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Spatiotemporal variation, multi-
scenario simulation, and driving
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Evaluating the influence that alterations in land use/land cover (LULC) have on habitat quality

and landscape patterns is essential to promote regional sustainable development. This research
simulates the LULC trends of Beijing-Tianjin-Hebei region in 2035 and 2050 under three scenarios

and subsequently evaluates changes in habitat quality using the FLUS-InVEST model. Additionally,
Geodetector is employed to pinpoint the principal causes influencing fluctuations in habitat quality.
The following results are obtained: (1) During 2000-2023, substantial alterations occurred in LULC,
with habitat quality declining by 0.041. The transition to ecological land improved habitat quality,
while the transformation of cultivated land to construction land posed a severe threat to habitat
quality. (2) Under Business as Usual (BAU) scenario, the average habitat quality is projected to be 0.341
in 2035 and 0.337 in 2050, with degraded areas becoming increasingly fragmented and continuously
expanding. Under Cultivated Land Priority (CLP) scenario, the average habitat quality decreases by
0.003 from 2023 to 2050. This scenario slows urban expansion, and the intensity of habitat degradation
is reduced compared with the BAU scenario. Conversely, Ecological Priority (EP) scenario shows

an increase in habitat quality with lower landscape fragmentation. (3) DEM is the predominant
determinant of habitat quality spatial heterogeneity, with an explanatory power of 0.324. Notably,

the interaction between DEM and NDVI demonstrates the strongest explanatory power (q=0.497).
These findings provide a reliable basis for scientifically formulating future LULC policies and accurately
implementing ecological protection strategies.

Keywords Land use change, Habitat quality, Landscape pattern, FLUS-InVEST model, Multi-scenario
prediction, Geodetector model

Urbanization is a universal phenomenon in global modernization and a significant indicator for measuring
social progress and the degree of economic development!. It is reported that the proportion of urban residents is
projected to reach 68% by 2050, an increase of 13% compared with 20182 Such a significant growth trend means
that more regions around the world will experience rapid urbanization in the future. China’s urbanization process
entered a rapid development phase after the reform and opening-up. Compared with 1978, China’s urbanization
rate increased by 45.99% in 20203, which would result in land encroachment, substantial alterations to land
use/land cover (LULC)%, and a significant decline in eco-environment quality®. Meanwhile, human activities
associated with urbanization have led to notable ecosystem degradation®, thus affecting the fundamental
ecological processes and the resilience of ecosystems to disturbances®’. Therefore, in the context of urbanization,
the fragmentation and complexity of landscape patterns?, environmental pollution® and urban heat island®!°
caused by human activities will increase the pressure on regional ecological balance maintenance and habitat
quality preservation, which has become a common problem faced by rapid economic development. How to
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promote urbanization while protecting the ecological environment and achieving coordinated development is a
challenge faced by countries around the world.

Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is extensively applied in the
ecosystem services domain. Primarily designed for quantitative and visual assessment, it integrates with geographic
information system (GIS) technology to assess ecosystem service functions''2. The main application area of the
InVEST model covers many major river basins'®>-!°, important urban agglomerations!®!’, ecologically fragile
areas'8, islands!’, and nature protected areas?®?!. Its application contents mainly involve habitat quality?>?3, soil
conservation?!, carbon storage®>?®, water conservation?’, and so on. Chen et al.?* applied InVEST model to
evaluate coastal wetlands, discovering that the habitat quality of coastal areas in Jiangsu Province dropped to the
lowest level during 2011-2015 due to wastewater discharge. The study by He et al.?’ clarified the spatiotemporal
patterns of soil and water conservation in the northern Qinling Mountains, which showed a declining trend
between 1980 and 2000, followed by an upward trend. A study has shown that publications applying the InVEST
model focus on habitat quality (29.5%), annual water yield (22.3%), and carbon storage (19.9%), which can be
considered to reflect trends in future research?.

