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Counterfeit goods are often imitated through the similarity of pronunciation or character shape 
of the trade name, for example, ‘蓝月亮’ is altered to ‘蓝月壳’, and this text-level imitation 
means brings great trouble to consumer identification. However, there is a scarcity of research on 
intelligent recognition techniques for this phenomenon. Although the Chinese Spelling Correction 
(CSC) technique provides some ideas for solving this problem, it still faces the challenges of scarce 
datasets, significant interference of erroneous characters with the contextual semantics, and high 
confusion between erroneous characters and correct characters in terms of pronunciation or glyphs 
in practical applications. In view of the above problems, this paper proposed a Corrector-Detector 
Auxiliary Network named CDANet. Specifically, (i) A lightweight Transformer Block is used to assist 
in locating erroneous characters to reduce their interference with contextual semantics; (ii) The 
multimodal information of erroneous characters is deeply exploited by integrating glyph, pinyin, 
and semantic features to enhance the correction accuracy; (iii) A counterfeit goods text dataset 
(CGT-Dataset) containing 289,851 samples was constructed to alleviate the problem of data scarcity. 
The experimental results show that CDANet achieves the current optimal performance on the self-
built CGT-Dataset and exhibits excellent generalization ability on three public benchmark datasets, 
providing an efficient solution for counterfeit goods text recognition.
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In the context of globalized markets, the proliferation of counterfeit goods has become a serious problem that 
needs to be solved. These counterfeit goods not only violate intellectual property rights, but also pose a significant 
threat to consumer health and safety1–3. Counterfeit goods usually mislead consumers by imitating the name or 
trademark of a well-known brand and creating the illusion of a strong auditory or visual similarity. For example, 
the well-known brand ‘王老吉’ has been altered to ‘王老古’, which is very similar to the word shape of the two, 
and this kind of counterfeiting technique is very confusing. As shown in Fig. 1, the red marking is the tampered 
character and the orange marking is the corresponding correct character.

In order to effectively identify and combat these counterfeiting behaviors, traditional manual review means 
are already difficult to effectively deal with them, and automation technology is urgently needed to improve 
detection efficiency and precision. However, there is a scarcity of research on intelligent identification of 
counterfeit goods text specifically targeting phonetic or glyph similarity. In view of the fact that the core of 
this task lies in the detection and correction of erroneous characters, the Chinese Spelling Correction (CSC) 
technology provides a new way of thinking for solving this problem due to its unique advantages in the detection 
and correction of erroneous characters. The CSC task focuses on recognizing and correcting a small number of 
erroneous characters by keeping the length of the input and output sequences consistent, and its characteristics 
are highly compatible with the counterfeiting of counterfeit goods texts through minor textual changes 4,5.

In recent years, with the successful application of large pre-trained language models, CSC tasks have made 
significant progress and have been widely applied to many downstream tasks, such as named entity recognition, 
Optical Character Recognition (OCR) and Automatic Speech Recognition (ASR) 1,6,7. However, directly applying 
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CSC technology to intelligently identify counterfeit product texts with similar pronunciation or character forms 
presents numerous challenges. First, the severe scarcity of product text datasets hinders effective progress in 
related research. Second, the presence of erroneous characters disrupts overall semantic information, leading 
to biased semantic understanding. As noted in relevant studies 8, approximately 83 % of textual errors relate 
to phonetic similarity, while 48 % relate to visual similarity. The morphological and phonetic diversity of these 
erroneous characters further complicates recognition. Most critically, the counterfeit product text recognition 
task possesses unique characteristics distinct from general CSC. General CSC addresses randomly distributed 
errors (e.g., spelling and grammatical mistakes) within sentences, whereas counterfeit text errors are typically 
deliberate, targeted, and concentrated on specific key phrases like brand names. Such errors exploit high phonetic 
and visual similarity to deceive consumers. This targeted nature means surrounding text often remains coherent, 
making detection difficult for standard language models reliant on overall sentence entropy values. Though only 
a single character, the erroneous character severely disrupts the most critical semantic entities within the text, 
creating a unique challenge that generic CSC methods struggle to address.

To tackle these specific challenges, we argue that a generic CSC model is insufficient. The targeted nature of 
counterfeit text errors requires a specialized architecture. Therefore, we propose a Corrector-Detector Auxiliary 
Network, CDANet, which is explicitly designed to first isolate the disruptive erroneous characters before 
attempting correction, a crucial step to preserve contextual integrity. The framework consists of two parts: the 
Auxiliary Position Detection Network and the Corrector. The Auxiliary Position Detection Network utilises two 
lightweight Transformer Blocks to pinpoint erroneous characters, thus effectively reducing the interference of 
erroneous characters with the contextual semantics. Its output final hidden states are not only used for binary 
classification loss optimisation, but also deeply fused with semantic features to generate fused semantic features, 
which provide more accurate contextual information for the subsequent correction process. The corrector 
further integrates fused semantic features, pinyin features and glyph features to learn multimodal features of 
erroneous characters. The pinyin features learn the phonetic information of the erroneous characters through 
1D convolution and pooling operations. The glyph features use Tianzige-CNN to capture the visual information 
of erroneous characters to achieve multi-dimensional visual feature construction. The fused semantic features, 
on the other hand, combine the contextual information provided by Bert and the knowledge provided by the 
auxiliary position detection network. The end-to-end multimodal feature fusion training makes full use of the 
multimodal information of erroneous characters to achieve accurate character correction.

