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The main aim of this research study is to examine optical soliton phenomena in a (2+1)-dimensional 
Schrödinger class nonlinear model that degenerates from Biswas-Milovic equation (BME) using Riccati 
modified extended simple equation method (RMESEM). This model has particular relevance in the 
fiber optics domain. The proposed anstaz RMESEM uses a complex structured wave transformation 
to produce nonlinear ordinary differential equation (NODE) and constraint conditions for Kerr law 
nonlinearity form of the model. The resulting NODE is assumed to have a closed form solution that 
converts it into a system of nonlinear algebraic equations via substitution in order to determine fresh 
variety of optical soliton solutions. The final visualizations of the obtained optical soliton solutions in 
the form of 3D, contour, and 2D forms demonstrate that the model develops Hopf bifurcation, rogue 
and internal envelope solitons as a result of the elastic and inelastic collision of optical periodic solitons 
while the norms of the obtained optical soliton reveal dark and bright kink structures. Using phase 
portraits and time-series maps, we also study bifurcating and chaotic behavior, observing its presence 
in the perturbed dynamical system and obtaining favorable results indicating Hopf bifurcation and 
periodicity. We use a generalized trigonometric function to perturb the planner system for the first 
time in order carry out chaotic analysis. Furthermore, our results are analyzed and linked to the soliton 
dynamics in BME, demonstrating the effectiveness of the suggested method as an effective method of 
identifying novel soliton phenomena within such nonlinear settings.
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Nonlinear partial differential equations (NPDEs) and Fractional NPDEs (FNPDEs) have been utilized to model a 
variety of physical phenomena over the past few decades1–3. Many academics have expressed interest in NPDEs, 
and a wide range of discrete and continuous methods have been developed and applied to different theories, 
equations, models, and their solutions. Such methods include, extended Fan’s sub-ODE technique4, polynomial 
expansion method5, discrete tanh method6, Weierstrass elliptic function expansion method7, differential-
difference Jacobi elliptic functions sub-ODE method8, Lie symmetry method9, exp-function technique10, 
F-expansion approach11, modified Kudryashov method12, extended trial equation method13, extended tanh 
function technique14, generalized three-wave method15, the soliton ansatz method16, Hirota bilinear technique17, 
the variational method18, modified simple equation approach19, the first integral method20, the sine-cosine 
method21, the generalised Kudryashov method22, the Riccatti-Bernoulli sub-ODE method23, the functional 
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variable method24, the Jacobi elliptic function method25, the modified Khater method26, the RMESEM27–29, 
the (G′/G)-expansion method30–32, the tanh-coth method33, the generalized Kudryashov auxiliary method34, 
extended direct algebraic method (EDAM)35–38 and several additional methods39–47.

Among the NPDEs, those pertaining to optics are particularly significant and of great study interest. In 
the past few decades, several aspects that serve as the basis for research on optical solitons such as physical 
models of optical solitons48, the emergence of some notions pertaining to these models, such as dispersion49, 
perturbation50, and refractive index51, into the literature and highlighting their significance, new findings as 
a consequence of recent investigations and studies, and their endorsement with laboratory experiments have 
been identified. These may also include optical fiber technology, which serves as the foundation for modern 
optical fiber-based communication and internet technologies as well as research on optical nonlinearity in 
opto-electronic devices that fall under this category52. Because of their limited mode area, fibers have a very 
long interaction length and high density. As a result, these nonlinearities can have significant consequences on 
fibers, which are frequently unanticipated, hard to detect, and involve very complicated circumstances. As is well 
known, the quality, efficiency, and speed of transmitting signals in optical fibers are influenced by three primary 
criteria. These include polarization mode dispersion (PMD)53, chromatic dispersion (CD) or group velocity 
dispersion (GVD)54, and the nonlinear effects55. The final one, nonlinear effects, includes the primary nonlinear 
phenomena that happen in single-mode fibers, including Raman scattering56, Kerr effect57, and58 Brillouin 
scattering. Numerous applications of this kind have made mathematicians interested in studying optics. This 
article focuses on the degenerated form of a prominent nonlinear model called BME with Kerr law nonlinearity. 
The BME equation, which was first presented in 201059, is one of the several models and equations that have been 
created and presented to investigate the propagation of optical solitons using nonlinear techniques based on the 
nonlinear Schrödinger equation (NLSE). Numerous investigations have been conducted on the BME equation, 
which has a special significance in the field of fiber optics60. The generalized form of BME is expressed as61–63:

	 i(P n)t − p((P n)xx + (P n)yy) − (qf(|P |2) − κ)P n = 0,� (1)

where P = P (t, x, y) is a complex structured wave function that signifies optical field amplitude. Moreover, the 
general representation of evolution is represented by the first term in (1), followed by the term of general form 
of the group velocity dispersion term (GVD), the general form of the non-Kerr law nonlinearity is represented 
by third term which involves f(Φ) that represents a real-valued algebraic function, (n, n ≥ 1) is a parameter 
that generalizes the model from NLSE to BME while p, q, and κ are real valued parameters. Moreover, (1) 
degenerates into the (2+1)-dimensional NLSE version of BME if n = 1. Assuming that n = 1, a crucial NLSE 
form for optical fibers hat is directly relevant to standard silica fibres and has a well-established experimental 
interpretation, we examine degenerated BME with Kerr law nonlinearity in this work.

Prior to this discovery, a number of previous researchers dealt with BME in different ways to get optical 
soliton solutions. For example, Altun et al. used Kudryashov’s approach61 to study dark, brilliant, and singular 
optical soliton solutions of BME with power, parabolic, and Kerr law nonlinearity. Ahmad discovered both 
dazzling and dark optical solitons for BME in magneto-optic waveguides based on Kudryashov’s law of refractive 
index64. Pinar used a pair of Kudryashov techniques to create and analyze optical solitons of BME with parabolic 
law and spatiotemporal dispersion65. Ozisik used the Kudryashov technique and the unified Riccati equation 
expansion methodology to study optical soliton events in the (2+1) and (3+1) forms of the BME66. Finally, Raza 
et al. concentrated the exact arrangement of the BME with Kerr law, power law, parabolic law and dual power 
law nonlinearity by Exp (−φ(ε))-expansion strategy67. They reported more exact travelling wave solutions in a 
brief shape to the BME condition which concedes physical centrality in applications. However, in the context of 
the intended model using RMESEM, the formation of Hopf bifurcation, rogue, and internal envelope solitons, 
as well as the elastic and inelastic collision of optical periodic solitons, have not been investigated and evaluated. 
This assertion highlights a notable gap in the body of current research. Our research fills this gap by offering 
a thorough model analysis and outlining the suggested RMESEM approach. The suggested anstaz RMESEM 
builds NODE and constraint relations for the model’s Kerr law nonlinearity form using a complex structured 
wave transformation. The resulting NODE is expected to have a close form solution that converts it into a 
system of nonlinear algebraic equations via substitution in order to identify fresh plethora of optical soliton 
solutions. The final visualizations of the obtained optical soliton solutions in the form of 3D, contour, and 2D 
forms demonstrate that the model develops Hopf bifurcation, rogue and internal envelope solitons as a result of 
the elastic and inelastic collision of optical periodic solitons while the norms |P| of the obtained optical soliton 
reveal dark and bright kink structures. Using phase portraits and time-series maps, we also examine chaotic 
and bifurcating behavior, finding that it exists in the perturbed dynamical system and obtaining positive results 
that show periodicity and Hopf bifurcation. We use a generalized trigonometric function to perturb the planner 
system for the first time in order carry out chaotic analysis. Additionally, our findings are analyzed and linked to 
the soliton dynamics in the aimed model, demonstrating the effectiveness of the proposed method as a way to 
find distinct soliton phenomena in such nonlinear settings.

