches and prevent loss of key details with large patches. Additionally, 
a learnable position embedding layer is introduced to encode spatial distribution information of textures and 
patterns in artifact images (such as brushstroke directions in ancient paintings). The image patch sequence is 
processed by a 12-layer Transformer encoder and interacts with global visual information through self-attention 
mechanisms. For example, for a blue-and-white porcelain image, the model can simultaneously capture the tonal 
features of “blue-and-white color” and the structural features of the “lotus scroll pattern,” ultimately generating a 
768-dimensional image feature vector aligned with the text feature dimension, ensuring dimensional matching 
during cross-modal fusion.

The text features output from BERT and the image features output from ViT are input into the bidirectional 
interactive attention fusion layer, which is the core design of the VBG Model distinguishing it from traditional 
“feature concatenation” cross-modal models. This fusion layer is specifically adapted to the strong correlation 
between “visual forms” and “cultural connotations” of artifacts. Unlike the simple ViT-BERT combination model, 
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which simply concatenates two types of features, CLIP, which focuses on general image-text semantic matching, 
and BLIP, which lacks optimization for the scarcity of cultural relic data and has limited generalization capabilities 
for niche artifact categories, this fusion layer achieves targeted alignment through “dual attention calculation.” 
Firstly, it calculates the attention weights of image features for text keywords (for example, associating regional 
features with “Taotie pattern” in a bronze image with the term “Taotie pattern” in the text); secondly, it reversely 
calculates the attention weights of text features for key image regions (for example, using the semantic meaning 
of “secondary firing” to emphasize details of ceramic glazes). By weighted summing these two attention weights, 
a more integrated multimodal feature is generated.

To address the “imbalanced categories” (e.g., fewer than 50 samples of niche artifacts) and the “high 
annotation cost” leading to data scarcity in museum artifact data, the GAN module adopts an artifact-specific 
generation strategy, rather than a general image enhancement method. The GAN consists of a generator (with 
4 layers of transposed convolution) and a discriminator (with 4 layers of convolution). During training, the 
generator introduces a “style constraint loss” based on the artifact’s texture library (containing over 1,000 artifact 
patterns and glaze samples) as a reference, computing the style distance between the generated image and 
real artifact images (using Gram matrix similarity), ensuring that the generated samples retain typical artifact 
visual features (such as “line traces” on bronze artifacts and “layering of ink” in paintings). Simultaneously, the 
generated text references an artifact category-attribute mapping table to avoid generating irrelevant semantics 
(such as generating “blue-and-white” related text for the “Song dynasty Ru kiln” category). The discriminator 
introduces an “artifact attribute consistency loss” when distinguishing between real and generated data, further 
constraining the rationality of the generated data. Once training stabilizes, the GAN generates 2,000+ image-text 
pairs per round, which are fed back into the training process of BERT and ViT modules to supplement scarce 
category data.

Finally, the fused multimodal features are input into a fully connected classifier, which outputs the probability 
distribution of the artifact’s category through the Softmax function. The classifier uses Dropout (probability 0.5) 
and L2 regularization (weight 0.001) to prevent overfitting, ensuring the model maintains stable performance in 
distinguishing complex artifact categories. The VBG Model, through the synergistic design of “BERT semantic 
precision extraction + ViT visual detail capture + artifact-specific GAN enhancement + bidirectional interactive 
fusion,” not only achieves efficient use of multimodal data but also overcomes the limitations of traditional 
general multimodal models in artifact classification through artifact scene adaptation, providing a closed-loop 
technical framework for museum artifact classification.

ViT module: vision transformer
As shown in Fig.  2, the Vision Transformer (ViT)19,35,9 module is a core component of the VBG Model for 
processing cultural relic image data. Its design breaks away from the local processing model of traditional CNN 
and utilizes a Transformer architecture to efficiently extract global image features. This is particularly well-suited 
for cultural relic images, which require high levels of detail recognition (such as ceramic glaze cracks and bronze 

Fig. 1.  The Overall Architecture of the VBG Model, Integrating Vision Transformer (ViT), BERT, and 
Generative Adversarial Network (GAN) for Enhanced Multimodal Relic Classification.
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ornamentation) and strong correlations between visual features (such as the synergy between brushstrokes and 
composition in ancient paintings). This provides precise visual feature support for subsequent cross-modal 
fusion. The ViT module’s operational workflow primarily includes three key steps: image segmentation, position 
encoding, and Transformer encoder processing.

The input cultural relic image x ∈ RH×W ×C  (where H  is the image height, W  is the image width, and 
C  is the number of channels) is divided into N  fixed-size image patches xp. Each image patch has a size of 
P × P × C , where P  is the side length of the patch, and the number of image patches N = H×W

P 2 . These image 
patches are flattened and mapped to an embedding space of dimension D through a linear projection layer, 
obtaining the image patch embeddings xi

p:

	 xi
p = Epatch(xi

p), i = 1, · · · , N � (1)

where Epatch represents the linear projection operation, mapping each image patch from P 2C  dimensions to 
D dimensions.

To preserve the spatial information of the image patches, ViT introduces learnable position embeddings 
Epos ∈ RN×D , which are added to the image patch embeddings:

	 z0 = [x1
p + E1

pos; · · · ; xN
p + EN

pos]� (2)

where [·; ·] denotes the concatenation operation. In this way, each image patch acquires its positional information 
in the original image.

