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Automated warehouse stock tracking is becoming increasingly important for improving logistics 
and reducing manual errors. Unmanned Aerial Vehicles (UAVs) offer a promising solution by enabling 
automated barcode scanning from above. However, challenges such as poor lighting, shadows, and 
partial occlusions still limit the reliability of real-time barcode detection and decoding. This research 
presents a deep learning framework evaluated on simulated UAV imagery for barcode inventory 
management. The proposed system uses the YOLOv8 object detection model to accurately localize 
both 1D and 2D barcodes in images captured from a UAV perspective. With a mean Average Precision 
(mAP) of 92.4%, the model demonstrates strong performance even in complex warehouse conditions. 
Once localized, the barcode regions are decoded using OpenCV’s barcode module. The extracted data, 
including product ID and quantity, is then automatically updated into a MySQL database to simulate 
real-time stock updates. Although tested using simulated aerial imagery, the system is designed to 
be drone-ready with minimal adjustments. This modular approach shows potential for real-world UAV 
deployment and contributes to reducing human effort and errors in inventory tracking.

In today’s rapidly evolving world with highly competitive market, businesses are feeling pressure to keep their 
inventory in check1. As industries increasingly rely on e-Commerce, supply chains are becoming more complex 
and the need for accurate and up-to-date inventory data is becoming more and more crucial2–4.

Traditional inventory management methods, such as manual inventory management and periodic cycle 
counting, are no longer sufficient to keep up with the speed and volume of modern operations5. Conventional 
approaches often lead to delays, human errors, and inefficiencies, which can result in stock shortages, 
overstocking, and poor customer satisfaction5.

To align with the growing pace, Industry 4.0 technologies6continue to evolve more rapidly. Businesses are 
seeking innovative solutions that can streamline inventory control, reduce costs, and improve decision-making. 
As a result, automation and real-time tracking have become key priorities7, pushing organizations to explore 
smarter, more agile systems to manage their inventory in a way that supports fast-moving global supply chains.

One latest invention is drone, or UAVs which have been revolutionizing logistics by changing the way inventory 
is managed, and warehouses operate8. For example, drones can quickly scan large areas of inventory, saving a lot 
of time compared to traditional stock-taking methods. They are equipped with sensors and smart technologies 
that can collect data without human errors and perform automation by repeating tasks like inventory scanning 
and counting. Another big advantage is that drones can access difficult-to-reach or unsafe areas, such as high 
shelves or dangerous spots, which makes the workplace safer for everyone9. Figure 1 illustrates the comparison 
between traditional inventory methods and modern, drone-assisted inventory management, highlighting the 
key benefits of UAV assisted inventory management.

These drones are equipped with high-resolution cameras and sensors10 that allow them to navigate large 
warehouse spaces, scanning products and pallets quickly and efficiently. UAVs are capable of autonomously 
flying and capturing images from various angles, even in hard-to-reach areas, significantly speeding up the 
process of inventory management. To fully utilize their capabilities, drones rely on advanced computer vision 
and deep learning technologies, which are essential for transforming raw image data into actionable insights.

Deep learning, particularly through techniques like Convolutional Neural Networks, has become central to 
the development of object detection systems used in drones11,12. The latest deep learning models, such as YOLO13 
and its subsequent versions like YOLOv814, have significantly improved object localization and detection. These 
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models are particularly effective because they can process images in real time, supporting UAV operations in 
logistics and warehouse environments15. YOLO’s efficiency lies in its ability to simultaneously predict bounding 
boxes and class probabilities, making it especially suitable for fast-paced environments such as warehouses16. 
This real-time detection capability allows drones to update inventory data dynamically, ensuring continuous and 
autonomous warehouse management operations.

Figure 2 represents an automated barcode scanning system in a warehouse environment. A drone equipped 
with a camera captures images of barcoded shelves and processes them to decode barcode information. The 
decoded data is then wirelessly transmitted to an inventory management system for tracking and updates. This 
automation enhances warehouse efficiency by reducing manual scanning efforts.

The Fig.  3 shows the sequence diagram for the above process. Many researchers have made significant 
contributions to the use of UAVs in warehouse management and inventory control, particularly in the area of 

Fig. 2.  Simple workflow diagram.

 

Fig. 1.  Comparing traditional methods versus drone-powered inventory management.
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barcode localization and decoding. While substantial progress has been made, gaps still exist in addressing the 
challenges posed by dynamic warehouse environments. In dynamic warehouse environments, factors such as 
poor lighting, occlusion, and barcode distortions can severely impact the accuracy and efficiency of existing 
automated systems.

While in the past enhancing the drone’s capabilities, such as equipping it with better cameras, improved 
sensors, and advanced lighting systems to help mitigate issues related to poor lighting and occlusion has been 
researched, however, refining the model’s ability to recognize and compensate for environmental factors needs 
to be researched more. This study addresses that gap by proposing a modular, simulation-based framework 
inspired by UAV-assisted barcode inventory, supporting real-time product identification and automated stock 
updates. Although, our implementation uses existing tools like YOLOv8 and OpenCV, the contribution lies 
in how these tools are customized, combined, and validated for real-world warehouse inventory needs. The 
system was tested on simulated aerial data and is structured to support future UAV integration with minimal 
adjustments. Our contributions are as follows:

	1.	 We trained the YOLOv8 model to achieve accurate, real-time detection of 1D and 2D barcodes in complex, 
dynamic warehouse environments.

	2.	 We evaluated the performance of the YOLOv8 model in real-time barcode detection, assessing its accuracy 
in locating 1D and 2D barcodes within complex, dynamic warehouse environments.

	3.	 We integrated the YOLOv8 model with OpenCV’s barcode decoding module to enable decoding of 1D and 
2D barcodes, facilitating seamless inventory management in dynamic warehouse environments.

	4.	 We connected the decoded output to simulate stock updates into a testbed SQL environment, allowing for 
real-time reflection of inventory changes based on the decoded barcode data.