The remaining article is structured as follows: The applied RMESEM is introduced in Section 2, optical 
soliton solutions to the aimed model with the application of RMESEM are acquired and presented in Section 3. 
Results and graphical discussion are covered in Section 4, the chaotic and bifurcation analysis are presented in 
Section 5, Section 6 concludes our study while last section presents an appendix.

The working methodology of RMESEM
This section describes the RMESEM’s operational procedure to determine soliton solutions for complicated 
NPDEs. Consider the generic complex NPDE that is shown below27–29:
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	 A(P, Pt, Px, Pxx, Py, |P |, P Pty, |P |xy, . . .) = 0,� (2)

where A is the polynomial of P, P = P (t, x, y) is an unknown complex function, and the subscripts are partial 
derivatives of P with respect to x , y and t, respectively. The proposed RMESEM’s primary steps are as follows:

Step 1. A complex wave transformation of the form P (t, x, y) = eξiP(ϕ) where ξ = ξ(t, x, y) and 
ϕ = ϕ(t, x, y) are linear functions, is firstly performed. In this study, we configure the ensuing complex wave 
transformation61:

	 P (t, x, y) = eξiP(ϕ), where ϕ = λx + µy + ωt and ξ = x + y + t + ϑ,� (3)

where λ, µ, and ω are wave numbers, ϑ is phase constant while ξ is a phase component. Equation (2) transforms 
into the subsequent NODE employing the wave transformation as referred above:

	 B(P,P′P,P′, . . . ) = 0,� (4)

where B is a polynomial of P and its derivatives, and the primes are the ordinary derivatives of P with regard 
to ϕ.

Step 2. In order to satisfy the homogeneous balance condition, Eq. (4) is sometimes integrated term by term.
Step 3. For Eq. (4), we then assume that the closed-form wave solution is written as follows:

	
P(ϕ) =

m∑
k=0

ek

(
Π′(ϕ)
Π(ϕ)

)k

+
m−1∑
k=0

dk

(
Π′(ϕ)
Π(ϕ)

)k

·
(

1
Π(ϕ)

)
,� (5)

where dk(k = 0, ...,m − 1) and ej(j = 0, ...,m) stand for the unidentified constants that must be found later, 
and Π(ϕ) satisfies the ensuing Riccati equation:

	 Π′(ϕ) = ϖ + ρΠ(ϕ) + ϱ(Π(ϕ))2,� (6)

where ϖ, ρ and ϱ are invariables.
Step 4. The balance number m given in Eq. (5) is calculated using the homogeneous balancing principle 

between the highest nonlinear term and the highest-order derivative term in Eq. (4).
Step 5. Equation (5) is substituted into Eq. (4), or the equation that arises from integrating Eq. (4) and 

combining the terms with the same powers of Π(ϕ) to obtain an expression in terms of Π(ϕ), using the value 
of m obtained in Step 4. An algebraic system of equations describing the parameters ej(j = 0, ...,m) and 
dk(k = 0, ...,m − 1) with other related parameters is created by comparing the coefficients on both sides of the 
expression.

Step 6. The algebraic system in Step 5 is solved using the algebraic program Maple to provide the values of 
ej(j = 0, ...,m) and dk(k = 0, ...,m − 1) with other relevant parameters.

Step 7. Soliton solutions to Eq. (2) are obtained by substituting the values of the parameters in Eq. (5) with 
the solutions of Eq. (6) displayed in Table 1.

The execution of RMESEM
In this section we employ the proposed RMESEM to construct optical soliton solutions for degenerated BME 
namely NLSE.

The governing equation under Kerr law nonlinearity
According to Kerr law nonlinearity, we substitute f(Φ) = Φ and n = 1 in (1) which reduces it into the ensuing 
structure:

	 iPt − p(Pxx + Pyy) − (q|P |2 − κ)P = 0.� (7)

The first step in conducting this study is to apply the wave transformation given in (3) to (7). The following couple 
of NODEs appears from the real and imaginary parts when Eq. (7) is subjected to this wave transformation:

	

(κ + 2 p − 1)P(ϕ) − qP3(ϕ) − p(λ2 + µ2)P′′(ϕ) = 0,

(ω − 2p(λ + µ))P′′(ϕ) = 0,
� (8)

 respectively. Since P(ϕ) ̸= 0 and has the second derivative, thus the second part in (8) gives the following 
constraint condition:

	 ω = 2p(λ + µ).� (9)

With this constraint, the entire model reduced to the following governing NODE:

	 (κ + 2 p − 1)P(ϕ) − qP3(ϕ) − p(λ2 + µ2)P′′(ϕ) = 0.� (10)
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 which has Kerr law nonlinearity under the constraint in (9). By demonstrating the homogeneous balancing 
principle between P3(ϕ) and P′′(ϕ), we arrive at m = 1, stated in (5).

The construction of optical soliton solutions
When m = 1 is entered into Eq. (5), the closed form solution for Eq. (10) is obtained as follows:

	
P(ϕ) =

1∑
k=0

ek

(
Π′(ϕ)
Π(ϕ)

)k

+ d0

(
1

Π(ϕ)

)
.� (11)

By putting (11) into (10) and collecting all terms with the same orders of Π(ϕ), we may create an expression in 
Π(ϕ). Setting all of the coefficients to zero simplifies the expression and yields a system of nonlinear algebraic 
equations. In the following three (3) distinct sets, Maple is used to solve the resultant system:

Set. 1

	
e0 = e0, e1 = 0, d0 = 2 ϖ e0

ρ
, p = p, q = −

p
(
λ2 + µ2)

ρ2

2e0
2 , λ = λ, µ = µ, κ = −1

2 p
(
λ2 + µ2)

η + 1 − 2 p. � (12)

Set. 2

	
e0 = −1

2 ρ e1, e1 = e1, d0 = −ϖ e1, p = p, q = −2
p

(
λ2 + µ2)

e12 , λ = λ, µ = µ, κ = −1
2 p

(
λ2 + µ2)

η + 1 − 2 p. � (13)

S. No. Family Condition(s)

Π(ϕ)
(

Π′(ϕ)
Π(ϕ)

)

1 η < 0, ϱ ̸= 0

− ρ
2ϱ +

√
−η tan

(
1
2

√
−ηϕ

)
2ϱ , − 1

2

η

(
1+

(
tan

(
1
2

√
−ηϕ

))2
)

−ρ+
√

−η tan
(

1
2

√
−ηϕ

) ,

− ρ
2ϱ −

√
−η cot

(
1
2

√
−ηϕ

)
2ϱ , 1

2

(
1+

(
cot

(
1
2

√
−ηϕ

))2
)

η

ρ+
√

−η cot
(

1
2

√
−ηϕ

) ,

− ρ
2ϱ +

√
−η

(
tan

(√
−ηϕ

)
+
(

sec
(√

−ηϕ

)))
2ϱ , −

η

(
1+sin

(√
−ηϕ

))
sec

(√
−ηϕ

)
−ρ cos

(√
−ηϕ

)
+

√
−η sin

(√
−ηϕ

)
+

√
−η

,

− ρ
2ϱ +

√
−η

(
tan

(√
−ηϕ

)
−
(

sec
(√

−ηϕ

)))
2ϱ .