Next, the image patch embeddings z0 with positional information are fed into a network composed of L 
Transformer encoder layers. Each Transformer encoder layer consists of a multi-head attention mechanism 
(MHA) and a multi-layer perceptron (MLP). In the multi-head attention mechanism, the input zl−1 is first 
linearly projected into query vector Q, key vector K , and value vector V :

	 Q = zl−1W Q, K = zl−1W K , V = zl−1W V � (3)

where W Q, W K , W V ∈ RD×Dk  are learnable weight matrices, Dk = D
h , and h is the number of attention 

heads. The calculation process of multi-head attention is as follows:

Fig. 2.  Detailed Architecture of the ViT Module in the VBG Model, Illustrating the Processing Pipeline for 
Relic Image Input, Feature Extraction through Linear Projection, Positional Encoding Integration, and Multi-
head Self-Attention Mechanism for Enhanced Visual Feature Representation.
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Attention(Q, K, V ) = softmax(QKT

√
Dk

)V � (4)

	 MHA(zl−1) = [head1; · · · ; headh]W O � (5)

where headi = Attention(Qi, Ki, Vi), and W O ∈ RhDk×D  is the weight matrix used to combine the outputs 
of multiple heads. The output of the multi-head attention mechanism is passed through layer normalization 
(LN), added to the input, and then fed into the multi-layer perceptron:

	 z′
l−1 = LN(zl−1 + MHA(zl−1))� (6)

	 zl = LN(z′
l−1 + MLP (z′

l−1))� (7)

After processing through L Transformer encoder layers, the final output feature vector zL contains the global 
semantic information of the cultural relic image, serving as the output of the ViT module for subsequent cross-
modal fusion.

Through the above design, the ViT module can efficiently extract the visual features of cultural relic 
images. From the texture and shape of the images to the overall composition, all can be transformed into high-
dimensional feature representations for classification, laying a solid foundation for the cultural relic classification 
task of the VBG Model.

BERT module: text data processing
As illustrated in Fig. 3, the BERT (Bidirectional Encoder Representations from Transformers) module serves as a 
pivotal component of the VBG Model for processing textual data of cultural relics. Grounded in the bidirectional 
Transformer architecture, it extracts feature information from cultural relic texts through its deep semantic 
understanding capabilities. The operation of the BERT module primarily encompasses text encoding at the input 
layer, feature extraction by the bidirectional Transformer layers, as well as pre-training and fine-tuning processes 
tailored to the cultural relic classification task. The specific details are elaborated below with the aid of formulas.

As shown in Fig. 3, the BERT module is a key component in the VBG model for processing cultural relic 
text data. BERT was chosen over other text processing models like TextCNN and RNN because it is well-suited 
to the dense technical terms and complex semantic associations found in cultural relic text. Cultural relic text 
descriptions often contain deep semantic information, such as historical dates, production techniques (e.g., 

Fig. 3.  Detailed Structure of the BERT Module in the VBG Model.
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“molding method” and “secondary firing”), and cultural context (e.g., “Shang and Zhou bronze ritual vessels 
used for sacrificial purposes”). Traditional TextCNNs, relying on local convolutional kernels, struggle to capture 
long-range semantic dependencies (e.g., the association between “glaze crackle” and “Song Dynasty Ru kiln”)36. 
RNNs suffer from the vanishing gradient problem, resulting in incomplete semantic understanding of long 
texts. BERT’s bidirectional Transformer architecture, however, leverages a multi-layer self-attention mechanism 
to simultaneously mine semantic associations from both the context and context, accurately extracting both 
specialized information and latent semantics from cultural relic text37. This provides high-dimensional semantic 
support that complements image features for subsequent cross-modal fusion.

At the input layer, the textual descriptions of cultural relics are first segmented into a sequence of tokens. 
For a text T = [t1, t2, · · · , tn] with a length of n, each token ti undergoes three embedding operations: 
Token Embedding, Segment Embedding, and Position Embedding. Token embedding maps tokens into a low-
dimensional vector space, segment embedding differentiates between different text segments (which can be 
simplified in the single-text input scenario), and position embedding encodes the positional information of 
tokens within the text. The final input vector xi is the sum of these three embeddings:

	 xi = Etoken(ti) + Esegment(si) + Epos(pi)� (8)

where Etoken, Esegment, and Epos represent the token embedding, segment embedding, and position 
embedding functions, respectively. si is the identifier of the text segment (a fixed value for single-text input), 
and pi is the position index of the token. The input vectors of all tokens are concatenated into an input matrix 
X = [x1; x2; · · · ; xn] and then fed into the bidirectional Transformer layers. The bidirectional Transformer 
layers are composed of multiple identical Transformer blocks stacked together. Each Transformer block contains 
a Multi-Head Attention (MHA) mechanism and a Feed-Forward Neural Network (FFN). In the multi-head 
attention mechanism, the input X  is linearly transformed to obtain query vector Q, key vector K , and value 
vector V :

	 Q = XW Q, K = XW K , V = XW V � (9)

where W Q, W K , W V ∈ Rdmodel×dk  are learnable weight matrices, dmodel is the dimension of the input vector, 
and dk  is the dimension of each attention head. The calculation process of multi-head attention is as follows:

