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Analytical and numerical solutions
of MABC fractional advection
dispersion models by utilizing the
modified physics informed neural
networks with impacts of fractional
derivative
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Transport of pollutants is a serious environmental concern, where accurate and effective mathematical
models are essential for developing viable mitigation programs. In this work, this study proposes

new formulation of advection dispersion equations of fractional order and employ them to model

the highly complex advection dispersion phenomena. The derivative using the Modified Atangana-
Baleanu-Caputo (MABC) fractional derivative is an advanced extension of the classical Atangana
Baleanu derivative and provides greater flexibility in describing memory and nonlocal effects. To solve
the resulting problem numerically, we utilize the framework of physics informed neural networks
(PINNs), in which the governing physical laws serve as the building blocks of a deep learning model.
This approach enables the derivation of highly accurate and fast convergent semi-analytical solutions.
The main contributions of this work are threefold: (1) the development of specific PINNs algorithm

to solve fractional differential equations in the MABC sense; (2) an extensive performance analysis
demonstrating higher precision and computational efficiency compared to conventional numerical and
perturbative methods; and (3) validation through a variety of case studies, confirming the robustness
and applicability of the proposed approach in different contexts. Several numerical examples are
provided to illustrate the effectiveness of the approach, and the results are compared with existing
methods to justify both the efficiency and feasibility of the proposed scheme.

Keywords Neural network architecture, Fractional advection dispersion model, Modified Atangana Baleanu
Caputo derivative, Convergence analysis, Error metrics

Fractional calculus (FC) is a subdivision of mathematical analysis which extends the conventional definition of
several integer order derivatives and integrals to arbitrary real or complex orders. Even though the conceptual
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underpinning of fractional calculus was developed almost at the same time as classical (integer-order) calculus.
Historically, the development of fractional calculus was stunted by the lack of obvious physical and geometrical
interpretations. As a result, it continued to be a relatively impractical curiosity throughout many decades. Over
the past couple of decades, nevertheless, the nonlocal property of the fractional order derivatives, which is the
ability to add memory and hereditable characteristics, seems to be especially suitable when representing a wide
range of real-life events. Fractional differential equations have been placed more accurate and versatile modeling
framework than their integer order equivalents due to their intrinsic nonlocal behavior that have been shown
to make the fractional differential equations applicable across a range of different fields including medicine,
engineering, physics, chemistry, and biology!'~®.

In recent years, as interest in fractional calculus has grown, there has been an explosion in the number of
different definitions of fractional derivatives promulgated in the literature, each seeking to define a different
kind of physical and mathematical behavior. The most well-known is the Caputo fractional derivative,
introduced by Michele Caputo in 19677 which is useful in practical initial value problems. However, one of the
major shortcomings of this operator is that it features a single kernel that has the tendency of being ill-suited
to analytical tractability as well as numerical implementation. As a solution to this shortcoming, Caputo and
Fabrizio put forward a non-singular fractional derivative inspired by an exponential kernel®. Even though this
change removes the problem of singularity, it has restrictions, as the exponential kernel places limit especially
to processes that do not necessarily show exponential decay. To overcome this shortcoming, a more generalized
one was proposed by Atangana and Blaenau in terms of Mittag Leffler function as the kernel, which gives a
non-singular derivative’. In development of this framework, Refai and Blaenau recently added an upgrade,
which is referred to modified Atangana Blaenau Caputo (MABC) derivative'!. The new operator retains the
beneficial properties of its ancestors and presents a better flexibility and descriptive potential to complicated
systems, especially those that cannot be effectively described through the initial version of the Atangana Blaenau
operators. A generalized results regarding MABC derivative have been investigated in'% The MABC derivative
effect is examined numerically through finite difference method to process the advection dispersion equation'3,
discrete Chebyshev polynomials'®, and nonlinear partial differential equations (NPDEs)!>~1°. The nonlinear
partial differential equations are important in different areas of science and engineering such as physics,
electronics, information technology, computer science, fiber optics, mechanics, electrical engineering, plasma
physics, nonlinear optics, and communication system?°-24,

The advection dispersion equation (ADE) is based on the divergence of the transport of the solutes. It has
been used extensively to describe the migration of contaminants in porous media. Based on the assumption of
Brownian motion, the classical ADE is anchored on the Fick law and is therefore ideal in modeling the Fickian
transport processes. Nevertheless, an increasing accumulation of both empirical and theoretical evidence has
grown to show that real-world transport of contaminants in porous mediums may not follow this assumption,
but is rather non-Fickian or anomalous in nature and cannot be adequately described by conventional ADEs.
Fractional advection dispersion equations (FADEs) have been suggested to overcome these deficiencies as an
alternative that works effectively. FADEs complement this by embracing fractional derivatives, which allow
modeling a more realistic representation of anomalous diffusion and memory effects that naturally exist in
complex subsurface systems. Creation of these models is also a mathematically challenging problem, though it is,
however, a relatively different problem to the actual solution to the FADEs especially with realistic boundary and
initial conditions that is, such requires numerical methods that are specialized. The existence and uniqueness of
solutions of some initial value and boundary value problems for the fractional advection dispersion equation
have been analyzed by Dimache et al.?>.