η

(
sin

(√
−ηϕ

)
−1

)
sec

(√
−ηϕ

)
−ρ cos

(√
−ηϕ

)
+

√
−η sin

(√
−ηϕ

)
−

√
−η

.

2 Hyperbolic 
Solutions η > 0, ϱ ̸= 0

− ρ
2ϱ −

√
η tanh

(
1
2

√
ηϕ

)
2ϱ , − 1

2

(
−1+

(
tanh

(
1
2

√
ηϕ

))2
)

η

ρ+√
η tanh

(
1
2

√
ηϕ

) ,

− ρ
2ϱ −

√
η(tanh(√

ηϕ)+i(sech(√
ηϕ)))

2ϱ , − η (−1+i sinh(√
ηϕ))

cosh(√
ηϕ)(ρ cosh(√

ηϕ)+√
η sinh(√

ηϕ)+i
√

η) ,

− ρ
2ϱ −

√
η(tanh(√

ηϕ)−i(sech(√
ηϕ)))

2ϱ , − η (1+i sinh(√
ηϕ))

cosh(√
ηϕ)(−ρ cosh(√

ηϕ)−√
η sinh(√

ηϕ)+i
√

η) ,

− ρ
2ϱ −

√
η(coth(√

ηϕ)+(csch(√
ηϕ)))

2ϱ .

− 1
4

η

(
2
(

cosh
(

1
4

√
ηϕ

))2
−1

)

Ψ(−2 ρΨ+√
η) .

3 Rational 
Solutions

η = 0 −2 ϖ(ρϕ +2)
ρ2ϕ

,
−2 1

ϕ (ρϕ+2) ,

η = 0, & ρ = ϱ = 0 ϕ ϖ, 1
ϕ ,

η = 0, & ρ = ϖ = 0 − 1
ϕ ϱ . − 1

ϕ .

4 Exponential 
Solutions

ϱ = 0, & ρ = σ, ϖ = ςσ eσ ϕ − ς ,
σ eσ ϕ

eσ ϕ−ς
,

ϖ = 0, & ρ = σ, ϱ = ςσ
eσ ϕ

1−ςeσϕ . − σ

−1+ςeσ ϕ .

5
Rational-
Hyperbolic 
Solutions

ϖ = 0, & ρ ̸= 0, ϱ ̸= 0
− s1 ρ

ϱ(cosh(ρϕ)−sinh(ρϕ)+s1) , ρ(sinh(ρϕ)−cosh(ρϕ))
− cosh(ρϕ)+sinh(ρϕ)−s1

,

− ρ(cosh(ρϕ)+sinh(ρϕ))
ϱ(cosh(ρϕ)+sinh(ρϕ)+s2) . ρs2

cosh(ρϕ)+sinh(ρϕ)+s2
.

Table 1.  Families of Π(ϕ) and 
(

Π′(ϕ)
Π(ϕ)

)
, wherein η = ρ2 − 4ϱϖ and Ψ = cosh

(
1
4

√
ηϕ

)
sinh

(
1
4

√
ηϕ

)
.
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Set. 3

	
e0 = 1

2 ρ ψ, e1 = ψ, d0 = −ψ ϖ, p = p, q = q, λ = λ, µ = µ, κ = −1
2 p

(
λ2 + µ2)

η + 1 − 2 p, � (14)

where ψ =
√

−2 p(λ2+µ2)
q .

We get the following innovative families of optical soliton solutions for (7) by taking into account set 1 and 
applying Eqs. (11) & (3) with the corresponding solution of Eq. (6) shown in Table 1:

Family. 1.1: Considering η < 0 ϱ ̸= 0,

	
P1,1(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
+ 1

2

√
−η tan

(
1
2

√
−ηϕ

)
ϱ

)−1

+ e0

)
, � (15)

	
P1,2(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
− 1

2

√
−η cot

(
1
2

√
−ηϕ

)
ϱ

)−1

+ e0

)
, � (16)

	
P1,3(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
+ 1

2

√
−η (tan (

√
−ηϕ) + sec (

√
−ηϕ))

ϱ

)−1

+ e0

)
, � (17)

and

	
P1,4(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
+ 1

2

√
−η (tan (

√
−ηϕ) − sec (

√
−ηϕ))

ϱ

)−1

+ e0

)
. � (18)

Family. 1.2: Considering η > 0 ϱ ̸= 0,

	
P1,5(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
− 1

2

√
η tanh

(
1
2

√
ηϕ

)
ϱ

)−1

+ e0

)
, � (19)

	
P1,6(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
− 1

2

√
η

(
tanh

(√
ηϕ

)
+ isech

(√
ηϕ

))
ϱ

)−1

+ e0

)
, � (20)

	
P1,7(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
− 1

2

√
η

(
tanh

(√
ηϕ

)
− isech

(√
ηϕ

))
ϱ

)−1

+ e0

)
, � (21)

and

	
P1,8(t, x, y) =eξi

(
2 ϖ e0

ρ

(
−1

2
ρ

ϱ
− 1

4

√
η

(
tanh

(
1
4

√
ηϕ

)
− coth

(
1
4

√
ηϕ

))
ϱ

)−1

+ e0

)
. � (22)

Family. 1.3: Considering η = 0, ρ ̸= 0,

	
P1,9(t, x, y) =eξi

(
e0 − e0ρ ϕ

ρ ϕ + 2

)
. � (23)

Family. 1.4: Considering ρ = σ, ϖ = ςσ(ς ̸= 0) and ϱ = 0,

	
P1,10(t, x, y) =eξi

(
e0

(
eσ ϕ + ς

)
eσ ϕ − ς

)
. � (24)

Family. 1.5: Considering ρ = σ, ϱ = ςσ(ς ̸= 0) and ϖ = 0,

	 P1,11(t, x, y) =e0eξi. � (25)

In above solutions, ϕ = λx + µy + 2p(λ + µ)t and ξ = x + y + t + ϑ.
We get the following innovative families of optical soliton solutions for (7) by taking into account set 2 and 

applying Eqs. (11) & (3) with the corresponding solution of Eq. (6) shown in Table 1:
Family. 2.1: Considering η < 0 ϱ ̸= 0,
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P2,1(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
+ 1

2

√
−η tan

(
1
2

√
−ηϕ

)
ϱ

)−1

− 1
2

e1η
(

1 +
(
tan

(
1
2

√
−ηϕ

))2
)

√
−η tan

(
1
2

√
−ηϕ

)
− ρ

− 1
2 ρ e1

)
, � (26)

	
P2,2(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
− 1

2

√
−η cot

(
1
2

√
−ηϕ

)
ϱ

)−1

+ 1
2

e1η
((

cot
(

1
2

√
−ηϕ

))2 + 1
)

√
−η cot

(
1
2

√
−ηϕ

)
+ ρ

− 1
2 ρ e1

)
, � (27)

	

P2,3(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
+ 1

2

√
−η (tan (

√
−ηϕ) + sec (

√
−ηϕ))

ϱ

)−1

− e1η (1 + sin (
√

−ηϕ))
cos (

√
−ηϕ) (

√
−η sin (

√
−ηϕ) − ρ cos (

√
−ηϕ) +

√
−η)

− 1
2 ρ e1

)
,

� (28)

and

	

P2,4(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
+ 1

2

√
−η (tan (

√
−ηϕ) − sec (

√
−ηϕ))

ϱ

)−1

+ e1η (sin (
√

−ηϕ) − 1)
cos (

√
−ηϕ) (

√
−η sin (

√
−ηϕ) − ρ cos (

√
−ηϕ) −

√
−η)

− 1
2 ρ e1

)
.