The remainder of the paper is structured as follows. Section  "Literature review" provides a comprehensive 
Literature Review, discussing prior research on UAVs, object detection, and barcode localization in warehouse 
settings. Section  "Methodology: system overview" outlines the research methodology, detailing the approach 
taken to develop the UAV-guided system and the deep learning techniques used. This section also explains 
about the dataset, and training process. Section "Results" presents the results, evaluating system performance 
in real-time barcode detection. Section "Discussion and key insights" discusses the results and compares them 
with existing methods. Finally, Sect. "Conclusion" concludes the paper by outlining the research limitations and 
offering insights for future work.

Literature review
The use of UAVs in inventory management has gained significant attention in recent years, as they offer a 
promising solution for automating and optimizing warehouse operations. Several studies have explored the 
integration of UAVs in inventory management, focusing on their ability to automate and streamline warehouse 
operations. UAVs offer numerous benefits in this domain, including enhanced speed, improved accuracy, and 
reduced human error. Research has demonstrated the effectiveness of drones in tasks such as inventory counting, 
barcode scanning, and real-time data updates. For instance, UAVs equipped with computer vision and object 
detection algorithms have shown to increase the efficiency of stock-taking by automating the identification and 
localization of items, even in hard-to-reach areas. To better understand the various approaches used in UAV-
based inventory management, we categorize existing literature into key techniques for barcode localization and 
decoding. Figure 4 presents a structured taxonomy of barcode detection techniques which serves to contextualize 

Fig. 3.  Sequence diagram.
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Fig. 4.  Taxonomy of barcode localization and decoding techniques in UAV-based inventory management.
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our work within the broader landscape of barcode detection research. By organizing existing approaches into 
clear categories, it helps readers quickly understand the progression of techniques, identify relevant trends, and 
recognize the novelty of our proposed method.

 Barcode localization
Traditional methods
Traditional methods for barcode localization primarily rely on digital image processing techniques. They 
generally focus on detecting and identifying the position (location) and orientation of a barcode in an image. 
One such traditional technique is edge detection. Barcodes often have high contrast between the dark bars and 
the light background, so these techniques identify sharp changes in pixel intensity, which often correspond to the 
edges of the barcode bars. Bodnár et al. in17 uses canny edge detector and probabilistic Hough transformation to 
detect straight lines in barcode images. They preprocessed the images with the blur filter and set a minimum line 
length in the Hough transformation to improve line grouping and determine barcode structure.

In another research18, Li et al. utilized local adaptive thresholding as part of their method to handle issues 
caused by uneven illumination in QR code images. applied a customized Gaussian thresholding algorithm. 
Unlike conventional Gaussian algorithms, this one dynamically generated the block size for image processing, 
ensuring the images were processed area-wise at each instance, which allowed for more efficient segmentation. 
Akinbade et al. in19 used an adaptive thresholding algorithm to properly segment the text characters from 
barcode images with complex backgrounds. They applied a customized Gaussian thresholding algorithm that 
differs from conventional Gaussian algorithms by dynamically generating the block size for image processing. 
This ensured that the images were processed area-wise at each instance, allowing for more efficient segmentation. 
Tribak et al. proposed a robust QR code pattern localization approach using image quality assessment in their 
work20, contour-based segmentation with an achromatic filter to highlight regions of interest, and Hu invariant 
moments to reduce false positives and improve recognition accuracy, making it suitable for embedded systems.

Some other traditional techniques that have been widely used in barcode localization include the use of 
morphological operations21 (for example dilation and erosion), projection profiles22 (including summing the 
pixel intensities along rows or columns of the image. The resulting histogram-like projection reveals the presence 
of the barcode as spikes), template matching (using a pre-defined barcode template and sliding it over the image 
to match areas that have similar patterns)23, histogram of oriented gradients24 (focuses on the gradients and 
orientations of edges) and colour based methods25 (by identifying the dominant color) present in barcodes 
printed in colours.

Deep learning based methods
Deep learning-based methods for barcode localization involve using neural networks to detect and locate 
barcodes within images or videos. These methods typically offer improvements over traditional image processing 
techniques because they have potential to handle complex scenarios such as distorted, low-resolution, or 
occluded barcodes. CNNs are the foundational deep learning architecture for image-related tasks. They are often 
used for feature extraction and spatial pattern recognition in images. Tsai et al. implemented deep CNNs in 
their work26 to classify and identify the source printers of QR codes, utilizing pretrained models like AlexNet, 
DenseNet201, and ResNet. Chou et al. demonstrated in their work27 robustness to rotation and deformation 
while doing the same task using the CNN in barcode images with complex backgrounds.

Region based CNN are also studied and implemented in various works for with region proposals, potential 
bounding boxes where a barcode may be located. Rahman et al. utilized a method for detecting and decoding 
multiple barcodes simultaneously using the Faster RCNN model in their proposed work28. Similarly, Faster 
RCNN was enhanced for small object detection in29 while30 proposed an efficient deep learning-based method 
for 1D barcode localization in shipping labels, demonstrating the versatility of CNN architectures beyond 
region-based approaches.

YOLO is a more recent and popular real-time object detection system. Unlike traditional object detection 
models that first generate region proposals, YOLO divides the image into a grid and directly predicts bounding 
boxes and class probabilities in a single forward pass. Li et al. proposed an improved YOLO-MCG barcode 
localization algorithm31 that utilizes the MobileNetv3- small network and Convolutional Attention Mechanism 
Module (CBAM). Some other recent researchers exploring various YOLO-based approaches for barcode 
detection include32–34 and 35.

SSD is another real-time object detection method similar to YOLO but with different architecture. SSD 
generates multiple bounding boxes at each spatial location and classifies each box. It can be used for multi-scale 
barcode detection in complex scenes. Dalal et al. used SSD for fast and accurate detection of both 1D and 2D 
barcodes36.

UAV specific localization techniques
As discussed above, while traditional and deep learning-based methods have significantly improved barcode 
localization, UAVs present unique challenges due to their dynamic movement, varying perspectives, and 
environmental uncertainties. The techniques which are specific to localizing barcodes from UAV mounted 
cameras enable UAVs to navigate and position them first relative to the objects or the environments. Since 
UAVs operate in 3D space and often rely on autonomous navigation, accurate localization is crucial for tasks like 
surveying, mapping, inspection, and even package delivery.

