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Semi-supervised learning (SSL) leverages labeled and unlabeled data for modern classification

tasks. However, existing SSL approaches often underutilize moderately uncertain samples and may
propagate errors from highly uncertain pseudo-labels, leading to suboptimal performance, in noisy
and class-imbalanced datasets. We introduce an SSL framework with an uncertainty-weighted training
mechanism that prioritizes moderately uncertain samples while deferring extremely uncertain samples
via a dynamic entropy mask. Training on unlabeled data combines masked cross-entropy with a
Bhattacharyya-regularized alignment term between weak and strong predictions, improving view
consistency and distribution alignment. A dynamic entropy threshold ( € ;) that adapts over training,
filtering only extremely uncertain pseudo-labels and thereby limiting error propagation while retaining
informative unlabeled data. The proposed framework is evaluated on several benchmark datasets,
including CIFAR-10, SVHN and STL-10 under label-scarce and class-imbalanced protocols, achieving up
to 3-5% absolute accuracy gains over strong SSL baselines (e.g., FixMatch, ReMixMatch, FreeMatch).
Our results show that the proposed approach improves model generalization and robustness,
particularly in scenarios involving label noise, class imbalance, and limited labeled data, while
remaining comparable on clean, class-balanced settings.

Keywords Semi-supervised learning, Uncertainty-weighted training, Bhattacharyya-Regularized divergence,
Dynamic masking, Pseudo-labels

Semisupervised learning (SSL) has become an important research focus in modern machine learning, and
provides a sound paradigm for situations where a large amount of unlabeled data is available while few labeled
data exist!. SSL techniques are especially beneficial in a variety of domains including computer vision, natural
language processing and medical imaging, where data annotation is expensive, time-consuming or even
impossible®. The basic principle of SSL is to use labeled and unlabeled instances together to increase a model’s
predictive power and generalization ability’. Two dominant families in SSL are consistency regularization and
pseudo-labeling?. Consistency regularization assumes that model predictions under different input perturbations
should remain consistent, while pseudo-labeling uses the model’s predictions on unlabeled samples as targets for
training. Pseudo-labeling remains widely used due to its simplicity but is sensitive to confirmation bias’.

Existing pseudo-labeling approaches face fundamental challenges, in particular with respect to the
processing of uncertain samples®. In the current research work, we define two kinds of uncertain samples,
such as the moderate uncertain samples which are informative but not confidently classified, and the highly
uncertain samples which have high entropy and unreliable pseudo-labels. Most pseudo-labeling methods
employ a fixed confidence threshold to filter out uncertain instances. While this stabilizes training, it may
discard potentially valuable data from the moderately uncertain regime’. The exclusion of these instances leads
to suboptimal generalization and can induce confirmation bias toward majority and easy classes®. Some leading
semi-supervised learning techniques, such as FixMatch, MixMatch, and ReMixMatch, are based on probability
thresholds for unlabeled data pseudo-label selection®!?. Nonetheless, there remain challenges in determining
reliable pseudo-labels whilst retaining informative data, and such approaches may be prone to confirmation bias
towards some classes, if confidence estimation is not accurate!!.
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We present an SSL framework based on uncertainty-weighted training and dynamic entropy masking which
focuses attention on moderately uncertain samples and defers highly uncertain samples. Instead of rejecting the
uncertain samples directly, our method corrects their contribution by a confidence score estimated from the
entropy of the distribution of the normalized activation values, making use of the easy and moderately uncertain
samples. This dynamic adaptation mechanism enables the model to learn from both trusted and non-trusted
information, ensuring that valuable information is not missed. Furthermore, by improving the robustness of the
model to noise and label uncertainty, our method also improves generalization on a variety of datasets - even
when there is only a small amount of labeled data.

A key component of our approach is a hybrid unlabeled objective that combines masked cross-entropy with
a Bhattacharyya-regularized divergence between weak and strong predictions for the same unlabeled sample.
This symmetric divergence stabilizes view alignment and mitigates overconfident errors without requiring a
fixed alignment to the labeled distribution. Such alignment is especially helpful when labeled and unlabeled
distributions are mismatched (e.g., long-tailed class distributions). In addition, we introduce a dynamic entropy
masking strategy to address unreliable pseudo-labels. Rather than a fixed cutoff, the entropy threshold (e )
evolves during training, so that only extremely uncertain pseudo-labels are filtered while informative samples
are retained. This dynamic gating limits error propagation and improves stability.

The contributions of this work are threefold:

(1) An uncertainty-weighted training mechanism that links entropy-based uncertainty to loss weighting, em-
phasizing moderately uncertain samples while down-weighting easy ones and deferring extremely uncer-
tain samples.

(2) A hybrid unlabeled loss that combines cross-entropy with Bhattacharyya-regularized divergence, enhanc-
ing distribution alignment and improving robustness in noisy and imbalanced settings.

(3) A dynamic entropy masking strategy ( € ;) that evolves over training to exclude only extremely uncertain
pseudo-labels, reducing confirmation bias and stabilizing learning.

To demonstrate the main difference between our approach and the traditional ways of implementing the method
of SSL, Fig. 1 compares the fixed-threshold pseudo-labeling with our uncertainty-aware pipeline. Whereas
the previous approaches can ignore or severely down-weight uncertain examples (e.g., FixMatch® and Mean
Teacher!® our framework leaves only highly uncertain examples and rewards more moderately uncertain ones
through weighting and masking transition. This preserves useful information with no increase of noise which
we demonstrate translates to gains in difficult protocols.