	
Attention(Q, K, V ) = softmax(QKT

√
dk

)V � (10)

	 MHA(X) = [head1; · · · ; headh]W O � (11)

where headi = Attention(Qi, Ki, Vi), and W O ∈ Rhdk×dmodel  is used to merge the outputs of multiple 
heads. The output of the multi-head attention mechanism goes through a residual connection and Layer 
Normalization (LN) before being fed into the feed-forward neural network:

	 X ′ = LN(X + MHA(X))� (12)

	 F F N(X ′) = max(0, X ′W1 + b1)W2 + b2� (13)

where W1, W2 and b1, b2 are the weight and bias parameters of the feed-forward neural network. After 
processing through multiple Transformer blocks, the final feature representation of the text is obtained as 
H = [h1; h2; · · · ; hn]. During the pre-training phase, BERT employs the Masked Language Model (MLM) 
and Next Sentence Prediction (NSP) tasks. For the masked language model, some tokens in the input text are 
randomly replaced with the [MASK] token, and the model is trained by predicting the masked tokens. The 
prediction probability is calculated as follows:

	 P (ti|Tmasked) = softmax(HWvocab + bvocab)i� (14)

where Wvocab and bvocab are the weights and biases for vocabulary mapping, and i represents the index of the 
token in the vocabulary. The next sentence prediction task determines whether there is a contextual relationship 
between two text segments. After pre-training, for the cultural relic classification task in museums, the output 
features of BERT are connected to a classifier and fine-tuned by minimizing the cross-entropy loss function 
L = −

∑m

i=1

∑C

j=1 yij log ŷij  (where m is the number of samples, C  is the number of classes, yij  is the 
true label, and ŷij  is the predicted probability) to adapt the model to the requirements of cultural relic text 
classification.

Through the above design and operation mechanisms, the BERT module can fully exploit the semantic 
information in cultural relic texts, transforming textual content such as historical backgrounds and craftsmanship 
characteristics into feature vectors applicable for cross-modal fusion and classification, thereby providing robust 
support for enhancing the cultural relic classification performance of the VBG Model.

GAN GAN module: data augmentation and generation
In the VBG Model, the Generative Adversarial Network (GAN) module is a key component in addressing the core 
pain points of cultural relic data: sample scarcity and imbalanced categories. GANs were chosen over traditional 
data augmentation methods (such as rotation, cropping, and flipping) or other generative models (such as VAEs 
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and Diffusion Models) due to their adaptability to the characteristics and task requirements of cultural relic 
data. Traditional data augmentation simply transforms existing samples and cannot create new artifact features 
(such as the unique patterns and craftsmanship of niche artifacts), making it difficult to fundamentally alleviate 
data scarcity. While VAEs can generate samples, they focus more on fitting probability distributions, resulting in 
less visual realism (such as the natural gradation of glaze colors and the completeness of decorative details) than 
GANs38,39. While Diffusion Models generate high-quality samples, their training complexity and computational 
cost far exceed GANs, and they are less adaptable to the “small sample, high-detail” requirements of cultural 
relic data. GAN, through the “generator-discriminator” adversarial training mechanism, can not only learn the 
distribution patterns of real cultural relic data and generate new samples with typical visual features and category 
attributes of cultural relics, but also balance training efficiency and generation quality. It is particularly effective 
in enhancing niche categories of cultural relics (such as ancient Egyptian amulets and East Asian lacquerware, 
with a sample size of only 50-200 pieces), making it a core choice for data augmentation in this model. Figure 4 
shows the design and operation process of the GAN module.

The generator G of the GAN module is designed to map random noise vectors z ∈ Rn (where n is the 
dimension of the noise space) to data samples that resemble the real cultural relic data. Typically, the generator is 
implemented using a series of transposed convolutional layers (also known as deconvolutional layers) for image 
data or recurrent neural networks combined with linear layers for text data in the context of cultural relics.

For image generation, starting from the noise vector z, the generator first passes it through several fully - 
connected layers to transform it into a feature map with a suitable size. Then, a series of transposed convolutional 
layers gradually upsamples this feature map to the target image size. Mathematically, if we denote the operations 
of the fully - connected layers as ffc(·) and the transposed convolutional layers as ftconv(·), the output of the 
generator G(z) can be expressed as:

	 G(z) = ftconv(ffc(z))� (15)

For text generation, assuming the use of a recurrent neural network (such as LSTM or GRU) denoted as 
RNN(·) and linear layers L(·), the generator generates a sequence of tokens Tgen = [t1, t2, · · · , tm] step by 
step. At each time step i, the hidden state hi of the RNN is updated based on the previous hidden state hi−1 and 
the previously generated token (or the initial noise vector at the first step), and then a linear layer predicts the 
probability distribution of the next token:

	 hi = RNN(hi−1, ti−1)� (16)

	 P (ti) = softmax(L(hi))� (17)

where ti−1 is the token generated at the previous step, and P (ti) is the probability distribution over the 
vocabulary for the i-th token.

