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BERT and multimodal feature
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Counterfeit goods are often imitated through the similarity of pronunciation or character shape

of the trade name, for example, ‘i H ' is altered to ‘i 7 52/, and this text-level imitation

means brings great trouble to consumer identification. However, there is a scarcity of research on
intelligent recognition techniques for this phenomenon. Although the Chinese Spelling Correction
(CSCQ) technique provides some ideas for solving this problem, it still faces the challenges of scarce
datasets, significant interference of erroneous characters with the contextual semantics, and high
confusion between erroneous characters and correct characters in terms of pronunciation or glyphs
in practical applications. In view of the above problems, this paper proposed a Corrector-Detector
Auxiliary Network named CDANet. Specifically, (i) A lightweight Transformer Block is used to assist
in locating erroneous characters to reduce their interference with contextual semantics; (ii) The
multimodal information of erroneous characters is deeply exploited by integrating glyph, pinyin,
and semantic features to enhance the correction accuracy; (iii) A counterfeit goods text dataset
(CGT-Dataset) containing 289,851 samples was constructed to alleviate the problem of data scarcity.
The experimental results show that CDANet achieves the current optimal performance on the self-
built CGT-Dataset and exhibits excellent generalization ability on three public benchmark datasets,
providing an efficient solution for counterfeit goods text recognition.

Keywords Counterfeit Goods, Intelligent Recognition of Counterfeit Goods, Chinese Spelling Correction,
Counterfeit Goods Dataset

In the context of globalized markets, the proliferation of counterfeit goods has become a serious problem that
needs to be solved. These counterfeit goods not only violate intellectual property rights, but also pose a significant
threat to consumer health and safety'~>. Counterfeit goods usually mislead consumers by imitating the name or
trademark of a well-known brand and creating the illusion of a strong auditory or visual similarity. For example,
the well-known brand ‘3£ #” has been altered to ‘-3 7’, which is very similar to the word shape of the two,
and this kind of counterfeiting technique is very confusing. As shown in Fig. 1, the red marking is the tampered
character and the orange marking is the corresponding correct character.

In order to effectively identify and combat these counterfeiting behaviors, traditional manual review means
are already difficult to effectively deal with them, and automation technology is urgently needed to improve
detection efficiency and precision. However, there is a scarcity of research on intelligent identification of
counterfeit goods text specifically targeting phonetic or glyph similarity. In view of the fact that the core of
this task lies in the detection and correction of erroneous characters, the Chinese Spelling Correction (CSC)
technology provides a new way of thinking for solving this problem due to its unique advantages in the detection
and correction of erroneous characters. The CSC task focuses on recognizing and correcting a small number of
erroneous characters by keeping the length of the input and output sequences consistent, and its characteristics
are highly compatible with the counterfeiting of counterfeit goods texts through minor textual changes *°.

In recent years, with the successful application of large pre-trained language models, CSC tasks have made
significant progress and have been widely applied to many downstream tasks, such as named entity recognition,
Optical Character Recognition (OCR) and Automatic Speech Recognition (ASR) 7. However, directly applying
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Wrong: 75704k A 4hig K
Wahaha Drinking Pure Water

4 éd

| Phonological Error: I
'l I 05 1 (Wahaha) -> 415 5 (Wahaha) /l

Correct: bR R k% K
Drinking Pure Water

(a) Phonological Spelling Correction

Wrong: % &R % R AREAA
WanglLaoGu Herbal Tea Natural Plant Beverage

443

| Visual Error: I
L F 27 (WangLaoGu) -> F # 7% (WangLaoJi) /(

Correct: AR KA
Herbal Tea Natural Plant Beverage

(b) Visual Spelling Correction

Fig. 1. Example of counterfeiting using harmonics and word similarity.

CSC technology to intelligently identify counterfeit product texts with similar pronunciation or character forms
presents numerous challenges. First, the severe scarcity of product text datasets hinders effective progress in
related research. Second, the presence of erroneous characters disrupts overall semantic information, leading
to biased semantic understanding. As noted in relevant studies ¢, approximately 83 % of textual errors relate
to phonetic similarity, while 48 % relate to visual similarity. The morphological and phonetic diversity of these
erroneous characters further complicates recognition. Most critically, the counterfeit product text recognition
task possesses unique characteristics distinct from general CSC. General CSC addresses randomly distributed
errors (e.g., spelling and grammatical mistakes) within sentences, whereas counterfeit text errors are typically
deliberate, targeted, and concentrated on specific key phrases like brand names. Such errors exploit high phonetic
and visual similarity to deceive consumers. This targeted nature means surrounding text often remains coherent,
making detection difficult for standard language models reliant on overall sentence entropy values. Though only
a single character, the erroneous character severely disrupts the most critical semantic entities within the text,
creating a unique challenge that generic CSC methods struggle to address.