The rest of this paper is organized in the following way. Section 2 will be a review of the literature on the
topic of SSL, with particular attention to the issues of dealing with hard-to-label data and the approaches that
have been suggested to resolve these problems. Section 3 explains the methodology of our proposed framework.
Section 4 gives the experimental setup and results and a discussion of the findings is given in Sect. 5. Lastly, we
conclude the paper in Sect. 6 and provide possible future research directions.

Related works

Semi-supervised learning SSL has also developed, and numerous approaches use large sets of unlabeled data
to improve generalization in the case of limited labeled data®. Previous SSL tended to assume that the latent
distributions of labeled and unlabeled samples were identical, but in reality, this fails in the presence of noise,
class imbalance, and ambiguous labeling, which worsens performance and reliability®!!. In this landscape, two
pillars, pseudo-labeling and consistency regularization, describe much of the progress of SSL and its continuing
limitations when uncertain data are not treated with care®®.

Foundations and evolving challenges

In the standard SSL pipeline, a model is first trained on labeled data and then used to assign pseudo-labels
to unlabeled samples; these predicted targets are treated as additional supervision during subsequent training
rounds'>!3. Although the mechanism is simple and commonly used, it is also delicate: as soon as false pseudo-
labels enter, they are likely to be strengthened with each iteration, a phenomenon, often referred to as the
confirmation bias, is said to be prone to!4. Confidence thresholds were introduced to curb this effect, and
FixMatch operationalized the idea by coupling high-confidence selection with consistency between weakly and
strongly augmented views of the same input™!’. Self-training is a natural extension of this paradigm, adding
high-confidence pseudo-labeled data and training larger and larger sets of data to ensure coverage'®, and
Noisy Student makes use of a teacher-student ensemble to stabilize targets and reduce overfitting'®. Despite
these refinements, fixed acceptance rules can simultaneously discard moderately uncertain (yet informative)
samples and admit extremely uncertain (unreliable) ones, effects that are amplified under label noise and class
imbalance™!!.

Consistency regularization provides a complementary principle: model predictions should remain stable
under input perturbations!”. Representative approaches include Mean Teacher, nudging a student toward an
exponential-moving-average teacher, and Virtual Adversarial Training (VAT), which regularizes against worst-
case local perturbations'®!®. MixMatch later combined weak and strong augmentations and target interpolation
to produce smoother decision boundaries and stronger invariance!®. However, purely consistency-driven
training does not by itself decide which uncertain samples to use or how strongly to weight them. When many
unlabeled points are hard to classify, training can still privilege easy and majority cases while sidelining data that
would most benefit minority classes.
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Fig. 1. Comparison of uncertain data (Hard-to-Label) utilization in SSL methods.

Uncertainty, Imbalance, and alignment under mismatch

To address uncertain-sample selection, a substantial line of work estimates uncertainty explicitly and uses it
to guide data usage?®?!. Uncertainty-guided cross-teaching and curriculum methods (e.g., UTCS) gradually
expose the learner to more difficult examples as confidence improves??, while ensemble self-training (e.g.,
UGE-ST) aggregates multiple predictors to stabilize pseudo-labels and reduce variance?*. These strategies often
increase robustness, but many rely on static heuristics that may be miscalibrated as the model evolves, over-
filtering or over-admitting uncertain data at different stages. This observation motivated adaptive schemes in
which thresholds or weights vary with training, concentrating learning where uncertainty is informative and
deferring samples whose entropy indicates unreliability. In parallel, practical baselines broaden the pseudo-
labeling toolbox: FreeMatch introduced self-adaptive thresholding that synchronizes confidence gates with
the model’s learning status?* and AdaMatch unified SSL with domain adaptation by aligning distributions
while retaining confidence-based selection?®. Related ensemble low-label lines in few-shot classification which
combining various training and adaptation algorithms for ensemble few-shot classification?® and prototype-
neighbor network with task-specific enhanced Meta-learning for few-shot classification?’, underscore the value
of calibrated targets and neighborhood-aware consistency when supervision is scarce, a principle we transfer to
SSL despite the setting differences.
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Distribution alignment forms a third pillar of modern SSL. ReMixMatch and Noisy Student demonstrated
that stronger augmentation, consistency, and pseudo-label interpolation can shrink gaps between labeled
and unlabeled distributions!®?, but alignment alone remains brittle under long-tailed class imbalance.
Accordingly, imbalance-aware SSL explicitly counteracts majority dominance: DARP refines pseudo-labels
via distribution-aware optimization to correct class bias, CReST rebalances self-training schedules to amplify
trustworthy minority signals, and DASO blends semantic and linear pseudo-labels while introducing a
semantics-oriented alignment loss?*~3!. Complementary to these, a semi-supervised resampling method for
class-imbalanced learning®? directly rebalances exposure, offering another route to counter prior skew during
SSL. These approaches improve minority recall by correcting class priors or reshaping exposure, yet most do
not simultaneously couple (i) an asymmetric agreement objective across unlabeled weak and strong views with
(ii) a dynamic selection rule, an interaction that becomes crucial when selection and alignment influence one
another under mismatch®”. Unified Consistency Regularization (UCR) moves toward an integrated treatment
by adjusting learning dynamics in response to distributional cues*}, and multi-model designs such as DUMM
exploit both sample- and pixel-level uncertainties to focus attention where it matters most*.

