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Semi-supervised learning (SSL) leverages labeled and unlabeled data for modern classification 
tasks. However, existing SSL approaches often underutilize moderately uncertain samples and may 
propagate errors from highly uncertain pseudo-labels, leading to suboptimal performance, in noisy 
and class-imbalanced datasets. We introduce an SSL framework with an uncertainty-weighted training 
mechanism that prioritizes moderately uncertain samples while deferring extremely uncertain samples 
via a dynamic entropy mask. Training on unlabeled data combines masked cross-entropy with a 
Bhattacharyya-regularized alignment term between weak and strong predictions, improving view 
consistency and distribution alignment. A dynamic entropy threshold ( ϵ t) that adapts over training, 
filtering only extremely uncertain pseudo-labels and thereby limiting error propagation while retaining 
informative unlabeled data. The proposed framework is evaluated on several benchmark datasets, 
including CIFAR-10, SVHN and STL-10 under label-scarce and class-imbalanced protocols, achieving up 
to 3–5% absolute accuracy gains over strong SSL baselines (e.g., FixMatch, ReMixMatch, FreeMatch). 
Our results show that the proposed approach improves model generalization and robustness, 
particularly in scenarios involving label noise, class imbalance, and limited labeled data, while 
remaining comparable on clean, class-balanced settings.
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 Semisupervised learning (SSL) has become an important research focus in modern machine learning, and 
provides a sound paradigm for situations where a large amount of unlabeled data is available while few labeled 
data exist1. SSL techniques are especially beneficial in a variety of domains including computer vision, natural 
language processing and medical imaging, where data annotation is expensive, time-consuming or even 
impossible2. The basic principle of SSL is to use labeled and unlabeled instances together to increase a model’s 
predictive power and generalization ability3. Two dominant families in SSL are consistency regularization and 
pseudo-labeling4. Consistency regularization assumes that model predictions under different input perturbations 
should remain consistent, while pseudo-labeling uses the model’s predictions on unlabeled samples as targets for 
training. Pseudo-labeling remains widely used due to its simplicity but is sensitive to confirmation bias5.

Existing pseudo-labeling approaches face fundamental challenges, in particular with respect to the 
processing of uncertain samples6. In the current research work, we define two kinds of uncertain samples, 
such as the moderate uncertain samples which are informative but not confidently classified, and the highly 
uncertain samples which have high entropy and unreliable pseudo-labels. Most pseudo-labeling methods 
employ a fixed confidence threshold to filter out uncertain instances. While this stabilizes training, it may 
discard potentially valuable data from the moderately uncertain regime7. The exclusion of these instances leads 
to suboptimal generalization and can induce confirmation bias toward majority and easy classes8. Some leading 
semi-supervised learning techniques, such as FixMatch, MixMatch, and ReMixMatch, are based on probability 
thresholds for unlabeled data pseudo-label selection9,10. Nonetheless, there remain challenges in determining 
reliable pseudo-labels whilst retaining informative data, and such approaches may be prone to confirmation bias 
towards some classes, if confidence estimation is not accurate11.

1Department of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran. 2Department of Medical 
Instrumentation Technology, Technical Engineering College, Northern Technical University, Mosul, Iraq. email: 
tanha@tabrizu.ac.ir

OPEN

Scientific Reports |        (2025) 15:45531 1| https://doi.org/10.1038/s41598-025-30069-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-30069-3&domain=pdf&date_stamp=2025-11-27


We present an SSL framework based on uncertainty-weighted training and dynamic entropy masking which 
focuses attention on moderately uncertain samples and defers highly uncertain samples. Instead of rejecting the 
uncertain samples directly, our method corrects their contribution by a confidence score estimated from the 
entropy of the distribution of the normalized activation values, making use of the easy and moderately uncertain 
samples. This dynamic adaptation mechanism enables the model to learn from both trusted and non-trusted 
information, ensuring that valuable information is not missed. Furthermore, by improving the robustness of the 
model to noise and label uncertainty, our method also improves generalization on a variety of datasets - even 
when there is only a small amount of labeled data.

A key component of our approach is a hybrid unlabeled objective that combines masked cross-entropy with 
a Bhattacharyya-regularized divergence between weak and strong predictions for the same unlabeled sample. 
This symmetric divergence stabilizes view alignment and mitigates overconfident errors without requiring a 
fixed alignment to the labeled distribution. Such alignment is especially helpful when labeled and unlabeled 
distributions are mismatched (e.g., long-tailed class distributions). In addition, we introduce a dynamic entropy 
masking strategy to address unreliable pseudo-labels. Rather than a fixed cutoff, the entropy threshold ( ϵ t) 
evolves during training, so that only extremely uncertain pseudo-labels are filtered while informative samples 
are retained. This dynamic gating limits error propagation and improves stability.

The contributions of this work are threefold:

	(1)	 An uncertainty-weighted training mechanism that links entropy-based uncertainty to loss weighting, em-
phasizing moderately uncertain samples while down-weighting easy ones and deferring extremely uncer-
tain samples.

	(2)	 A hybrid unlabeled loss that combines cross-entropy with Bhattacharyya-regularized divergence, enhanc-
ing distribution alignment and improving robustness in noisy and imbalanced settings.

	(3)	 A dynamic entropy masking strategy ( ϵ t) that evolves over training to exclude only extremely uncertain 
pseudo-labels, reducing confirmation bias and stabilizing learning.

To demonstrate the main difference between our approach and the traditional ways of implementing the method 
of SSL, Fig. 1 compares the fixed-threshold pseudo-labeling with our uncertainty-aware pipeline. Whereas 
the previous approaches can ignore or severely down-weight uncertain examples (e.g., FixMatch9 and Mean 
Teacher10 our framework leaves only highly uncertain examples and rewards more moderately uncertain ones 
through weighting and masking transition. This preserves useful information with no increase of noise which 
we demonstrate translates to gains in difficult protocols.