The main contributions of this study are summarized as follows: (i) We propose an innovative end-to-end 
framework, CDANet, which uniquely integrates an auxiliary position detection network with a multimodal 
corrector through a refined two-stage fusion mechanism. This approach addresses the problem by mitigating 

Fig. 1.  Example of counterfeiting using harmonics and word similarity.
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semantic interference and improving recognition accuracy for highly similar characters. (ii) We introduce an 
auxiliary position detection network with dual functionality. This lightweight network not only precisely locates 
erroneous characters through explicit supervision, effectively reducing their interference in subsequent tasks, 
but also enhances semantic representations via hidden state fusion, providing richer contextual information for 
the corrector. (iii) Constructs the large-scale counterfeit goods text dataset CGT-Dataset, comprising 289,851 
forged text samples involving phonetic and orthographic similarity errors. Comprehensive validation on this 
dataset and three public benchmarks demonstrates that CDANet achieves state-of-the-art performance on CGT-
Dataset while exhibiting robust generalization capabilities, providing an effective solution for counterfeit goods 
text forgery.

Related work
Counterfeit goods detection
Combating counterfeit goods is a long and arduous task. At present, methods of identifying counterfeit goods 
fall into two main categories.

The first category is methods based on overt or covert technical means. Overt technical means include 
holograms, watermarks, color-changing inks, and product serial numbers9–11. Covert technical means, on the 
other hand, are similar to overt techniques and cover RFID tags, QR codes, biological, chemical or microscopic 
markers, digital watermarks or anti-counterfeit inks9,12,13. Although these methods have proven reliable in 
real-world applications, they still have significant limitations: overt identification methods usually rely on 
authentication details on the surface of the item, which can be easily duplicated or removed by imitators through 
reverse engineering; covert methods, although more secure, are difficult for many organizations to integrate 
effectively due to the need to be deeply embedded in the production process.

The second category is methods based on deep learning techniques. For example, Garcia-Cotte H et al.14 
developed a deep neural network-based image recognition system for smartphones, which is capable of 
detecting counterfeit products with high accuracy without the need for special security labels or any alterations 
to the products. Mishra et al.15 utilized a variety of algorithms including support vector machines, convolutional 
neural networks, linear regression, and logistic regression, to achieve highly accurate detection of counterfeit 
medicines. Peng J et al.1 proposed Hybrid Attention Network (HANet) for detecting counterfeit luxury 
handbags, which combines spatial and channel attentional units to learn the important information and is 
trained with an appraiser-guided loss function to be able to recognize the subtle differences between genuine and 
fake products. However, these deep learning-based methods mainly focus on the recognition of visual features, 
and it is difficult to properly deal with the problem of pronunciation or word similarity in the text of counterfeit 
goods information.

Given that the key to the intelligent recognition of counterfeit goods text lies in the detection and correction 
of erroneous text, the CSC technology is highly adaptable to this task. Therefore, this study tries to realize this 
goal with the help of CSC technology.

Chinese spelling correction
The CSC task has a long history of research. The task traditionally focuses on word substitution, with input 
and output sentences of the same length, and a relatively single form, and most of the research is based on 
the SIGHAN13/14/15 evaluation task dataset. Early studies16–18 mainly used unsupervised learning methods 
to identify potential errors by constructing a confusion set and determining the correctness using the language 
model perplexity. Some subsequent studies modeled the Chinese Spelling Correction task as a sequence labeling 
problem and solved it with the help of Conditional Random Field (CRF) or Hidden Markov Model (HMM)19,20.

CSC task has a long history of research. Traditionally, this task mainly focuses on word substitution, with 
the same length of input and output sentences, in a relatively single form, and the research is mostly based on 
the SIGHAN13/14/15 evaluation task dataset. Early studies16–18 mainly used unsupervised learning methods 
to identify potential errors by constructing a confusion set and determining the correctness using the language 
model perplexity. Later approaches treated Chinese spelling correction as a sequence labeling problem, utilizing 
models such as CRF or HMM to address the task19,20.