The discriminator D is a binary classifier whose goal is to distinguish between real cultural relic data xreal 
and the synthetic data G(z) generated by the generator. It is usually implemented using convolutional neural 

Fig. 4.  Detailed Design of the GAN Module in the VBG Model, Illustrating the Generator and Discriminator 
Architecture and Their Adversarial Training Process for Generating Synthetic Relic Images to Address Data 
Scarcity and Class Imbalance Issues.
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networks for image data or feed - forward neural networks for text data. The discriminator takes an input sample 
x (either xreal or G(z)) and outputs a probability score D(x) indicating the likelihood that the input is real data. 
Mathematically, for an input sample x, the discriminator’s output is calculated as:

	 D(x) = σ(F (x))� (18)

where F (x) represents the feature extraction and transformation operations within the discriminator (such as 
convolutional layers or fully - connected layers), and σ(·) is the sigmoid function that maps the output of F (x) 
to a probability value in the range of (0, 1).

The training of the GAN module is based on an adversarial game between the generator and the discriminator. 
The objective function of the GAN, which defines the adversarial loss, is formulated as follows:

	
minG max

D
V (D, G) = Exreal∼pdata(x)[log D(xreal)] + Ez∼pz(z)[log(1 − D(G(z)))]� (19)

where E[·] represents the expectation, pdata(x) is the distribution of real cultural relic data, pz(z) is the 
distribution of the noise vector, and V (D, G) is the value function that measures the performance of the 
discriminator and the generator.

During training, the discriminator is updated to maximize the value function V (D, G), aiming to 
correctly classify real data as “real” (maximizing log D(xreal)) and generated data as “fake” (maximizing 
log(1 − D(G(z)))). The generator, on the other hand, is updated to minimize V (D, G), trying to make the 
discriminator misclassify the generated data as real (minimizing log(1 − D(G(z)))). Through iterative updates 
of the generator and discriminator, the generator gradually learns to produce data that is indistinguishable from 
real cultural relic data, effectively augmenting the dataset for training the VBG Model.

In the context of museum cultural relic classification, the synthetic data generated by the GAN module, 
whether images or texts, is integrated into the training process of the BERT and ViT modules. This augmentation 
enriches the diversity of the training data, enabling the overall model to learn more comprehensive features and 
improving its performance in classifying cultural relics with limited real - world data.

Expertment
Dataset selection and preprocessing
In the research of museum artifact classification, the quality and diversity of datasets directly influence the 
training effect and generalization ability of the model. To fully verify the effectiveness of the VBG Model in 
multi-modal data processing and artifact classification tasks, this study carefully selects two datasets: The MET 
Dataset and MS COCO. The former focuses on the field of artworks, while the latter covers a wide range of 
object detection and image captioning scenarios. The combination of these two datasets provides rich and 
complementary data support for model training. To ensure experimental reproducibility and reliable results, 
both datasets used a stratified sampling strategy, splitting the training, validation, and test sets into a ratio of 
8:1:1. In the MET dataset, samples were distributed according to this ratio within each major category of artifacts 
(e.g., paintings, sculptures, and bronzes) to avoid concentrating samples of niche categories (e.g., East Asian 
lacquerware and Ancient Egyptian amulets) in a single partition. The MS COCO dataset used stratified sampling 
by object category to ensure that the distribution of categories within each partition was consistent with that 
of the original dataset. A fixed random seed of 42 was used to control the randomness of the data partitioning 
process. The detailed information of the datasets is shown in Table 1.

The MET Dataset40 contains over 100,000 images of artworks, covering various types of artifacts such as 
paintings and sculptures. Its extensive range of categories offers sufficient samples for the model to learn the 
characteristic differences among artifacts. This dataset not only includes images of artifacts but also detailed 
textual descriptions, covering information about artists, creation periods, and art styles. These textual and image 
data form high-quality multi-modal data pairs, which can effectively support the model in jointly learning the 
historical and cultural connotations and visual features of artifacts. It is particularly suitable for cultural heritage 
classification and art style analysis tasks.

The MS COCO dataset41 consists of more than 330,000 images, covering 80 object categories, with each 
image paired with five textual descriptions. Although this dataset is not specifically designed for artifacts, its 
abundant image-text pairs and diverse object scenes enable the model to learn general cross-modal data fusion 
methods and enhance its feature extraction capabilities under complex backgrounds and different object forms. 
Combining it with The MET Dataset can improve the robustness of the model in multi-modal data processing 
and provide a broader perspective for feature learning in artifact classification tasks. Through the collaborative 

Dataset Field
Number 
of Images Number of Categories Description

MET Artworks (including paintings, 
sculptures, and other artifacts) 100,000+

Multiple types 
(paintings, sculptures, 
etc.)

Detailed descriptions of artworks including artist, creation period, and art style. Suitable 
for art style analysis, cultural heritage classification, and research.

MS COCO Object detection and image 
captioning 330,000+ 80 object categories Each image is paired with 5 text descriptions, covering a variety of objects such as animals, 

furniture, and people. Mainly used for object detection and image captioning tasks.

Table 1.  Detailed Information of The MET Dataset and MS COCO, Highlighting Their Characteristics, Image-
Text Pairing, and Relevance to Multimodal Learning Tasks.
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use of these two datasets, this study can construct diverse training and testing scenarios to comprehensively 
evaluate the performance of the VBG Model.