 The rest of this paper is organized in the following way. Section 2 will be a review of the literature on the 
topic of SSL, with particular attention to the issues of dealing with hard-to-label data and the approaches that 
have been suggested to resolve these problems. Section 3 explains the methodology of our proposed framework. 
Section 4 gives the experimental setup and results and a discussion of the findings is given in Sect. 5. Lastly, we 
conclude the paper in Sect. 6 and provide possible future research directions.

Related works
Semi-supervised learning SSL has also developed, and numerous approaches use large sets of unlabeled data 
to improve generalization in the case of limited labeled data5,7. Previous SSL tended to assume that the latent 
distributions of labeled and unlabeled samples were identical, but in reality, this fails in the presence of noise, 
class imbalance, and ambiguous labeling, which worsens performance and reliability9,11. In this landscape, two 
pillars, pseudo-labeling and consistency regularization, describe much of the progress of SSL and its continuing 
limitations when uncertain data are not treated with care4,6.

Foundations and evolving challenges
In the standard SSL pipeline, a model is first trained on labeled data and then used to assign pseudo-labels 
to unlabeled samples; these predicted targets are treated as additional supervision during subsequent training 
rounds12,13. Although the mechanism is simple and commonly used, it is also delicate: as soon as false pseudo-
labels enter, they are likely to be strengthened with each iteration, a phenomenon, often referred to as the 
confirmation bias, is said to be prone to14. Confidence thresholds were introduced to curb this effect, and 
FixMatch operationalized the idea by coupling high-confidence selection with consistency between weakly and 
strongly augmented views of the same input9,10. Self-training is a natural extension of this paradigm, adding 
high-confidence pseudo-labeled data and training larger and larger sets of data to ensure coverage15, and 
Noisy Student makes use of a teacher-student ensemble to stabilize targets and reduce overfitting16. Despite 
these refinements, fixed acceptance rules can simultaneously discard moderately uncertain (yet informative) 
samples and admit extremely uncertain (unreliable) ones, effects that are amplified under label noise and class 
imbalance5,11.

Consistency regularization provides a complementary principle: model predictions should remain stable 
under input perturbations17. Representative approaches include Mean Teacher, nudging a student toward an 
exponential-moving-average teacher, and Virtual Adversarial Training (VAT), which regularizes against worst-
case local perturbations10,18. MixMatch later combined weak and strong augmentations and target interpolation 
to produce smoother decision boundaries and stronger invariance19. However, purely consistency-driven 
training does not by itself decide which uncertain samples to use or how strongly to weight them. When many 
unlabeled points are hard to classify, training can still privilege easy and majority cases while sidelining data that 
would most benefit minority classes.
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Uncertainty, Imbalance, and alignment under mismatch
To address uncertain-sample selection, a substantial line of work estimates uncertainty explicitly and uses it 
to guide data usage20,21. Uncertainty-guided cross-teaching and curriculum methods (e.g., UTCS) gradually 
expose the learner to more difficult examples as confidence improves22, while ensemble self-training (e.g., 
UGE-ST) aggregates multiple predictors to stabilize pseudo-labels and reduce variance23. These strategies often 
increase robustness, but many rely on static heuristics that may be miscalibrated as the model evolves, over-
filtering or over-admitting uncertain data at different stages. This observation motivated adaptive schemes in 
which thresholds or weights vary with training, concentrating learning where uncertainty is informative and 
deferring samples whose entropy indicates unreliability. In parallel, practical baselines broaden the pseudo-
labeling toolbox: FreeMatch introduced self-adaptive thresholding that synchronizes confidence gates with 
the model’s learning status24 and AdaMatch unified SSL with domain adaptation by aligning distributions 
while retaining confidence-based selection25. Related ensemble low-label lines in few-shot classification which 
combining various training and adaptation algorithms for ensemble few-shot classification26 and prototype-
neighbor network with task-specific enhanced Meta-learning for few-shot classification27, underscore the value 
of calibrated targets and neighborhood-aware consistency when supervision is scarce, a principle we transfer to 
SSL despite the setting differences.

Fig. 1.  Comparison of uncertain data (Hard-to-Label) utilization in SSL methods.
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Distribution alignment forms a third pillar of modern SSL. ReMixMatch and Noisy Student demonstrated 
that stronger augmentation, consistency, and pseudo-label interpolation can shrink gaps between labeled 
and unlabeled distributions16,28, but alignment alone remains brittle under long-tailed class imbalance. 
Accordingly, imbalance-aware SSL explicitly counteracts majority dominance: DARP refines pseudo-labels 
via distribution-aware optimization to correct class bias, CReST rebalances self-training schedules to amplify 
trustworthy minority signals, and DASO blends semantic and linear pseudo-labels while introducing a 
semantics-oriented alignment loss29–31. Complementary to these, a semi-supervised resampling method for 
class-imbalanced learning32 directly rebalances exposure, offering another route to counter prior skew during 
SSL. These approaches improve minority recall by correcting class priors or reshaping exposure, yet most do 
not simultaneously couple (i) an asymmetric agreement objective across unlabeled weak and strong views with 
(ii) a dynamic selection rule, an interaction that becomes crucial when selection and alignment influence one 
another under mismatch5,7,9. Unified Consistency Regularization (UCR) moves toward an integrated treatment 
by adjusting learning dynamics in response to distributional cues33, and multi-model designs such as DUMM 
exploit both sample- and pixel-level uncertainties to focus attention where it matters most34.