With the rapid advancement of large-scale pre-training techniques in the field of natural language processing, 
pre-trained models such as BERT have been extensively employed by numerous researchers to enhance the 
performance of the CSC task. These models are able to efficiently correct erroneous characters by virtue of their 
powerful ability to capture contextual semantic information. For example, Zhang et al.21 proposed Soft-Masked 
BERT, a two-stage detection and correction method, which first detects erroneous characters in the text by error 
probability masking, and then feeds the masked input into the BERT model for error correction. The REALISE 
model22, on the other hand, takes a different approach by combining the information from three modalities, 
namely text, sound and vision, to comprehensively capture the semantic, phonetic and graphical features of 
Chinese characters, and significantly improves the performance of spell checking with the help of a selective 
modal fusion mechanism.The bidirectional detector-corrector framework Bi-DCSpell proposed by Wu et al.23, 
which includes independent detection and correction encoders as well as an innovative interactive learning 
module, optimizes the representation learning process and further enhances the performance of the CSC task by 
promoting the interaction of bidirectional features between detection and correction.

Although the significant progress made in CSC research, its performance in the task of intelligent recognition 
of counterfeit goods text is unclear due to the highly scarce counterfeit goods text dataset. In view of this, this 
study aims to address this issue and achieve intelligent recognition of counterfeit merchandise text by weakening 
the negative impact of erroneous characters on contextual semantics as well as by leveraging the ability of 
characters’ multimodal information for correction.
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Methodology
Problem formulation
The complexity and diversity of counterfeit goods pose a serious challenge to market supervision, especially 
those cases of counterfeiting with the help of Chinese character pronunciation or character shape similarity, 
which are extremely covert and greatly increase the difficulty of identification and supervision. Given that the 
core of this task lies in the detection and correction of erroneous texts, CSC technology shows strong potential 
as a specialized solution for such tasks.

The CSC task is a sequence labeling problem that transforms an input sequence of characters 
X = {x1, x2, . . . , xn} into an output sequence Y = {y1, y2, . . . , yn}, where the incorrect characters are 
corrected and the correct characters remain unchanged. Unlike other sequence-to-sequence tasks such as 
machine translation or text summarization, the input and output sequences of the CSC task are of the same 
length and most of the characters do not need to be changed, while only a few incorrect characters need to be 
identified and corrected.

Model
Our model consists of a corrector and an auxiliary position detection network. In particular, the corrector 
contains three feature extractors and a multimodal feature fusion operation. Figure 2 illustrates the structure 
of our model. Given a sentence, our model first performs semantic feature extraction. At the same time, two 
lightweight Transformer Blocks are used to capture sensitive positional information and deeply fuse it with the 
semantic features to generate fused semantic features that provide more accurate contextual information for the 
subsequent correction process. Immediately after that, pinyin features and glyph features are extracted for each 
character, and finally these three features are subjected to multimodal feature fusion operation. Here, in order 
to keep the dimension consistent after splicing, a linear projection layer is used for representation learning and 
dimension transformation. Subsequently, the composite representation of each character is fed into the fully 

Fig. 2.  Overview of the CDANet architecture. The auxiliary position detection network (right) reduces 
interference with downstream tasks by explicitly supervising erroneous characters. It further integrates these 
hidden states with semantic features from the BERT encoder (Equation 6). This fusion represents features 
from the pinyin extractor (Equation 8) and character shape extractor (Equation 9), consolidated through 
multimodal feature fusion (Equation 10) before being fed into the Transformer encoder for correction. In 
the example input, regarding the erroneous character ‘午’(Wu2, meaning noon), we need not only contextual 
information for assistance but also have to rely on the contextual information to help us to identify and 
locate the erroneous character. information for assistance but also have to rely on the visual or phonetic 
characteristics of the character itself to make a judgment.
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connected layer, which is responsible for computing the probability distribution of each character in the entire 
vocabulary. Eventually, the character with the highest probability will be selected as the prediction result. In the 
next subsections, we will delve into the specific implementation details of each module.

Semantic feature extractor
In line with previous studies21,22, we employed BERT 24 as the core of our semantic encoder. BERT provides 
extensive contextual semantic insights through unsupervised pre-training on vast text collections. When 
presented with an input sequence X = {x1, x2, . . . , xn}, the extractor utilizes the hidden states from the last 
layer of BERT Hs = {hs

1, hs
2, . . . , hs

n} as semantic feature outputs, where hs
i ∈ Rds  representing the dimension 

of the semantic features ds. This process is illustrated in the ’Semantic Feature Extractor’ block of Fig. 2.

Auxiliary position detection network
The Auxiliary Position Detection Network functions as a binary classification task, leveraging the Transformer 
architecture. For an input text X = {x1, x2, . . . , xn}, the input to the detection network is the embedding 
sequence E = (e1, e2, ..., en), and this embedding sequence is is the sum of word embeddings and positional 
embeddings. Each layer of Transformer uses the same block structure, which is defined as follows:

	 MultiHead(Q, K, V ) = Concat(head1, head2, . . . , headn)W O � (1)

	 headi = Attention(QW Q
i , KW K

i , V W V
i ) � (2)

	 F F N(X) = max(0, XW1 + b1)W2 + b2 � (3)

Finally, the projection layer is utilized to project the coding vectors into a two-dimensional space, representing 
the correct and incorrect probabilities of the characters at each position, respectively. Here, Q, K, and V denote 
the current input sequence, which can be an embedding of a character or the output of the previous Transformer 
block. FFN and MultiHead stand for Feedforward Network and MultiHead Self-Attention, respectively, which 
are the basic building blocks of the Transformer model. We denote the last layer of the hidden state sequence of 
the Transformer module as Hd = (hd

1, hd
2, . . . , hd

n), the probability of error detection is defined as P d, and the 
probability distribution of the error of the ith character is derived by softmax operation ŷd

i :

	 P d =σ(W Hd + b) � (4)

	 ŷd
i =softmax(W hi + b) � (5)

where P d denotes the conditional probability and σ represents the sigmoid activation function, W and b are the 
parameters of the classifier.