To tackle these specific challenges, we argue that a generic CSC model is insufficient. The targeted nature of
counterfeit text errors requires a specialized architecture. Therefore, we propose a Corrector-Detector Auxiliary
Network, CDANet, which is explicitly designed to first isolate the disruptive erroneous characters before
attempting correction, a crucial step to preserve contextual integrity. The framework consists of two parts: the
Auxiliary Position Detection Network and the Corrector. The Auxiliary Position Detection Network utilises two
lightweight Transformer Blocks to pinpoint erroneous characters, thus effectively reducing the interference of
erroneous characters with the contextual semantics. Its output final hidden states are not only used for binary
classification loss optimisation, but also deeply fused with semantic features to generate fused semantic features,
which provide more accurate contextual information for the subsequent correction process. The corrector
further integrates fused semantic features, pinyin features and glyph features to learn multimodal features of
erroneous characters. The pinyin features learn the phonetic information of the erroneous characters through
1D convolution and pooling operations. The glyph features use Tianzige-CNN to capture the visual information
of erroneous characters to achieve multi-dimensional visual feature construction. The fused semantic features,
on the other hand, combine the contextual information provided by Bert and the knowledge provided by the
auxiliary position detection network. The end-to-end multimodal feature fusion training makes full use of the
multimodal information of erroneous characters to achieve accurate character correction.

The main contributions of this study are summarized as follows: (i) We propose an innovative end-to-end
framework, CDANet, which uniquely integrates an auxiliary position detection network with a multimodal
corrector through a refined two-stage fusion mechanism. This approach addresses the problem by mitigating
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semantic interference and improving recognition accuracy for highly similar characters. (ii) We introduce an
auxiliary position detection network with dual functionality. This lightweight network not only precisely locates
erroneous characters through explicit supervision, effectively reducing their interference in subsequent tasks,
but also enhances semantic representations via hidden state fusion, providing richer contextual information for
the corrector. (iii) Constructs the large-scale counterfeit goods text dataset CGT-Dataset, comprising 289,851
forged text samples involving phonetic and orthographic similarity errors. Comprehensive validation on this
dataset and three public benchmarks demonstrates that CDANet achieves state-of-the-art performance on CGT-
Dataset while exhibiting robust generalization capabilities, providing an effective solution for counterfeit goods
text forgery.

Related work

Counterfeit goods detection

Combating counterfeit goods is a long and arduous task. At present, methods of identifying counterfeit goods
fall into two main categories.

The first category is methods based on overt or covert technical means. Overt technical means include
holograms, watermarks, color-changing inks, and product serial numbers® 1. Covert technical means, on the
other hand, are similar to overt techniques and cover RFID tags, QR codes, biological, chemical or microscopic
markers, digital watermarks or anti-counterfeit inks*'>!3. Although these methods have proven reliable in
real-world applications, they still have significant limitations: overt identification methods usually rely on
authentication details on the surface of the item, which can be easily duplicated or removed by imitators through
reverse engineering; covert methods, although more secure, are difficult for many organizations to integrate
effectively due to the need to be deeply embedded in the production process.

The second category is methods based on deep learning techniques. For example, Garcia-Cotte H et a
developed a deep neural network-based image recognition system for smartphones, which is capable of
detecting counterfeit products with high accuracy without the need for special security labels or any alterations
to the products. Mishra et al.'® utilized a variety of algorithms including support vector machines, convolutional
neural networks, linear regression, and logistic regression, to achieve highly accurate detection of counterfeit
medicines. Peng ] et al.' proposed Hybrid Attention Network (HANet) for detecting counterfeit luxury
handbags, which combines spatial and channel attentional units to learn the important information and is
trained with an appraiser-guided loss function to be able to recognize the subtle differences between genuine and
fake products. However, these deep learning-based methods mainly focus on the recognition of visual features,
and it is difficult to properly deal with the problem of pronunciation or word similarity in the text of counterfeit
goods information.

Given that the key to the intelligent recognition of counterfeit goods text lies in the detection and correction
of erroneous text, the CSC technology is highly adaptable to this task. Therefore, this study tries to realize this
goal with the help of CSC technology.

1.14

Chinese spelling correction

The CSC task has a long history of research. The task traditionally focuses on word substitution, with input
and output sentences of the same length, and a relatively single form, and most of the research is based on
the SIGHAN13/14/15 evaluation task dataset. Early studies'é~'® mainly used unsupervised learning methods
to identify potential errors by constructing a confusion set and determining the correctness using the language
model perplexity. Some subsequent studies modeled the Chinese Spelling Correction task as a sequence labeling
problem and solved it with the help of Conditional Random Field (CRF) or Hidden Markov Model (HMM)!*-%0,

CSC task has a long history of research. Traditionally, this task mainly focuses on word substitution, with
the same length of input and output sentences, in a relatively single form, and the research is mostly based on
the SIGHAN13/14/15 evaluation task dataset. Early studies'é~'® mainly used unsupervised learning methods
to identify potential errors by constructing a confusion set and determining the correctness using the language
model perplexity. Later approaches treated Chinese spelling correction as a sequence labeling problem, utilizing
models such as CRF or HMM to address the task!®2°.