SLAM is a technique where the UAV simultaneously builds a map of an unknown environment while keeping 
track of its own position. Woong Kwon et al. proposed a method for robust autonomous navigation of UAVs in 
warehouse environments37 by employing a low-cost sensing system with an extended Kalman filter-based multi-
sensor fusion framework, incorporating techniques such as Mahalanobis norm for outlier rejection, pseudo-
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covariance for visual SLAM integration, and floor lane recognition for absolute localization. Qian et al. used 
SLAM with YOLOv5s-Lightweight38 for dynamic object detection and filtering to enhance localization accuracy 
in indoor environments. Yang et al. proposed a CNN-based QR code reading method tailored for UAV package 
inspection tasks39.

Optical flow is another technique used by researchers to help UAVs maintain stability by detecting how the 
environment moves relative to the drone40. This detects motion patterns to identify potential obstacles and 
avoid collisions. While sensor fusion combines data from multiple sensors (e.g., cameras, inertial measurement 
units (IMU), LiDAR, and GPS) to improve localization accuracy and robustness. In barcode localization, sensor 
fusion helps UAVs by integrating camera-based localization and stereo vision with image-based detection to 
better estimate distances41.

Barcode decoding
Barcode decoding is the process of extracting information from a barcode image and converting it into readable 
data, such as a product ID or inventory number. This involves identifying the barcode, interpreting its pattern, 
and translating it into digital information. In UAV-based inventory management, barcode decoding enables 
real-time tracking and data retrieval without human intervention.

Traditional decoding
Traditional barcode decoding methods rely on image processing algorithms to detect and extract barcode 
information. These techniques work well in controlled environments but may struggle with poor lighting, 
distortions, or occlusions. Table 1 present a comprehensive summary for literature related to traditional barcode 
decoding methods.

Deep learning based decoding
Deep learning techniques enhance barcode decoding by making it more robust to noise, distortions, and real-
world variations. Instead of relying on handcrafted rules, deep learning models learn to extract and decode 
barcodes from complex images.

CNNs have been used for both localization decoding of barcodes. Localization involves detecting the 
boundaries, orientation, and position, which can be challenging in cluttered or noisy images54. Once the barcode 
is localized, CNNs can extract features from the barcode image, such as the lines or patterns that represent the 
encoded information.

Kamnardsiri et al. applied five existing D-CNN architectures to assess their effectiveness in barcode detection 
and recognition. They also compared algorithms like YOLO v5 and Faster R-CNN, which are popular in object 
detection tasks, for their ability to handle barcode images55. In the work by56, CNNs are used for pixel-wise 
segmentation to identify barcode regions for decoding. The encoder-decoder architecture proposed by the 
authors allows for precise segmentation56, enabling the decoding of one-dimensional barcodes even in real-time 
AR scenarios.

Real time decoding
Real-time decoding methods focus on processing barcode images efficiently while maintaining speed and 
accuracy, crucial for UAV-based applications where delays can impact operations. Table 2 summarizes the key 
real-time decoding techniques used for barcode recognition and their corresponding studies.

From the reviewed literature, it is evident that significant progress has been made in barcode localization and 
decoding using both traditional and deep learning-based techniques. However, a major research gap remains 
in the integration of the latest deep learning algorithms for simultaneous barcode localization and decoding in 
UAV-based inventory management. Most existing studies focus on these tasks separately rather than as a unified 
system. Furthermore, a comprehensive simulation-based framework that considers UAV-relevant challenges 
such as occlusion, cluttered environments, low-light conditions, and dynamic viewpoints has not yet been fully 
explored. Additionally, real-time inventory updates remain a critical requirement that has not been extensively 

Decoding 
method Description Strengths Technical limitation Key studies

Zxing (zebra 
crossing)

Open-source library for
decoding 1D and 2D barcode 
formats (including QR codes)

High-speed processing; 
supports multiple barcode 
standards

Accuracy decreases under < 
60 lx lighting or >25° tilt; limited 
performance on reflective or low-
contrast surfaces.

42 evaluated QR detection at 93% accuracy in 
consumer images;
43improved encoding capacity via compression; 44 
examined performance on curved packaging surfaces.

ZBar library
Lightweight barcode and QR code 
scanner for still images and video 
streams.

Real-time decoding; low 
computational demand; 
integrates easily with OpenCV.

Decoding accuracy drops > 10% in 
motion blur or noisy backgrounds

45 tested in POS systems with 88% success rate; 
46 compared classical and DL-based decoders; 47 
optimized for high-speed scanning applications.

Tesseract 
OCR

OCR tool
decode certain barcode formats by 
interpreting their alphanumeric 
data.

Open source.
Powerful text recognition 
capabilities.
Works for barcodes with text.

Not robust to rotation or blur; 
decoding accuracy < 70% for purely 
graphical barcodes.

48 applied to medical label decoding;
49 combined with object detection for industrial 
automation;
50 used in parcel sorting systems

Edge 
detection & 
Binarization

Classical image-processing 
methods (like Canny edge 
detection and thresholding)
isolate barcodes.

Works with distorted or skewed 
images.
Well-suited for structured 
barcode images.

Highly sensitive to illumination 
and specular reflection; accuracy 
decreases ~ 20% on glossy or dusty 
surfaces.

51 applied morphological operations for 2D decoding;
52 introduced adaptive edge model;
53 developed BLaDE for robust localization.

Table 1.  Traditional barcode decoding methods.

 

Scientific Reports |          (2026) 16:399 6| https://doi.org/10.1038/s41598-025-29720-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


explored in conjunction with deep learning-based barcode scanning. Addressing these gaps can lead to a more 
robust and efficient UAV-based inventory management system.

Methodology: system overview
The proposed system uses UAV-mounted cameras and advanced computer vision techniques to automate 
inventory management in a warehouse environment. The system follows a structured pipeline consisting of the 
following key steps:

	1.	 Barcode Localization: YOLOv8 is employed for real-time detection of 1D and 2D barcodes within warehouse 
images.

	2.	 Barcode Decoding: OpenCV’s barcode decoding module extracts information from the detected barcodes.
	3.	 Database Integration: The decoded data (e.g., product ID and quantity) is stored and updated in a MySQL 

database for real-time inventory tracking.