Habitat quality denotes the capacity of ecosystems to furnish appropriate conditions for the survival and
reproduction of organisms, and the maintenance of their ecological functions. It serves as an essential criterion
for evaluating ecosystem vitality and biodiversity?®. Landscape pattern constitutes a direct and effective
manifestation of changes in land types, playing an essential role in sustaining regional growth and offering
insights into the comprehensive health of an ecosystem™. A spatial association exists between habitat quality and
the characteristics of landscape patterns®'. Wang et al.? also found that the type, distribution, and fragmentation
of habitat played important roles in habitat quality. Against the backdrop of ecological degradation trends, it
is essential to forecast habitat quality and landscape patterns under different scenarios®2. Recently, more and
more domestic and foreign researchers have applied various models to fields such as LULC change simulation
and landscape dynamics analysis. Combined with FLUS model**, CA model*, Markov model?!, and CLUE-S
model®, InVEST model can systematically predict and evaluate habitat quality in multiple scenarios. However,
these models exhibit inherent limitations. CA model insufficiently considers the influence of several macro
factors on the simulation results and exhibits strong scale dependence®®; the Markov model only focuses
on the probability of a specific LULC type being converted to other types, but fails to account for the spatial
changes; and the CLUE-S model exhibits a strong reliance on data and shows poor adaptability to extreme
scenarios®. In contrast to traditional models, the FLUS model uniquely combines macro-level forecasting and
micro-scale simulation, thereby contributing to evaluating the habitat quality under future LULC scenarios®’~.
By integrating spatially explicit algorithms and socioeconomic drivers, this approach can capture the complex
feedback mechanisms between human activities and LULC, thus providing a comprehensive framework for
evaluating how LULC transitions influence biodiversity conservation and ecosystem health.

Beijing-Tianjin-Hebei urban agglomeration serves as the third economic growth pole and also China’s
“capital economic circle”. In recent years, its rapid development has led to the destruction of the habitat pattern of
the local ecosystem, weakened ecosystem service functions, and posed a serious threat to biodiversity. Therefore,
this research aims primarily to (1) examine the variations in habitat quality and landscape pattern from 2000
to 2023; (2) conduct simulations of LULC changes under various scenarios for the years 2035 and 2050; and
(3) explore the habitat quality changes along with the main driving factors. These results are conducive to the
balanced development between regional social economy and ecological protection.

Data and methods

Study area

Beijing-Tianjin-Hebei region is situated in northern China (Fig. 1), with an area of 21.8 x 10* km?, which is
around 2.3% of China’s territory. It is the political and economic center, with 109.7 million people by the end
of 2022. In 2024, the gross domestic product (GDP) reached 11,539.4 billion yuan, representing a 5.2% growth
from the previous year. Along with the rapid development of the economic level, the resource and environmental
problems have become more and more prominent*’, mainly including air pollution, water resource shortage and
ecological vulnerability!~*3. Recently, the built-up area of this region has expanded rapidly, totaling 4709.6 km?
in 2018, which accounts for 8.1% of the national built-up area’!. To promote regional coordinated development,
an efficient and dense rail transportation network has also been gradually built. These dense and diffuse land
use patterns have seriously damaged the habitat structure of the ecosystems, endangering habitat quality and
biodiversity.

Data sources

The indicators were chosen for normalization, including digital elevation model (DEM), slope, aspect, average
annual precipitation (PRE), average annual temperature (TEM), normalized difference vegetation index
(NDVI), population (POP), GDP, distance to major transportation routes (roads and railways), and distances
from city, county, and town centers (as displayed in Supplementary Table 1). Specifically, six natural environment
factors and eight socio-economic factors were utilized to model future LULC patterns. The LULC types include
cultivated land (CuL), forest land (FL), grassland (GL), water area (WA), construction land (CoL), and unused
land (UL), and we used high-resolution remote sensing images to correct blurred boundaries. Spatial and
statistical processing of these datasets was conducted using ArcGIS 10.8 software, incorporating functionalities
such as Euclidean distance computation, slope and aspect analysis, image segmentation, masking operations, and
reclassification. All spatial data were normalized to Krasovsky_1940_Albers projection system, and a resolution
of 250 m was achieved through resampling techniques.
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Fig. 1. Diagram of the study area. Note: This diagram was produced using ArcGIS 10.8.