Beyond selection and exposure, the choice of divergence for enforcing agreement between weak and strong
predictions also shapes optimization stability and calibration under overlap and imbalance. KL divergence
is asymmetric and can produce sharp gradients when the teacher is overconfident; Jensen-Shannon is
symmetric but can still exhibit peaky gradients in practice; approximate Wasserstein adds geometric fidelity
but increases computational and critic-tuning burden. By contrast, symmetric and overlap-aware criteria (such
as Bhattacharyya-based regularization) yield smoother, bounded gradients where class distributions mingle,
providing a more stable signal in noisy or long-tailed regimes. Empirically, divergence-swap ablations that replace
the symmetric term with KL/JS/Wasserstein help quantify accuracy and calibration (Expected Calibration Error,
ECE; Negative Log-Likelihood, NLL) trade-offs and clarify when symmetry substantively improves training
stability. Taken together, prior work suggests that the most reliable trajectories recognize uncertainty as a graded
signal and adapt thresholds and weights over time, while employing symmetric alignment to stabilize learning
when labeled an unlabeled data differ markedly in class frequency or noise level>79-1113-1618-31 "Within this
view, dynamic entropy masking paired with uncertainty-weighted training and symmetric weak and strong
alignment offers a unified response to selection and alignment under distribution mismatch.

Methodology

The current paper proposes a robust semi-supervised learning (SSL) framework that utilizes both labeled and
unlabeled data simultaneously, allowing the use of data that are difficult to label, which is often ignored by
standard SSL algorithms.

This method combines an uncertainty-weighted training method which dynamically modulates the bias of
the model on the uncertain data points so that both the easy and moderately uncertain data are used in the
learning process of the model. The proposed framework consists of the following steps: model design, hybrid
loss, dynamic entropy masking and entropy-based weighting. During training at the first stage, the model is
trained using a rather small amount of labeled data; the results of the trained model on the unlabeled data serve
as pseudo-labels. These pseudo-labels are then further refined with an iterative process where easy and hard-to-
label instances are included in the process of learning in the model. In comparison to the traditional SSL, where
low-confidence pseudo-labels are dropped’, the suggested framework makes sure that uncertainty is quantified
and used gradually (via 7 for confidence and a dynamic entropy threshold e ), without the loss of valuable
information.

The suggested framework utilizes a Vision Transformer (ViT)*>, which is unique due to the ability to detect
long-range relationships in image data. ViT can break input images into patches and process them sequentially
which yield better outcomes on tasks with strong structural and spatial variation®. This perfectly fits the case
of the SSL in Fig. 2. Each patch is processed by the self-attention mechanism to produce representations that
encode global interactions among patches. These representations illustrate long-range relations, which makes
the model useful in cases of the application of SSL.

A hybrid loss function, which is a combination of supervised cross-entropy and the Bhattacharyya-regularized
divergence on unlabeled data leads to learning in the model. The Bhattacharyya divergence’” promotes
conformity to weakly and strongly augmented views and thus makes class separability and resistance stronger,
particularly in the presence of noise and imbalance. Bhattacharyya, in comparison with KL, Jensen-Shannon
and Wasserstein substitutes, is symmetric and has an overlap sensitivity, which generates smoother, bounded
gradients when predictions are partially inconsistent, which makes it especially convenient in the context of
noisy or small-sample data and in the context of training with these requirements. The proposed method also
uses a dual-augmentation model in which the trained model makes ensemble predictions of unlabeled inputs
with weak and strong data augmentations. Weak augmentation yields less hostile pseudo-labels whereas strong
augmentation is used to enforce consistency across augmented views. Collectively, the operations will decrease
the chances of misclassification, enhance decision constraints, and augment pseudo-label dependability via the
uncertainty-sensitive masking and weighting strategy.

)35

Overview of the proposed framework

The key idea in the proposed architecture is an adaptive mechanism that guides the network to exploit uncertain,
hard-to-label instances. The model calculates the entropy of its predictions, and through an uncertainty-weighted
training mechanism prioritizes moderately uncertain samples rather than discarding them. This ensures efficient
learning, particularly in noisy or ambiguous data. The framework applies weak and strong augmentations and
enforces consistency between their predictions. The predictions of the network are then improved through
entropy-guided weighting and dynamic masking, where uncertainty (entropy) and confidence levels are used to
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Fig. 2. ViT architecture and self-attention mechanism in SSL.

adjust the weight of each sample. The hybrid loss function makes model outputs coincide with the correct data
distribution, whereas the dynamic masking strategy ensure only trustworthy pseudo-labels are used to train the
model (see Egs. (2-5), while extremely uncertain samples are deferred via an entropy threshold € introduced
in (Eq. 7).

Model components
The proposed framework adopts the Vision Transformer (ViT) architecture, a method that efficiently processes
large-scale image data by detecting both local and global relationships through patch-based processing. ViT is
especially applicable in semi-supervised learning cases, in which labeled and unlabeled data are present. For the
labeled data, the model is trained on them and the supervised loss is calculated, while for the unlabeled data, the
unsupervised loss is processed through pseudo-labeling and consistency regularization.

The supervised loss function L is focused on utilizing labeled data for accurate classification. It is defined as
the cross-entropy loss between the true labels and predicted labels for the labeled data, which guides the model
to learn correct class assignments. The loss function is defined as:

L= L D EAH (PoP (Y | A (21) 5X4)) )

n

Where P, is the true (one-hot) label distribution, Py, (Y | Aw (a:fb) ; A ) is the model’s predicated distribution

for weakly augmented labeled data x.. While H (p, q) denotes the cross-entropy between distributions p and
g, and A is the supervised weight.