Extensive research efforts have been conducted on the achievement of FADE solution methods. As an
example, Benson et al.?® examined fractional models that could be related to three experimental datasets of
contaminant transport and suggested the use of the finite difference method to solve them numerically. In?’, the
variable transformation, Mellin and Laplace transforms were employed for the same purpose. In the study, Sun et
al.#2% have discussed the use of FADEs in hydrological systems and how useful it can be in modeling anomalous
solute transport. Allwright and Atangana®*-32 solved fractal and fractional versions of the ADE in groundwater
transport and brought in such numerical schemes as the finite difference method, the upwind Crank Nicholson
and the weighted upwind downwind methods. See also®*~ and the references therein. Analytical, numerical,
and computational approaches used in the literature for the investigation of different problems>*-43.

This analysis aims to process the following FADE in MABC derivative sense:

MABCQwa(y, t) - 5wyy (yv t) + aw(ya t) - g(y7 t) = 03 (1)
subject to:
w(y70) = wo(y),w((),t) = U)o(t), w(b7 t) = wQ(t)z wy(07t) = w3(t) (2)

Unlike the classical ABC operator, the MABC derivative employs a Mittag-Leffler kernel that models memory
effects with non-exponential decay, improving realism in anomalous transport. For more information regarding
recent developments in the theory and applications of the ABC derivative and its modifications, see*44.

The Eq. 1 models the balance between fractional temporal changes represented by w the variable
concentration, dispersion 3, advection « and external influence g. The model focuses on contaminant transport
in groundwater and porous media, where non-Fickian diffusion dominates. While our proposed MABC-PINNs
framework focuses on pollutant transport in porous media, similar approaches applied to general fractional
diffusion problems have been explored in*’->°.
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We make use of the capabilities of a recently developed algorithm, known as Physics-Informed Neural
Networks (PINNs)°!">2, to approximate functions and solve the proposed model. The neural network architecture
incorporates the underlying physical laws directly into its loss function. The properties of the MABC derivatives
are employed to construct a customized loss formulation. At selected collocation points, the governing equation is
enforced along with the initial and boundary conditions, thereby transforming the problem into an optimization
task. The resulting system of nonlinear equations is then solved using numerical solvers, yielding precise and
efficient solutions.

Modified fractional operator

As observed in the previous section, the physical and geometrical interpretations of fractional derivatives
have not yet reached a consensus, which has led to the development of various definitions in the literature.
The definitions of some fundamental concepts that we now bring will have significant role in elaborating the
theoretical framework utilized in this research.

Definition 1 *'° Suppose g € H*(0,T), 8 € (0, 1) and C() is a normalize function with C(0) = C(1) = 1.
The ABC derivative is given by

t
17 ntg( = 1% [ B [~ 25— ] g ) ar ®
where,
oo Jk
Eo(2) = kz:% TRO+ 1)’ (4)

called the Mittag Leffler function.

A new formulation has been proposed by Refai and Blaenau!! and corresponds to the ABC derivative, which
is obtained as the result of the integration by parts on Eq. 3 accompanied by the characterization of the Mittag
Leffler (ML) function. This extended derivative generalizes the framework of ABC derivative to a larger
functional space that making it more applicable to more complex models.

Definition2 'Supposeg € L'(0,T),0 € (0,1)andC(6) called the normalize function with C(0) = C(1) = 1.
The 6-order MABC derivative is defined by

$47Dlg(0) = £ 9(0) ~ Bo(—pot")g(0) — i [ (6= )" Baalpalt =g |, (5

where pg = %, and
Erol) = 2 a1y ©

k=0
is the linear ML mapping presented in>>.

Definition 3 !! Suppose ¢" " € L*(0, T, the MABC derivative of order n — 1 < < 7 is defined by

(1200390 = 1% [0 0) = ol )" ) = o [ () Bl - 1)) ar |, ()

wherey =60 +n — 1.