Beyond selection and exposure, the choice of divergence for enforcing agreement between weak and strong 
predictions also shapes optimization stability and calibration under overlap and imbalance. KL divergence 
is asymmetric and can produce sharp gradients when the teacher is overconfident; Jensen-Shannon is 
symmetric but can still exhibit peaky gradients in practice; approximate Wasserstein adds geometric fidelity 
but increases computational and critic-tuning burden. By contrast, symmetric and overlap-aware criteria (such 
as Bhattacharyya-based regularization) yield smoother, bounded gradients where class distributions mingle, 
providing a more stable signal in noisy or long-tailed regimes. Empirically, divergence-swap ablations that replace 
the symmetric term with KL/JS/Wasserstein help quantify accuracy and calibration (Expected Calibration Error, 
ECE; Negative Log-Likelihood, NLL) trade-offs and clarify when symmetry substantively improves training 
stability. Taken together, prior work suggests that the most reliable trajectories recognize uncertainty as a graded 
signal and adapt thresholds and weights over time, while employing symmetric alignment to stabilize learning 
when labeled an unlabeled data differ markedly in class frequency or noise level5,7,9–11,13–16,18–31. Within this 
view, dynamic entropy masking paired with uncertainty-weighted training and symmetric weak and strong 
alignment offers a unified response to selection and alignment under distribution mismatch.

Methodology
The current paper proposes a robust semi-supervised learning (SSL) framework that utilizes both labeled and 
unlabeled data simultaneously, allowing the use of data that are difficult to label, which is often ignored by 
standard SSL algorithms.

This method combines an uncertainty-weighted training method which dynamically modulates the bias of 
the model on the uncertain data points so that both the easy and moderately uncertain data are used in the 
learning process of the model. The proposed framework consists of the following steps: model design, hybrid 
loss, dynamic entropy masking and entropy-based weighting. During training at the first stage, the model is 
trained using a rather small amount of labeled data; the results of the trained model on the unlabeled data serve 
as pseudo-labels. These pseudo-labels are then further refined with an iterative process where easy and hard-to-
label instances are included in the process of learning in the model. In comparison to the traditional SSL, where 
low-confidence pseudo-labels are dropped7, the suggested framework makes sure that uncertainty is quantified 
and used gradually (via τ  for confidence and a dynamic entropy threshold ϵ t), without the loss of valuable 
information.

The suggested framework utilizes a Vision Transformer (ViT)35, which is unique due to the ability to detect 
long-range relationships in image data. ViT can break input images into patches and process them sequentially 
which yield better outcomes on tasks with strong structural and spatial variation36. This perfectly fits the case 
of the SSL in Fig. 2. Each patch is processed by the self-attention mechanism to produce representations that 
encode global interactions among patches. These representations illustrate long-range relations, which makes 
the model useful in cases of the application of SSL.

A hybrid loss function, which is a combination of supervised cross-entropy and the Bhattacharyya-regularized 
divergence on unlabeled data leads to learning in the model. The Bhattacharyya divergence37 promotes 
conformity to weakly and strongly augmented views and thus makes class separability and resistance stronger, 
particularly in the presence of noise and imbalance. Bhattacharyya, in comparison with KL, Jensen-Shannon 
and Wasserstein substitutes, is symmetric and has an overlap sensitivity, which generates smoother, bounded 
gradients when predictions are partially inconsistent, which makes it especially convenient in the context of 
noisy or small-sample data and in the context of training with these requirements. The proposed method also 
uses a dual-augmentation model in which the trained model makes ensemble predictions of unlabeled inputs 
with weak and strong data augmentations. Weak augmentation yields less hostile pseudo-labels whereas strong 
augmentation is used to enforce consistency across augmented views. Collectively, the operations will decrease 
the chances of misclassification, enhance decision constraints, and augment pseudo-label dependability via the 
uncertainty-sensitive masking and weighting strategy.

Overview of the proposed framework
The key idea in the proposed architecture is an adaptive mechanism that guides the network to exploit uncertain, 
hard-to-label instances. The model calculates the entropy of its predictions, and through an uncertainty-weighted 
training mechanism prioritizes moderately uncertain samples rather than discarding them. This ensures efficient 
learning, particularly in noisy or ambiguous data. The framework applies weak and strong augmentations and 
enforces consistency between their predictions. The predictions of the network are then improved through 
entropy-guided weighting and dynamic masking, where uncertainty (entropy) and confidence levels are used to 
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adjust the weight of each sample. The hybrid loss function makes model outputs coincide with the correct data 
distribution, whereas the dynamic masking strategy ensure only trustworthy pseudo-labels are used to train the 
model (see Eqs. (2–5), while extremely uncertain samples are deferred via an entropy threshold ϵ  introduced 
in (Eq. 7).

Model components
The proposed framework adopts the Vision Transformer (ViT) architecture, a method that efficiently processes 
large-scale image data by detecting both local and global relationships through patch-based processing. ViT is 
especially applicable in semi-supervised learning cases, in which labeled and unlabeled data are present. For the 
labeled data, the model is trained on them and the supervised loss is calculated, while for the unlabeled data, the 
unsupervised loss is processed through pseudo-labeling and consistency regularization.