The unsupervised loss is calculated using the unlabeled data, which are augmented through weak and strong
transformations. This loss is based on two components: Cross-entropy loss and the Bhattacharyya divergence.
For unlabeled data, the cross-entropy loss L. between the predicted probability distribution and the pseudo-
label is computed as follows:

L= LS e () 2 7) H@ P (V] A1) @

Here, gs is the weak-view prediction (pseudo-label) generated from A, (z}), guis its temperature-sharpened
form, 7 is a confidence threshold, A; (z}') is the strong augmentation, p is the unlabeled-to-labeled ratio per
iteration, and m is the labeled batch size. Also, we include 7 as confidence threshold and P, (Y | A, (z7'))
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is for model’s prediction for strongly augmented unlabeled data. The second component of the unsupervised
loss measures the divergence between the weakly and strongly augmented versions of the same data. The
Bhattacharyya divergence Dy, ensures that predictions from different augmentation are consistent. The
Bhattacharyya divergence loss Lg is computed as:

La= /%m M (max () > 7) Don (P P (Y | As (1)) (3)

While the Bhattacharyya divergence is calculated as:

Dyn = —In (Z ic1/PY % P (Y| A (z¥) )) (4)

And the sharpened prediction for weakly augmented data P” is given by:

P Au @) =exp (8) /3 ven (%) ©

with gp the class logit corresponding to the predicted class and 7' a temperature parameter that mitigates
overconfidence. Finally, the total loss function L;o¢q; is the combination of the supervised L, and unsupervised
loss (Lce + Laq) components. The final loss function is given by:

Liotar = A sLs + A u(Lce + Ld) (6)
Where A s and A . are the supervised and unsupervised weights.

Uncertainty weighting and dynamic masking in pseudo-labeling
A central feature of the proposed framework is the combination of uncertainty weighting and dynamic entropy
masking, which together ensure that only reliable pseudo-labels contribute to training while moderately uncertain
samples are still exploited. In the setting of SSL, low-confidence pseudo-labels may introduce significant noise
and cause error propagation. To mitigate this risk, the model estimates the uncertainty of each prediction using
entropy. Instead of discarding all uncertain pseudo-labels, the framework distinguishes between moderately
uncertain samples, which may still be informative, and extremely uncertain ones, which are likely unreliable.
The dynamic masking strategy formally determines which samples should be excluded. For each unlabeled
sample, a binary mask m; is applied:

1. of H (ps
m={ oGNS @

Where H (p;) is the entropy of the class probability distribution for the i — ¢th samples, and e is the threshold
controlling the exclusion of highly uncertain pseudo-labels. By filtering out only these unreliable samples,
the strategy stabilizes training and reduces the risk of propagating noisy pseudo-labels. Unlike conventional
methods with a fixed €, our framework employs a dynamic entropy threshold that evolves during training,
computed as € = p, + kio ¢, where 11, and o ; denote the exponentially-weighted moving average(EMA)
mean and standard deviation of batch entropies at epoch ¢. k; is a scheduled factor that gradually relaxes
the gate; in early epochs € € [€ min, € maz] for stability and compute entropies from weak view
pi = softmax (logitsy’). Complementing masking, the uncertainty weighting mechanism adjusts the
contribution of each unlabeled sample. The entropy of each prediction is normalized as:

e; = H (pi) /logC (8)
Where C'is the number of classes, and converted into a bell-shaped weight:

w; = 4e; (1 — e;) 9)

This weight w; € [0, 1] peaksat e; = 0.5, down-weights near certain and ambiguous samples, and emphasizes
the moderately uncertain regime that tends to be most informative, Empirically, this reduces confirmation bias
toward majority and easy classes while avoiding over trusting highly ambiguous pseudo-labels. The overall
unsupervised loss thus becomes a weighted and masked combination of cross-entropy and Bhattacharyya
divergence:

I _ > iwimi(Lee (z3) + Dan (24))

(10)

Where both weighting and masking operate jointly to emphasize useful samples while suppressing extreme
noise. In optimization, we use Liotai = A sLs + X wLunsup; when w; = 1 and m; = 1, Eq. collapses to
Lce + Dy, asin Eq. (6), explicitly connecting Eq. (10). For class-imbalance scenarios, an optional distribution-
alignment correction can be applied to weak-view probabilities before masking to reduce prior skew without
changing Egs. (7)-(10). The model’s uncertainty estimates are continuously updated during training, allowing
the weighting and masking mechanisms to adapt dynamically to the evolving decision boundaries. Figure 3
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demonstrates how uncertainty weighting is used to guide the training process, with uncertain data points given
higher importance. Dynamic masking deliberately filters pseudo-labels with high entropy while preserving
moderately uncertain ones, thereby limiting error propagation yet maintaining access to informative unlabeled
signal.

Algorithm pseudocode

The following pseudocode concisely summarizes the proposed training loop and its components. Each
step is annotated with the corresponding equations (Egs. 1-10), making explicit where the supervised
loss, masked unlabeled cross-entropy, Bhattacharyya alignment, and uncertainty mechanisms. An
optional distribution-alignment correction (DisAlign) is indicated before masking to mitigate class-prior
skew under imbalance.
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e Labeled batch X = {(xp,,y,)}forb = 1..B
e Unlabeled batchU = {u,} forb = 1..(uB)
e (Confidence threshold t,unlabeled ratio u
o Loss weights A, A, temperature T
e  Number of classes C
e Dynamic entropy threshold ¢, = p, + k; -
o; (EMA mean ut and std ot over batch entropies)
e Optional: DistAlign for prior correction before masking