It is worth noting that the hidden state H assumes a dual role. On the one hand, it is used to predict the 
location of the error character. On the other hand, it passes the contextual location information to the semantic 
feature extractor. This is because according to experiments21, specifying the exact location of the error character 
can significantly improve the effectiveness of the model. Based on this, we deeply fuse the hidden state H with 
the final hidden state of the semantic feature extractor to fully utilize its role.

	 F S = Hs + Hd, F S ∈ RL×ds � (6)

where F S  denotes the final semantic feature representation, ds is the dimension of the final semantic feature, 
and L denotes the length of the input sentence. This process is illustrated in the ’Auxiliary Position Detection 
Network’ block of Fig. 2.

Pinyin feature extractor
The pinyin of a Chinese character consists of three parts: consonants, rhymes and tones. There are 21 consonants 
and 39 rhymes, and they are represented by English letters. The five tones, on the other hand, can be represented 
by numbers. Taking the ending ‘a’ as an example, ̄a, á, ǎ, à, a can be mapped to the numbers 1,2,3,4,0. Specifically, 
we obtained the pinyin representation based on PyPinyin (a Chinese character-to-pinyin library in Python). For 
a given input sentence X = {x1, x2, . . . , xn}, we processed the character xi one by one. First, the character 
xi is converted to the overall pinyin form. Then, we strictly follow the Hanyu Pinyin Scheme to process the 
consonants and rhymes, and obtain the consonant, rhyme, and tone, i.e., the three separated forms of pinyin, for 
each character xi. Then, the overall pinyin of each character and its separated forms of pinyin are connected and 
converted into the corresponding id representation as the final pinyin representation.

	 pi =
[

pAll
xi

· pInitial
xi

· pF inal
xi

· pT one
xi

]
� (7)

where [·] denotes the concatenation operation between embeddings, pAll
xi

 is the overall pinyin string representation 
of xi, pInitial

xi
, pF inal

xi
, pT one

xi
 denotes the three separated forms of consonants, rhymes, and tones respectively, 

and pi is the final pinyin representation. Finally, we apply a CNN network with a convolutional kernel of 2 and 
a maximum pooling function to extract the pinyin information.

	 F P = pool (conv (pi)) , F P ∈ RL×dp � (8)
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where F P  denotes the final pinyin feature representation, dp is the dimension of the pinyin embedding, and L 
denotes the length of the input sentence. This process is illustrated in the ’Pinyin Feature Extractor’ block of Fig. 
2.

Glyph feature extractor
Glyph features are extracted using a Glyce encoder called Tianzige-CNN structure25. Tianzige (‘田字格’) is a 
traditional form of Chinese calligraphy. It is a four-square format (similar to the Chinese character ‘田’), which 
is ideal for beginners to practice writing Chinese characters. In a way, it is more relevant to the origin of Chinese 
characters than other methods, such as object detection5 or stroke sequences 26,27. Considering the meaning of 
radicals, the frame structure and the current main usage of Chinese characters, the fonts ‘宋体（正文）’ and ‘
黑体’ were finally chosen.

In practice, the input image is first passed through a convolutional layer with 5 convolutional kernels and 
1024 output channels with the aim of capturing the low-level graphical features of the image. Then, a maximum 
pooling operation is performed on the generated feature map with a pooling kernel size of 4, aiming to reduce 
the resolution of the feature map from 8×8 to 2×2. This 2×2 field grid structure effectively demonstrates 
the arrangement of the internal radicals of Chinese characters and their writing order. Finally, we use group 
convolution instead of the traditional convolution operation to map the field grid features to the final output. 
In this study, two types of glyphs are used, namely, ‘宋体（正文）’ and ‘黑体’. Therefore, the original two-
dimensional dfont × dfont needs to be changed to three-dimensional dfont × dfont × 2. Where dfont indicates 
the font size and 2 indicates that there are two fonts.

For a given input sentence X = {x1, x2, . . . , xn}, define its glyph embedding as follows:

	 F G = GlyphEncoder (xi)� (9)

where F G ∈ RL×dg , L is the length of the input sentence and dg  is the dimension of the glyph embedding. This 
process is illustrated in the ’Glyph Feature Extractor’ block of Fig. 2.