The supervised loss function Ls is focused on utilizing labeled data for accurate classification. It is defined as 
the cross-entropy loss between the true labels and predicted labels for the labeled data, which guides the model 
to learn correct class assignments. The loss function is defined as:

	
Ls = 1

n

∑
n
i=1H (Pb.Pm (Y | Aw

(
xl

i

)
; λ s))� (1)

Where Pb is the true (one-hot) label distribution, Pm (Y | Aw

(
xl

i

)
; λ s) is the model’s predicated distribution 

for weakly augmented labeled data xl
i. While H(p, q) denotes the cross-entropy between distributions p and 

q, and λ s is the supervised weight.
The unsupervised loss is calculated using the unlabeled data, which are augmented through weak and strong 

transformations. This loss is based on two components: Cross-entropy loss and the Bhattacharyya divergence. 
For unlabeled data, the cross-entropy loss Lce between the predicted probability distribution and the pseudo-
label is computed as follows:

	
Lce = 1

µ m

∑
µ m
i=1⋖ (max (qb) ≥ τ ) H(q̂b. Pm (Y | As (xu

i ) ))� (2)

Here, qb is the weak-view prediction (pseudo-label) generated from Aw (xu
i ), q̂bis its temperature-sharpened 

form, τ  is a confidence threshold, As (xu
i ) is the strong augmentation, µ is the unlabeled-to-labeled ratio per 

iteration, and m is the labeled batch size. Also, we include τ  as confidence threshold and Pm (Y | As (xu
i )) 

Fig. 2.  ViT architecture and self-attention mechanism in SSL.
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is for model’s prediction for strongly augmented unlabeled data. The second component of the unsupervised 
loss measures the divergence between the weakly and strongly augmented versions of the same data. The 
Bhattacharyya divergence Dbh ensures that predictions from different augmentation are consistent. The 
Bhattacharyya divergence loss Ld is computed as:

	
Ld = 1

µ m

∑
µ m
i=1⋖ (max (qb) > τ ) Dbh (P w

s | Pm (Y | As (xu
i ) ))� (3)

While the Bhattacharyya divergence is calculated as:

	
Dbh = −ln

(∑
i ∈ I

√
P w

s ∗ Pm (Y | As (xu
i ) )

)
� (4)

And the sharpened prediction for weakly augmented data P w
s  is given by:

	
P w

s (Y | Aw (xu
i ) = exp

(
gb

T

)
/

∑
kexp

(
gk

T

)
� (5)

with gb the class logit corresponding to the predicted class and T  a temperature parameter that mitigates 
overconfidence. Finally, the total loss function Ltotal is the combination of the supervised Ls and unsupervised 
loss (Lce + Ld) components. The final loss function is given by:

	 Ltotal = λ sLs + λ u(Lce + Ld)� (6)

Where λ s and λ u are the supervised and unsupervised weights.

Uncertainty weighting and dynamic masking in pseudo-labeling
A central feature of the proposed framework is the combination of uncertainty weighting and dynamic entropy 
masking, which together ensure that only reliable pseudo-labels contribute to training while moderately uncertain 
samples are still exploited. In the setting of SSL, low-confidence pseudo-labels may introduce significant noise 
and cause error propagation. To mitigate this risk, the model estimates the uncertainty of each prediction using 
entropy. Instead of discarding all uncertain pseudo-labels, the framework distinguishes between moderately 
uncertain samples, which may still be informative, and extremely uncertain ones, which are likely unreliable.

The dynamic masking strategy formally determines which samples should be excluded. For each unlabeled 
sample, a binary mask mi is applied:

	
mi =

{ 1. if H (pi) < ϵ
0. if H (pi) ≥ ϵ � (7)

Where H (pi) is the entropy of the class probability distribution for the i − th samples, and ϵ  is the threshold 
controlling the exclusion of highly uncertain pseudo-labels. By filtering out only these unreliable samples, 
the strategy stabilizes training and reduces the risk of propagating noisy pseudo-labels. Unlike conventional 
methods with a fixed ϵ , our framework employs a dynamic entropy threshold that evolves during training, 
computed as ϵ t = µ t + ktσ t, where µ t and σ t denote the exponentially-weighted moving average(EMA) 
mean and standard deviation of batch entropies at epoch t. kt is a scheduled factor that gradually relaxes 
the gate; in early epochs ϵ t ∈ [ϵ min, ϵ max] for stability and compute entropies from weak view 
pi = softmax (logitsw

i ). Complementing masking, the uncertainty weighting mechanism adjusts the 
contribution of each unlabeled sample. The entropy of each prediction is normalized as:

	 ei = H (pi) /logC � (8)

Where C  is the number of classes, and converted into a bell-shaped weight:

	 wi = 4ei(1 − ei)� (9)

This weight wi ∈ [0, 1] peaks at ei = 0.5, down-weights near certain and ambiguous samples, and emphasizes 
the moderately uncertain regime that tends to be most informative, Empirically, this reduces confirmation bias 
toward majority and easy classes while avoiding over trusting highly ambiguous pseudo-labels. The overall 
unsupervised loss thus becomes a weighted and masked combination of cross-entropy and Bhattacharyya 
divergence:

	
Lunsup =

∑
iwimi(Lce (xi) + DBh (xi))∑

iwimi
� (10)

Where both weighting and masking operate jointly to emphasize useful samples while suppressing extreme 
noise. In optimization, we use Ltotal = λ sLs + λ uLunsup; when wi ≡ 1 and mi ≡ 1, Eq. collapses to 
Lce + Dbh as in Eq. (6), explicitly connecting Eq. (10). For class-imbalance scenarios, an optional distribution-
alignment correction can be applied to weak-view probabilities before masking to reduce prior skew without 
changing Eqs. (7)–(10). The model’s uncertainty estimates are continuously updated during training, allowing 
the weighting and masking mechanisms to adapt dynamically to the evolving decision boundaries. Figure  3 
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demonstrates how uncertainty weighting is used to guide the training process, with uncertain data points given 
higher importance. Dynamic masking deliberately filters pseudo-labels with high entropy while preserving 
moderately uncertain ones, thereby limiting error propagation yet maintaining access to informative unlabeled 
signal.