Research method

FLUS model was utilized to simulate LULC trends for 2035 and 2050. This simulation was carried out across
three distinct scenarios. An examination of LULC transfer matrix was conducted for Beijing-Tianjin-Hebei
region spanning 2000-2050. Additionally, habitat quality and landscape pattern were analyzed using InVEST and
Fragstats models, respectively. Furthermore, Geodetector analysis was integrated to establish the determinants
of alterations in habitat quality. The methodological framework of FLUS-InVEST is presented in Fig. 2.

Multi-scenario predictive analysis

Three scenarios were designed, including Business as Usual (BAU), Cultivated Land Priority (CLP), and
Ecological Priority (EP) scenarios, which could cover different development paths, achieve comprehensive
and comparable predictions, and provide multiple references for decision-making. We planned to select the
long-range plan target (2035) and 2050 as the forecast periods. The BAU scenario refers to a situation where
LULC patterns develop in accordance with historical natural trends, driving factors such as population growth
and economic development maintain their current rates of change, and no additional policy interventions
are implemented. It provides a critical reference for evaluating the effectiveness of policy-oriented scenarios,
thereby highlighting the potential consequences of unregulated development (e.g., fragmented urban sprawl,
inefficient agricultural land conversion). The CLP scenario aims to protect cultivated land and basic farmland,
strictly restricts all types of cultivated land occupation, and enables in-depth analysis of regional cultivated
land change trends under policy intervention. This scenario incorporates strict regulatory mechanisms, such
as cultivated land red line protection and special protection of permanent basic farmland, reflecting the urgent
needs for food security and sustainable agricultural development. In contrast, EP scenario focuses on ecological
protection goals, strengthens ecological constraints, strictly restricts the conversion of ecologically sensitive
land types (especially forests, water bodies, and wetland ecosystems) and places environmental sustainability
at the forefront, and aims to maintain ecological integrity, enhance ecosystem service functions, and protect
biodiversity.

FLUS model calculates the suitability probability based on artificial neural network (ANN). Subsequently,
the comprehensive probability is derived through roulette selection, with land use simulation results generated
in the final step. The molar neighborhood of 3x 3 is used as the neighborhood range. With reference to the
relevant research®, the neighborhood influence factor parameters of various classes are finally determined.
Three different conversion cost matrices were designed, as displayed in Supplementary Table 2. By applying
LULC data of 2005, the LULC distribution pattern in 2020 was simulated and subsequently validated against the
actual LULC of 2020, showing an overall accuracy of 83.32%.
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Fig. 2. Framework of FLUS-InVEST model.

Landscape pattern analysis

The structural stability of an ecosystem primarily depends on landscape heterogeneity and landscape
connectivity*!. The higher the landscape heterogeneity and connectivity, the more complex the habitat becomes,
leading to greater ecosystem stability. Therefore, we utilized the Fragstats 4.2 model to analyze landscape pattern
characteristics at both class and landscape levels, including number of patches (NP), patch density (PD), patch
cohesion index (COHESION), largest patch index (LPI), mean patch area (Area_Mn), contagion (CONTAG),
Shannon’s diversity index (SHDI), Shannon’s evenness index (SHEI), and landscape division index (DIVISION)
(as shown in Supplementary Table 3).

Habitat quality analysis
Only when the survival resources and conditions are suitable can biodiversity be guaranteed. Habitat quality
(ij) is calculated by the following formulas:

Quj = H (1 D=y ) (1)
o =i\ 1T e s
R Y- W
Dy =33 (s | mieniies, g
r=1 y=1 ZT:IWT

Scientific Reports |

(2026) 16:537

| https://doi.org/10.1038/s41598-025-30075-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Threat factor | Maximum stress distance (km) | Weight | Decay type
CL 6 0.6 Linear
CoL 10 1 Exponential
UL 4 0.4 Linear

Table 1. The weight and the maximum influence distance of threat source.