Experimental setup and parameter configuration
To ensure effective training and efficient execution of the VBG model, this study meticulously configured the 
experimental hardware and software environments, as well as model hyperparameters. Regarding the hardware 
environment, the experiment utilized a high-performance GPU server to meet the requirements of multimodal 
data processing and model training. The GPUs, equipped with ample video memory and compute cores, 
supported parallel computation of the ViT, BERT, and GAN modules, effectively shortening the training cycle. 
Furthermore, the combination of a high-speed CPU and large-capacity memory ensured smooth data reading, 
preprocessing, and model parameter updates.

The software environment was built on the Ubuntu 20.04 operating system, using PyTorch 1.9.0 as the 
deep learning framework. Its flexible tensor operations and modular design facilitated the development and 
debugging of various model components. GPU-accelerated computing, leveraging CUDA 11.1, significantly 
improved training efficiency. Python 3.8 was used as the programming language, combined with NumPy and 
Pandas for data preprocessing, Matplotlib for visualization, the Transformers library for loading pre-trained 
BERT and ViT models, and Scikit-learn for calculating evaluation metrics, forming a complete experimental 
toolchain.

The model hyperparameter settings are determined by combining the characteristics of each module with 
experimental debugging and optimization, as shown in Table 2.

Evaluation metrics
To assess the performance of the VBG Model in classifying museum artifacts, multiple evaluation metrics are 
employed, including Accuracy, mean Average Precision (mAP), F1-Score, Recall, and Area Under the Curve 
(AUC). These metrics offer a comprehensive quantification of the model’s classification effectiveness when 
handling multi-modal artifact data.

	
Accuracy = T P + T N

T P + T N + F P + F N
� (20)

	
P recisionc = T Pc

T Pc + F Pc
, Recallc = T Pc

T Pc + F Nc
� (21)

	
mAP = 1

C

C∑
c=1

APc� (22)

	
F 1 = 2 × P recision × Recall

P recision + Recall
� (23)

	
Recall = T P

T P + F N
� (24)

	
F P R = F P

F P + T N
, T P R = T P

T P + F N
� (25)

Training loss and validation loss
As can be seen from Fig. 5, as the training progresses, the training loss of the two datasets gradually decreases, 
indicating that the model effectively learns the characteristics of the data during the training process.

Module Hyperparameter Value Description

ViT

Image size 224 × 224 Image input size for the ViT module.

Patch size 16 × 16 Each image is divided into patches of 16 × 16 pixels.

Hidden dimension 768 The size of the token embedding space in ViT.

Number of layers 12 The number of transformer layers used in ViT.

Number of heads 12 The number of attention heads in each transformer layer.

BERT

Max sequence length 128 The maximum length of the tokenized text sequence.

Hidden size 768 The size of BERT’s hidden layer.

Number of layers 12 The number of transformer layers used in BERT.

Batch size 32 The batch size for text input during training.

GAN

Latent space dimension 100 The dimensionality of the noise vector input to the generator.

Generator learning rate 10−4 Learning rate for the generator.

Discriminator learning rate 10−4 Learning rate for the discriminator.

Batch size 64 The batch size for both generator and discriminator.

Table 2.  Hyperparameter Settings for VBG Model’s ViT, BERT, and GAN Modules.
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For the MET Dataset, training loss gradually decreased between epochs 5 and 10 and began to stabilize. 
However, validation loss showed a slower decline and exhibited some fluctuations at certain times. Subsequent 
statistical analysis of the model’s performance on the validation set (e.g., the coefficient of variation of validation 
accuracy was 3.2%, which is relatively low) indicates that while the model exhibited local fluctuations, it was 
not severely overfitted overall and still generalized well to the validation data. Similar trends were observed in 
the training and validation loss curves for the MS COCO Dataset, with particularly pronounced fluctuations in 
validation loss. We further compared the performance of the model on the test set at different training epochs 
and found that after epoch 15, fluctuations in test accuracy remained within 2%, demonstrating that the model 
also possesses stable generalization capabilities on this dataset, and that validation loss fluctuations are not due 
to overfitting. Overall, the volatility and gradual convergence of training and validation loss indicate that the 
VBG model’s training process on both datasets is stable. Additional analysis of performance on the validation 
and test sets confirms that the model does not suffer from significant overfitting. The steady decline in training 
loss and the fluctuations in validation loss provide important feedback, helping us better understand the model’s 
training dynamics and optimization directions.

Confusion matrix
Figure 6 presents confusion matrices that illustrate the classification accuracy and error patterns of the model 
on the two datasets.

On The MET Dataset, the model demonstrates high classification accuracy across most categories. In 
particular, for the “Painting” and “Sculpture” categories, the model achieves near-perfect classification without 
any misclassifications. The “Crafts” category also yields favorable results, although there are some instances of 
misclassification into the “Other” category. The classification performance for “Animals” and “Buildings” remains 
stable, with only a few misclassifications observed in the “Crafts” category. Overall, the VBG Model performs 
commendably on The MET Dataset, accurately identifying various artworks, especially in typical categories.

Regarding the MS COCO Dataset, the model showcases robust classification capabilities, particularly in 
categories such as “Person”, “Animal”, and “Furniture”, where misclassifications are almost non-existent. For 
other categories, while the majority are correctly classified, some misclassifications occur in specific categories 
like “Technology” and “Music”. These inaccuracies primarily stem from the visual similarities among certain 
categories, posing challenges for the model to distinguish precisely. Nevertheless, the VBG Model maintains 
stable performance on the MS COCO Dataset, effectively differentiating most categories.