Multimodal feature fusion
After the previous feature extraction, we obtain the fused semantic features F S , pinyin features F P  and glyph 
features F G. To fully exploit the multimodal information of the erroneous characters, we employ a Multi-Layer 
Perceptron (MLP) to consolidate these three types of features.

	 H = MLP
([

F S · F P · F G
])

� (10)

where H ∈ Rdf  denotes the fused features, df  denotes the dimension of the output from the Transformer 
encoder, which is consistent with ds, dp, dg , and [·] denotes the concat operation between the features.

Subsequently, we utilize the Transformer encoder to thoroughly grasp these multimodal features and 
ascertain the probability distribution of the i-th character ŷc

i  using the softmax function.

	 Hl = Transformer(Hl−1), l ∈ [1, N ] � (11)

	 ŷc
i = softmax(W hi + b), hi ∈ HN � (12)

where N denotes the number of Transformer layers, and W and b are trainable parameters learned during the 
training process.

Finally, referring to the experience of25, we combined the loss from the token classification task, the glyph 
classification task, and the auxiliary detection binary classification task to form our final training goal.

	 Lglyph = − log p(z|x) = − log softmax(W × himage)� (13)

where z denotes the label of the font image x, and himage is the hidden state of the CNNs in Glyce.

	
Ld = − 1

n

n∑
i=1

yd
i log(ŷd

i ) + (1 − yd
i ) log(1 − ŷd

i ) � (14)

	
Lc = −

n∑
i=1

logP c(ŷc
i = yc

i | X) � (15)

where ŷc
i , yc

i  denotes the predicted value and label of X, respectively, and ŷd
i , yd

i  denotes the predicted value and 
predicted probability of the detector, respectively, and the final training objective is given as follows:

	 L = Ld + Lc + Lglyph� (16)

Experiments
Dataset
CGT-Dataset: The core data resources come from Jingdong Mall. Based on the product classification standards 
of this e-commerce platform, we manually selected raw product descriptions from 29 core product categories, 
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totaling 289,851 entries. This dataset encompasses multiple aspects of consumers’ daily lives, forming a text 
corpus with broad representativeness and deep coverage. Since all raw texts are directly sourced from online 
product sales descriptions, no anomalous data is included. For specific data distribution, please refer to Table 1.

To construct more authentic and representative counterfeit product text samples, we first conducted 
an in-depth analysis of common error patterns in existing CSC benchmark datasets (e.g., SIGHAN201328, 
SIGHAN201429, SIGHAN201519, and Wang271K4). Our research revealed that these errors are highly 
concentrated in homographs and homophones. Inspired by this, we designed a semi-automated generation 
process to create the counterfeit product text dataset. Specifically, core entities such as brand names or key 
product attributes were identified from the original product description texts. Subsequently, for each entity, 1 
to 4 characters were selected with a certain probability based on its name length for obfuscation replacement. 
The obfuscation strategies included visually similar characters, homophones, near-homophones, and random 
substitutions. This process references common error patterns observed in benchmark datasets and employs 
a priority-based multi-type substitution mechanism, with a 74.9 % probability of character replacement. For 
instance, 蓝月亮 (Lán Yuè Liàng) is replaced with 蓝月壳 (Lán Yuè Ké), simulating a near-homophone error. 
The final dataset comprises approximately 70 % homograph errors, 20 % homophone/near-homophone errors, 
and 10 % random substitution errors.

Finally, we developed and applied a suite of automated scripts to execute character substitution, structured 
output, statistical analysis, and preliminary text quality control. Additionally, all generated samples underwent 
manual review by two annotators to ensure authentic simulation of common forgery techniques while 
maintaining contextual coherence. Any illogical samples were discarded. This rigorous quality control process 
guarantees the high quality and relevance of the final dataset.

Public Benchmark Datasets: To evaluate the generalization ability of our model, we also test it on three 
widely-used public Chinese Spelling Correction datasets: SIGHAN 2013, SIGHAN 2014, and SIGHAN 2015. 
The statistics of these datasets are summarized in Table 2.

Baselines
We analyzed the CDANet model in comparison with the following classical models:

Training Data # Line Avg.Length # Errors

SIGHAN 2013 350 49.2 350

SIGHAN 2014 6,526 49.7 10,087

SIGHAN 2015 3,174 30.0 4,237

Wang271K 271,329 44.4 382,704

 Test Data # Line Avg.Length # Errors

SIGHAN 2013 1,000 74.1 1,227

SIGHAN 2014 1,062 50.1 782

SIGHAN 2015 1,100 30.5 715

Table 2.  Statistical data from generic domain datasets.