LULC type | Habitat suitability | CuL | CoL | UL
Cul 0.3 03 |08 |04
FL 1 06 |08 |02
GL 1 05 |07 |06
WA 0.9 04 |07 |04
CoL 0 0 0 0

UL 0.6 04 |06 |05

Table 2. Sensitivity index of LULC type to habitat threat factors.

DZ. . .
1- 53 ijkz , Linear attenuation
bray = 2994, (3
exp | —= | , Exponential attenuation
dr max ’

Equations (1) (2) and (3) where H. is the habitat suitability of habitat type j; D . represents degree of habitat
quality degradation of unit x in type j; k is usually 1/2 of maximum D_; z is generally 2.5; y is raster element
in the stress factor r; r, represents stress factor in land use type y; i,,, Tepresents the degree of influence of r in
y on habitat x; §,_and’S, reprsent the reachability of threat source to x and the sensitivity of ground class y to
r, respectively. dxy and d,, _are the linear distance between x (habitat) and y (stress factor) and the maximum
range of r. Taking into account the actual conditions and incorporating relevant literature®?, the parameters
required for habitat quality analysis are displayed in Tables 1 and 2.

The contribution rate of habitat is a quantifiable indicator that serves the purpose of systematically measuring
the amount to which land-type conversions affect habitat quality by assessing changes induced by different LULC
transitions. The formula is as follows:

(H; — H;) S;

Rij = o2 5 100% (4)

Equation (4) H; and H. represent habitat quality before and after change, respectively; S, is the changing land
area; S, refers to the total area.

Driving factors analysis

Geodetector utilizes statistical principles to reveal the driving forces through four modules, thus analyzing
spatial stratified heterogeneity*>6. We employed factor detector and interaction detector with habitat quality as
a dependent variable, and natural factors and socioeconomic factors as independent variables, including DEM
(X1), TEM (X2), PRE (X3), NDVI (X4), net primary productivity (NPP) (X5), potential evapotranspiration (PET)
(X6), soil type (X7), POP (X8), GDP (X9), nighttime light index (X10), distance from the town center (X11),
and distance from the main road (X12). The research aimed to explore the explanatory power of each driving
component on habitat quality, together with the extent of interaction. The explanatory power is contingent upon
g, which follows the formula proposed by Li et al.'*. The value of g approaches 1, signifying that the impact of
this variable on habitat quality is more pronounced.

Results and discussion

Analysis and prediction of LULC

LULC from 2000 to 2023 and multi-scenario simulation for future LULC

Since 2000, LULC of study region has been in a dynamic state of change, but the structure of LULC types has
remained mostly unchanged. Cultivated land, forest land, and grassland remained the primary LULC types,
constituting the main ecological space of the region (Fig. 3a). By 2023, the coverage of cultivated land reached
43.9%, mainly distributed in the southern and eastern parts of Hebei Province. 21.1% of land was covered by
forest, the majority of which was situated in Yanshan and Taihang mountain ranges, in addition to the Bashang
region in Zhangjiakou. Grassland coverage amounted to 33,607.6 km?, predominantly found in Chengde,
Zhangjiakou, and Baoding. The area of cultivated land was continuously declining, with 94,866.1 km? in 2023,
representing a reduction of 13.2% compared to 2000. Similarly, the area of grassland has also consistently
declined, showing a decrease of 4.8% since 2000. By contrast, forest area has shown an increasing trend, with
a total expansion of 846.3 km? The total increase in construction land area was 14,316.7 km?, with the fastest
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Fig. 3. (a) Sankey map of LULC and (b) area growth rate of different LULC types during 2000-2023 in
Beijing-Tianjin-Hebei region.

growth rate occurring between 2005 and 2010, at 35.2%. The water area experienced a continuous decline during
2000-2015, followed by a steady increase thereafter, with an overall growth of 1862.5 km? The growth rate
peaked at 26.3% during the period from 2015 to 2020 (Fig. 3b).