With the rapid advancement of large-scale pre-training techniques in the field of natural language processing,
pre-trained models such as BERT have been extensively employed by numerous researchers to enhance the
performance of the CSC task. These models are able to efficiently correct erroneous characters by virtue of their
powerful ability to capture contextual semantic information. For example, Zhang et al.*! proposed Soft-Masked
BERT, a two-stage detection and correction method, which first detects erroneous characters in the text by error
probability masking, and then feeds the masked input into the BERT model for error correction. The REALISE
model??, on the other hand, takes a different approach by combining the information from three modalities,
namely text, sound and vision, to comprehensively capture the semantic, phonetic and graphical features of
Chinese characters, and significantly improves the performance of spell checking with the help of a selective
modal fusion mechanism.The bidirectional detector-corrector framework Bi-DCSpell proposed by Wu et al.?,
which includes independent detection and correction encoders as well as an innovative interactive learning
module, optimizes the representation learning process and further enhances the performance of the CSC task by
promoting the interaction of bidirectional features between detection and correction.

Although the significant progress made in CSC research, its performance in the task of intelligent recognition
of counterfeit goods text is unclear due to the highly scarce counterfeit goods text dataset. In view of this, this
study aims to address this issue and achieve intelligent recognition of counterfeit merchandise text by weakening
the negative impact of erroneous characters on contextual semantics as well as by leveraging the ability of
characters’ multimodal information for correction.
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Methodology
Problem formulation
The complexity and diversity of counterfeit goods pose a serious challenge to market supervision, especially
those cases of counterfeiting with the help of Chinese character pronunciation or character shape similarity,
which are extremely covert and greatly increase the difficulty of identification and supervision. Given that the
core of this task lies in the detection and correction of erroneous texts, CSC technology shows strong potential
as a specialized solution for such tasks.

The CSC task is a sequence labeling problem that transforms an input sequence of characters
X ={z1,x2,...,2z,} into an output sequence Y = {y1,y2,...,Yn}, where the incorrect characters are
corrected and the correct characters remain unchanged. Unlike other sequence-to-sequence tasks such as
machine translation or text summarization, the input and output sequences of the CSC task are of the same
length and most of the characters do not need to be changed, while only a few incorrect characters need to be
identified and corrected.

Model

Our model consists of a corrector and an auxiliary position detection network. In particular, the corrector
contains three feature extractors and a multimodal feature fusion operation. Figure 2 illustrates the structure
of our model. Given a sentence, our model first performs semantic feature extraction. At the same time, two
lightweight Transformer Blocks are used to capture sensitive positional information and deeply fuse it with the
semantic features to generate fused semantic features that provide more accurate contextual information for the
subsequent correction process. Immediately after that, pinyin features and glyph features are extracted for each
character, and finally these three features are subjected to multimodal feature fusion operation. Here, in order
to keep the dimension consistent after splicing, a linear projection layer is used for representation learning and
dimension transformation. Subsequently, the composite representation of each character is fed into the fully
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Fig. 2. Overview of the CDANet architecture. The auxiliary position detection network (right) reduces
interference with downstream tasks by explicitly supervising erroneous characters. It further integrates these
hidden states with semantic features from the BERT encoder (Equation 6). This fusion represents features
from the pinyin extractor (Equation 8) and character shape extractor (Equation 9), consolidated through
multimodal feature fusion (Equation 10) before being fed into the Transformer encoder for correction. In
the example input, regarding the erroneous character ‘“f~’(Wu2, meaning noon), we need not only contextual
information for assistance but also have to rely on the contextual information to help us to identify and
locate the erroneous character. information for assistance but also have to rely on the visual or phonetic
characteristics of the character itself to make a judgment.
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connected layer, which is responsible for computing the probability distribution of each character in the entire
vocabulary. Eventually, the character with the highest probability will be selected as the prediction result. In the
next subsections, we will delve into the specific implementation details of each module.

Semantic feature extractor

In line with previous studies*"?2, we employed BERT 2! as the core of our semantic encoder. BERT provides
extensive contextual semantic insights through unsupervised pre-training on vast text collections. When
presented with an input sequence X = {z1, 2, ..., zn}, the extractor utilizes the hidden states from the last
layer of BERT H® = {h{, h3, ..., h;} as semantic feature outputs, where h; € R% representing the dimension
of the semantic features d. Thls process is illustrated in the ’Semantic Feature Extractor’ block of Fig. 2.