Comparative experiments
Baseline model selection
To comprehensively evaluate the performance of the VBG model (ViT-BERT-GAN model), we selected eight 
existing classification methods as baseline models, covering different types of models, including convolutional 
neural networks (CNNs), visual transformers (ViT), and traditional machine learning methods. Among them, 
SWIM-ViT42, a popular and efficient ViT variant in recent years, uses a windowed attention mechanism to 
balance feature extraction capabilities and computational efficiency. This allows for a targeted comparison of 
the synergistic advantages of the ViT module and cross-modal fusion mechanism in this study’s VBG model. 
ResNet43 and DenseNet44, as deep CNNs, were chosen for comparison due to their powerful image feature 
extraction capabilities. The former avoids gradient vanishing through residual connections, while the latter 

Fig. 5.  Training and Validation Loss Curves for The MET Dataset and MS COCO Dataset: This figure displays 
the volatility and convergence trends of the training and validation losses during the training process, and 
compares them with ideal training and validation loss curves to help analyze the model’s performance and 
stability at different stages.
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improves feature reuse through dense connections. To compare lightweight models, we selected SqueezeNet45, 
which is suitable for scenarios with limited computational resources due to its reduction in parameters and 
computational complexity. Additionally, considering textual information, TextCNN46 was selected as a baseline 
model, as it extracts text features using convolution operations, making it suitable for processing relic description 
text. To further compare the performance of different CNN architectures, Inception-V347 and VGG-1648 were 
also chosen as baseline models. The former utilizes multi-scale convolutions for feature extraction, while the 
latter performs well in standard classification tasks with its simple and effective structure. To contrast deep 
learning methods with traditional ones, XGBoost49,50 was selected as an ensemble learning model, which uses 
gradient boosting decision trees for efficient classification, suitable for structured data analysis. These baseline 
models will help us compare the performance of the VBG Model in terms of classification accuracy, training 
time, and other aspects.

Results analysis
From the comparative results shown in Table 3, it is evident that the VBG Model outperforms other baseline 
models in classification performance on both The MET Dataset and MS COCO Dataset. Particularly in key 
metrics such as accuracy, mAP, F1 score, recall, and AUC-ROC, the VBG Model achieves the best performance, 
demonstrating its powerful capability in relic classification tasks.

On the MET Dataset (museum artifact-specific dataset), the VBG Model demonstrates superior performance 
across all evaluation metrics, fully validating its advantages in the multimodal artifact classification task. The 
accuracy (Acc.) reaches 92%, which is 3 percentage points higher than the enhanced SWIM-ViT (89%) and 
4 percentage points higher than the original second-ranked Inception-V3 (88%), showing stronger artifact 
category differentiation capabilities. The mean Average Precision (mAP) is 0.85, which improves by 0.04 and 
0.06 over SWIM-ViT (0.81) and Inception-V3 (0.79), respectively. This indicates that the VBG Model can more 
accurately match target categories, reducing category confusion when processing diverse artifact types like 
paintings and sculptures. The F1 score (88%), recall (Rec., 89%), and AUC-ROC (0.94) also outperform other 
models by a large margin. For example, the F1 score is 5 percentage points higher than SWIM-ViT (83%) and 10 
percentage points higher than the traditional image model ResNet (78%). This advantage stems from the VBG 
Model’s use of a bidirectional attention fusion layer to deeply correlate the visual details of artifact images with 
the historical semantics in text, capturing a more comprehensive set of classification features. Notably, the VBG 
Model’s training time is only 12 hours, shorter than SWIM-ViT (17 hours) and Inception-V3 (16 hours), while 
still maintaining high accuracy and training efficiency. This prevents resource consumption issues caused by 
excessively complex models.

On the MS COCO Dataset (a general image-text dataset), the VBG Model maintains stable performance, 
further demonstrating its generalization capability. The accuracy reaches 90%, 4 percentage points higher than 
SWIM-ViT (86%) and 7 percentage points higher than DenseNet, which is focused on image classification (83%). 
The AUC-ROC is 0.92, improving by 0.02 and 0.06 over SWIM-ViT (0.90) and DenseNet (0.86), respectively. 
Despite the MS COCO Dataset containing 80 complex object categories with some visual similarity (such as 
between “Technology” and “Music”), the VBG Model effectively overcomes this challenge through its cross-
modal fusion mechanism and GAN data augmentation module. The diverse samples generated by GAN provide 
richer training data for ViT and BERT, reducing misclassifications caused by category similarity. Compared to 
the lightweight model SqueezeNet, the VBG Model achieves an 11 percentage point improvement in accuracy 
and a 14 percentage point increase in F1 score (86%) while maintaining similar training time (12 hours vs. 8 

Fig. 6.  Confusion matrices optimized for the MET and MS COCO datasets, showing the match between 
the predicted and true labels for each category in the optimized classification model, highlighting the high 
accuracy and robustness of the model in handling multi-class artifact and object classification tasks.
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hours), highlighting the superiority of its “cross-modal synergy + data augmentation” architecture design over 
simple reliance on model complexity.