Mathematically, the MABC derivative generalizes the ABC derivative by introducing a flexible kernel parameter
o, providing improved stability and physical interpret-ability’. The Laplace transform and convolution
property were employed to establish the modified power ABC operator with non-singular kernels. The related
boundedness was also studied in'2 The discrete version of the MABC operator including both the discrete nabla
derivative and its counterpart nabla integral have been derived by>*. The infinite series representations for the
modified derivative has been investigated by Al-Refai et al.>>. They also presented the modified derivatives for
the Dirac delta functions, provided by numerical illustrations.

The methodology

Here we go ahead to make use of the Physics Informed Neural Networks (PINNs), as used alongside with the
related derivative functions, to derive approximate solutions to the fraction advection dispersion equation
(FADE) with a MABC derivative.

Modified physics informed neural networks (PINNs)
This algorithm gives the construction and train physics informed neural networks (PINNs) process, in which the
special focus is on the data input and the training strategy. The input variables are extracted and next supplied
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to the input layer through a process of feature extraction before they pass through the network. First, the
weights and biases which were usually random and were often logically provided through uniform probability
distribution depend on the intensity of connection between the neurons and affect the output of the network.
As this input data spreads across the network, every neuron node in the hidden layers carries out weighted
summation containing an associated bias term and the output is undergoing an activation function to create
some intermediate outputs®*2,

In the current research, our chosen architecture of PINN is the use of two hidden layers, respectively
consisting of six and nine neurons. It is the choice of this arrangement because it was tested empirically and
proved to be more effective than a simpler one-layer network, as well as more complex three layer designs.
The loss function is the mean squared error (MSE) contrasting the network predictions and the target values.
The weights are updated via gradient descent, and the optimization process continues to a point where the
performance requirements are observed®> =>4,

Fractional operations in fractional differential equations (FDEs) have the nonlocal and memory dependent
characteristic which adds the extra complexity in the use of PINNG. In this effort to overcome these difficulties,
we generalize the loss to one involving fractional derivatives in a way that the solution fulfills the given initial and
boundary conditions. Relying directly on the underlying physical laws, the PINNs provide a strong and efficient
alternative to traditional numerical methods, as the latter can be computationally expensive if large amounts of
resources are required.

The general framework of the typical PINN is described in a step-by-step manner below:

Formal algorithm
Step 1: Neural network architecture

Input: The input to the neural network is the independent variable ¢, which could represent time or spatial
coordinates.

Network Design: The neural network is constructed with:

o One or more hidden layers.

« Nonlinear activation functions (e.g., tanh) applied to the hidden layers.

o A final output layer that represents the approximation of the unknown function. The tanh activation func-
tion provides smooth gradients and bounded nonlinearity, which improves convergence in fractional-order
PINNs.

Weights and Biases: The network consists of trainable parameters: weights and biases, which are denoted by 6.
Output: The output of the neural network is the approximate solution wg(t), where 6 represents the
parameters of the neural network.
Step 2: Physics Informed Loss Function
The central idea of PINNS is to embed the governing equations directly into the loss function to guide the
training of the neural network.

i. Residual of the differential equation: For a given collocation point ¢;, calculate the residual of the differential

equation:

Residual(t;) = L(wnn(:;0)) — g(ts).

This ensures the neural network is learning a solution that satisfies the governing equation.

ii. Boundary/initial condition loss: Enforce the boundary and initial conditions by calculating:

Ny,
BC Loss = Z lwnn (ti30) — w(t:)]* .

i=1
Where ¢; are the boundary or initial points and u(;) are the known boundary/initial values.
iti. Total loss function: The total loss function is the combination of the residual and the boundary/initial con-
dition.
Step 3: Generate Training Data

i. Collocation points: Sample points ¢; € [a, b] from the domain to evaluate the residual and compute the loss.
These points are typically chosen uniformly or based on adaptive sampling techniques (e.g., random sam-
pling or clustering methods).

ii. Boundary/initial points: Ensure that the boundary or initial points are included in the data set for enforcing
the boundary conditions.

Step 4: Optimization Process
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i. Optimization algorithm: Use optimization algorithms (e.g., Adam, L-BFGS, or other gradient-based optim-
izers) to minimize the total loss £(6).
ii. Training: The training process involves updating the weights and biases 6 of the neural network iteratively
to reduce the loss. The process continues until convergence, or a predefined number of epochs are reached.
iii. Monitoring: Track the residual and boundary errors during the training to ensure that the neural network is
effectively learning the solution.