Auxiliary position detection network

The Auxiliary Position Detection Network functions as a binary classification task, leveraging the Transformer
architecture. For an input text X = {z1,22,..., %}, the input to the detection network is the embedding
sequence E = (e, e2, ..., €y ), and this embedding sequence is is the sum of word embeddings and positional
embeddings. Each layer of Transformer uses the same block structure, which is defined as follows:

MultiHead(Q, K, V) = Concat(head:, heads, . . ., head, )W (1)
head; = Attention(QWS, KW, VW) )
FFN(X) :max(O,XW1+b1)W2+b2 (3)

Finally, the projection layer is utilized to project the coding vectors into a two-dimensional space, representing
the correct and incorrect probabilities of the characters at each position, respectively. Here, Q, K, and V denote
the current input sequence, which can be an embedding of a character or the output of the previous Transformer
block. FFN and MultiHead stand for Feedforward Network and MultiHead Self- Attention, respectively, which
are the basic building blocks of the Transformer model We denote the last layer of the hidden state s equence of

the Transformer module as H* = (h{, h4,..., h2), the probability of error detection is deﬁned as P, and the
probability distribution of the error of the ith character is derived by softmax operation 9

=oc(WH® +b) (4)

Q;—i =softmax(Wh; 4+ b) (5)

where P denotes the conditional probability and o represents the sigmoid activation function, W and b are the
parameters of the classifier.

It is worth noting that the hidden state H assumes a dual role. On the one hand, it is used to predict the
location of the error character. On the other hand, it passes the contextual location information to the semantic
feature extractor. This is because according to experiments®!, specifying the exact location of the error character
can significantly improve the effectiveness of the model. Based on this, we deeply fuse the hidden state H with
the final hidden state of the semantic feature extractor to fully utilize its role.

FS _ Hs +Hd, FS c RLXdS (6)

where F'° denotes the final semantic feature representation, ds is the dimension of the final semantic feature,
and L denotes the length of the input sentence. This process is illustrated in the Auxiliary Position Detection
Network block of Fig. 2.

Pinyin feature extractor

The pinyin of a Chinese character consists of three parts: consonants, rhymes and tones. There are 21 consonants
and 39 rhymes, and they are represented by English letters. The five tones, on the other hand, can be represented
by numbers. Taking the ending ‘@’ as an example, a, d, @, @, @ can be mapped to the numbers 1,2,3,4,0. Specifically,
we obtained the pinyin representation based on PyPinyin (a Chinese character-to-pinyin library in Python). For
a given input sentence X = {x1, 2, ...,Zn}, we processed the character =; one by one. First, the character
x; is converted to the overall pinyin form. Then, we strictly follow the Hanyu Pinyin Scheme to process the
consonants and rhymes, and obtain the consonant, rhyme, and tone, i.e., the three separated forms of pinyin, for
each character x;. Then, the overall pinyin of each character and its separated forms of pinyin are connected and
converted into the corresponding id representation as the final pinyin representation.

pi [ pflll pi?itial . pgiinal .pzl"ione ] (7)

where [ J denotes the concatenation operation between embeddings, p, !is the overall pinyin string representation
nitial  Final ,Tone

of z;, Pi; s Dz, P denotes the three separated forms of consonants, rhymes, and tones respectively,

and p; is the final pinyin representatlon Finally, we apply a CNN network with a convolutional kernel of 2 and

a maximum pooling function to extract the pinyin information.

F¥ = pool (conv (pi)), F© e RF* (8)
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where F'T denotes the final pinyin feature representation, d,, is the dimension of the pinyin embedding, and L
denotes the length of the input sentence. This process is illustrated in the Pinyin Feature Extractor’ block of Fig.
2.

Glyph feature extractor

Glyph features are extracted using a Glyce encoder called Tianzige-CNN structure?. Tianzige (‘%) is a
traditional form of Chinese calligraphy. It is a four-square format (similar to the Chinese character ‘H’), which
is ideal for beginners to practice writing Chinese characters. In a way, it is more relevant to the origin of Chinese
characters than other methods, such as object detection® or stroke sequences 2¢?’. Considering the meaning of
radicals, the frame structure and the current main usage of Chinese characters, the fonts KRR (IE3C) *and ¢
FAA’ were finally chosen.

In practice, the input image is first passed through a convolutional layer with 5 convolutional kernels and
1024 output channels with the aim of capturing the low-level graphical features of the image. Then, a maximum
pooling operation is performed on the generated feature map with a pooling kernel size of 4, aiming to reduce
the resolution of the feature map from 8x8 to 2x2. This 2x2 field grid structure effectively demonstrates
the arrangement of the internal radicals of Chinese characters and their writing order. Finally, we use group
convolution instead of the traditional convolution operation to map the field grid features to the final output.
In this study, two types of glyphs are used, namely, ‘K& (IE30) * and ‘B4’ Therefore, the original two-
dimensional dfont X dfont Needs to be changed to three-dimensional dgont X dfont X 2. Where dfont indicates
the font size and 2 indicates that there are two fonts.

For a given input sentence X = {z1,22,...,2,}, define its glyph embedding as follows:

FC = GlyphEncoder (z;) 9)

where F© € R*49, [ is the length of the input sentence and d is the dimension of the glyph embedding. This
process is illustrated in the ‘Glyph Feature Extractor’ block of Fig. 2.