 

Class Quantity Percentages Class Quantity Percentages

Food 13836 4.77% Indoor 10135 3.50%

Tea 13152 4.54% Mother and Baby 10109 3.49%

Furniture 12625 4.36% Computer 10073 3.48%

Jewellery 11834 4.08% Men’s Clothes 9501 3.28%

House Pet 11665 4.02% Fine Chemicals 9413 3.25%

Metal Hardware 11604 4.00% Numerals 9291 3.21%

Household 11248 3.88% Boots and Shoes 9233 3.19%

Womenswear 11071 3.82% Work Out 9228 3.18%

Beverage Preparation 10875 3.75% Luggage 9003 3.11%

Wine 10866 3.75% Undergarments 8749 3.02%

Home Decoration 10803 3.73% Musical Instruments 8497 2.93%

Beauty Products 10723 3.70% Personal Care Cleaning 8236 2.84%

Domestic Electric Appliance 10718 3.70% Adult Product 5679 1.96%

Children’s Clothing 10474 3.61% Mobile Phones 960 0.33%

Cookware 10250 3.54%

Table 1.  Statistics of the CGT-Dataset.
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-BERT24: A language representation model pre-trained on the Transformer architecture. BERT employs 
a bidirectional training approach that takes into account both the left and right contexts of a word, thereby 
capturing more comprehensive semantic information.

-Soft-Masked BERT21: This model employs a two-stage approach. It first utilizes an error detection network 
to predict the probability of each character being incorrect. These probabilities are then used to apply a ’soft 
mask’ to the input sequence, which is subsequently fed into a BERT-based correction network to generate the 
corrected text.

-REALISE22: An end-to-end Chinese spelling correction model. Unlike traditional methods that use special 
tokens (e.g., [MASK]) to mask words during language model training, REALISE replaces target words with their 
phonetic characteristics and similar words. Additionally, it incorporates an adaptive weighting mechanism to 
simultaneously train error detection and correction tasks within a cohesive framework.

-MDCSpell30: A multi-task framework for detectors and correctors. The corrector captures the visual and 
phonetic features of each character in a sentence based on BERT, and integrates the hidden states of the detector 
and the corrector through a later fusion strategy to reduce the interference of spelling errors on the corrector and 
improve the error correction effect.

-ReLM31: A Chinese spelling correction method based on sentence reconstruction instead of traditional 
character-to-character annotation. The method corrects errors by reconstructing the whole sentence, simulating 
human error correction thinking and improving the generalisation ability and migration performance of the 
model.

-PTCSpell32: A pre-trained model designed for the Chinese spelling correction task. It combines visual and 
phonetic features of Chinese characters to improve correction accuracy, while mitigating the negative impact of 
detection errors on the correction process by balancing the loss function.

Implementation details
The experimental hardware consists of an Intel(R) Xeon(R) Platinum 8474C @ 3.00 GHz CPU and two NVIDIA 
GeForce RTX A6000 GPUs (48 GB of graphics memory each). The model implementation is based on the 
PyTorch framework33 and the Transformer library provided by Huggingface34. The semantic feature extractor 
uses a pre-trained bert-base-chinese model (pre-trained on a large Chinese corpus)1. The first two layers of the 
model are used to initialise the weights of the Transformer in the auxiliary location detector.

For training the CDANet model, we utilized the Adam optimizer35 with a batch size of 256, a learning rate 
of 2e-5, and trained for 10 epochs. The CGT-Dataset was divided into training, validation, and test sets in a 
ratio of 7:2:1. We used the SIGHAN 2013, SIGHAN 2014, and SIGHAN 2015 benchmark datasets Consistent 
with previous studies22,36, we employed the OpenCC 1.0 tool2 to convert traditional Chinese characters in our 
datasets. convert traditional Chinese characters in our dataset to simplified characters. Our evaluation metrics, 
including sentence-level Precision, Recall Our evaluation metrics, including sentence-level Precision, Recision, 
Recall, and F1-score, are in line with those used in prior research. It’s important to note that the correction task is 
significantly more complex than the detection task, as the success of correction is contingent upon the accuracy 
of the initial detection.

Main results
The main experimental results on our self-constructed CGT-Dataset are presented in Table 3. On the CGT-
Dataset, our proposed CDANet model achieves state-of-the-art performance across all metrics for both detection 
and correction tasks. Specifically, CDANet’s F1 scores for detection (96.3%) and correction (89.3%) surpass the 
strongest baseline models byby 2.7 percentage points (vs. MDCSpell) and 0.6% (vs. PTCSpell), respectively. This 
demonstrates the superiority of our approach on the target task of counterfeit goods text recognition.

To further analyze the source of these improvements, we compare our model with two closely related works, 
REALISE and MDCSpell. CDANet exhibits overall superior performance to REALISE, particularly in terms 
of robustness to multimodal interference. Although REALISE also integrates semantic, pinyin, and grapheme 
features, its direct integration of the erroneous characters’ multimodal information can easily interfere with 
the contextual semantics. In contrast, our proposed Auxiliary Position Detection Network is designed to first 
identify the error’s position, which significantly enhances the model’s robustness to such interference. The results 
on the CGT-Dataset validate this, showing a 0.3 percentage point improvement in correction-level precision 
over REALISE. It is also worth noting that MDCSpell adopts a similar detection-assisted correction design. 
However, its utilization of visual and phonetic features is still implicitly limited to the pre-training capability 
of BERT, leaving room for optimization. Our experiments fill this gap by explicitly modeling these features. 
As can be seen from the experimental results, this leads to a meaningful improvement of 1.3% in the F1 score 
over MDCSpell, which further demonstrates the effectiveness of incorporating phonological and morphological 
knowledge into the semantic space.