Whether on the MET Dataset or the MS COCO Dataset, the VBG Model leverages the synergistic effect of 
BERT, ViT, and GAN to play a unique role in multimodal feature fusion and scarce data augmentation. Even 
when compared with advanced models like SWIM-ViT, it still exhibits significant overall advantages in accuracy, 
efficiency, and generalization. This provides a reliable technical solution for digital classification of museum 
artifacts and handling of multimodal sparse data in the field of cultural heritage.

Ablation experiments
The results of the ablation experiment shown in Table 4 clearly show how each core component of the VBG 
model contributes to the model’s performance on the MET and MS COCO datasets.

On the MET dataset, when we remove ViT, the model’s accuracy drops to 88% and the mAP drops to 0.81. 
This indicates that ViT plays an essential role in extracting the overall features of cultural artifact images and 
capturing visual details. Without this component, the model’s ability to process image information is weakened, 
leading to poor classification accuracy. When we remove BERT, the accuracy drops to 89% and the mAP drops 
to 0.82, indicating that BERT can deeply mine semantic information in text, which is crucial for supplementing 
image features and refining multimodal representations of cultural artifacts. Without BERT, the model cannot 

DataSet Model Acc. (%) mAP F1 (%) Rec. (%) AUC Train Time (hrs)

The MET Dataset

VBG Model (ours) 92 0.85 88 89 0.94 12

without ViT 88 0.81 84 85 0.90 10

without BERT 89 0.82 85 86 0.91 10

without GAN 83 0.74 78 79 0.84 8

without ViT & BERT 85 0.77 81 82 0.88 9

without BERT & GAN 84 0.75 80 81 0.86 8

without ViT & GAN 86 0.78 82 83 0.89 9

MS COCO Dataset

VBG Model (ours) 90 0.83 86 85 0.92 12

without ViT 86 0.78 81 80 0.88 10

without BERT 87 0.79 82 81 0.89 10

without GAN 80 0.72 74 73 0.81 8

without ViT & BERT 82 0.75 77 76 0.84 9

without BERT & GAN 81 0.73 75 74 0.83 8

without ViT & GAN 83 0.76 78 79 0.86 9

Table 4.  Ablation Experiment Results: Performance comparison of the VBG Model with different components 
removed on The MET and MS COCO datasets.

 

DataSet Model Acc. (%) mAP F1 (%) Rec. (%) AUC Train Time (hrs)

The MET Dataset

ResNet 85 0.75 78 77 0.88 15

DenseNet 87 0.77 80 79 0.89 14

SqueezeNet 83 0.72 74 74 0.85 8

TextCNN 82 0.71 73 72 0.84 10

Inception-V3 88 0.79 81 80 0.91 16

VGG-16 84 0.74 76 75 0.87 14

XGBoost 80 0.69 72 70 0.83 6

SWIM-ViT 89 0.81 83 82 0.92 17

VBG Model (ours) 92 0.85 88 89 0.94 12

MS COCO Dataset

ResNet 81 0.73 76 75 0.84 15

DenseNet 83 0.75 78 77 0.86 14

SqueezeNet 79 0.70 72 71 0.82 8

TextCNN 78 0.68 70 69 0.80 10

Inception-V3 85 0.77 79 78 0.88 16

VGG-16 80 0.72 74 73 0.83 14

XGBoost 76 0.65 69 68 0.79 6

SWIM-ViT 86 0.79 81 80 0.90 17

VBG Model (ours) 90 0.83 86 85 0.92 12

Table 3.  Comparison of the performance results of the VBG Model and six other advanced models in terms of 
accuracy, mAP, F1 score, recall, and AUC-ROC on The MET and MS COCO datasets.
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fully utilize the important information contained in the text. When we remove GAN, the model’s performance 
drops significantly, with the accuracy dropping to 83% and the mAP dropping to 0.74. This highlights the 
important role of GANs in addressing data scarcity and increasing data diversity. The drawback of GANs is 
insufficient training data, which makes it difficult for the model to learn comprehensive feature patterns and 
affects the generalization ability. In addition, removing two or three components simultaneously further reduces 
the model performance. For example, removing ViT and BERT reduces the accuracy to 85%, which also proves 
that multimodal feature fusion is necessary to improve the model performance.

On the MS COCO dataset, a similar trend is observed in the ablation experiments. When ViT is removed, 
the accuracy drops to 86% and the mAP is 0.78, which indicates that ViT is very important in extracting effective 
visual features when processing complex image scenes. When BERT is removed, the accuracy is 87% and the 
mAP is 0.79, which indicates that BERT is essential for integrating cross-modal information. After removing 
GAN, the accuracy is only 80% and the mAP is 0.72. This proves the importance of GAN in data augmentation 
and improving the robustness of the model. Furthermore, by observing the training time, we can see that the 
training time is reduced after removing the components, but the model performance also decreases accordingly. 
This indicates that although the training time of the VBG model is relatively long, the joint efforts of various 
components can improve the performance.

The results of the ablation experiment fully demonstrate the irreplaceable nature of ViT, BERT, and GAN in 
the VBG model. These synergistic effects greatly improve the model’s performance in the multimodal cultural 
relics classification task, providing a solid foundation for the model’s effectiveness and stability.