Multimodal feature fusion

After the previous feature extraction, we obtain the fused semantic features F'°, pinyin features F'¥’ and glyph
features . To fully exploit the multimodal information of the erroneous characters, we employ a Multi-Layer
Perceptron (MLP) to consolidate these three types of features.

H=MLP ([F*.F".F]) (10)

where H € R%/ denotes the fused features, df denotes the dimension of the output from the Transformer
encoder, which is consistent with ds, dp, dg, and [-] denotes the concat operation between the features.

Subsequently, we utilize the Transformer encoder to thoroughly grasp these multimodal features and
ascertain the probability distribution of the i-th character g5 using the softmax function.

H, = Transformer(H;_1), I € [1, N] (11)
J; = softmax(Wh; +b), h;, € Hx (12)

where N denotes the number of Transformer layers, and W and b are trainable parameters learned during the
training process.

Finally, referring to the experience of?, we combined the loss from the token classification task, the glyph
classification task, and the auxiliary detection binary classification task to form our final training goal.

Loiyph = — logp(z|z) = — logsoftmax(W X himage) (13)

where z denotes the label of the font image x, and himage is the hidden state of the CNNs in Glyce.

Iy 4 d d .d
== d a 1 — 4N log(1 — o
Za - ;yz og(9;) + (1 — ;) log(1 — 97) (14)
Lo= =) logP( = yi | X) (15)
=1

where g5, yi denotes the predicted value and label of X, respectively, and 9, y¢ denotes the predicted value and
predicted probability of the detector, respectively, and the final training objective is given as follows:

Z = Zd + ogc + gglyph (16)

Experiments

Dataset

CGT-Dataset: The core data resources come from Jingdong Mall. Based on the product classification standards
of this e-commerce platform, we manually selected raw product descriptions from 29 core product categories,
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Class Quantity | Percentages | Class Quantity | Percentages
Food 13836 4.77% Indoor 10135 3.50%
Tea 13152 4.54% Mother and Baby 10109 3.49%
Furniture 12625 4.36% Computer 10073 3.48%
Jewellery 11834 4.08% Men’s Clothes 9501 3.28%
House Pet 11665 4.02% Fine Chemicals 9413 3.25%
Metal Hardware 11604 4.00% Numerals 9291 3.21%
Household 11248 3.88% Boots and Shoes 9233 3.19%
Womenswear 11071 3.82% Work Out 9228 3.18%
Beverage Preparation 10875 3.75% Luggage 9003 3.11%
Wine 10866 3.75% Undergarments 8749 3.02%
Home Decoration 10803 3.73% Musical Instruments 8497 2.93%
Beauty Products 10723 3.70% Personal Care Cleaning | 8236 2.84%
Domestic Electric Appliance | 10718 3.70% Adult Product 5679 1.96%
Children’s Clothing 10474 3.61% Mobile Phones 960 0.33%
Cookware 10250 3.54%

Table 1. Statistics of the CGT-Dataset.

Training Data | # Line | Avg.Length | # Errors
SIGHAN 2013 | 350 49.2 350
SIGHAN 2014 | 6,526 49.7 10,087
SIGHAN 2015 | 3,174 30.0 4,237
Wang271K 271,329 | 44.4 382,704
Test Data #Line | Avg.Length | # Errors
SIGHAN 2013 | 1,000 74.1 1,227
SIGHAN 2014 | 1,062 50.1 782
SIGHAN 2015 | 1,100 30.5 715

Table 2. Statistical data from generic domain datasets.

totaling 289,851 entries. This dataset encompasses multiple aspects of consumers’ daily lives, forming a text
corpus with broad representativeness and deep coverage. Since all raw texts are directly sourced from online
product sales descriptions, no anomalous data is included. For specific data distribution, please refer to Table 1.

To construct more authentic and representative counterfeit product text samples, we first conducted
an in-depth analysis of common error patterns in existing CSC benchmark datasets (e.g., SSIGHAN2013%,
SIGHAN2014%, SIGHAN2015, and Wang271K*). Our research revealed that these errors are highly
concentrated in homographs and homophones. Inspired by this, we designed a semi-automated generation
process to create the counterfeit product text dataset. Specifically, core entities such as brand names or key
product attributes were identified from the original product description texts. Subsequently, for each entity, 1
to 4 characters were selected with a certain probability based on its name length for obfuscation replacement.
The obfuscation strategies included visually similar characters, homophones, near-homophones, and random
substitutions. This process references common error patterns observed in benchmark datasets and employs
a priority-based multi-type substitution mechanism, with a 74.9 % probability of character replacement. For
instance, ¥ 5% (Lan Yue Liang) is replaced with # H 5% (Lan Yué Ké), simulating a near-homophone error.
The final dataset comprises approximately 70 % homograph errors, 20 % homophone/near-homophone errors,
and 10 % random substitution errors.

Finally, we developed and applied a suite of automated scripts to execute character substitution, structured
output, statistical analysis, and preliminary text quality control. Additionally, all generated samples underwent
manual review by two annotators to ensure authentic simulation of common forgery techniques while
maintaining contextual coherence. Any illogical samples were discarded. This rigorous quality control process
guarantees the high quality and relevance of the final dataset.