Step 5: Evaluate and Validate the Solution

i. Test the model: After training, evaluate the neural network’s performance on a test set of collocation points
and boundary conditions. This provides insight into the generalization ability of the model.

ii. Comparison with Analytical/Numerical Solutions: If available, compare the solution from the trained PINN
model with exact analytical solutions or solutions obtained via traditional numerical methods (e.g., finite
difference, finite element, or spectral methods).

iii. Error metrics: Compute error metrics such as Root Mean Squared Error (RMSE) or Maximum Absolute
Error (MAE) to quantify the accuracy of the PINN solution:

Ny
1
RMSE — 4N§:mmwm@—umﬂz
=1

Step 6: Update Weights and Biases
The weights and bias are adjusted in the following ways at the conclusion for each iteration:

new old -1

re | =Tp —aM; gk,
new old —1

cp | =cp —aM, gk

In the context where (new) refers to the current iteration and (old) denotes the previous iteration, g represents
the gradient for weights and bias, o is the parameter chosen to minimize the performance function in the
equation above, and the term M, ' denotes the inverse Hessian matrix. r represents the weight in the output
layer, and c the bias.

Step 7: Check for Convergence

i. Calculate the mean square error (MSE):

Do (i —8)°

MSE = N

ii. If the MSE is less than or equal to a predefined threshold ¢, finalize the weights and biases and terminate
training. Otherwise, proceed to the next iteration.

Step 8: Iterate

i. Adjust learning rates o or regularization parameters 5 dynamically if convergence is slow or oscillatory
behavior is observed.
ii. Return to Step 2 and continue training until convergence criteria are met.

Step 8: Iterate

i. Adjust learning rates «v or regularization parameters 5 dynamically if convergence is slow or oscillatory
behavior is observed.
ii. Return to Step 2 and continue training until convergence criteria are met.

Collocation points were uniformly sampled within the problem domain, with denser sampling near the
boundaries. Latin Hypercube Sampling (LHS) was also tested to ensure robustness of the solution.

Applications

In this part, we introduce the (PINN) approach to numerically solve, with MABC derivative, the AD problem
in Egs. 1, 2. Applying the modified PINN algorithm for fractional equations to both sides of Eq. 1, the process
unfolds as follows:

Algorithm steps
Step 1: Define the neural network structure

i. Design a neural network N (¢, 0), where 6 are the trainable parameters (weights and biases).
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ii. Use input f (time domain) and output u(#) as the predicted solution.

Step 2: Physics informed loss components
To enforce the equation and initial conditions:

i. Fractional derivative loss:

Efrac - H SAABCwa(yvt) - [/Bw?/ll(y7t) - aw(y,t) +g(y7tﬂ H2 . (8)

Compute the MABC derivative numerically using quadrature and finite differences.

ii. Boundary/initial condition loss:
Lye = ||M(to, 0) — u(to)]|*. ©)

Step 3: Integral approximation

Discretize the Swyy (y,t) — aw(y, t) + g(y, t) using numerical quadrature (e.g., trapezoidal rule or Gauss
Legendre quadrature).
Step 4: Loss function

Combine the loss components:

ﬁ(a) = Efrac + Nbcﬁbc- (10)

Where 14 is a weighting factor to balance the contributions of the physics loss and the boundary conditions.
To account for the long-tail characteristics of fractional derivatives, an adaptive weighting function w(y, t) was
introduced into the loss term, imposing stronger penalties near the boundary layers and improving accuracy in
high-gradient regions.

Step 5: Training

i. Generate collocation points ¢; € [a, b] to train the model.
ii. Usean optimizer (e.g., Adam or L-BFGS) to minimize the loss:

0 :argmelnE(H). (11)

iii. Update 6 iteratively during training.

Step 6: Prediction
After training, the neural network N (¢, 0" ) serves as the approximation of w(t).
Step 7: Validation and error analysis

i. Compute the RMSE to evaluate the accuracy of the solution:

N
1
RMSE =, | % > lults) — M(t:, 0). (12)
i=1

ii. Compare the predicted solution with the exact or numerical solution (if available).

Examples

Of the proposed method, two of the illustrative examples are provided to demonstrate its effectiveness and
correctness. In both of them, the findings of the developed and implemented machine learning based approach
are contrasted with those published in the current literature.