FLUS model was employed to make projections regarding LULC patterns for 2035 and 2050 (as shown in
Supplementary Fig. 1). Under BAU scenario, a notable growth occursin construction land, frequently encroaching
upon neighboring cultivated land and forest land, which is bound to cause substantial damage to production
and ecological spaces. In contrast, CLP scenario’s enforcement of stringent cultivated land protection policies
leads to a larger proportion of cultivated land relative to BAU and EP scenarios, underscoring the significance
of balancing LULC for the maintenance of food security. Ecological landscapes exhibit notable differences
across the various scenarios, particularly in the EP scenario, showing a gradual increase in grassland coverage
over time (as shown in Supplementary Table 4), which can enhance the utilization rate of ecological land and
generate greater ecological benefits. Across all scenarios, grasslands consistently serve as critical transitional
zones, underscoring their multifunctional significance in land use planning. Thus, implementing appropriate
grassland management strategies is imperative to facilitate sustainable transitions among diverse land use types
while safeguarding ecological integrity and socioeconomic resilience.

LULC change analysis during 2000-2050
During 2000-2023, the area without LULC change accounted for approximately 82.5% of the region (as
illustrated in Supplementary Fig. 2). The construction land area experienced a substantial increase, primarily
originating from cultivated land conversion, and was evenly spread between the central and southern regions.
Water area increased by 1862.5 km? during 2000-2023, mainly distributed in the coastal areas of Tianjin,
Tangshan, and Cangzhou (as illustrated in Supplementary Fig. 3). To be specific, between 2000 and 2005, 1307.1
km? of cultivated land was converted to construction land, while a total of 132.1 km? of forest and grassland
were transformed into construction land. Between 2005 and 2010, notable mutual conversions occurred among
cultivated land, forest land, and construction land. Forest was converted to cultivated land, reaching 610.6 km?.
By contrast, the areas of cultivated land converted into forest and construction land were 1017.7 km?* and 8175.0
km?, respectively. Concurrently, 747.0 km? of water area was transformed to construction land, leading to a rapid
expansion to 26,178.2 km? This phenomenon was closely linked to the rapid advancement of urbanization and
economic growth. LULC changes exhibited a phase of stability during the period from 2010 to 2015. However,
the total area of cultivated land reduced by 2622.3 km?, with 1104.6 and 1140.3 km? converted to forest and
grassland during 2015-2020, respectively, reflecting the important ecological civilization construction initiatives.
During 2020-2023, construction land expanded by 4086.5 km?, predominantly converted from cultivated
land, aligning with regional coordinated development strategies. It is necessary to fully consider the demand
for construction land driven by urbanization and economic development, reasonably determine the scope and
speed of construction land expansion, and avoid excessive occupation of cultivated land and ecological land.
In future land use planning, farmland protection should be given a more prominent position. The red line for
farmland protection should be strictly delineated, and efforts should be made to strengthen the protection of
farmland quality and the control of farmland quantity. Moreover, the speed and direction of LULC changes
vary in different time periods. Therefore, it is essential to strengthen the dynamic monitoring and assessment of
LULC changes, and promptly revise and improve land use plans.

The alterations in LULC type areas and proportions under various scenarios relative to 2023 are shown in
Fig. 4a-c. Under BAU scenario, cultivated land area drops by 230.0 km? (0.2%) in 2035, alongside reductions
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in grassland and water areas. In contrast, both forest and construction land are anticipated to expand by 648.6
and 1221.4 km?, respectively. New construction land expansion is primarily concentrated near Tianjin Binhai
New Area. Under CLP scenario, the cultivated land area is anticipated to expand by 5526.8 km?. Compared with
BAU scenario, this scenario significantly changes the conversion pattern of LULC types through optimizing land
use planning and policy regulation, which effectively curbs the disorderly loss of cultivated land, and avoids the
problem of compressed grain production space caused by blind afforestation or urban expansion. In addition,
it improves the feasibility of transforming forest land into cultivated land. These results show that under CLP
scenario, 1962.7 km? of forest is successfully converted to cultivated land, which facilitates the protection of food
security and promotes optimal use of land resources alongside balanced development of ecosystems. Under EP
scenario, forest land and grassland areas will expand by 649.8 and 502.1 km?, respectively, mostly converted
(2026) 16:537 | https://doi.org/10.1038/s41598-025-30075-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

-9
Z

[
Z

from cultivated land. Construction land expands moderately, indicating effective implementation of ecological
conservation policies.