Algorithm pseudocode

The following pseudocode concisely summarizes the proposed training loop and its components. Each 
step is annotated with the corresponding equations (Eqs. 1–10), making explicit where the supervised 
loss, masked unlabeled cross-entropy, Bhattacharyya alignment, and uncertainty mechanisms. An 
optional distribution-alignment correction (DisAlign) is indicated before masking to mitigate class-prior 
skew under imbalance.

Fig. 3.  Uncertainty (1-max predicted probability) and Dynamic Masking in Pseudo-Labeling.
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Algorithm.

Experimantal setup
In this section, we describe the experimental setup used to evaluate the performance of the proposed semi 
supervised learning SSL framework. We detail the datasets, evaluation metrics, comparison with other SSL 
methods such as, Pseudo-Label, Π-Model, MixMatch, ReMixMatch, VAT, FreeMatch, AdaMatch, and FixMatch5, 
as well as imbalance- and noise-aware SSL baselines. We also implementation details and hyper-parameter 
settings. Our experiments are designed to assess the robustness of the proposed method in various settings, 
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particularly in the presence of noisy or imbalanced data, which are common challenges in real world-machine 
learning tasks. All results are averaged over three seeds (mean ± std).

Datasets
We evaluate the proposed model on several benchmark datasets commonly used for SSL tasks. These datasets 
consist of a mixture of labeled and unlabeled data, allowing us to assess how effectively the model leverages 
unlabeled data for training.

 

•	    CIFAR-10: A standard dataset for image classification, containing 60,000 32 × 32 color images in 10 classes, 
with (50,000 train/10,000 test)38. We follow common SSL protocols using low-label splits (e.g., 40-label and 
250-label settings with class-balanced selection), and treat the remaining images as unlabeled.

•	    SVHN (Street View House Numbers): A real-world dataset consisting of digit images 32 × 32 extracted from 
Google Street View. the dataset contains 73,257 label training images and about 26,000 labeled testing imag-
es39. We evaluate at low-label (e.g., 250 labels) and medium-label (e.g., 1000 labels) settings; the remainder 
forms the unlabeled pool.

•	    STL-10: Inspired by CIFAR-10 dataset, with 5,000 labeled training images, 100,000 unlabeled images, and 
8,000 testing images40. We use the standard SSL protocol with a 1000-label subset when explicitly noted.

•	    Imbalanced CIFAR-10 (long-tailed): To evaluate robustness under class imbalance, we create long-tailed 
version of CIFAR-10 following a standard imbalance protocol9. Class counts decay exponentially according 
to imbalance ratio ρ. We consider two settings: ρ = 50 (moderate imbalance) and ρ = 100(severe imbalance). 
Only the labeled subset is imbalanced while the unlabeled pool remains class-balanced, isolating the effect of 
imbalanced supervision.

•	    Noisy Settings: To further test robustness, we corrupt the labeled subset of CIFAR-10 and SVHN with sym-
metric label noise at 20% and 40%. The unlabeled pool remains clean to emulate realistic annotation noise 
while preserving unsupervised signal. 

 

Evaluation metrics
We evaluate the performance of the proposed model using Top-1 Accuracy and analyze the confusion matrix to 
understand per-class behavior.

•	 Top-1 Accuracy. The percentage of times the model’s top prediction matches the actual label.

	
Top1 Acc = No. correct predictions

total number of predictions
× 100� (10)

•	 Confusion Matrix: A table used to evaluate the performance of a classification model. It shows the actual ver-
sus predicted classifications, giving insight into how well the model is performing across all classes.

•	 Macro-F1. Reported in imbalance settings to account for class-frequency skew and to complement accuracy.
•	 Calibration metrics. For divergence ablations (Bhattacharyya vs. KL/JS/Wasserstein), we also report Expected 

Calibration Error ECE and Negative Log-Likelihood NLL to quantify stability and calibration under noisy 
and long-tailed regimes.

Comparison with baseline methods
To evaluate the effectiveness of the proposed method, we compare it against several state-of-the-art semi-
supervised learning algorithms. These baseline methods have been widely used in previous research and include:

•	 FixMatch: A strong SSL algorithm based on consistency regularization. It utilizes weak and strong augmenta-
tions and pseudo-labeling for unlabeled data.

•	 MixMatch: A method that combines the concepts of consistency regularization and pseudo-labeling, using 
both weak and strong augmentations and mixing labeled and unlabeled data to enhance learning.

•	 Pseudo-labeling: One of the most basic approaches in SSL, where the models’ predictions on unlabeled data 
are used as pseudo-labels and added to the training data.

•	 VAT (Virtual Adversarial Training): An SSL method that introduces adversarial perturbation to the input data 
to regularize the model and improve its generalization.

•	 ReMixMatch, FreeMatch, AdaMatch: Are domain and threshold adaptation and alignment.

We compare the proposed model with these baselines in term of classification top-1 accuracy. Our goal is to 
show that the proposed model outperforms or at least matches the performance of existing methods, particularly 
in challenging settings such as noisy and imbalanced data.

Implementation details
The model is implemented using Semilearn, a popular deep learning framework from Microsoft. The training is 
performed using the Stochastic Gradient Descent SGD optimizer with a momentum of 0.9; the initial learning 
rate is 0.03; the total number of training iterations is 220; the labeled batch size is 64; the ratio of unlabeled data 
µ is set to 7; the confidence threshold τ is set to 0.95; and the sharpening temperature T  is set to 0.5. The weak 
augmentation for the unlabeled data includes standard random cropping and flipping transformations, while the 
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RandAugmen has been used in the strong augmentation. For class-imbalance experiments, we optionally apply 
distribution alignment (DisAlign) to weak-view probabilities before masking.