Example 1 We consider the fractional order ADE with the MABC derivative that was proposed in*®:

0 APEDw(y, t) — wyy(y, t) + w(y, t) = g(y, t). (13)

In case § = 0.6, the analytic solution for mentioned question is w(y,t) = t*sin(my). When the analytical
solution is applied to replace the solution of the original fractional differential equation, it yields the source term
g(x, t). Figure 1 shows the numerical and exact solutions together with the absolute error. It is described in Table
1 with its numerical value and the absolute error. Besides, Table 1 contains a comparison between the findings
produced by the suggested approach and those described in®®. It can be seen that by both Fig. 1 and Table 1, the
proposed approach is a good way to get a good applicable approximation of the exact solution and, thus, very
useful and highly reliable.
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fx.t)

Approximate solution u

Source term f(x,t) computed from u(x,t) = t2 sin(m x) Exact solution u(x,t) = £ sin(m x)

u(x,t)

(a) Exact solution u(z,t) = t*sin(mz) (b) Approximate solution wapprox(,t)

approx(x’t) from f(x,t) Absolute Error in Approximate Solution

(c) Source term f(z,t) from u(z,t) = t*sin(mz) (d) Absolute Error in Approximate Solution

Fig. 1. Mlustration of compare results with § = 0.6 for Example 1.

(0.2,0.2) | 0.02351 0.02351 | 6.79 x 10~ 1! 1.4945 x 10710 | 6.2970 x 10~°
(0.4,0.4) | 0.1521 0.1521 |4.03 x 1071° 5.9758 x 10710 | 1.4247 x 10~*
(0.6,0.6) | 0.3423 0.3423 |8.52 x 107 1° 1.2002 x 1079 |1.4987 x 10~
(0.8,0.8) | 0.3761 0.3761 |8.90 x 10~ 1° 1.8295 x 1079 | 1.4253 x 10~

Table 1. Numeric results for § = 0.6 for Example 1.

Table 1 represent to numeric results with the absolute error and also includes a comparison with the results
reported in®® and”. It demonstrates the effectiveness of the proposed method.

Example 2 Consider the given fractional order ADE with MABC derivative®’.

0 AP DY w(y, t) — 2wyy (y, 1) + 3w(y, t) = g(y, t). (14)

The analytic solution of FADE for 6 = 0.5 is w(y,t) = t*y*(y* — 2.5y% 4 2y — 0.5). The exact, numerical
solutions and the absolute error is provided in Fig. 2. The presentation of the numerical results is in Table 2 and it
further reveals the precision and efficiency of the offered strategy. In addition, Table 2 provides the comparative
cross-check between the output achieved with the current method and the works done in®” that proves the
efficacy of the present method and its competitive performance.
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(b) Approximate solution wapprox(,t)

Absolute error

(d) Source term f(x,t)

Fig. 2. Tllustration of compare results with v = 0.5 and £ = 0.7 for Example 2.

(¥,t) | Approximate

Exact Absolute Error | Error in ¢ Error in %7
(0.2,0.2) | - 0.00001 -0.00001 | 4.75 x 1071¢ | 89101 x 10~ | 3.0812 x 10~3
(0.4,0.4) | - 0.0004 -0.0004 |5.34 x 107 | 4.0724 x 10~ | 2.5758 x 103
(0.6,0.6) | 0.00074 0.00074 | 2.56 x 10~ '* | 1.0467 x 1073 | 8.1993 x 1073
(0.8,0.8) | 0.0034 0.0034 1.03 x 10713 | 2.4097 x 10713 | 1.7291 x 1073

Table 2. Numeric results of w(y, t) for Example 2.

Compared with spectral and finite element methods, the proposed MABC-PINN framework provides
comparable accuracy while significantly reducing computational cost and eliminating the need for dense spatial

discretization.

Conclusions

The fractional order 6 in the MABC derivative physically represents the strength of memory in pollutant transport;
smaller values of 6 indicate stronger nonlocal effects and slower decay of system memory. In this study, a fractional
model was developed to address the advection dispersion problem associated with contaminant transport. The
model incorporates the MABC derivative, a recent extension of the Atangana Balaena framework designed to
better capture nonlocal and memory dependent behaviors. To obtain numerical solutions to the resulting FADE,
we employed an efficient method based on PINNs. Through this approach, the governing differential equation
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is transformed into a system of algebraic equations, facilitating solution via standard optimization techniques.
The key advantages of the proposed methodology include its straightforward implementation and relatively low
computational cost. To assess the validity and performance of the approach, several benchmark examples were
considered, with results compared against those obtained using existing numerical methods. The numerical
findings confirm the accuracy, robustness, and efficiency of the PINN based technique in solving FADEs with
MABC derivatives. As a direction for future research, the proposed PINN framework may be extended to the
numerical treatment of partial differential-algebraic equations involving MABC derivatives, thereby broadening
its applicability to more complex systems. The proposed framework is directly applicable to environmental
models, such as groundwater and soil contaminant dispersion. Future extensions will address coupled PDE-
algebraic systems and time-dependent boundary conditions.

Data availability

All data generated or analyzed during this study are included in this article.
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