2 Supervised loss on labeled data:
Ly = (1/B) - X2, H(yy ,pm (¥ | Ay (x5)))  // cross — entropy on weakly augmented labeled data
3 Forb = 1touBdo // loop over unlabeled samples
4 logits,, < fo(A, (u,)) // weak view
5 logits, « fo(As(up)) // strong view
b, < softmax(logits,,)
6 if DistAlign enabled: // optional distribution alignment pre — masking
p, < DistAlign(p,)
7 H, < H(pw) // entropy of weak prediction
E, < H, /log(C) // normalize entropy to [0,1]
8 my, « lif Hy, < ¢ else0 // dynamic masking of extremely uncertain samples
9 wy <4 ¢, (1—ep) // bell — shaped weight peaks at mid — uncertainty
10 qp, < softmax(log(p,)/T) // sharpened pseudo — label (or one_hot(argmax p,,))
11 Lce,b < 1[max(pw)
> 1] - H(qw,softmax(logits;) ) //CE for high — confidence, masked later
1 ps < softmax(logitsy /T )
Dgpp < —In S V(aplc] - Bslc]) // Bhattacharyya divergence for view alignment
Accumulate per — sample terms:
13 num += wy, - my - (L, + Dgy,)
denom += w;, - m,
14 End For
05 Unlabeled objective (uncertainty — normalized)
Lynsypy = num / max(denom,¢) // € is a small constant to avoid divide by zero
16 Total objective
Ltotal = /15 . Ls + Au . Lunsup
17 Return Ly , and optionally:
util_ratio = (1/(uB)) - X, m, // fraction of unlabeled samples used this step
Algorithm.
Experimantal setup
In this section, we describe the experimental setup used to evaluate the performance of the proposed semi
supervised learning SSL framework. We detail the datasets, evaluation metrics, comparison with other SSL
methods such as, Pseudo-Label, IT-Model, MixMatch, ReMixMatch, VAT, FreeMatch, AdaMatch, and FixMatch?®,
as well as imbalance- and noise-aware SSL baselines. We also implementation details and hyper-parameter
settings. Our experiments are designed to assess the robustness of the proposed method in various settings,
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particularly in the presence of noisy or imbalanced data, which are common challenges in real world-machine
learning tasks. All results are averaged over three seeds (mean =+ std).

Datasets

We evaluate the proposed model on several benchmark datasets commonly used for SSL tasks. These datasets
consist of a mixture of labeled and unlabeled data, allowing us to assess how effectively the model leverages
unlabeled data for training.

o CIFAR-10: A standard dataset for image classification, containing 60,000 32 x 32 color images in 10 classes,
with (50,000 train/10,000 test)*. We follow common SSL protocols using low-label splits (e.g., 40-label and
250-label settings with class-balanced selection), and treat the remaining images as unlabeled.

o SVHN (Street View House Numbers): A real-world dataset consisting of digit images 32 x 32 extracted from
Google Street View. the dataset contains 73,257 label training images and about 26,000 labeled testing imag-
es®®. We evaluate at low-label (e.g., 250 labels) and medium-label (e.g., 1000 labels) settings; the remainder
forms the unlabeled pool.

o STL-10: Inspired by CIFAR-10 dataset, with 5,000 labeled training images, 100,000 unlabeled images, and
8,000 testing images*®. We use the standard SSL protocol with a 1000-label subset when explicitly noted.

o Imbalanced CIFAR-10 (long-tailed): To evaluate robustness under class imbalance, we create long-tailed
version of CIFAR-10 following a standard imbalance protocol’. Class counts decay exponentially according
to imbalance ratio p. We consider two settings: p = 50 (moderate imbalance) and p = 100(severe imbalance).
Only the labeled subset is imbalanced while the unlabeled pool remains class-balanced, isolating the effect of
imbalanced supervision.

o Noisy Settings: To further test robustness, we corrupt the labeled subset of CIFAR-10 and SVHN with sym-
metric label noise at 20% and 40%. The unlabeled pool remains clean to emulate realistic annotation noise
while preserving unsupervised signal.

Evaluation metrics
We evaluate the performance of the proposed model using Top-1 Accuracy and analyze the confusion matrix to
understand per-class behavior.

o Top-1 Accuracy. The percentage of times the model’s top prediction matches the actual label.

Topl Acc = No. correct predictions

100
total number of predictions (10)

« Confusion Matrix: A table used to evaluate the performance of a classification model. It shows the actual ver-
sus predicted classifications, giving insight into how well the model is performing across all classes.

o Macro-F1. Reported in imbalance settings to account for class-frequency skew and to complement accuracy.

« Calibration metrics. For divergence ablations (Bhattacharyya vs. KL/JS/Wasserstein), we also report Expected
Calibration Error ECE and Negative Log-Likelihood NLL to quantify stability and calibration under noisy
and long-tailed regimes.

Comparison with baseline methods
To evaluate the effectiveness of the proposed method, we compare it against several state-of-the-art semi-
supervised learning algorithms. These baseline methods have been widely used in previous research and include:

o FixMatch: A strong SSL algorithm based on consistency regularization. It utilizes weak and strong augmenta-
tions and pseudo-labeling for unlabeled data.

« MixMatch: A method that combines the concepts of consistency regularization and pseudo-labeling, using
both weak and strong augmentations and mixing labeled and unlabeled data to enhance learning.

« Pseudo-labeling: One of the most basic approaches in SSL, where the models’ predictions on unlabeled data
are used as pseudo-labels and added to the training data.

o VAT (Virtual Adversarial Training): An SSL method that introduces adversarial perturbation to the input data
to regularize the model and improve its generalization.

« ReMixMatch, FreeMatch, AdaMatch: Are domain and threshold adaptation and alignment.

We compare the proposed model with these baselines in term of classification top-1 accuracy. Our goal is to
show that the proposed model outperforms or at least matches the performance of existing methods, particularly
in challenging settings such as noisy and imbalanced data.