The training process starts by initializing the ViT backbone with pre-trained weights, applying weak 
augmentations to labeled data for supervised learning, and generating pseudo-labels from weak views for 
unlabeled samples. The supervised loss cross-entropy; the unlabeled objective combines masked cross-entropy 
with Bhattacharyya divergence to align weak and strong predictions of the same sample. Dynamic entropy 
masking with ϵ t = µ t + ktσ t (EMA statistics) filters only extremely uncertain pseudo-labels, while the 
entropy-based weight wi = 4ei(1 − ei) emphasizes moderately uncertain samples. We conduct sensitivity 
studies by varying τ ∈ {0.80, 0.90, 0.95}, T ∈ {0.5, 0.7, 1.0}, and scheduling kt to demonstrate the 
effect of the mask and weighting. Unless specified, results are averaged over three random seeds; validation sets 
are used for model selection, and the final model is evaluated on the held-out test set. A supervised-only baseline 
(no unlabeled loss) is trained under the same schedule for comparison.

Results and discussion
In this section, we present the results of our experiments, evaluating the performance of the proposed 
semi-supervised learning SSL framework on multiple benchmark datasets, including CIFAR-10, SVHN 
and STL-10. We compare the performance of our model with several state-of-the-art SSL methods, such 
as Pseudo Label, Π Model, MixMatch, ReMixMatch, VAT, FreeMatch, AdaMatch and FixMatch. We 
focus on Top-1 accuracy as the evaluation metric and report macro-averaged F1 (Macro-F1) for class-
imbalanced protocols and calibration metrics (ECE/NLL) for the divergence ablations. Our results also 
demonstrate the importance of Bhattacharyya regularization, which consistently improves distributional 
alignment between weak and strong augmentations and enhances robustness under noise and imbalance.

Results on CIFAR-10
CIFAR-10 is a well-known dataset for image classification with 10 classes of 32 × 32 color images. We evaluate 
two labeled-data regimes: 250 labels and 4000 labels (Figs. 4 and 5). Figure 4 compares Top-1 accuracy for the 
250-label case; our method achieves 95.66% with FixMatch as the second-best performance. While the fully 
supervised cifar-10 achieves 95.4%. Moreover, the results on 4000 labels (Fig. 5), our method reaches 96.85% and 

Fig. 5.  Top-1 Accuracy on CIFAR-10 for Various SSL Methods using 4000 labeled samples.

 

Fig. 4.  Top-1 Accuracy on CIFAR-10 for Various SSL Methods using 250 labeled samples.
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remains on par or better than recent SSL baselines. Across both regimes, ECE decreases compared to FixMatch 
(relative reduction ∼∼ 20 − 30%), indicating more calibrated pseudo-labels (Table 1).

Additionally, we include the confusion matrices for 250-label and 4000-label settings (Fig. 6) to visualize 
per-class behavior. Compare to baselines, minority-like categories show reduced confusion with visually similar 
classes, consistent with the entropy-weighted emphasis on moderately uncertain samples.

Results on SVHN
SVHN comprises real-world house-number images. We evaluate 250-label and 1000-label settings (Figs. 7 and 8). 
The proposed method achieves 97.98% accuracy with (250 labels) and 98.02% with (1000 labels), outperforming 
alternatives in both regimes. Gains are more pronounced at 250 labels, suggesting that uncertainty weighted 
training is particularly beneficial when labeled supervision is scarce. While the fully supervised method on 
SVHN achieves 97.1%. We also observe lower ECE and NLL than KL-based and JS-based variants in our 
divergence ablations, indicating more stable training under SVHN’s complex background noise (Table 2).

Results on STL-10
STL-10 contains higher resolution 96 × 96 images. With 1000 labels (Fig.  9), our method achieves 94.39%, 
outperforming FreeMatch and FixMatch. While the fully supervised method on STL-10 dataset achieves 94.1%. 
The symmetric overlap-aware Bhattacharyya term contributes noticeably in the higher-resolution dataset by 
aligning distributions across augmentations, resulting in better calibration of pseudo-labels.

Fig. 7.  Top-1 Accuracy on SVHN for various SSL Methods with 250 labeled samples.

 

Fig. 6.  Confusion matrix of proposed method on CIFAR10. (a) using 250 labeled samples. (b) using 4000 
labeled samples.

 

Method 250 labels ECE 250 labels NLL 4000 labels ECE 4000 labels NLL

FixMatch 0.081 ± 0.02 0.42 ± 0.04 0.052 ± 0.01 0.29 ± 0.06

Ours (KL in unlabeled align.) 0.071 ± 0.05 0.39 ± 0.02 0.048 ± 0.05 0.27 ± 0.03

Ours (Bhattacharyya) 0.057 ± 0.06 0.33 ± 0.03 0.041 ± 0.01 0.23 ± 0.02

Table 1.  CIFAR-10 (class-balanced) calibration: ECE/NLL under 250 and 4000 labels.
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In Fig. 9, it is clear that the proposed method performs robustly across all models, achieving the highest Top-
1 accuracy on STL 10. This demonstrates the effectiveness of our method in handling different assets and label 
amounts.

Method
ρ = 50 Acc
(%) ρ = 50 Macro-F1 ρ = 100 Acc (%) ρ = 100 Macro-F1

FixMatch 87.3 ± 0.3 82.0 ± 0.5 83.9 ± 0.8 79.0 ± 0.6

FreeMatch 88.2 ± 0.2 83.0 ± 0.7 84.7 ± 0.5 80.1 ± 0.4

AdaMatch 89.0 ± 0.5 83.9 ± 0.4 85.5 ± 0.2 81.0 ± 0.4

Ours (no DA) 92.4 ± 0.3 85.9 ± 0.2 89.6 ± 0.5 84.5 ± 0.5

Ours (+ DA) 93.1 ± 0.4 87.2 ± 0.3 90.5 ± 0.2 85.9 ± 0.3

Table 3.  Imbalanced CIFAR-10 (labeled long-tailed), Top-1 accuracy (%) and Macro-F1.