Figure 5 illustrates the complete workflow of the proposed UAV-guided barcode localization and decoding 
system, offering a high-level overview of key modules, from data acquisition to detection and decoding. This 
diagram helps in understanding the sequential process and modular architecture of our approach.

Barcode localization
Data collection, preprocessing and augmentation
A dataset containing annotated images of barcodes and QR codes is used to train and evaluate the YOLOv8 
model. The dataset is structured as follows:

•	 Training Set: 91% (28,696 images).
•	 Validation Set: 8% (2,382 images).
•	 Test Set: 1% (432 images).

Each image is annotated with bounding boxes corresponding to two object classes:

•	 Barcode (1D barcodes).
•	 QR Code (2D barcodes).

To improve model generalization and robustness, several preprocessing techniques were applied:

•	 Auto-Orient: Ensures correct image orientation before processing.
•	 Resize: Images were resized to 416 × 416 pixels using a stretch-based approach.
•	 Class Modification: Remapped four classes, ensuring consistency in annotations.

To handle lighting variations, occlusions, and perspective distortions in warehouse environments, the following 
built in Yolov8 augmentations were applied:

•	 Flipping: Horizontal and vertical flips to enhance detection from different angles.
•	 Rotation: 90° clockwise, 90° counterclockwise and 180° upside-down rotation.
•	 Random Cropping: Minimum zoom: 0%, Maximum zoom: 22%.
•	 Shearing: ±15° horizontally and vertically.
•	 Blurring: Gaussian blur applied up to 3.25px.
•	 Noise Addition: Random noise affecting up to 5% of pixels.
•	 Cutout: Introduced 3 occlusion boxes, each covering 10% of the barcode, to simulate real-world obstructions.

This preprocessing ensures that the YOLOv8 model is robust to challenging warehouse conditions, including 
low light, shadows, and occlusions. Figure 6 presents sample images from the dataset with annotated bounding 
boxes.

Realistic simulation of UAV conditions
While we already augmented the dataset using standard Yolov8 built-in augmentation (e.g., flips, rotations, 
shearing, cropping), discussed briefly in the previous section, but due to hardware and resource constraints, we 

Decoding technique Description Studies

Edge computing on UAVs Decoding happens directly on the UAV
using onboard processors, reducing latency.

57

GPU acceleration Uses hardware-accelerated computing (e.g., NVIDIA Jetson)
to speed up deep learning-based barcode recognition.

58

FPGA-based decoding Field-Programmable Gate Arrays (FPGAs)
allow parallel processing for real-time barcode recognition.

59

Streaming-based decoding Continuous scanning and decoding from
live video feeds rather than static images.

60

Table 2.  Real-time barcode decoding methods.
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were unable to conduct live UAV based data collection or experiments in real-world warehouse environments. 
To bridge this limitation and to simulate the dynamic and often challenging conditions encountered by UAVs 
during flight (such as motion blur, perspective shifts, lighting changes, and occlusion), we employed a diverse 
set of data augmentation techniques using the Albumentations Python library. Using our base dataset of static 

Fig. 5.  Our proposed workflow.
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warehouse images containing 1D and 2D barcodes, we generated 300 augmented images that mimic various 
real-world distortions typically seen in UAV guided scenarios. These augmentations were selected based on their 
relevance to UAV specific challenges and applied in combination to preserve label integrity while simulating 
realistic capture conditions. This two layer augmentation approach ensures both conventional image diversity and 
realistic simulation of UAV flight conditions, ultimately enhancing the model’s robustness and generalizability. 
Figure 7a and b shows samples of applied augmentations while Table 3 summarizes the types of augmentations 
and their relevance to UAV conditions.

Object detection using YOLOv8
YOLOv8 was chosen for barcode detection due to its real-time processing capabilities and high accuracy. 
YOLOv8 introduces several architectural improvements as shown in Fig. 8 aimed at balancing accuracy with 
computational efficiency. It utilizes a more efficient backbone network that can extract more discriminative 
features from images, leading to better detection performance, especially for small objects or objects in 
challenging environments. Also, the mode has enhanced its ability to detect objects of varying sizes through 
refined multi-scale feature fusion. This is particularly beneficial in our scenario, where barcodes and QR codes 
may appear at different distances and resolutions due to the varying altitude and angle of the UAV-mounted 
camera. The improved detection head ensures that even small or distant barcodes are accurately localized.

In warehouse environments, barcodes may be partially obstructed by packaging, shelving, or other objects. 
YOLOv8’s integration of attention mechanisms helps the model prioritize the most relevant barcode features, 
improving detection accuracy in cluttered scenes. This is crucial for ensuring that the system can detect barcodes 

Fig. 7.  Augmented dataset illustrating UAV-related visual distortions.

 

Fig. 6.  Sample images from dataset.

 

Scientific Reports |          (2026) 16:399 9| https://doi.org/10.1038/s41598-025-29720-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 7.  (continued)

Augmentation Simulation for Applied parameters

Motion blur Simulates drone shake or movement blur_limit = 5, p = 1.0

Brightness & Contrast Varying lighting in warehouses brightness_limit = 0.2, contrast_limit = 0.2, p = 1.0

Rotation Slight UAV angles or orientation changes limit = 15, border_mode = cv2.BORDER_REFLECT,
p = 1.0

Perspective tilt Aerial angles when drone isn’t directly overhead scale=(0.02, 0.05), keep_size = True, p = 1.0

Gaussian noise Sensor noise or image compression from UAV footage var_limit=(10.0, 40.0), p = 1.0

Shadow Shadows from shelves, lighting, or drone body shadow_roi=(0, 0.5, 1, 1), num_shadows = 1, p = 1.0

Downscale Lower resolution when flying higher or due
to transmission limits scale=(0.6, 0.8), p = 1.0

Cutout (CoarseDropout) Occlusion from obstacles like boxes,
racks, or another inventory

max_holes = 1, min_height = 30, max_height = 30,
min_width = 30, max_width = 30, fill_value = 0, p = 1.0

Table 3.  UAV-oriented augmentations using python albumentations Library.
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even when they are partially hidden or overlapped by other items. It’s modified loss function ensures a balance 
between localization accuracy and classification confidence, leading to better barcode detection without 
sacrificing speed. In our case, this helps in minimizing false positives (e.g., misclassifying textures or patterns as 
barcodes) while ensuring high precision, which is critical for real-time inventory tracking.