� (29)

Family. 2.2: Considering η > 0 ϱ ̸= 0,

	
P2,5(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
− 1

2

√
η tanh

(
1
2

√
ηϕ

)
ϱ

)−1

− 1
2

e1η
((

tanh
(

1
2

√
ηϕ

))2 − 1
)

√
η tanh

(
1
2

√
ηϕ

)
+ ρ

− 1
2 ρ e1

)
, � (30)

	

P2,6(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
− 1

2

√
η

(
tanh

(√
ηϕ

)
+ isech

(√
ηϕ

))
ϱ

)−1

−
e1η

(
i sinh

(√
ηϕ

)
− 1

)

cosh
(√

ηϕ
) (

ρ cosh
(√

ηϕ
)

+ sinh
(√

ηϕ
) √

η + i
√

η
) − 1

2 ρ e1

)
,

� (31)

	

P2,7(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
− 1

2

√
η

(
tanh

(√
ηϕ

)
− isech

(√
ηϕ

))
ϱ

)−1

+
e1η

(
1 + i sinh

(√
ηϕ

))

cosh
(√

ηϕ
) (

ρ cosh
(√

ηϕ
)

+ sinh
(√

ηϕ
) √

η − i
√

η
) − 1

2 ρ e1

)
,

� (32)

and

	

P2,8(t, x, y) =eξi

(
− ϖ e1

(
−1

2
ρ

ϱ
− 1

4

√
η

(
tanh

(
1
4

√
ηϕ

)
− coth

(
1
4

√
ηϕ

))
ϱ

)−1

+ 1
4

e1η
(

2
(
cosh

(
1
4

√
ηϕ

))2 − 1
)

cosh
(

1
4

√
ηϕ

)
sinh

(
1
4

√
ηϕ

) (
2 ρ cosh

(
1
4

√
ηϕ

)
sinh

(
1
4

√
ηϕ

)
− √

η
) − 1

2 ρ e1

)
.

� (33)

Family. 2.3: Considering η = 0, ρ ̸= 0,

	
P2,9(t, x, y) =eξi

(
− 1

2 ρ e1 − 2 e1

ϕ (ρ ϕ + 2) + 1
2

e1ρ2ϕ

ρ ϕ + 2

)
. � (34)

Family. 2.4: Considering η = 0, in case when ρ = ϱ = 0,

	 P2,10(t, x, y) =trivial solution. � (35)

Family. 2.5: Considering η = 0, in case when ρ = ϖ = 0,

	
P2,11(t, x, y) =eξi

(
− e1

ϕ

)
. � (36)

Family. 2.6: Considering ρ = σ, ϖ = ςσ(ς ̸= 0) and ϱ = 0,
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P2,12(t, x, y) =eξi

(
1
2 e1σ

)
. � (37)

Family. 2.7: Considering ρ = σ, ϱ = ςσ(ς ̸= 0) and ϖ = 0,

	
P2,13(t, x, y) =eξi

(
− 1

2
e1σ

(
ς eσ ϕ + 1

)
−1 + ς eσ ϕ

)
. � (38)

Family. 2.8: Considering ϖ = 0, ϱ ̸= 0 and ρ ̸= 0,

	
P2,14(t, x, y) =eξi

(
1
2

ρ e1 (− cosh (ρ ϕ) + sinh (ρ ϕ) + s2)
− cosh (ρ ϕ) + sinh (ρ ϕ) − s2

)
, � (39)

and

	
P2,15(t, x, y) =eξi

(
− 1

2
ρ e1 (sinh (ρ ϕ) + cosh (ρ ϕ) − s2)

sinh (ρ ϕ) + cosh (ρ ϕ) + s2

)
. � (40)

In above solutions, ϕ = λx + µy + 2p(λ + µ)t and ξ = x + y + t + ϑ.
We get the following innovative families of optical soliton solutions for (7) by taking into account set 3 and 

applying Eqs. (11) & (3) with the corresponding solution of Eq. (6) shown in Table 1:
Family. 3.1: Considering η < 0 ϱ ̸= 0,

	
P3,1(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
+ 1

2

√
−η tan

(
1
2

√
−ηϕ

)
ϱ

)−1

− 1
2

ψ η
(

1 +
(
tan

(
1
2

√
−ηϕ

))2
)

√
−η tan

(
1
2

√
−ηϕ

)
− ρ

+ 1
2 ρ ψ

)
, � (41)

	
P3,2(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
− 1

2

√
−η cot

(
1
2

√
−ηϕ

)
ϱ

)−1

+ 1
2

ψ η
((

cot
(

1
2

√
−ηϕ

))2 + 1
)

√
−η cot

(
1
2

√
−ηϕ

)
+ ρ

+ 1
2 ρ ψ

)
, � (42)

	

P3,3(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
+ 1

2

√
−η (tan (

√
−ηϕ) + sec (

√
−ηϕ))

ϱ

)−1

− ψ η (1 + sin (
√

−ηϕ))
cos (

√
−ηϕ) (

√
−η sin (

√
−ηϕ) − ρ cos (

√
−ηϕ) +

√
−η)

+ 1
2 ρ ψ

)
,

� (43)

and

	

P3,4(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
+ 1

2

√
−η (tan (

√
−ηϕ) − sec (

√
−ηϕ))

ϱ

)−1

+ ψ η (sin (
√

−ηϕ) − 1)
cos (

√
−ηϕ) (

√
−η sin (

√
−ηϕ) − ρ cos (

√
−ηϕ) −

√
−η)

+ 1
2 ρ ψ

)
.

� (44)

Family. 3.2: Considering η > 0 ϱ ̸= 0,

	
P3,5(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
− 1

2

√
η tanh

(
1
2

√
ηϕ

)
ϱ

)−1

− 1
2

ψ η
((

tanh
(

1
2

√
ηϕ

))2 − 1
)

√
η tanh

(
1
2

√
ηϕ

)
+ ρ

+ 1
2 ρ ψ

)
, � (45)

	

P3,6(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
− 1

2

√
η

(
tanh

(√
ηϕ

)
+ isech

(√
ηϕ

))
ϱ

)−1

−
ψ η

(
i sinh

(√
ηϕ

)
− 1

)

cosh
(√

ηϕ
) (

ρ cosh
(√

ηϕ
)

+ sinh
(√

ηϕ
) √

η + i
√

η
) + 1

2 ρ ψ

)
,

� (46)

	

P3,7(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
− 1

2

√
η

(
tanh

(√
ηϕ

)
− isech

(√
ηϕ

))
ϱ

)−1

+
ψ η

(
1 + i sinh

(√
ηϕ

))

cosh
(√

ηϕ
) (

ρ cosh
(√

ηϕ
)

+ sinh
(√

ηϕ
) √

η − i
√

η
) + 1

2 ρ ψ

)
,

� (47)

and
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P3,8(t, x, y) =eξi

(
− ψ ϖ

(
−1

2
ρ

ϱ
− 1

4

√
η

(
tanh

(
1
4

√
ηϕ

)
− coth

(
1
4

√
ηϕ

))
ϱ

)−1

+ 1
4

ψ η
(

2
(
cosh

(
1
4

√
ηϕ

))2 − 1
)

cosh
(

1
4

√
ηϕ

)
sinh

(
1
4

√
ηϕ

) (
2 ρ cosh

(
1
4

√
ηϕ

)
sinh

(
1
4

√
ηϕ

)
− √

η
) + 1

2 ρ ψ

)
.