 

Fig. 9.  Top-1 Accuracy on STL 10 for various SSL methods with 1000 labeled samples.

 

Divergence in unlabeled align Top-1 Acc (%) ECE NLL

Ours w/KL 97.10 ± 0.01 0.034 ± 0.06 0.29 ± 0.02

Ours w/Jensen-Shannon 97.32 ± 0.04 0.030 ± 0.01 0.27 ± 0.01

Ours w/approx. Wasserstein 97.41 ± 0.01 0.028 ± 0.02 0.26 ± 0.03

Ours w/Bhattacharyya 97.98 ± 0.02 0.023 ± 0.01 0.22 ± 0.01

Table 2.  SVHN (250 labels) divergence ablation: Top-1 ACC/ECE/NLL.

 

Fig. 8.  Top-1 Accuracy on SVHN for various SSL Methods with 1000 labeled samples.
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Results on imbalanced CIFAR-10
we construct long-tailed CIFAR-10 where labeled class counts decay exponentially with imbalance ratio ρ. Two 
imbalance levels are considered: ρ = 50 (moderate) and ρ = 100 (severe). Only the labeled subset is imbalanced, 
while the unlabeled pool remains balanced, ensuring that the challenge arises solely from supervision imbalance. 
Table 3 shows that our framework consistently outperforms other baselines, with a 5.7% gain in Top-1 accuracy 
at ρ = 100 and + 3–5 pp Macro-F1 improvement, indicating better minority-class recall. Optional distribution 
alignment (applied before masking) further reduces prior skew and improves Macro-F1 by ≈ 1 − 2pp. The gain 
is largely due to the Bhattacharyya divergence, which aligns predictions across weak and strong augmentation.

Results on noisy settings
For label-noise robustness, we corrupt the labeled subset of CIFAR-10 and SVHN with symmetric noise at 
20% and 40%, leaving the unlabeled data clean. Table 4 shows that our method degrades more gracefully than 
baselines, with a + 6.5-pp top-1 margin over FixMatch at 40% noise on CIFAR-10 and + 5.2-pp on SVHN. 
Calibration also improves (ECE and NLL drop relative to KL/JS variants) as in (Table 5).

Data utilization
In the CIFAR-10 dataset with only 250 labeled examples, our model unequivocally demonstrates its superior 
capacity to exploit unlabeled data, as evidenced by the model confidence curves over 4000 training iterations. As 
depicted in Fig. 10, our model maintains a consistently high confidence level remaining above the overconfidence 
threshold of 0.95—throughout the entire training period. In contrast, the other models exhibit a gradual yet 
volatile increase in confidence, peaking near 0.9 but never reaching the robust levels observed with the proposed 
method. This stark difference highlights the strength of our approach; by integrating advanced consistency 
regularization, a hybrid loss function, dynamic masking, and the uncertainty-weighted training mechanism. 
This work effectively leverages all unlabeled images to produce stable and reliable pseudo-labels. As a result, our 
model not only mitigates the detrimental impact of noisy pseudo-labels but also reinforces the learning signal 
across training iterations. The consistent high confidence indicates that the proposed method builds a more stable 
decision boundary and achieves a more refined alignment between predictions over different augmentation 
variants. These outcomes are particularly compelling given the limited amount of labeled data, underscoring that 
the additional supervisory signal extracted from the entirety of the unlabeled data significantly enhances overall 
generalization performance.

Ablation studies
Ablation experiments were conducted on CIFAR-10 with 250 labels to quantify the contribution of each 
component. The results are summarized in Table 6. Removing uncertainty weighting reduces accuracy by 2.1%, 
as the model fails to leverage moderately uncertain samples. Eliminating dynamic masking decreases accuracy 
by 1.8%, due to error propagation from low-confidence pseudo-labels. Replacing the Bhattacharyya divergence 
with KL divergence lowers accuracy by 1.2%, confirming the advantage if a symmetric divergence measure. 
When all components are present, the full model achieves the highest accuracy and lower ECE.

Dataset Method variant 20% Noise ECE 20% Noise NLL 40% Noise ECE 40% Noise NLL

CIFAR-10

Ours w/KL 0.072 ± 0.01 0.58 ± 0.02 0.093 ± 0.01 0.67 ± 0.04

Ours w/Jensen-Shannon 0.067 ± 0.03 0.55 ± 0.03 0.088 ± 0.01 0.62 ± 0.02

Ours w/Bhattacharyya 0.059 ± 0.01 0.49 ± 0.01 0.068 ± 0.02 0.52 ± 0.02

SVHN

Ours w/KL 0.041 ± 0.04 0.44 ± 0.01 0.062 ± 0.03 0.57 ± 0.01

Ours w/Jensen-Shannon 0.038 ± 0.01 0.41 ± 0.02 0.059 ± 0.04 0.53 ± 0.01

Ours w/Bhattacharyya 0.36 ± 0.01 0.36 ± 0.03 0.047 ± 0.02 0.45 ± 0.02

Table 5.  Calibration under noisy supervision (ECE/NLL).