Barcode decoding
The OpenCV library provides a barcode and QR code decoding module which enables real-time barcode 
recognition in images or video frames. This module is part of OpenCV’s cv2 library and offers a simple, efficient 
way to extract barcode information from detected regions. Algorithm 1 outlines the main steps involved in the 
decoding process.

Algorithm 1.  Barcode localization and decoding using YOLOv8 and OpenCV.

Database integration
Once a barcode is detected and decoded, the extracted information needs to be stored and updated in a MySQL 
database to keep track of inventory in real-time. This process ensures that product details, stock levels, and 
movements within the warehouse are accurately recorded and accessible. The system checks if the scanned 
product exists in the database. If it does, the quantity is updated; otherwise, a new entry is created. The updated 
information is reflected in a warehouse management system (WMS) or a dashboard for monitoring stock 
levels and movements. Table 4 shows the proposed MySQL database structure which is designed to store key 
inventory-related information.

Results
This section presents the evaluation of the proposed UAV-guided barcode localization and decoding system in 
a warehouse environment. The results are divided into three key components: YOLOv8 barcode localization, 
OpenCV-based barcode decoding, and database integration for real-time inventory updates. The effectiveness of 
the system is assessed using standard performance metrics, including mean Average Precision (mAP) for object 
detection, decoding accuracy, and database update efficiency.

Fig. 8.  Key features of YOLOv8 motivating its selection for this study.
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Experimental setup
For training the YOLOv8-based barcode detection model, a GPU-enabled machine was used to ensure faster 
convergence. The specifications of the hardware and environment are summarized in Table 5, while the key 
hyperparameters used during YOLOv8 training are provided in Table 6.

YOLOv8 barcode localization performance
The performance of YOLOv8 in detecting and localizing barcodes in warehouse images was evaluated using 
the validation dataset. The primary evaluation metric used was mAP@0.5 and mAP@0.5:0.95, which measure 
the localization accuracy of detected barcodes. It is important to note that the results reported in this section, 
including Table 7; Figs. 9, 10, 11 and 12, are all based on the validation set results. The separate test set was 
reserved for future generalization assessment and is not included in the current performance tables.

The results in Table 7 show that YOLOv8 achieves high localization accuracy, with an mAP@0.5 of 92.4%, 
demonstrating strong robustness in detecting barcodes under challenging conditions such as occlusion, low 
lighting, and shadows, even without applying additional external augmentations like blur or noise. The low 
preprocessing time of 0.3ms per image and inference time of 3.3ms highlights the model’s suitability for real-time 
applications. The important thing to note in Table 7 is that although the validation set comprises 2,382 images 
as discussed in Sect. 3.1.1, the evaluation metrics reported (e.g., precision, recall, and mAP) are computed at the 
object level because object detection models like YOLOv8 assess performance per detected object (bounding 
box). Hence, precision, recall, and mAP as shown in Table 7 are based on correctly or incorrectly predicted 

Class Images Precision Recall mAP50 mAP 50–95

All 2382 0.887 0.919 0.924 0.645

Barcode 2135 0.96 0.963 0.975 0.699

QRcode 219 0.813 0.876 0.873 0.592

Table 7.  YOLOv8 barcode detection results without Albumentation.

 

Parameter Value

Epochs 50

Batch size 16

Learning rate 0.01

Momentum 0.9

Optimizer SGD

Workers 2

Table 6.  YOLOv8 training hyperparameters.

 

Component Specification

GPU NVIDIA GeForce RTX 3050

RAM 4 GB VRAM

CUDA 12.6

Driver version 501.09

Python 3.10

OS Windows 10

Table 5.  Hardware and configuration.

 

Attribute Type Description

Product_id VARCHAR(255) Unique identifier for each product

Product_name TEXT Name or description of the item

Quantity INT Total stock available in the warehouse

Location TEXT Warehouse section where the item is stored

Last_updated TIMESTAMP Time to track stock changes

Table 4.  Database structure.
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objects and not at the image level. The validation set indeed contains 2,382 images with 2,135 barcodes and 219 
QR codes, totaling 2,354 annotated objects.

Figure 9 shows training and validation metrics for our barcode detection model. train/box_loss represents 
the bounding box regression loss. The decreasing trend suggests that the model is improving its ability to predict 
object locations accurately during training. train/cls_loss is the classification loss (error in predicting object 
classes). This loss decreases over time, meaning the model is learning to classify objects better. train/d f l_loss loss 
is the distribution focal loss, which improves bounding box accuracy. In the graph we see the downward trend 
which shows improved box localization. Similar to training, val/box_loss shows how well the model predicts box 
coordinates on the validation set. The decreasing trend suggests generalization is improving. Similarly, the steady 
decline in val/cls_loss indicates better class predictions on unseen data. Also, in the figure, the increasing trend 
suggests that the model is improving in detecting objects across different IoU levels.

We also measured the Yolov8 reported timing values during the validation phase. Each represents the average 
time computed across the validation batch images on batch size 16 of as mentioned already in Table 6 and image 
resolution of 640 × 640 pixels. The recorded timings are reported in Table 8.

To improve the model’s ability to handle challenging UAV conditions as discussed in Sect.  "Realistic 
simulation of UAV conditions", we added 300 augmented images only to the training set. These augmentations 
simulated real-world issues like motion blur, low lighting, tilted angles, and occlusion. After retraining the 
model with these additional samples, the validation results showed strong performance. The reason behind 
the previously lower values without augmentation was that the model had not seen such difficult cases during 
training. Still, it performed quite well, and with augmentation, its robustness in real-world-like conditions 

Fig. 10.  Barcode detection results with albumentation augmentation applied.