Finally, to verify the generalization ability of CDANet, we conducted further experiments on the SIGHAN2013, 
SIGHAN2014 and SIGHAN2015 datasets. As can be seen from the results in Table 3, CDANet performs well on 
both detection and correction tasks. Compared with the BERT baseline that utilizes only contextual semantic 
information, CDANet improves the F1 scores of the correction task by 10.4%, 12.8% and 11%, respectively. 
These significant improvements further validate the effectiveness and robustness of our approach. In addition, 
compared to PTCSpell, although PTCSpell has higher precision in recognizing and correcting spelling errors 
by specifically learning the visual and phonetic features of Chinese characters through a pre-training phase, its 

1 https://huggingface.co/google-bert/bert-base-chinese
2 https://github.com/BYVoid/OpenCC
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recall is not significantly improved. On the other hand, CDANet does not require additional pre-training tasks, 
reducing the dependence on resources and data labeling, while maintaining a better balance on all metrics. This 
shows that our approach not only has a lower implementation cost but also performs consistently across diverse 
task scenarios.

We also conducted an in-depth analysis of why CDANet exhibits inconsistent performance across different 
datasets. Our research revealed that the model demonstrates significantly greater improvement on the CGT-
Dataset compared to its performance on the SIGHAN benchmark dataset. This discrepancy primarily stems 
from fundamental differences in the nature of errors across the two datasets: the CGT-Dataset is characterized 
by high-density, intentional phonetic and orthographic substitution errors within its named entities. CDANet’s 
model architecture enables exceptional performance on this task by explicitly modeling pinyin and character 
features, while its auxiliary detection module effectively focuses on such high-impact errors. In contrast, the 
SIGHAN dataset exhibits a richer error distribution encompassing syntactic and cognitive-level errors. In these 
scenarios, purely semantic models like BERT have demonstrated strong error correction capabilities, thereby 
narrowing the performance gap between CDANet and baseline models.

Ablation study
To systematically validate the contribution of each component within CDANet, we conducted a comprehensive 
series of ablation studies on both the CGT-Dataset and the SIGHAN2015 test set. The results, as delineated in 
Table 4, unequivocally demonstrate the effectiveness of our proposed auxiliary position detection network and 
multimodal feature integration strategy. On the CGT-Dataset, every component proved to be crucial for the 
model’s performance. The most significant performance degradation was observed upon removing the auxiliary 
position detection network (- Auxiliary Position), which caused the F1 score to plummet by 8.0 
points from 89.3 to 81.3. This result underscores the pivotal role of this network in accurately locating errors and 
mitigating the semantic interference caused by incorrect characters, which is a core challenge in our dataset. The 
value of multimodal information was also prominently highlighted; removing both Pinyin and glyph features 
simultaneously (- Pinyin & Glyph) resulted in the second-largest performance drop, a 7.1-point decrease 
in the F1 score. Furthermore, ablating either the Pinyin (- Pinyin) or glyph (- Glyph) features individually 

Dataset Model

Detection Correction

Prec. Rec. F1. Prec. Rec. F1.