� (48)

Family. 3.3: Considering η = 0, ρ ̸= 0,

	
P3,9(t, x, y) =eξi

(
1
2 ρ ψ − 2 ψ

ϕ (ρ ϕ + 2) + 1
2

ψ ρ2ϕ

ρ ϕ + 2

)
. � (49)

Family. 3.4: Considering η = 0, in case when ρ = ϱ = 0,

	 P3,10(t, x, y) =trivial solution. � (50)

Family. 3.5: Considering η = 0, in case when ρ = ϖ = 0,

	
P3,11(t, x, y) = − ψeξi

ϕ
. � (51)

Family. 3.6: Considering ρ = σ, ϖ = ςσ(ς ̸= 0) and ϱ = 0,

	
P3,12(t, x, y) =eξi

(
3
2 ψ σ

)
. � (52)

Family. 3.7: Considering ρ = σ, ϱ = ςσ(ς ̸= 0) and ϖ = 0,

	
P3,13(t, x, y) =eξi

(
1
2

ψ σ
(
ς eσ ϕ − 3

)
−1 + ς eσ ϕ

)
. � (53)

Family. 3.8: Considering ϖ = 0, ϱ ̸= 0 and ρ ̸= 0,

	
P3,14(t, x, y) =eξi

(
1
2

ρ ψ (−3 cosh (ρ ϕ) + 3 sinh (ρ ϕ) − s2)
− cosh (ρ ϕ) + sinh (ρ ϕ) − s2

)
, � (54)

and

	
P3,15(t, x, y) =eξi

(
1
2

ρ ψ (sinh (ρ ϕ) + cosh (ρ ϕ) + 3 s2)
sinh (ρ ϕ) + cosh (ρ ϕ) + s2

)
. � (55)

In above solutions, ϕ = λx + µy + 2p(λ + µ)t and ξ = x + y + t + ϑ.

Discussion and graphs
This section displays the various optical soliton patterns discovered in the examined degenerated form of BME 
called NLSE. We were able to get and examine these waveforms in 2D, contour, and 3D graphs using the RMESEM 
and the Maple program. When the model is transformed into a NODE using a wave transformation, solutions 
in exponential, hyperbolic, trigonometric, and rational form are generated. The model creates Hopf bifurcation, 
rogue, and internal envelope solitons as a result of the elastic and inelastic collision of optical periodic solitons, 
as the shown graphs demonstrate. The findings of this work are highly important to fiber optics, where an 
understanding of wave behavior is crucial.

Optical periodic solitons are solitons that maintain a waveform of recurrent oscillations throughout time 
and space. The development of optical periodic solitons is due to the balance between the dispersion p and 
the nonlinear effects q,  n of the BME. Furthermore, we found that the nonlinearity of the Kerr law causes 
these optical periodic solitons to collide with each other, whereas rogue waves are created by elastic collisions 
(maintaining their shape after collision) and internal envelope solitons are created by inelastic interactions 
(energy distribution). The Hopf Bifurcation in 2D graphs is the transition from a stable point of stability to a limit 
cycle oscillation due to a change in a parameter. This is a hallmark of nonlinear complex systems, where energy 
redistribution results in persistent oscillating patterns instead of continuous soliton profiles. Hopf bifurcation 
states that the nonlinear dynamics of the system are changing due to a crucial balance between dispersion and 
nonlinearity. This bifurcation is strongly tied to the presence of higher-order nonlinear variables in the BME, 
which introduce dynamical feedback processes. An internal envelope soliton is produced when optical periodic 
solitons meet inelastically, trapping energy inside an envelope. Nonlinear interactions within a wave packet 
produce localized structures known as internal envelope solitons. They appear as a soliton inside a larger wave 
envelope. The dispersion p and the higher-level nonlinear term q|P |2P  help to gradually stabilize this structure. 
These kinds of structures are frequently seen in non-Kerr optical media and Bose-Einstein condensates. Rogue 
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waves are large, unexpected waveforms that momentarily emerge from a train of apparently regular waves. They 
have amplitudes that are noticeably larger than those of the surrounding waves and are limited in both space 
and time. Associated with this phenomenon is modulation instability (MI), which is a characteristic of the non-
Kerr law nonlinearity of the model. The emergence of rogue waves after elastic collisions suggests the nonlinear 
energy concentrating mechanism in BME because the BME contains a higher-level nonlinearity term q|P |2P , 
which can modulate energy distribution and cause rogue wave emergence in situations where solitons focus 
the energy they produce locally. Lastly, for norms |P| of the obtained optical soliton reveal dark and bright kink 
structures. The dark soliton has a dip while the bright is localized soliton which shows peak. These solitons show 
the intensities of the obtained optical solitons.