Public Benchmark Datasets: To evaluate the generalization ability of our model, we also test it on three
widely-used public Chinese Spelling Correction datasets: SIGHAN 2013, SIGHAN 2014, and SIGHAN 2015.
The statistics of these datasets are summarized in Table 2.

Baselines
We analyzed the CDANet model in comparison with the following classical models:
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-BERT?%: A language representation model pre-trained on the Transformer architecture. BERT employs
a bidirectional training approach that takes into account both the left and right contexts of a word, thereby
capturing more comprehensive semantic information.

-Soft-Masked BERT?!: This model employs a two-stage approach. It first utilizes an error detection network
to predict the probability of each character being incorrect. These probabilities are then used to apply a soft
mask’ to the input sequence, which is subsequently fed into a BERT-based correction network to generate the
corrected text.

-REALISE*: An end-to-end Chinese spelling correction model. Unlike traditional methods that use special
tokens (e.g., [MASK]) to mask words during language model training, REALISE replaces target words with their
phonetic characteristics and similar words. Additionally, it incorporates an adaptive weighting mechanism to
simultaneously train error detection and correction tasks within a cohesive framework.

-MDCSpell’”: A multi-task framework for detectors and correctors. The corrector captures the visual and
phonetic features of each character in a sentence based on BERT, and integrates the hidden states of the detector
and the corrector through a later fusion strategy to reduce the interference of spelling errors on the corrector and
improve the error correction effect.

-ReLM?!: A Chinese spelling correction method based on sentence reconstruction instead of traditional
character-to-character annotation. The method corrects errors by reconstructing the whole sentence, simulating
human error correction thinking and improving the generalisation ability and migration performance of the
model.

-PTCSpell*’: A pre-trained model designed for the Chinese spelling correction task. It combines visual and
phonetic features of Chinese characters to improve correction accuracy, while mitigating the negative impact of
detection errors on the correction process by balancing the loss function.

Implementation details
The experimental hardware consists of an Intel(R) Xeon(R) Platinum 8474C @ 3.00 GHz CPU and two NVIDIA
GeForce RTX A6000 GPUs (48 GB of graphics memory each). The model implementation is based on the
PyTorch framework® and the Transformer library provided by Huggingface®*. The semantic feature extractor
uses a pre-trained bert-base-chinese model (pre-trained on a large Chinese corpus)'. The first two layers of the
model are used to initialise the weights of the Transformer in the auxiliary location detector.

For training the CDANet model, we utilized the Adam optimizer35 with a batch size of 256, a learning rate
of 2e-5, and trained for 10 epochs. The CGT-Dataset was divided into training, validation, and test sets in a
ratio of 7:2:1. We used the SIGHAN 2013, SIGHAN 2014, and SIGHAN 2015 benchmark datasets Consistent
with previous studies?>*¢, we employed the OpenCC 1.0 tool? to convert traditional Chinese characters in our
datasets. convert traditional Chinese characters in our dataset to simplified characters. Our evaluation metrics,
including sentence-level Precision, Recall Our evaluation metrics, including sentence-level Precision, Recision,
Recall, and F1-score, are in line with those used in prior research. It's important to note that the correction task is
significantly more complex than the detection task, as the success of correction is contingent upon the accuracy
of the initial detection.

Main results

The main experimental results on our self-constructed CGT-Dataset are presented in Table 3. On the CGT-
Dataset, our proposed CDANet model achieves state-of-the-art performance across all metrics for both detection
and correction tasks. Specifically, CDANet’s F1 scores for detection (96.3%) and correction (89.3%) surpass the
strongest baseline models byby 2.7 percentage points (vs. MDCSpell) and 0.6% (vs. PTCSpell), respectively. This
demonstrates the superiority of our approach on the target task of counterfeit goods text recognition.

To further analyze the source of these improvements, we compare our model with two closely related works,
REALISE and MDCSpell. CDANet exhibits overall superior performance to REALISE, particularly in terms
of robustness to multimodal interference. Although REALISE also integrates semantic, pinyin, and grapheme
features, its direct integration of the erroneous characters’ multimodal information can easily interfere with
the contextual semantics. In contrast, our proposed Auxiliary Position Detection Network is designed to first
identify the error’s position, which significantly enhances the model’s robustness to such interference. The results
on the CGT-Dataset validate this, showing a 0.3 percentage point improvement in correction-level precision
over REALISE. It is also worth noting that MDCSpell adopts a similar detection-assisted correction design.
However, its utilization of visual and phonetic features is still implicitly limited to the pre-training capability
of BERT, leaving room for optimization. Our experiments fill this gap by explicitly modeling these features.
As can be seen from the experimental results, this leads to a meaningful improvement of 1.3% in the F1 score
over MDCSpell, which further demonstrates the effectiveness of incorporating phonological and morphological
knowledge into the semantic space.