 

Fig. 9.  Barcode detection results without albumentation augmentation applied.
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improved further. Table 9; Fig. 10 present the updated results after retraining the model with augmented images. 
Although the inclusion of 300 augmented images(UAV-style) resulted in only a minor change in mAP (92.4% 
to 92.2%), this indicates that the base model was already robust to such variations. The primary purpose of 
these augmentations was to confirm model stability under UAV like viewing conditions rather than to produce 
measurable performance gains.

Fig. 12.  Confusion matrix for YOLOv8 barcode and QR code detection.

 

Fig. 11.  Pairwise distribution of bounding box attributes.
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The correlogram in Fig. 11 visualizes the relationships between bounding box attributes (x, y, width, height) 
in a YOLOv8- based barcode and QR code detection model. Each scatter plot represents pairwise comparisons 
between these attributes, while the diagonal histograms show their individual distributions. The x and y 
coordinates, which likely represent the center points of detected objects, appear to follow a uniform distribution, 
suggesting that barcodes and QR codes are evenly distributed across the image. The width and height exhibit 
a strong positive correlation, indicating that as one-dimension increases, the other tends to increase as well, 
reflecting the rectangular nature of these objects. This analysis helps to evaluate the spatial characteristics and 
size distribution of detected barcodes and QR codes, which is useful for understanding the behavior of the 
model and improving detection accuracy. While not central to the core contribution, this analysis provides 
complementary insight into object geometry, aiding model interpretation and anchor tuning.

The confusion matrix in Fig. 12 represents the performance of a YOLOv8 model for barcode and QR code 
detection. The diagonal values show correct predictions, with 2,140 barcodes and 259 QR codes accurately 
detected. Here also it is important to note that the matrix reflects the number of predicted objects (detections) 
rather than image count. The total number of predictions (2,796) includes correctly detected objects, false 
positives, and missed detections, which are typical for object detection tasks. However, 207 barcodes were 
misclassified as QR codes, and 108 QR codes were also predicted as background, indicating some false negatives. 
The background class also contained 53 barcodes and 24 QR codes incorrectly detected as objects. There is 
minimal confusion between barcodes and QR codes, with only 1 misclassification in each direction. The 
apparent difference between the total number of ground-truth objects in the validation set (2,135 barcodes 
and 219 QR codes, totaling 2,354) and the total number of predictions (2,796) arises because YOLOv8 outputs 
multiple detections per image before non-maximum suppression filtering. After filtering, the number of 
matched detections (2,399 true positives) aligns closely with the annotated objects, confirming that the dataset 
composition and reported results are consistent. Yolo and other detectors do not evaluate in strict one prediction 
per object manner like classification. Normally, they output multiple predictions per image and evaluation filters 
them based on confidence and IoU thresholds. This means that for every predicted box the confidence threshold 
counts as prediction. Some of these are matched to ground truth while others are false positives i.e. they are 
either the duplicate boxes or spurious detections.

Overall, the model performs well, but there is room for improvement in reducing false negatives. This F1-
Confidence curve shown in Fig. 12 shows the relationship between the model’s confidence threshold and the 
F1-score for barcode and QR code detection. The F1-score represents the balance between precision and recall, 
with higher values indicating better performance. The blue line represents the overall performance across all 
classes, peaking at 0.90 F1-score at a confidence of 0.616. The barcode class consistently achieves a higher F1-
score compared to the QR code class, indicating better detection accuracy. As confidence increases beyond a 
certain point, the F1-score drops due to missed detections (reduced recall). This curve helps identify the optimal 
confidence threshold to balance precision and recall. Figure 13 shows the results of the prediction on sample 
batches.

To further evaluate the stability and reliability of the training process, we further conducted five experiments 
by explicitly setting different random seed values. When no seed was defined (i.e., the default random 
initialization), the model achieved a mAP@50 of 0.924. We then re-trained the YOLOv8 model using fixed seed 
values: 11, 22, 33, 44, and 55. These runs help assess the variability in performance due to random initialization 
of model weights and data shuffling. The results, presented in Table 10, indicate that the model’s performance 
remains consistent, with mAP@50 values ranging from 0.918 to 0.926 as shown in Table 6. This shows that the 
proposed pipeline is stable and performs reliably even across different training runs. Table 11 analyzes the results 
in statistical analysis. The mean mAP@50 across the runs was 92.16%, with a standard deviation of ± 0.26% and 
a 95% confidence interval of [91.83%, 92.49%], this indicates minimal variance and strong consistency.

Barcode decoding performance
After localization, the detected barcodes were passed to OpenCV’s barcode decoding module to extract the 
embedded product information. The decoding accuracy was evaluated based on the percentage of correctly 

Class Images Precision Recall mAP50 mAP 50–95

All 2382 0.886 0.916 0.922 0.656

Barcode 2135 0.960 0.964 0.976 0.698

QRcode 219 0.812 0.868 0.868 0.614

Table 9.  YOLOv8 barcode localization performance with augmentation.

 

Stage Description Average time (ms/image)

Preprocessing Image loading, resizing, and normalization 0.3

Inference Forward pass through YOLOv8-n model 3.3

Post-processing Non-maximum suppression and result formatting 8.0

Table 8.  Average processing time per image.
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decoded barcodes in different warehouse conditions. The results are shown in Table 12 The results show that 
mean barcode decoding accuracy remains high in well-lit conditions (98.5%) but degrades in low-light (85.2%) 
and partially occluded scenarios (78.3%). Decoding accuracy values represent averages over six independent 
runs using random seeds {None, 11, 22, 33, 44, 55}. This suggests that additional preprocessing techniques, such 
as image enhancement and denoising, may further improve performance in challenging conditions. Figure 14 
shows the decoded results sample. Figures 15 and 16 shows successful decoding of a blurred barcode image 
showing good decoding in challenging conditions.