We visually depicted real, imaginary and absolutes of a set of optical solitons. Overall, the profiles of real 
and imaginary plots show the collision of optical periodic and other solitons while the profiles of norm |P| 
showed their colliding intensity. These figures have been generated by choosing particular values for the 
specified and constraint-related parameters that were obtained via the model and solution procedure, 
and by giving the free parameters random values. The dynamic behavior of the resulting soliton solutions 
under different parametric selections, such as the generation of envelope solitons, rogue waves, and 
bifurcating structures, may be observed and verified using this method. Instead of being restricted to preset 
parameter sets, a wider investigation of solution features is made possible by employing the application of 
arbitrary values inside a physically feasible range. Moreover, in Figs. 1, a. 3D, b. contour and c. 2D depict 
the dynamics of Re(P1,3(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P1,3(t, x, y)) 
whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P1,3(t, x, y)| of P1,3(t, x, y) given in (17) 
at ϖ = 1, ρ = 1, ϱ = 2, λ = 0.0025, µ = 0.0035, p = 0.005, ϑ = 0.5, t = 1, e0 = 1. Moreover, the Hopf 
bifurcations in 2D are shown for y = 0. Overall, the real and imaginary parts reveal the formation of internal 
envelope due to the inelastic collisions of optical solitons. In Fig. 2, a. 3D, b. contour and c. 2D depict the 
dynamics of Re(P1,6(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P1,6(t, x, y)) whereas 
g. 3D, h. contour and i. 2D depict the intensity profiles |P1,6(t, x, y)| of P1,6(t, x, y) given in (20) at ϖ = 2, 
ρ = 5, ϱ = 2, λ = 0.005, µ = 0.001, ϑ = 1, t = 0, e0 = 2. Moreover, the 2D profiles are shown for x = 1. 
Overall, the real and imaginary parts reveal the elastic collisions of optical periodic solitons. In Fig. 3, a. 3D, b. 
contour and c. 2D depict the dynamics of Re(P1,9(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics 
of Im(P1,9(t, x, y)) whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P1,9(t, x, y)| of 
P1,9(t, x, y) given in (23) at ϖ = 5, ρ = 10, ϱ = 5, λ = 0.004, µ = 0.0025, p = 0.15, ϑ = 2, t = 10, e0 = 5. 
Moreover, the 2D profiles are shown for y = 0. Overall, the real and imaginary parts reveal the formation of 
internal envelope due to the inelastic collisions of optical solitons. In Fig. 4, a. 3D, b. contour and c. 2D depict 
the dynamics of Re(P2,5(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P2,5(t, x, y)) 
whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P2,5(t, x, y)| of P2,5(t, x, y) given in (30) 
at ϖ = 4, ρ = 5, ϱ = 1, λ = 0.001, µ = 0.002, p = 0.075, ϑ = 1, t = 10, e1 = 2. Moreover, the Hopf 
bifurcations in 2D are shown for y = 0. Overall, the real and imaginary parts reveal the elastic collisions of optical 
periodic solitons. In Fig. 5, a. 3D, b. contour and c. 2D depict the dynamics of Re(P2,8(t, x, y)), d. 3D, e. contour and f. 2D 
depict the dynamics of Im(P2,8(t, x, y)) whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P2,8(t, x, y)| 
of P2,8(t, x, y) given in (33) at ϖ = 8, ρ = 10, ϱ = 2, λ = 0.035, µ = 0.065, p = 0.015, ϑ = 5, t = 20, e1 = 5. 
Moreover, the 2D dynamics are shown for x = 1. Overall, the real and imaginary parts reveal the formation of 
internal envelope due to the elastic collisions of optical periodic solitons. In Fig. 6, a. 3D, b. contour and c. 2D 
depict the dynamics of Re(P2,12(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P2,12(t, x, y)) 
whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P2,12(t, x, y)| of P2,12(t, x, y) given in (37) at 
ς = 2, σ = 5, ϖ = ςσ, ρ = σ, ϱ = 0, λ = 0.0025, µ = 0.0015, p = 0.935, ϑ = 1, t = 50, e1 = 1. Moreover, 
the 2D profiles are shown for y = 1. Overall, the real and imaginary parts reveal the elastic collisions of optical 
periodic solitons. In Fig. 7, a. 3D, b. contour and c. 2D depict the dynamics of Re(P3,4(t, x, y)), d. 3D, e. contour 
and f. 2D depict the dynamics of Im(P3,4(t, x, y)) whereas g. 3D, h. contour and i. 2D depict the intensity 
profiles |P3,4(t, x, y)| of P3,4(t, x, y) given in (44) at ϖ = 2, ρ = 2, ϱ = 1, λ = 0.0065, ϑ = 5, t = 100, 
d0 = 2, e0 = 1, p = 0.005, q = 1, µ = 0.002. Moreover, the Hopf bifurcations in 2D are shown for y = 0.5. 
Overall, the real and imaginary parts reveal the inelastic collisions of optical periodic solitons. In Fig. 8, a. 3D, b. 
contour and c. 2D depict the dynamics of Re(P3,6(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of 
Im(P3,6(t, x, y)) whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P3,6(t, x, y)| of P3,6(t, x, y) 
given in (46) at ϖ = 5, ρ = 6, ϱ = 1, λ = 0.00775, p = 0.0155, ϑ = 10, t = 5, µ = 0.001, q = 1. Moreover, 
the Hopf bifurcations in 2D are shown for y = 1. Overall, the real and imaginary parts reveal the formation of 
rogue wave due to the elastic collisions of optical periodic solitons. Finally in Fig. 9, a. 3D, b. contour and c. 2D 
depict the dynamics of Re(P3,15(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P3,15(t, x, y)) 
whereas g. 3D, h. contour and i. 2D depict the intensity profiles |P3,15(t, x, y)| of P3,15(t, x, y) given in (55) 
at ϖ = 0, ρ = 10, ϱ = 1, λ = 0.0085, p = 0.0025, ϑ = 5, t = 10, q = 2, µ = 0.002, s2 = 1. Moreover, the 
Hopf bifurcations in 2D are shown for y = 5. Overall, the real and imaginary parts reveal the formation of rogue 
wave due to the elastic collisions of optical periodic solitons.

Phase portraits and chaotic analysis of the governing system
In order to illustrate the chaotic and periodic analysis of the dynamical system, this portion presents phase 
portraits utilizing bifurcation analysis and time-series analysis.

Phase portraits and hopf bifurcation analysis
We study the emergent dynamical system of the model using the notions of bifurcation theory. The planar 
dynamical system of Eq. (10) is shown as follows:
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Fig. 1.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P1,3(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P1,3(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the bright shaped intensity profiles |P1,3(t, x, y)| of P1,3(t, x, y) given in (17) at 
ϖ = 1, ρ = 1, ϱ = 2, λ = 0.0025, µ = 0.0035, p = 0.005, ϑ = 0.5, t = 1, e0 = 1. Moreover, the 2D plots 
are shown for y = 0.
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P = Z,

g(Z, W ) = Z′ = W,

h(Z, W ) = W ′ = K1Z − K2Z3,

� (56)

while, the perturbed dynamical system that is obtained from planner system (56) perturbed with generalized 
sine function sinm(δϕ)37 is expressed as follows:

	

s(Z, W ) = Z′ = W,

v(Z, W ) = W ′ = K1Z − K2Z3 + l0 sinm(δϕ),
� (57)

Fig. 2.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of Re(P1,6(t, x, y)), d. 3D, 
e. contour and f. 2D depict the dynamics of Im(P1,6(t, x, y)) whereas g. 3D, h. contour and i. 2D 
depict the singular dark-bright shaped intensity profiles |P1,6(t, x, y)| of P1,6(t, x, y) given in (20) at 
ϖ = 2, ρ = 5, ϱ = 2, λ = 0.005, µ = 0.001, p = 0.002, ϑ = 1, t = 0, e0 = 2. Moreover, the 2D profiles are 
shown for x = 1.
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where degree and frequency of the applied external force are represented by the parameters l0 and δ, respectively. 
Moreover, in above systems

	

K1 = κ + 2 p − 1
p (λ2 + µ2) ,

K2 = q

p (λ2 + µ2) .
� (58)

The planner system exhibits the following Hamiltonian under a specific integral:

Fig. 3.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P1,9(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P1,9(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the bright shaped intensity profiles |P1,9(t, x, y)| of P1,9(t, x, y) given in (23) at 
ϖ = 5, ρ = 10, ϱ = 5, λ = 0.004, µ = 0.0025, p = 0.15, ϑ = 2, t = 10, e0 = 5. Moreover, the 2D profiles 
are shown for y = 0.
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H(Z, W ) = W 2

2 − K1Z2

2 + K2Z4

4 .� (59)

For (56), we study the bifurcations of phase portraits in the parameterized space represented by K1 and K2 
in the presence of the Hamiltonian constant. The dynamical system analysis along the Z-axis identifies three 
equilibrium points: (M0, 0), (M1, 0), and (M2, 0), where M1 and M2 are stated as:

Fig. 4.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P2,5(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P2,5(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the dark v-shaped intensity profiles |P2,5(t, x, y)| of P2,5(t, x, y) given in (30) 
at ϖ = 4, ρ = 5, ϱ = 1, λ = 0.001, µ = 0.002, p = 0.075, ϑ = 1, t = 10, e1 = 2. Moreover, the Hopf 
bifurcations in 2D are shown for y = 0.
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M0 = 0, M1 =

√
K1

K2
, M2 = −

√
K1

K2
.� (60)

Additionally, based on the Jacobian matrix:

	
J =

[
∂g
∂Z

∂g
∂W

∂h
∂Z

∂h
∂W

]
,� (61)