Finally, to verify the generalization ability of CDANet, we conducted further experiments on the SIGHAN2013,
SIGHAN2014 and SIGHAN2015 datasets. As can be seen from the results in Table 3, CDANet performs well on
both detection and correction tasks. Compared with the BERT baseline that utilizes only contextual semantic
information, CDANet improves the F1 scores of the correction task by 10.4%, 12.8% and 11%, respectively.
These significant improvements further validate the effectiveness and robustness of our approach. In addition,
compared to PTCSpell, although PTCSpell has higher precision in recognizing and correcting spelling errors
by specifically learning the visual and phonetic features of Chinese characters through a pre-training phase, its

Uhttps://huggingface.co/google-bert/bert-base-chinese
2https://github.com/BY Void/OpenCC
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Detection Correction
Dataset Model Prec. | Rec. | F1. | Prec. | Rec. | F1.
Soft-Masked BERT?! 89.2 |87.6 |88.4 |88.6 |852 |86.9
REALISE? 91.8 |90.0 |90.9 |90.7 |86.3 |88.4
MDCSpell* 952 [92.1 |93.6 |88.2 |87.9 |88.0
PTCSpell*? 96.1 |90.3 |93.1 |90.8 |86.6 |88.7
CGT-Dataset
Bi-DCSpell*>} 953 |91.3 | 93.3 |90.0 |854 |87.6
ReLM?! - - - 90.4 |85.9 |88.1
BERT? 85.6 |83.4 |84.5 829 |804 |81.6
CDANet(ours) 98.2 |94.5 | 96.3 |91.0 |87.9 |89.3
Soft-Masked BERT*¥ | 81.1 |75.7 |78.3 |75.1 |70.1 |72.5
REALISE?? 88.6 |82.5 | 854 |87.2 |81.2 |84.1
PTCSpell*? 99.7 |80.6 |89.1 |99.7 |79.2 |88.3
SIGHAN 2013
Bi-DCSpell**} 88.2 |80.6 |84.2 | 86.8 |78.7 |82.6
BERT? 79.0 |72.8 | 758 |77.7 |71.6 | 74.6
CDANet (ours) 89.3 |82.6 | 858 |89.2 |81.2 |85.0
Soft-Masked BERT *¥ | 65.2 | 70.4 | 67.7 | 63.7 |68.7 | 66.1
REALISE?? 67.8 | 71.5 | 69.6 | 66.3 |70.0 | 68.1
PTCSpell*? 84.1 |71.2 |77.1 | 83.8 |69.4 | 759
SIGHAN 2014
Bi-DCSpell*>} 69.9 |70.9 |70.4 | 68.5 |68.7 |68.6
BERT? 65.6 |68.1 |66.8 |63.1 |65.5 |64.3
CDANet (ours) 79.5 |78.2 |78.8 | 77.7 |76.5 | 77.1
Soft-Masked BERT*¥ | 67.7 |78.7 |72.7 | 63.4 |73.9 |68.3
REALISE?? 77.3 | 81.3 |79.3 | 759 |79.9 |77.8
PTCSpell*? 89.6 |81.2 852 |89.4 |79.0 |83.8
SIGHAN 2015
Bi-DCSpell*? 79.6 |824 |81 |77.5 |80.2 | 788
BERT? 73.7 782 |759 | 709 |752 |73.0
CDANet (ours) 834 |85.1 842 |83.0 |84.9 |84.0

Table 3. Experimental results on the CGT-Dataset, SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Each
model includes sentence-level precision, recall and F1 score for detection and correction. * indicates that the
results are derived from?’, and I indicates that the results are taken from Chinese-BERT-wwm because the
ChineseBERT pre-training process enhances the utilization of glyph (Glyph) and pinyin (Pinyin) information.

recall is not significantly improved. On the other hand, CDANet does not require additional pre-training tasks,
reducing the dependence on resources and data labeling, while maintaining a better balance on all metrics. This
shows that our approach not only has a lower implementation cost but also performs consistently across diverse
task scenarios.

We also conducted an in-depth analysis of why CDANet exhibits inconsistent performance across different
datasets. Our research revealed that the model demonstrates significantly greater improvement on the CGT-
Dataset compared to its performance on the SIGHAN benchmark dataset. This discrepancy primarily stems
from fundamental differences in the nature of errors across the two datasets: the CGT-Dataset is characterized
by high-density, intentional phonetic and orthographic substitution errors within its named entities. CDANet’s
model architecture enables exceptional performance on this task by explicitly modeling pinyin and character
features, while its auxiliary detection module effectively focuses on such high-impact errors. In contrast, the
SIGHAN dataset exhibits a richer error distribution encompassing syntactic and cognitive-level errors. In these
scenarios, purely semantic models like BERT have demonstrated strong error correction capabilities, thereby
narrowing the performance gap between CDANet and baseline models.