CGT-Dataset

Soft-Masked BERT21 89.2 87.6 88.4 88.6 85.2 86.9

REALISE22 91.8 90.0 90.9 90.7 86.3 88.4

MDCSpell30 95.2 92.1 93.6 88.2 87.9 88.0

PTCSpell32 96.1 90.3 93.1 90.8 86.6 88.7

Bi-DCSpell*23 95.3 91.3 93.3 90.0 85.4 87.6

ReLM31 - - - 90.4 85.9 88.1

BERT24 85.6 83.4 84.5 82.9 80.4 81.6

CDANet(ours) 98.2 94.5 96.3 91.0 87.9 89.3

SIGHAN 2013

Soft-Masked BERT*37 81.1 75.7 78.3 75.1 70.1 72.5

REALISE22 88.6 82.5 85.4 87.2 81.2 84.1

PTCSpell32 99.7 80.6 89.1 99.7 79.2 88.3

Bi-DCSpell*23 88.2 80.6 84.2 86.8 78.7 82.6

BERT24 79.0 72.8 75.8 77.7 71.6 74.6

CDANet (ours) 89.3 82.6 85.8 89.2 81.2 85.0

 SIGHAN 2014

Soft-Masked BERT *37 65.2 70.4 67.7 63.7 68.7 66.1

REALISE22 67.8 71.5 69.6 66.3 70.0 68.1

PTCSpell32 84.1 71.2 77.1 83.8 69.4 75.9

Bi-DCSpell*23 69.9 70.9 70.4 68.5 68.7 68.6

BERT24 65.6 68.1 66.8 63.1 65.5 64.3

CDANet (ours) 79.5 78.2 78.8 77.7 76.5 77.1

 SIGHAN 2015

Soft-Masked BERT*37 67.7 78.7 72.7 63.4 73.9 68.3

REALISE22 77.3 81.3 79.3 75.9 79.9 77.8

PTCSpell32 89.6 81.2 85.2 89.4 79.0 83.8

Bi-DCSpell*23 79.6 82.4 81 77.5 80.2 78.8

BERT24 73.7 78.2 75.9 70.9 75.2 73.0

CDANet (ours) 83.4 85.1 84.2 83.0 84.9 84.0

Table 3.  Experimental results on the CGT-Dataset, SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Each 
model includes sentence-level precision, recall and F1 score for detection and correction. * indicates that the 
results are derived from37, and ‡ indicates that the results are taken from Chinese-BERT-wwm because the 
ChineseBERT pre-training process enhances the utilization of glyph (Glyph) and pinyin (Pinyin) information.
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also led to notable performance declines of 5.5 and 4.3 F1 points respectively, confirming that they provide 
critical and complementary information for the correction task.

To further evaluate the generalization ability of our model architecture, we replicated the same ablation 
experiments on the public SIGHAN2015 benchmark. The results exhibited a consistent trend with our findings 
on the CGT-Dataset, re-validating the importance of each component in a broader context. Once again, the 
auxiliary position detection network was the most critical module, as its removal led to the largest F1 score 
drop of 5.0 points. Similarly, the multimodal features continued to provide a significant advantage over a purely 
semantic approach, with their removal causing a 4.4-point F1 decrease. Notably, on both datasets, all ablated 
model variants still comprehensively outperformed the baseline BERT model. This strongly proves that the 
fundamental architecture of CDANet is robust and that every integrated component makes an indispensable 
and positive contribution to the model’s overall effectiveness in both specialized and general Chinese spelling 
correction scenarios.

Conclusion
In this paper, we proposed a Corrector-Detector Auxiliary Network, CDANet, designed to intelligently 
recognize counterfeit goods text that relies on phonetic or glyph similarity. Addressing the core challenge of 
high visual and auditory similarity in erroneous characters, CDANet effectively incorporates glyph, pinyin, and 
contextual semantic features. The complementarity of this multimodal information significantly enhances the 
model’s recognition capabilities by providing discriminative signals beyond standard semantics. Furthermore, to 
mitigate the issue of misleading contextual semantics caused by incorrect characters, we introduced an Auxiliary 
Position Detection Network, which improves correction accuracy by precisely locating errors.

A key contribution of this work is also the construction of the CGT-Dataset, a large-scale textual dataset 
of counterfeit goods containing 289,851 samples, which facilitates research in this specific domain. Extensive 
experiments show that CDANet achieves state-of-the-art performance on our proposed CGT-Dataset and 
demonstrates strong, competitive performance on the public SIGHAN benchmark datasets. These results 
validate the model’s effectiveness for the target task and its robust generalization ability.

Limitations and future work
Despite the promising results, this study has several limitations. First, our CGT-Dataset, while large, is 
constructed from a single e-commerce platform, which may not capture the full diversity of counterfeit text 
styles across different sources. Second, the counterfeit texts are generated via simulation, which may not fully 
encompass the complexity and subtlety of authentic, “in-the-wild” examples. Lastly, our model’s primary focus 
is on phonetic and glyph-based errors, and its performance on more complex, semantic-level counterfeiting has 
yet to be explored.

Future work could proceed in several exciting directions. We plan to enrich our dataset by incorporating data 
from multiple platforms and including more sophisticated examples of counterfeiting. Another valuable step 
would be to investigate the adaptation and deployment of CDANet in a real-world, large-scale detection system 
to assess its practical utility and efficiency.

Data availability
The CGT-Dataset introduced in this study is available upon reasonable request from the corresponding author.

Code availability
The code supporting the findings of this study is available upon reasonable request from the corresponding 
author.

Materials availability
Not applicable. This study does not involve any specific materials requiring access.
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CGT-Dataset SIGHAN2015

Prec. Rec. F1. Prec. Rec. F1.

BERT24 77.7 71.6 74.6 70.9 75.2 73.0

CDANet (ours) 91.0 87.9 89.3 83.0 84.9 84.0

 - Pinyin 84.2 83.5 83.8 80.5 81.0 80.7

 - Glyph 84.8 85.1 85.0 81.2 81.9 81.5

 - Pinyin & Glyph 82.0 82.5 82.2 79.1 80.2 79.6

 - Auxiliary Position 81.0 81.6 81.3 78.5 79.5 79.0

Table 4.  Correction-level average ablation results for the CDANet model on the CGT-Dataset and 
SIGHAN2015 test set. We made the following modifications to CDANet: remove the pinyin feature extractor 
(- Pinyin), remove the glyph feature extractor (- Glyph), remove both the pinyin and glyph feature extractors 
(- Pinyin & Glyph), remove the auxiliary position detection network (- Auxiliary Position).
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