Implementation details

The model is implemented using Semilearn, a popular deep learning framework from Microsoft. The training is
performed using the Stochastic Gradient Descent SGD optimizer with a momentum of 0.9; the initial learning
rate is 0.03; the total number of training iterations is 220. the labeled batch size is 64; the ratio of unlabeled data
W is set to 7; the confidence threshold 7 is set to 0.95; and the sharpening temperature 7' is set to 0.5. The weak
augmentation for the unlabeled data includes standard random cropping and flipping transformations, while the
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Fig. 4. Top-1 Accuracy on CIFAR-10 for Various SSL Methods using 250 labeled samples.
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Fig. 5. Top-1 Accuracy on CIFAR-10 for Various SSL Methods using 4000 labeled samples.

RandAugmen has been used in the strong augmentation. For class-imbalance experiments, we optionally apply
distribution alignment (DisAlign) to weak-view probabilities before masking.

The training process starts by initializing the ViT backbone with pre-trained weights, applying weak
augmentations to labeled data for supervised learning, and generating pseudo-labels from weak views for
unlabeled samples. The supervised loss cross-entropy; the unlabeled objective combines masked cross-entropy
with Bhattacharyya divergence to align weak and strong predictions of the same sample. Dynamic entropy
masking with €; = u, + kio ¢ (EMA statistics) filters only extremely uncertain pseudo-labels, while the
entropy-based weight w; = 4e;(1 — e;) emphasizes moderately uncertain samples. We conduct sensitivity
studies by varying 7 € {0.80, 0.90, 0.95}, T € {0.5, 0.7, 1.0}, and scheduling k: to demonstrate the
effect of the mask and weighting. Unless specified, results are averaged over three random seeds; validation sets
are used for model selection, and the final model is evaluated on the held-out test set. A supervised-only baseline
(no unlabeled loss) is trained under the same schedule for comparison.

Results and discussion

In this section, we present the results of our experiments, evaluating the performance of the proposed
semi-supervised learning SSL framework on multiple benchmark datasets, including CIFAR-10, SVHN
and STL-10. We compare the performance of our model with several state-of-the-art SSL methods, such
as Pseudo Label, IT Model, MixMatch, ReMixMatch, VAT, FreeMatch, AdaMatch and FixMatch. We
focus on Top-1 accuracy as the evaluation metric and report macro-averaged F1 (Macro-F1) for class-
imbalanced protocols and calibration metrics (ECE/NLL) for the divergence ablations. Our results also
demonstrate the importance of Bhattacharyya regularization, which consistently improves distributional
alignment between weak and strong augmentations and enhances robustness under noise and imbalance.

Results on CIFAR-10

CIFAR-10 is a well-known dataset for image classification with 10 classes of 32 x 32 color images. We evaluate
two labeled-data regimes: 250 labels and 4000 labels (Figs. 4 and 5). Figure 4 compares Top-1 accuracy for the
250-label case; our method achieves 95.66% with FixMatch as the second-best performance. While the fully
supervised cifar-10 achieves 95.4%. Moreover, the results on 4000 labels (Fig. 5), our method reaches 96.85% and
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Method 250 labels ECE | 250 labels NLL | 4000 labels ECE | 4000 labels NLL
FixMatch 0.081+0.02 0.42+0.04 0.052+0.01 0.29+0.06
Ours (KL in unlabeled align.) | 0.071+0.05 0.39+0.02 0.048+0.05 0.27+0.03
Ours (Bhattacharyya) 0.057£0.06 0.33+0.03 0.041+0.01 0.23+0.02

Table 1. CIFAR-10 (class-balanced) calibration: ECE/NLL under 250 and 4000 labels.

CIFAR-10 with 250 labeled data CIFAR-10 with 4000 labeled data
0 1 2 3 4 5 6 7 8 9 6o 1 2 3 4 5 6 7 8 9
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(@) (b)
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Fig. 6. Confusion matrix of proposed method on CIFARI10. (a) using 250 labeled samples. (b) using 4000
labeled samples.
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Fig. 7. Top-1 Accuracy on SVHN for various SSL Methods with 250 labeled samples.

remains on par or better than recent SSL baselines. Across both regimes, ECE decreases compared to FixMatch
(relative reduction ~~ 20 — 30%), indicating more calibrated pseudo-labels (Table 1).

Additionally, we include the confusion matrices for 250-label and 4000-label settings (Fig. 6) to visualize
per-class behavior. Compare to baselines, minority-like categories show reduced confusion with visually similar
classes, consistent with the entropy-weighted emphasis on moderately uncertain samples.

Results on SVHN

SVHN comprises real-world house-number images. We evaluate 250-label and 1000-label settings (Figs. 7 and 8).
The proposed method achieves 97.98% accuracy with (250 labels) and 98.02% with (1000 labels), outperforming
alternatives in both regimes. Gains are more pronounced at 250 labels, suggesting that uncertainty weighted
training is particularly beneficial when labeled supervision is scarce. While the fully supervised method on
SVHN achieves 97.1%. We also observe lower ECE and NLL than KL-based and JS-based variants in our
divergence ablations, indicating more stable training under SVHN’s complex background noise (Table 2).

Results on STL-10

STL-10 contains higher resolution 96x96 images. With 1000 labels (Fig. 9), our method achieves 94.39%,
outperforming FreeMatch and FixMatch. While the fully supervised method on STL-10 dataset achieves 94.1%.
The symmetric overlap-aware Bhattacharyya term contributes noticeably in the higher-resolution dataset by
aligning distributions across augmentations, resulting in better calibration of pseudo-labels.
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Fig. 8. Top-1 Accuracy on SVHN for various SSL Methods with 1000 labeled samples.