Ablation study

To systematically validate the contribution of each component within CDANet, we conducted a comprehensive
series of ablation studies on both the CGT-Dataset and the SIGHAN2015 test set. The results, as delineated in
Table 4, unequivocally demonstrate the effectiveness of our proposed auxiliary position detection network and
multimodal feature integration strategy. On the CGT-Dataset, every component proved to be crucial for the
model’s performance. The most significant performance degradation was observed upon removing the auxiliary
position detection network (- Auxiliary Position), which caused the F1 score to plummet by 8.0
points from 89.3 to 81.3. This result underscores the pivotal role of this network in accurately locating errors and
mitigating the semantic interference caused by incorrect characters, which is a core challenge in our dataset. The
value of multimodal information was also prominently highlighted; removing both Pinyin and glyph features
simultaneously (- Pinyin & Glyph) resulted in the second-largest performance drop, a 7.1-point decrease
in the F1 score. Furthermore, ablating either the Pinyin (- Pinyin) or glyph (- Glyph) features individually
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CGT-Dataset SIGHAN2015

Prec. | Rec. | F1. | Prec. | Rec. | F1.
BERT** 77.7 |71.6 |74.6 |70.9 |752 |73.0
CDANet (ours) 91.0 |87.9 |89.3 |83.0 |84.9 |84.0
- Pinyin 84.2 |83.5 | 838 |80.5 |81.0 |80.7
- Glyph 84.8 |851 (850 |81.2 |819 |815
- Pinyin & Glyph 82.0 |825 822 |79.1 |80.2 |79.6
- Auxiliary Position | 81.0 |81.6 |81.3 |78.,5 |79.5 |79.0

Table 4. Correction-level average ablation results for the CDANet model on the CGT-Dataset and
SIGHAN2015 test set. We made the following modifications to CDANet: remove the pinyin feature extractor
(- Pinyin), remove the glyph feature extractor (- Glyph), remove both the pinyin and glyph feature extractors
(- Pinyin & Glyph), remove the auxiliary position detection network (- Auxiliary Position).

also led to notable performance declines of 5.5 and 4.3 F1 points respectively, confirming that they provide
critical and complementary information for the correction task.

To further evaluate the generalization ability of our model architecture, we replicated the same ablation
experiments on the public SSIGHAN2015 benchmark. The results exhibited a consistent trend with our findings
on the CGT-Dataset, re-validating the importance of each component in a broader context. Once again, the
auxiliary position detection network was the most critical module, as its removal led to the largest F1 score
drop of 5.0 points. Similarly, the multimodal features continued to provide a significant advantage over a purely
semantic approach, with their removal causing a 4.4-point F1 decrease. Notably, on both datasets, all ablated
model variants still comprehensively outperformed the baseline BERT model. This strongly proves that the
fundamental architecture of CDANet is robust and that every integrated component makes an indispensable
and positive contribution to the model’s overall effectiveness in both specialized and general Chinese spelling
correction scenarios.

Conclusion

In this paper, we proposed a Corrector-Detector Auxiliary Network, CDANet, designed to intelligently
recognize counterfeit goods text that relies on phonetic or glyph similarity. Addressing the core challenge of
high visual and auditory similarity in erroneous characters, CDANet effectively incorporates glyph, pinyin, and
contextual semantic features. The complementarity of this multimodal information significantly enhances the
model’s recognition capabilities by providing discriminative signals beyond standard semantics. Furthermore, to
mitigate the issue of misleading contextual semantics caused by incorrect characters, we introduced an Auxiliary
Position Detection Network, which improves correction accuracy by precisely locating errors.

A key contribution of this work is also the construction of the CGT-Dataset, a large-scale textual dataset
of counterfeit goods containing 289,851 samples, which facilitates research in this specific domain. Extensive
experiments show that CDANet achieves state-of-the-art performance on our proposed CGT-Dataset and
demonstrates strong, competitive performance on the public SIGHAN benchmark datasets. These results
validate the model’s effectiveness for the target task and its robust generalization ability.

Limitations and future work

Despite the promising results, this study has several limitations. First, our CGT-Dataset, while large, is
constructed from a single e-commerce platform, which may not capture the full diversity of counterfeit text
styles across different sources. Second, the counterfeit texts are generated via simulation, which may not fully
encompass the complexity and subtlety of authentic, “in-the-wild” examples. Lastly, our model’s primary focus
is on phonetic and glyph-based errors, and its performance on more complex, semantic-level counterfeiting has
yet to be explored.

Future work could proceed in several exciting directions. We plan to enrich our dataset by incorporating data
from multiple platforms and including more sophisticated examples of counterfeiting. Another valuable step
would be to investigate the adaptation and deployment of CDANet in a real-world, large-scale detection system
to assess its practical utility and efficiency.

Data availability

The CGT-Dataset introduced in this study is available upon reasonable request from the corresponding author.

Code availability
The code supporting the findings of this study is available upon reasonable request from the corresponding
author.

Materials availability
Not applicable. This study does not involve any specific materials requiring access.
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