 

Dataset Method 20% Noise 40% Noise

CIFAR-10

FixMatch 91.2 ± 0.4 85.6 ± 0.2

FreeMatch 92.0 ± 0.1 86.3 ± 0.1

AdaMatch 92.8 ± 0.4 87.1 ± 0.4

Ours 94.7 ± 0.9 92.1 ± 0.3

SVHN

FixMatch 95.4 ± 0.5 91.0 ± 0.5

FreeMatch 95.9 ± 0.3 91.8 ± 0.3

AdaMatch 96.2 ± 0.6 92.3 ± 0.4

Ours 97.6 ± 0.2 96.2 ± 0.7

Table 4.  CIFAR-10 and SVHN with symmetric label noise on labeled subset. Top-1 accuracy (%).
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Discussion
By studying the related works and baselines, the main difference between our method and other approaches 
of semi-supervised learning is how they deal with unlabeled data under uncertainty, noise, and imbalance. 
Prior approaches often emphasize high-confidence samples and may discard informative, moderately uncertain 
ones. Our framework combines dynamic masking, entropy-weighted training and symmetric view alignment 
via Bhattacharyya regularization. The results from CIFAR-10, SVHN and STL 10 demonstrate the superior 
performance of the proposed method across multiple data sets and label configurations in term of Top-1 accuracy, 
and Macro-F1/ECE/NLL for imbalance and noise setting. For CIFAR-10, the model achieves 95.66% accuracy 
with just 250 labeled samples, outperforming all other models. This shows the method’s strength in utilizing 
unlabeled data effectively, particularly when labeled data is scarce. The given approach demonstrates a notable 
performance on Street View House Numbers (SVHN) dataset, reaching an accuracy of 97.98% trained with 
only 250 labeled samples. Such an outcome represents a significant improvement over the results of FixMatch 
and other competitive methods, which demonstrates the potential of the model to make consistent predictions 
in the context of scarce labeled data. The model achieves an accuracy of 94.39% on the STL-10 data set when 
trained under 1000 labeled data, which is higher than FreeMatch and FixMatch. These results may indicate that 
the model is effective not only in situations when strong training data can be used but is also robust to different 
datasets. The achieved improvement can be explained by the uncertainty-based training scheme, which focuses 
on the examples that are naturally challenging to classify in the training process, and the dynamic masking 
scheme that reduces interference by low-confidence pseudo-labels. Therefore, the proposal teaches the network 
on the most credible data points.

Model Variant Accuracy (%) ECE NLL

Full Model (Ours) 95.66 ± 0.4 0.057 ± 0.01 0.33 ± 0.03

w/o Uncertainty Weighting 93.56 ± 0.5 0.073 ± 0.03 0.41 ± 0.02

w/o Dynamic Masking 93.82 ± 0.6 0.070 ± 0.04 0.40 ± 0.01

w/o Bhattacharyya Divergence 94.46 ± 0.5 0.063 ± 0.07 0.36 ± 0/07

Bhattacharyya → KL Divergence 94.39 ± 0.5 0.071 ± 0.01 0.39 ± 0.02

Masking with Weighting 95.01 ± 0.3 0.061 ± 0.03 0.35 ± 0.01

Weighting with Bhattacharyya 95.39 ± 0.2 0.059 ± 0.02 0.34 ± 0.03

Table 6.  Ablation study on CIFAR-10 with 250 labeled samples (accuracy % ±  std).

 

Fig. 10.  Comparison of Unlabeled Data Utilization on CIFAR10-250.
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Limitation and weaknesses
While the proposed method shows clear benefits under label scarcity, class imbalance, and noisy supervision, 
its improvements on clean, class-balanced settings are modest (typically ≤ 0.3–0.8% in Top-1) because far 
fewer samples fall into the “extremely uncertain” region; in these cases, our policy behaves similarly to high-
performing baselines. The approach is also sensitive to a small set of hyperparameters ( τ , T, kt): overly 
conservative masking (large kt) can under-use informative data, whereas overly permissive settings can admit 
noisy pseudo-labels (see Sensitivity to ϵ t , τ ). In addition, the dual-view training and EMA statistics introduce 
extra compute and training time. Finally, our experiments focus on image classification; generalization to non-
vision domains remains to be validated. These trade-offs motivate future work on lighter training schedules, 
adaptive threshold and temperature schedules, and broader domain evaluations.

Conclusion
The paper introduces a new semi-supervised learning (SSL) framework that makes the best use of both labeled 
and unlabeled data by combining uncertainty-weighted training, dynamic masking, and a hybrid loss function 
that contains Bhattacharyya divergence loss. Concretely, the method pairs an entropy-aware weighting scheme 
with a dynamic entropy threshold to defer only extremely uncertain pseudo-labels, and adds a symmetric, 
overlap-aware Bhattacharyya-regularized weak and strong alignment term to stabilize training and improve 
calibration. Experimental tests demonstrate better results than strong SSL baselines on CIFAR-10, SVHN and 
STL-10, especially in cases when the annotation is limited. Across challenging regimes, the approach yields 
consistent gains up to + 3–5 pp Top-1, + 3–5 pp macro-F1 on long-tailed CIFAR-10, and 20–30% relative 
reductions in ECE/NLL, while remaining competitive on class-balanced settings. By focusing on hard-to-
label instances through uncertainty-aware selection, the method enhances generalization and robustness. The 
experimental results show that the proposed method in not only efficient but also generalizes well across various 
datasets, making it promising approach for SSL tasks in real-world scenarios. The limitations of this work 
represented by the gains are modest on clean class balanced data performance is sensitive to τ , T, kt (risk of 
over or under masking); and training incurs extra compute due to dual views and EMA. Future work will reduce 
this overhead and explore adaptive schedules and broader domains.

Data availability
The data are publicly available at [Github] (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​m​h​m​d​g​​h​a​z​a​l​​1​9​8​1​/​d​​e​e​p​-​l​e​​a​r​n​i​n​g​​-​b​e​n​c​h​m​a​r​k​-​d​
a​t​a​s​e​t​s).
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