Visualization results
Figure 7 illustrates the attention regions of the VBG Model on images of different artifact categories (such as 
paintings and sculptures) during the classification process. Through the heatmaps, it is evident that the model 
can accurately identify and focus on the key areas within the images. For instance, when classifying paintings, the 
model’s attention is concentrated on the facial features and hand details of the figures. In the case of sculptures, 
the model pays more attention to the facial features and overall morphology. This indicates that the VBG Model 
effectively integrates the important features in the images with category information, capturing the visual cues 
that distinguish different types of cultural relics. The results of these heatmaps further validate the model’s 

Fig. 7.  Heatmap of Areas Focused on by the VBG Model, which shows the areas of focus by the model in relic 
classification for different categories of relic images (painting and sculpture). Note: The photographs in Figure 
7 were taken by the corresponding author for this study and no permissions were required for the same.
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meticulousness and powerful capabilities in handling complex images, especially in the classification of artifact 
images, where it can focus on the details crucial for classification decisions.

Figure  8 presents the visualization results of the fusion of image and text features. The figure shows an 
example where image features and text features exist in the same feature space. It can be seen that image features 
of different types (e.g., painting, plastic, ceramic, jewel, etc.) and their corresponding text features exist in the 
same feature space. The features of paint, plastic, ceramic, and beads are prominently formed between them, 
which shows that the VBG model can effectively integrate modular information. The model can more accurately 
capture the features of each document type during multi-mode data processing, which improves the separation 
rate and robustness. The spatial distribution shows the superiority of the VBG model in terms of fusion image 
and document features, which demonstrates the use power of the model within document types.

The observed results prove the effectiveness and standardity of this model in document segmentation work, 
and subsequent application research provides theoretical foundations and technical support for this model.

Conclusion
This study addresses the challenges in museum artifact classification and proposes a multimodal artifact 
classification model, VBG Model, which integrates BERT, Vision Transformer (ViT), and Generative Adversarial 
Network (GAN). The effectiveness of the model is validated through experiments on the MET and MS COCO 
datasets. In the comparison experiments, the VBG Model significantly outperforms six advanced models, 
including ResNet and DenseNet, in terms of accuracy, mAP, F1 score, and other metrics. The accuracy of VBG 
Model reaches 92% on the MET dataset and 90% on the MS COCO dataset. Ablation experiments show that the 
three core components, ViT, BERT, and GAN, are essential for performance improvement. Together, they enable 
the deep fusion of image and text features and data augmentation. Visualization results intuitively demonstrate 
the model’s precise capture of key image features and the efficiency of cross-modal information fusion.

The advantages of the VBG Model can be summarized in three points: First, the combination of BERT and 
ViT allows for the deep fusion of artifact image and textual information across modalities, enabling the model 
to capture artifact features more comprehensively than single-modality models. Second, the introduction of 
GAN for data augmentation alleviates the issue of data scarcity in artifact datasets, enhancing the model’s 
generalization ability in small-sample scenarios. Third, the model’s strong performance across multiple metrics 
and datasets proves its stability and reliability. However, the model also has some limitations. On one hand, the 

Fig. 8.  Visualization of Image and Text Feature Fusion: This figure shows the distribution of image and text 
features in the same feature space.
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complex structure leads to longer training times and higher computational resource consumption. On the other 
hand, the ability to finely differentiate highly similar artifact categories still needs improvement.

Subsequent research will further deepen its focus on model optimization and application expansion. 
Regarding model optimization, the team will explore more efficient network architectures and lightweight 
designs to reduce complexity and shorten training time. Advanced feature extraction and fusion techniques 
will also be employed to enhance the ability to distinguish between similar artifact categories. Metadata such 
as age, origin, and material will be incorporated into structured feature vectors and integrated with visual and 
textual features to enhance classification accuracy. Furthermore, cross-domain feature transfer will be optimized 
through techniques such as domain adversarial training and domain-adaptive pre-training, bridging the 
semantic gap between artifacts and general objects. Regarding application expansion, the VBG Model will be 
deployed in more real-world museum classification scenarios. Feedback from non-technical staff will be used 
to refine the visual decision-making report and lightweight interface for linked image and text annotation. This 
will enhance decision-making credibility by displaying the key artifact regions targeted by the model and their 
correlation with text, as well as recommending similar examples from the collection. Furthermore, the team 
will explore integrating the Internet of Things and virtual reality technologies to build an intelligent artifact 
management system, promoting the digital development of cultural heritage preservation. Furthermore, during 
the targeted optimization of sample quality, qualitative evaluation by experts in the field of artifacts will be 
incorporated to verify the authenticity of GAN samples, enabling the model to be applied in more scenarios.

Data availability
The datasets used in this study are publicly available at the following locations: The MET ​D​a​t​a​s​e​t​:​h​t​t​p​s​:​/​/​w​w​w​.​k​
a​g​g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​m​e​t​m​u​s​e​u​m​/​t​h​e​-​m​e​t​; MS COCO Dataset: MSCOCODataset: ​h​t​t​p​s​:​/​/​h​u​g​g​i​n​g​f​a​c​e​.​c​o​/​d​a​t​a​
s​e​t​s​/​s​h​u​n​k​0​3​1​/​M​S​C​O​C​O​​​​​.​​
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