Ours w/KL 97.10+£0.01 0.034+£0.06 | 0.29+0.02
Ours w/Jensen-Shannon 97.32+£0.04 0.030+£0.01 | 0.27+0.01
Ours w/approx. Wasserstein 97.41+0.01 0.028+0.02 | 0.26+0.03
Ours w/Bhattacharyya 97.98+0.02 0.023+0.01 | 0.22+0.01

Table 2. SVHN (250 labels) divergence ablation: Top-1 ACC/ECE/NLL.

STL-10 (1000 labeled samples) — Top-1 Accuracy
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Fig. 9. Top-1 Accuracy on STL 10 for various SSL methods with 1000 labeled samples.

FixMatch 87.3£0.3 | 82.0+0.5 83.9+0.8 79.0£0.6
FreeMatch 88.2+0.2 | 83.0+0.7 84.7+0.5 80.1+0.4
AdaMatch 89.0+£0.5 |83.9+0.4 85.5+£0.2 81.0+0.4
Ours (no DA) | 92.4+0.3 | 85.9+0.2 89.6+0.5 84.5+0.5
Ours (+DA) | 93.1+0.4 | 87.2+0.3 90.5+0.2 85.9+0.3

Table 3. Imbalanced CIFAR-10 (labeled long-tailed), Top-1 accuracy (%) and Macro-F1.

In Fig. 9, it is clear that the proposed method performs robustly across all models, achieving the highest Top-
1 accuracy on STL 10. This demonstrates the effectiveness of our method in handling different assets and label
amounts.
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Dataset Method 20% Noise | 40% Noise
FixMatch |91.2+0.4 85.6+0.2
FreeMatch | 92.0+0.1 86.3+0.1

CIFAR-10
AdaMatch | 92.8+0.4 87.1£0.4
Ours 94.7+0.9 |92.1+0.3
FixMatch | 95.4+0.5 91.0+0.5
FreeMatch | 95.9+0.3 | 91.8+0.3
SVHN

AdaMatch | 96.2+0.6 |92.3+0.4
Ours 97.6+£0.2 | 96.2+0.7

Table 4. CIFAR-10 and SVHN with symmetric label noise on labeled subset. Top-1 accuracy (%).

Dataset Method variant 20% Noise ECE | 20% Noise NLL | 40% Noise ECE | 40% Noise NLL
Ours w/KL 0.072+0.01 0.58+0.02 0.093+0.01 0.67+£0.04

CIFAR-10 | Ours w/Jensen-Shannon | 0.067 +0.03 0.55+0.03 0.088+0.01 0.62+0.02
Ours w/Bhattacharyya | 0.059+0.01 0.49+0.01 0.068+0.02 0.52+0.02
Ours w/KL 0.041+0.04 0.44+0.01 0.062+0.03 0.57+0.01

SVHN Ours w/Jensen-Shannon | 0.038 +0.01 0.41+0.02 0.059+0.04 0.53+0.01
Ours w/Bhattacharyya | 0.36+0.01 0.36+0.03 0.047 £0.02 0.45+0.02

Table 5. Calibration under noisy supervision (ECE/NLL).

Results on imbalanced CIFAR-10

we construct long-tailed CIFAR-10 where labeled class counts decay exponentially with imbalance ratio p. Two
imbalance levels are considered: p=50 (moderate) and p=100 (severe). Only the labeled subset is imbalanced,
while the unlabeled pool remains balanced, ensuring that the challenge arises solely from supervision imbalance.
Table 3 shows that our framework consistently outperforms other baselines, with a 5.7% gain in Top-1 accuracy
at p=100 and +3-5 pp Macro-F1 improvement, indicating better minority-class recall. Optional distribution
alignment (applied before masking) further reduces prior skew and improves Macro-F1 by ~ 1 — 2pp. The gain
is largely due to the Bhattacharyya divergence, which aligns predictions across weak and strong augmentation.

Results on noisy settings

For label-noise robustness, we corrupt the labeled subset of CIFAR-10 and SVHN with symmetric noise at
20% and 40%, leaving the unlabeled data clean. Table 4 shows that our method degrades more gracefully than
baselines, with a+6.5-pp top-1 margin over FixMatch at 40% noise on CIFAR-10 and +5.2-pp on SVHN.
Calibration also improves (ECE and NLL drop relative to KL/JS variants) as in (Table 5).

Data utilization

In the CIFAR-10 dataset with only 250 labeled examples, our model unequivocally demonstrates its superior
capacity to exploit unlabeled data, as evidenced by the model confidence curves over 4000 training iterations. As
depicted in Fig. 10, our model maintains a consistently high confidence level remaining above the overconfidence
threshold of 0.95—throughout the entire training period. In contrast, the other models exhibit a gradual yet
volatile increase in confidence, peaking near 0.9 but never reaching the robust levels observed with the proposed
method. This stark difference highlights the strength of our approach; by integrating advanced consistency
regularization, a hybrid loss function, dynamic masking, and the uncertainty-weighted training mechanism.
This work effectively leverages all unlabeled images to produce stable and reliable pseudo-labels. As a result, our
model not only mitigates the detrimental impact of noisy pseudo-labels but also reinforces the learning signal
across training iterations. The consistent high confidence indicates that the proposed method builds a more stable
decision boundary and achieves a more refined alignment between predictions over different augmentation
variants. These outcomes are particularly compelling given the limited amount of labeled data, underscoring that
the additional supervisory signal extracted from the entirety of the unlabeled data significantly enhances overall
generalization performance.

Ablation studies

Ablation experiments were conducted on CIFAR-10 with 250 labels to quantify the contribution of each
component. The results are summarized in Table 6. Removing uncertainty weighting reduces accuracy by 2.1%,
as the model fails to leverage moderately uncertain samples. Eliminating dynamic masking decreases accuracy
by 1.8%, due to error propagation from low-confidence pseudo-labels. Replacing the Bhattacharyya divergence
with KL divergence lowers accuracy by 1.2%, confirming the advantage if a symmetric divergence measure.
When all components are present, the full model achieves the highest accuracy and lower ECE.