The system’s Jacobian is:

Fig. 5.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P2,8(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P2,8(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the bright shaped intensity profiles |P2,8(t, x, y)| of P2,8(t, x, y) given in (33) at 
ϖ = 8, ρ = 10, ϱ = 2, λ = 0.035, µ = 0.065, p = 0.015, ϑ = 5, t = 20, e1 = 5. Moreover, the 2D dynamics 
are shown for x = 1.
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	 |J(Z, W )| = 3K2Z2 − K1.� (62)

At an equilibrium point (Mi, 0), the eigenvalues λ satisfy:

	 λ = ±
√

K1 − 3K2Z2
i ,� (63)

which governs the type of equilibrium (center, saddle etc.). Since the linearized dynamics dominate near an 
equilibrium, thus we discuss the Lyapunov exponents analytically at all equilibria from the eigenvalues of 
Jacobian matrix represented by (63) as:

Fig. 6.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of Re(P2,12(t, x, y)), d. 3D, 
e. contour and f. 2D depict the dynamics of Im(P2,12(t, x, y)) whereas g. 3D, h. contour and i. 
2D depict the dark-bright shaped intensity profiles |P2,12(t, x, y)| of P2,12(t, x, y) given in (37) at 
ς = 2, σ = 5, ϖ = ςσ, ρ = σ, ϱ = 0, λ = 0.0025, µ = 0.0015, p = 0.935, ϑ = 1, t = 50, e1 = 1. Moreover, 
the 2D profiles are shown for y = 1.
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•	 If K1 − 3K2Z2
i < 0, eigenvalues are purely imaginary implies both exponents are zero (i.e. neutrally stable 

periodic orbit) and the equilibrium point is center.
•	 If K1 − 3K2Z2

i > 0, eigenvalues are real implies Lyapunov exponents are those real parts i.e. 
λ1 = −

√
K1 − 3K2Z2

i  and λ2 =
√

K1 − 3K2Z2
i  and the equilibrium point is saddle.

•	 If K1 − 3K2Z2
i = 0, we get degenerated equilibrium which needs higher dimension analysis.

We now evaluate the Hopf bifurcation at all equilibria using the eigenvalues of the Jacobean matrix.
1. At (M0, 0): At (0, 0), (63) yields:

Fig. 7.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P3,4(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P3,4(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the dark shaped intensity profiles |P3,4(t, x, y)| of P3,4(t, x, y) given in (44) at 
ϖ = 2, ρ = 2, ϱ = 1, λ = 0.0065, ϑ = 5, t = 100, d0 = 2, e0 = 1, p = 0.005, q = 1, µ = 0.002. Moreover, 
the Hopf bifurcations in 2D are shown for y = 0.5.
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	 λ = ±
√

K1.� (64)

Thus we conclude:

•	 If K1 < 0 then the eigenvalue is pure imaginary → (0, 0) is the centre which implies possibility of a Hopf 
bifurcation candidate.

•	 If K1 > 0 then the eigenvalues are real of opposite signs → (M0, 0) is the saddle and implies instability.

Fig. 8.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P3,6(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P3,6(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the kink shaped intensity profiles |P3,6(t, x, y)| of P3,6(t, x, y) given in (46) at 
ϖ = 5, ρ = 6, ϱ = 1, λ = 0.00775, p = 0.0155, ϑ = 10, t = 5, µ = 0.001, q = 1. Moreover, the Hopf 
bifurcations in 2D are shown for y = 1.
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As Hopf bifurcation occurs when the real part of a pair of complex conjugate eigenvalues crosses zero, thus, we 
conclude that when we increase K1 through zero, the real part changes from imaginary to real which implies a 
Hopf bifurcation may occur at K1 = 0 (with K2 > 0 to ensure bounded cubic nonlinearity).

2. Non-zero Equilibria (Mi, 0), i = 1, 2: At these equilibria, eigenvalues satisfy:

	 λ2 = −2K1,� (65)

Thus we conclude:

Fig. 9.  In this figure, a. 3D, b. contour and c. 2D depict the dynamics of 
Re(P3,15(t, x, y)), d. 3D, e. contour and f. 2D depict the dynamics of Im(P3,15(t, x, y)) whereas g. 3D, h. 
contour and i. 2D depict the kink shaped intensity profiles |P3,15(t, x, y)| of P3,15(t, x, y) given in (55) at 
ϖ = 0, ρ = 10, ϱ = 1, λ = 0.0085, p = 0.0025, ϑ = 5, t = 10, q = 2, µ = 0.002, s2 = 1. Moreover, the 
Hopf bifurcations in 2D are shown for y = 5.
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•	 If K1 > 0 then the eigenvalue is pure imaginary → (Mi, 0) is the centre which implies possibility of a 
Hopf bifurcation candidate.

•	 If K1 < 0 then the eigenvalues are real of opposite signs → (Mi, 0) is the saddle and implies instability.

Thus, we conclude that when we decrease K1 through zero, the real part changes from imaginary to real which 
implies a Hopf bifurcation may occur at K1 = 0.

Remark 1  The phase portrait for (56) in Fig. 10 represents an eight-like homoclinic loop with two centers at 
(M1, 0) = (

√
2, 0) and (M2, 0) = (−

√
2, 0) and with a saddle point (0, 0). The phase portrait for (56) in Fig. 

11 represents a closed loop with center at (0, 0). The phase portrait for (56) in Fig. 12 represents an eight like 
homoclinic loop with two centers at (M1, 0) = (

√
2, 0) and (M2, 0) = (−

√
2, 0) and with a saddle point (0, 0). 

The phase portrait for (56) in Fig. 13 represents an oval-like limit cycle with center at (0, 0). Finally, the phase 
portrait for (56) in Fig. 14 represents an eight-like homoclinic loop with two centers at (M1, 0) = (

√
2, 0) and 

(M2, 0) = (−
√

2, 0) and with a saddle point (0, 0). The system seems to be acting periodically based on the 
closed loops and limit cycles centered at the equilibrium point (0, 0) in the phase portrait of (56) in Figs. 11 
and 13. This might be interpreted as a dynamic, organized development resulting from energy exchange and 
the interplay of several solitonic modes. Similarly, closed eight-like homoclinic orbits with centers at (M1, 0) 
and (M2, 0) in the lobes and with saddle point at (0, 0) are seen in the phase portrait of (56) in Figs. 10, 12 
and 14. These phase portraits do not imply chaos as they imply periodic motion inside lobes (represented by 
closed orbits around each center) which are separated by the homoclinic separatrix. The existence of restricted 
or constrained periodic motion is indicated by closed loops in the phase portraits. This indicates the presence 

Fig. 11.  In this figure, a. quiver plot and b. stream plot represent phase portrait of (56) while c. stream 
plot represents phase portrait of (57) for κ = −5, p = 1, q = 1, λ = 5, µ = 1 with initial conditions 
Z(0) = 0.1, W (0) = 0.1.

 

Fig. 10.  Phase portrait of (56) for κ = 1, p = 2, q = 2, λ = 1, µ = 3 with initial conditions 
Z(0) = 0, W (0) = 0.5.
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of persistent soliton cycles, which means that the energy of waves is caught in a repeated motion without dissi-
pating, rather than decaying or growing forever. Instead, the system shifts in a predictable manner. Nonlinear 
Hamiltonian systems, that preserve energy over time, often exhibit this behavior.