Condition Mean decoding accuracy (%) ± SD 95% CI

Well-lit environment 98.5 ± 0.3 [98.0, 99.0]

Low-light conditions 85.2 ± 0.6 [84.4, 86.0]

Partial occlusion 78.3 ± 0.7 [77.2, 79.4]

Blurred barcode 72.1 ± 0.8 [70.8, 73.4]

Distorted/barcode tilted 80.5 ± 0.5 [79.6, 81.4]

Table 12.  Barcode decoding accuracy in different conditions.

 

Metric Mean Standard deviation (± SD) 95% confidence interval

Precision 0.8846 ± 0.0032 [0.8802, 0.8890]

Recall 0.9140 ± 0.0024 [0.9107, 0.9173]

mAP@50 0.9216 ± 0.0026 [0.9183, 0.9249]

Table 11.  Statistical summary of YOLOv8 performance across different seed Values.

 

Seed value Precision Recall mAP@50

None (Default) 0.887 0.919 0.924

11 0.881 0.912 0.918

22 0.889 0.916 0.926

33 0.884 0.911 0.920

44 0.886 0.917 0.923

55 0.882 0.914 0.921

Table 10.  YOLOv8 performance on different random seed values.

 

Fig. 13.  YOLOv8 F1 score curve depicting optimal precision-recall balance.
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Database integration and real-time inventory update
The extracted barcode data (product ID, quantity) was integrated into a MySQL database to enable real-time 
inventory management. The system was developed using PHP and MySQL, hosted on a local server using 
XAMPP. The web application was responsible for handling database transactions, including adding new 
products, updating stock levels, and querying.

inventory details.

Fig. 15.  Decoding the detected barcode using OpenCV.

 

Fig. 14.  Sample results validation set batch 01.
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System implementation
The backend system was developed using PHP for server-side scripting, and MySQL for database storage. 
XAMPP was used as a local development environment, which includes Apache for running the PHP scripts and 
phpMyAdmin for database management. The implementation steps are summarized as follows:

•	 Database setup A MySQL database named.

inventory_db was created, containing a table inventory with columns: id (Primary Key), product_id, 
product_name, quantity, and last_updated.

•	 Web API development A PHP script.

(update_inventory.php) was created to handle HTTP POST requests for updating inventory.

•	 Real-time processing The script receives barcode data via a POST request, validates the input, updates the 
MySQL database, and returns a JSON response with a successful message and execution time.

Database interaction workflow
Figures  17 and 18 illustrates the test work environment for database integration workflow of the inventory 
update process. The barcode scanner extracts product details, which are sent to the PHP backend via an HTTP 
request. The PHP script then processes the request, updates the database, and returns a response.

Fig. 17.  Workflow of real-time inventory update via PHP and MySQL: Update Screen.

 

Fig. 16.  Decoding the detected barcode in dark and blur environment using OpenCV.
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Performance evaluation
The database performance was analyzed by measuring the execution time and success rate of different operations. 
Table 13 presents the results obtained from the test environment.

The system successfully updated the inventory in real-time, achieving an average processing time of 1009.09 
ms for quantity updates and a 99.7% success rate. The generated JSON response (e.g., Status: SUCCESS, Message: 
Inventory Updated, Execution Time: 1009.09 ms) confirms that updates were executed efficiently. These results 
demon- strate that the proposed barcode-based inventory management system is capable of handling real-time 
data synchronization reliably.

Discussion and key insights
Previous studies on barcode detection and recognition have primarily relied on traditional computer vision 
techniques or early deep learning models. Conventional methods such as Hough Transform and edge detection 
have shown limitations in handling occlusions and complex backgrounds61,62. Earlier deep learning-based 
approaches, such as Faster R-CNN and YOLOv3, improved detection accuracy but struggled with real-time 
performance in warehouse environments63,64.

Our study builds upon these works by integrating YOLOv8, which incorporates attention mechanisms and 
a modified loss function to improve localization accuracy and robustness in cluttered settings. Compared to 
YOLOv5 and YOLOv7, YOLOv8 achieves a higher mAP@0.5 (92.4% vs. 88.95%64 and better recall, especially 
for barcodes partially obstructed by objects. The low preprocessing time which is 0.3ms and inference time of 
3.3ms per image demonstrates a significant improvement over previous models, making it well-suited for real-
time warehouse applications.

Similarly, past research on barcode decoding has faced challenges in handling blurred and distorted codes. 
OpenCV’s barcode decoding module has been effective in ideal conditions but struggled in low-light or occluded 
scenarios. Our results show decoding accuracy remained consistently high (98.5 ± 0.3%, 95% CI [98.0, 99.0]) in 
well-lit environments but showed a moderate decline under low-light and occluded conditions. These findings 
suggest that integrating image enhancement techniques (such as super-resolution or contrast adjustments) 
could further improve performance in challenging environments.

Although a direct comparison with prior UAV-based barcode detection systems is not entirely straightforward 
due to differences in datasets, hardware configurations, and evaluation protocols, Table 14 presents an 
approximate benchmark to provide contextual perspective on our model’s performance. Prior methods such as 
those in65–67 incorporate UAV navigation, barcode-based localization, and flight-path optimization in controlled 
warehouse environments. In contrast, our approach focuses exclusively on robust detection performance using 
YOLOv8 on a diverse and challenging dataset.

Despite lacking navigation components, our model still achieves strong detection performance, outperforming 
or matching the results reported in65,66.This validates the effectiveness of our detection framework and positions 
it as a viable candidate for future integration into UAV-assisted warehouse stocktaking systems. It is worthy 
to note that despite not having a UAV localization or scanning component, our YOLOv8 model shows robust 
generalization on static image detection tasks. This reinforces the detection capability of our model and lays the 
groundwork for integration into UAV-based stocktaking systems in the future. It is worthy to note that despite 
not having a UAV localization or scanning component, our YOLOv8 model shows robust generalization on 
static image detection tasks. This reinforces the detection capability of our model and lays the groundwork 

Operation Average processing time (ms) Success rate (%)

New entry addition 1025.4 99.5

Quantity update 1009.09 99.7

Inventory query 985.2 100.0

Table 13.  Database update performance in test environment.