Scientific Reports |

(2025) 15:45531 | https://doi.org/10.1038/s41598-025-30069-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

90
o 801 g -
s g
b -
o =
S _—
= =
= i
g _
S -
B 70 A Je.
] /
= i
Pseudo Label
= [1 Model
60 - MixMatch
e ReMixMatch
= CoMatch
- FreeMatch
AdaMatch
e FixMatch
50 Our Model
500 1000 1500 2000 2500 3000 3500 4000

Training Itrations

Fig. 10. Comparison of Unlabeled Data Utilization on CIFAR10-250.

Model Variant Accuracy (%) | ECE NLL

Full Model (Ours) 95.66+0.4 0.057+0.01 | 0.33£0.03
w/o Uncertainty Weighting 93.56+0.5 0.073+0.03 | 0.41+0.02
w/o Dynamic Masking 93.82+0.6 0.070£0.04 | 0.40+0.01

w/o Bhattacharyya Divergence | 94.46+0.5 0.063+0.07 | 0.36+0/07
Bhattacharyya > KL Divergence | 94.39+0.5 0.071+0.01 | 0.39+0.02
Masking with Weighting 95.01+0.3 0.061+0.03 | 0.35+0.01
Weighting with Bhattacharyya | 95.39+0.2 0.059+0.02 | 0.34+0.03

Table 6. Ablation study on CIFAR-10 with 250 labeled samples (accuracy % + std).

Discussion

By studying the related works and baselines, the main difference between our method and other approaches
of semi-supervised learning is how they deal with unlabeled data under uncertainty, noise, and imbalance.
Prior approaches often emphasize high-confidence samples and may discard informative, moderately uncertain
ones. Our framework combines dynamic masking, entropy-weighted training and symmetric view alignment
via Bhattacharyya regularization. The results from CIFAR-10, SVHN and STL 10 demonstrate the superior
performance of the proposed method across multiple data sets and label configurations in term of Top-1 accuracy,
and Macro-F1/ECE/NLL for imbalance and noise setting. For CIFAR-10, the model achieves 95.66% accuracy
with just 250 labeled samples, outperforming all other models. This shows the method’s strength in utilizing
unlabeled data effectively, particularly when labeled data is scarce. The given approach demonstrates a notable
performance on Street View House Numbers (SVHN) dataset, reaching an accuracy of 97.98% trained with
only 250 labeled samples. Such an outcome represents a significant improvement over the results of FixMatch
and other competitive methods, which demonstrates the potential of the model to make consistent predictions
in the context of scarce labeled data. The model achieves an accuracy of 94.39% on the STL-10 data set when
trained under 1000 labeled data, which is higher than FreeMatch and FixMatch. These results may indicate that
the model is effective not only in situations when strong training data can be used but is also robust to different
datasets. The achieved improvement can be explained by the uncertainty-based training scheme, which focuses
on the examples that are naturally challenging to classify in the training process, and the dynamic masking
scheme that reduces interference by low-confidence pseudo-labels. Therefore, the proposal teaches the network
on the most credible data points.
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Limitation and weaknesses

While the proposed method shows clear benefits under label scarcity, class imbalance, and noisy supervision,
its improvements on clean, class-balanced settings are modest (typically<0.3-0.8% in Top-1) because far
fewer samples fall into the “extremely uncertain” region; in these cases, our policy behaves similarly to high-
performing baselines. The approach is also sensitive to a small set of hyperparameters (7,7, k,): overly
conservative masking (large k:) can under-use informative data, whereas overly permissive settings can admit
noisy pseudo-labels (see Sensitivity to € ; , 7 ). In addition, the dual-view training and EMA statistics introduce
extra compute and training time. Finally, our experiments focus on image classification; generalization to non-
vision domains remains to be validated. These trade-offs motivate future work on lighter training schedules,
adaptive threshold and temperature schedules, and broader domain evaluations.

Conclusion

The paper introduces a new semi-supervised learning (SSL) framework that makes the best use of both labeled
and unlabeled data by combining uncertainty-weighted training, dynamic masking, and a hybrid loss function
that contains Bhattacharyya divergence loss. Concretely, the method pairs an entropy-aware weighting scheme
with a dynamic entropy threshold to defer only extremely uncertain pseudo-labels, and adds a symmetric,
overlap-aware Bhattacharyya-regularized weak and strong alignment term to stabilize training and improve
calibration. Experimental tests demonstrate better results than strong SSL baselines on CIFAR-10, SVHN and
STL-10, especially in cases when the annotation is limited. Across challenging regimes, the approach yields
consistent gains up to +3-5 pp Top-1, +3-5 pp macro-F1 on long-tailed CIFAR-10, and 20-30% relative
reductions in ECE/NLL, while remaining competitive on class-balanced settings. By focusing on hard-to-
label instances through uncertainty-aware selection, the method enhances generalization and robustness. The
experimental results show that the proposed method in not only efficient but also generalizes well across various
datasets, making it promising approach for SSL tasks in real-world scenarios. The limitations of this work
represented by the gains are modest on clean class balanced data performance is sensitive to 7,7, k, (risk of
over or under masking); and training incurs extra compute due to dual views and EMA. Future work will reduce
this overhead and explore adaptive schedules and broader domains.

Data availability
The data are publicly available at [Github] (https://github.com/mhmdghazal1981/deep-learning-benchmark-d
atasets).
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