Chaotic analysis
Throughout this investigation, we have used (57) to examine the chaotic dynamics in the governing system. 
Using the Gillion transformation, we apply a perturbation term to the planar dynamical system created by 
converting (10) in order to disrupt the system’s periodic motion and get useful findings of chaotic behavior. 
To understand this phenomena, a number of techniques from the corpus of current research are employed, 
including the Lyapunov exponent, time series, Poincaré map, and phase portrait approaches, to show that 
the model underlying the perturbed dynamical system exhibits chaotic or periodic behavior. The presence of 
chaotic/periodic dynamics in the perturbed nonlinear system is shown by time-series maps presented by Figs. 
15, 16, 17, 18,19 with different initial conditions and with additional suitable parameter values.

Remark 2  The periodic, quasi-periodic and fractal-periodic oscillations in the time-series plots represented 
by Figs. 15, 19 for different parameters values and initial conditions are probably due to the complex temporal 
and spatial growth of the produced periodic solitons. The periodicity of the curve may represent this underlying 
structure, as periodic solitons show oscillating behavior in both space and time. In Hamiltonian analysis, peri-
odic oscillations show that, despite the system’s complexity and nonlinearity, it exhibits predictable, recurring 
patterns as opposed to completely chaotic behavior. The quasi-periodic and fractal-periodic cycles in Hamilto-
nian analysis on the other hand, indicate that the framework is in a state of transition between chaos and order. 

Fig. 13.  In this figure, a. quiver plot and b. stream plot represent phase portrait of (56) while c. stream 
plot represents phase portrait of (57) for κ = 1, p = 1, q = 1, λ = 1, µ = 0 with initial conditions 
Z(0) = 1.2, W (0) = 0.

 

Fig. 12.  In this figure, a. quiver plot and b. stream plot represent phase portrait of (56) while c. stream 
plot represents phase portrait of (57) for κ = 1, p = 1, q = 1, λ = 1, µ = 0 with initial conditions 
Z(0) = 0.1, W (0) = 0.
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however, based on the overall time-series plots, the overall system of (57) is periodic but possesses weak chaot-
icness as revealed by fractal structures.

Conclusion
To summarize, the objective of this work was to investigate optical soliton phenomena in a (2+1)-dimensional 
Schrödinger class nonlinear model that degenerates from BME, which has particular significance in the fiber 

Fig. 15.  The a. fractal-periodic and b. periodic patterns in perturbed system (57) for 
κ = 1, p = 2, q = 2, λ = 1, µ = 3, l0 = 2, δ = 2π, m = 3 with initial conditions Z(0) = 0, W (0) = 0.5.

 

Fig. 14.  In this figure, a. quiver plot and b. stream plot represent phase portrait of (56) while c. stream 
plot represents phase portrait of (57) for κ = 1, p = 1, q = 1, λ = 1, µ = 0 with initial conditions 
Z(0) = 0, W (0) = 1.
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optics field. By using a complex structured wave transformation, the proposed anstaz namely RMESEM 
developed NODE and constraint relations for Kerr law nonlinearity form of the model. The resulting NODE 
was expected to have a close form solution that converted it into a system of nonlinear algebraic equations via 
substitution in order to identify fresh plethora of optical soliton solutions. The final visualizations of the obtained 
optical soliton solutions in the form of 3D, contour, and 2D forms demonstrated that the model develops Hopf 
bifurcation, rogue and internal envelope solitons as a result of the elastic and inelastic collision of optical 
periodic solitons while the norms |P| of the obtained optical soliton revealed dark and bright kink structures. 
Additionally, using phase portraits and time-series maps, we examined bifurcating and chaotic behavior, 
noting its existence in the dynamical system that was disrupted and obtained positive results that indicated 
periodicity and Hopf bifurcation. We used a generalized trigonometric function to perturb the planner system 
for the first time in order carry out chaotic analysis. Additionally, our findings were examined and connected 
to the soliton dynamics in NLSE, proving that the proposed approach is a successful way to find new soliton 
phenomena in these nonlinear settings. It should be highlighted, nonetheless, that the suggested approach fails 
if the largest nonlinear component and the greatest derivative terms do not balance homogeneously. In this case, 
the technique is unable to balance the nonlinear term with dispersion, which prevents the generation of solitons. 
Notwithstanding this limitation, the present investigation demonstrates that the methodology employed in this 
work is highly dependable and successful for nonlinear problems across a range of scientific domains. Finally, 
the current study aims to carry out a more thorough examination of the stability analysis of solitons in both 
integer and fractional orders within the parameters of the proposed model in the future.

Fig. 16.  The a. quasi-periodic and b. quasi-periodic patterns in perturbed system (57) for 
κ = −5, p = 1, q = 1, λ = 5, µ = 1, l0 = 5, δ = π, m = 2 with initial conditions Z(0) = 0.1, W (0) = 0.1.
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Fig. 17.  The a. quasi-periodic and b. periodic patterns in perturbed system (57) for 
κ = 1, p = 1, q = 1, λ = 1, µ = 0, l0 = 0, δ = π, m = 4 with initial conditions Z(0) = 0.1, W (0) = 0.
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Fig. 18.  The a. quasi-periodic and b. quasi-periodic patterns in perturbed system (57) for 
κ = 1, p = 1, q = 1, λ = 1, µ = 0, l0 = 0, δ = π, m = 7 with initial conditions Z(0) = 1.2, W (0) = 0.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Appendix
Numerous analytical methods are based on the Riccati equation. Since the Riccati equation has solitary solu-
tions, these methods may be used to the study of soliton phenomena in nonlinear models68. Inspired by such 
applications of the Riccati hypothesis, the current study used the Riccati equation with RMESEM to produce 
and evaluate soliton dynamics in the NLSE degenerated from BME27. Since it produced a large number of optical 
soliton solutions in five families–the exponential, periodic, hyperbolic, rational and rational-hyperbolic families 
of solutions–this adjustment proved beneficial for the selected model. We have been able to tie the phenomena 
in the targeted framework to underlying theories and the solutions provided have greatly improved our under-
standing of soliton dynamics. Moreover, limiting our strategy’s solutions results in specific solutions for other 
approaches. An analogy is given in the subsection that follows:

Comparison with other analytical methods
The outcomes of our approach are comparable to those of several other analytical techniques. For example,
Axiom 1: The following arises after e1 = 0 is configured in (11):

	
P(ϕ) = d0

Π(ϕ) .� (66)

This displays the closed form solution for the F-expansion, EDAM, and tan-function methods. Consequently, 
our results may also provide the solutions generated by the EDAM, F-expansion approach and tan-function 
technique attaining e1 = 0.
Axiom 2: Similarly, when d0 = 0 is established in (11), the solution structure that follows:

	
P(ϕ) =

1∑
k=0

ek

(
Π′(ϕ)
Π(ϕ)

)k

.� (67)

Fig. 19.  The a. quasi-periodic and b. periodic patterns in perturbed system (57) for 
κ = 1, p = 1, q = 1, λ = 1, µ = 0, l0 = 0, δ = π, m = 10 with initial conditions Z(0) = 0, W (0) = 1.
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emerged. This is the series-form solution that emerged by using the (G’/G)-expansion method in combination 
with the Riccati equation.
The results of our study may thus provide a wider range of solutions generated by the (G’/G)-expansion tech-
nique71, the F-expansion method70, the tan-function method69, and EDAM36.
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