 

Fig. 18.  Workflow of real-time inventory update via PHP and MySQL.
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for integration into UAV-based stocktaking systems in the future. Notably, while the mentioned studies report 
higher recall, our approach demonstrates a significantly higher precision, which is critical for minimizing false 
positives in densely packed warehouse environments.

Finally, the model achieved an average processing time of 0.3 ms for preprocessing, 3.3 ms for inference, and 
8.0 ms for postprocessing per image, confirming its suitability for real-time deployment in resource-constrained 
warehouse environments.

*Metrics marked as ‘not specified’ were not reported in the original studies.

Several benchmark studies did not report all performance metrics as shown in Table 14, which limit the 
scope of direct quantitative comparison across methods. But still we try to harmonize the available measures in 
a transparent manner. The results indicate that the proposed model achieves strong detection accuracy and mAP 
values within the reported metrics range. This surely demonstrates the robustness across diverse barcode types 
and imaging conditions, while maintaining simultaneous processing efficiency.

Based on our findings, several key insights can be drawn:

	1.	 Improved barcode localization with YOLOv8

•	 Our results demonstrate that YOLOv8’s attention mechanisms enhance barcode detection in cluttered ware-
house settings, outperforming previous YOLO versions and Faster R-CNN models.

•	 The F1-Confidence curve analysis suggests that an optimal confidence threshold of 0.616 balances precision 
and recall, achieving an F1-score of 0.90 for all classes.

•	 The confusion matrix indicates minimal misclassification between barcodes and QR codes, but some false 
negatives remain due to occlusions.

	2.	 Barcode decoding performance in real-world conditions

•	 While OpenCV’s barcode decoding module achieves high accuracy in normal conditions, performance drops 
significantly under occlusions and low lighting.

•	 Future work could explore deep learning-based barcode decoding methods, such as using CNNs or trans-
former- based architectures for improved robustness.

	3.	 Real-time inventory management and database efficiency

•	 Our MySQL-based database system enables efficient inventory tracking, with update times of 8.3ms for quan-
tity changes and a 99.7% success rate.

•	 The system ensures real-time synchronization, reducing errors in stock management compared to manual 
barcode scanning methods.

Conclusion
This study presents a comprehensive evaluation of YOLOv8 for barcode localization, coupled with OpenCV-
based decoding, within a simulated warehouse environment. Across five independent training runs, our model 
consistently achieved high accuracy, with a best-case mAP@0.5 of 92.4%, demonstrating robust barcode 
detection under challenging conditions such as occlusion, shadows, and dark and blur scenarios. Statistical 
analysis validated the reliability of our results, and Albumentation based augmentation was applied during 
training to simulate real-world variability. Our simulated pipeline was designed to reflect resource-constrained 
conditions typical in industrial warehouse environments. The motivation behind simulation was to isolate and 
validate detection performance without the added complexity of physical UAV navigation or infrastructure. 
The inference efficiency of the model was also notable, achieving a processing speed of 0.3ms preprocessing, 
3.3ms inference, and 8.0ms postprocessing per image, ensuring real-time applicability. The system further 
demonstrated successful integration with barcode decoding and inventory updates, highlighting its practical 
utility in automated stocktaking workflows. This validates our pipeline’s viability for future real-world deployment.

While this study focuses on validating the proposed UAV-guided barcode detection pipeline using annotated 
static images and augmentation-based simulations, we acknowledge that real-world deployment introduces 
additional complexities. The system is designed to scale for larger inventories and support multiple UAVs 
in parallel. Although severely damaged or reflective barcodes were not explicitly tested, our augmentations 

Method Data type
IoU 0.5 (mAP or 
Equivalent)

Decoding 
accuracy (%)

Detection rate / Recall 
(%) Speed (ms / FPS) Dataset size

YOLOv3 + Geo65 RGB images (1D barcodes) J < sub > avg</
sub &> = 0.939 93.9 D < sub > 0.5</sub > = 99.8 19.2 ms (~ 52 FPS) WWU Münster 

(1055) + Arte-Lab (365)

CNN-based UAV 
system66

UAV imagery (warehouse 
barcodes)

– (not expressed as 
mAP) * 91.56 96.96 ~ 13 FPS (on Jetson 

Nano)
446 barcodes (lab 
dataset)

Yolov5s67 RGB images (express waybills) 0.85 (estimated) not specified* not specified*(qualitative 
only) ~>30 FPS (real time) Small team-collected 

dataset

Ours (YOLOv8) RGB images (1D + 2D barcodes) 0.924
98.5 (well-lit) / 
85.2 (low-light) 
/ 78.3 (occluded)

91.9
3.3 ms inference (~ 303 
FPS) + 8.0 ms post-proc 
(≈ 90 FPS overall)

31 510 images 
(annotated 
barcode + QR dataset)

Table 14.  Approximate benchmark comparison with prior barcode detection approaches.
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simulated various challenging conditions like blur, occlusion, and lighting variation. In future we plan to extend 
our research to make drones that can work fully inside warehouse without explicitly relying on GPS. We aim 
to build a system which can reply on computer vision to avoid obstacles and integrate with existing warehouse 
inventory management systems. Also, instead of simulated testing we will build and test real working prototypes 
which will allow us to ensure system’s feasibility, practicality and affordability in industrial settings.

Data availability
The original barcode dataset used in this study is publicly available at ​h​t​t​p​s​:​​/​/​u​n​i​v​​e​r​s​e​.​r​​o​b​o​f​l​​o​w​.​c​o​m​/​l​a​b​e​l​e​r​-​p​r​
o​j​e​c​t​s​/​b​a​r​c​o​d​e​s​-​z​m​x​j​q​/​d​a​t​a​s​e​t​/​5​. The derived data generated during this study, including augmented samples, 
filtered test set images, and inference results necessary to reproduce the key figures and tables, are provided as 
supplementary information via Zenodo (DOI: 10.5281/zenodo.17596147.

Code availability
Custom preprocessing scripts, augmentation configurations, YOLOv8 training parameters, and scripts used to 
generate the main figures and tables are provided as supplementary information via Zenodo (DOI: ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​7​5​9​6​1​4​7​​​​​.​​
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