According to Fig. 4d-f, it is projected that the land use structure will not undergo significant changes by 2050.
Cultivated land area only increases under the CLP scenario, by 6355.7 km? (6.7%) (Fig. 4g-h), while it decreases
under the other two scenarios. Forest land area shows an upward trend across all three scenarios, whereas water
area declines in each scenario. Under EP scenario, forest land and grassland areas expand by approximately
1151.5 km? and 1841.6 km?, respectively, primarily in the western and northern mountainous regions, and
Bashang Plateau. Construction land undergoes substantial growth under BAU scenario, increasing by 16.0%
compared to that in 2023.

Under the BAU scenario, the significant expansion of construction land will lead to severe habitat
fragmentation and loss, thereby resulting in a decline in species richness. The decrease in water area may
increase the risks of water resource shortages and pollution. The shrinkage of grasslands can reduce the capacity
for soil erosion control and carbon sequestration, exacerbating the impacts of land degradation and climate
change. Although the area of forest land expands, unregulated afforestation may homogenize plant communities
and reduce habitat heterogeneity. The CLP scenario avoids blind afforestation and unordered urban expansion,
protects contiguous agricultural landscapes, and thus ensures the survival of farmland organisms. This scenario
prioritizes food production while also protecting soil fertility and water cycle regulation capabilities, ensuring
agricultural sustainability. Under the EP scenario, the increase in forest and grassland areas has significantly
enhanced ecosystem service functions, including carbon sequestration, climate regulation, and soil conservation.
In addition, contiguous natural habitats are also conducive to species migration, population recovery, and gene
exchange.

Changes in landscape patterns
The temporal variations in class-level landscape metrics related to cultivated land are shown in Fig. 5a. Between
2000 and 2015, the Area_Mn showed downward trends, revealing intensified fragmentation of cultivated land
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Fig.5. Temporal variations in class-level landscape metrics of (a) cultivated land, (b) forest land, (c) grassland,
and (d) construction land.
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through divergent spatial configuration patterns. The highest LPI was exhibited in cultivated land, which also
signified that cultivated land was the primary LULC type. The NP value in CLP scenario is lower than that in
BAU and EP scenarios, suggesting that the cultivated land protection policy reduces the fragmentation degree.
Meanwhile, the fragmentation under the CLP scenario weakens over time, contrary to the BAU and EP scenarios.
The class-level landscape metrics for forest land and grassland are illustrated in Fig. 5b-c. From 2023 to 2035, the
NP value for forests significantly decreases, while Area_Mn and COHESION increase, indicating a reduction in
forest fragmentation. The NP value for grassland under EP scenario is lower than that in BAU and CLP scenarios,
which implies that the implementation of ecological protection policy decreases grassland fragmentation and
may enhance inter-species communication and improve ecosystem stability. Figure 5d displays the temporal
variations in landscape metrics of construction land. Between 2023 and 2035, the NP value shows a significant
decrease, while the COHESION and Area_Mn values exhibit opposing trends, suggesting a slight reduction in
fragmentation after 2023, and a higher fragmentation degree of construction land under the CLP scenario.

From a landscape perspective, NP and PD decreased from 2000 to 2005, while the Area_Mn value increased,
indicating a reduction in landscape fragmentation during this period. However, from 2005 to 2023, the
upward trends in NP and PD, as well as the downward trend of Area_Mn all reflected an increase in landscape
fragmentation. There is a significant negative correlation between the degree of landscape fragmentation and
the ecosystem service value?’, and the intensification of fragmentation will directly lead to a decline in regional
plant diversity and soil microbial diversity*®. Goncalves-Souza et al.*’ also found that habitat fragmentation
typically led to a reduction in biodiversity at the patch scale. However, in cases where habitat loss is minimal,
moderate fragmentation is beneficial for species with colonization advantages to survive in smaller patches,
thereby increasing biodiversity>’. Moreover, recent studies have shown that habitat fragmentation exerts a dual
impact on ecosystem resilience, and the direction and intensity of this impact exhibit significant differences
among different biomes®!. Meanwhile, forest fragmentation has a distinct threshold effect on ecological
resilience; beyond the threshold, ecosystem resilience declines significantly®’. Over the 2000-2023 period,
the declining CONTAG suggested that the landscape formed multi-type dense patterns with reduced spatial
aggregation. The values of SHDI and SHEI increased, demonstrating enhanced land use diversity, more uniform
landscape distribution, and improved resistance to disturbances (Table 3). From the spatial pattern of landscape
separation degree (as illustrated in Supplementary Fig. 4), during the period from 2000 to 2023, the peak value
of landscape separation degree demonstrated an increase followed by a decline. The northern region showed
significant fragmentation, in contrast to urban areas where human activities are frequent, which showed a low
fragmentation degree. An increasing fragmentation degree was exhibited in the southern region, comprising
roughly 52% of the overall area. This was mainly because of the vigorous promotion of economic development,
which ignored the landscape connectivity function, resulting in landscape fragmentation. Under the CLP
scenario, NP, PD, and CONTAG are higher than those in the other two scenarios, but the reverse trend is noted
for the other metrics, which indicates that the fragmentation degree is the highest under CLP scenario, and the
lowest under EP scenario. Comparisons between 2035 and 2050 reveal no significant changes in metrics under
the same scenario, which indicates that the landscape pattern will remain relatively stable in the coming period.
However, it is still necessary to continuously monitor potential influencing factors to foster the sustainable
growth of the ecological environment.

Effects of LULC change on habitat quality

Habitat quality grades were divided into [ (0-0.1), II (0.1-0.3), III (0.3-0.7), IV (0.7-0.8), and V (0.8-1.0)
(as shown in Supplementary Fig. 5). According to this classification criterion, the distribution of habitat quality
categories and average values from 2000 to 2023 were obtained, as shown in Table 4. Between 2000 and 2023,
the average habitat quality exhibited a persistent declining trend (from 0.387 to 0.341) until 2020, after which
it began to recover, increasing to 0.346. The highest value was observed in 2000 at 0.387, a peak that primarily
reflected the residual integrity of natural habitats before the accelerated expansion of anthropogenic land uses
in subsequent decades. Notably, the overall habitat quality remained at a relatively low level, likely constrained
by existing pressures such as fragmented agricultural expansion, minor urban encroachment, and localized
ecosystem degradation. Although the areas of different habitat grades continued to fluctuate, the relative

Year NP PD Area_Mn | CONTAG | SHDI | SHEI

2000 87,787 | 0.4070 | 245.6920 | 58.0269 1.3225 | 0.7381
2005 86,287 | 0.4000 | 250.0079 | 57.7054 1.3303 | 0.7425
2010 96,993 | 0.4484 | 223.0057 | 57.0043 1.3523 | 0.7547
2015 100,883 | 0.4664 | 214.3995 | 56.7254 1.3623 | 0.7603
2023 108,005 | 0.4993 | 200.2706 | 55.5473 1.3902 | 0.7759

BAU | 97,665 | 0.4516 | 221.4341 | 56.1185 1.4184 | 0.7916
2035 | CLP | 102,010 | 0.4717 | 212.0023 | 57.1162 1.3858 | 0.7734
EP 96,820 | 0.4477 | 223.3666 | 56.0139 1.4216 | 0.7934

BAU | 95,422 | 0.4412 | 226.6391 | 55.6687 1.4341 | 0.8004
2050 | CLP | 101,763 | 0.4706 | 212.5169 | 57.2720 1.3819 | 0.7713
EP 95,442 | 0.4413 | 226.5916 | 55.4762 1.4415 | 0.8045

Table 3. Temporal variations in landscape-level landscape metrics.
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Grade 2000 | 2005 | 2010 | 2015 | 2020 | 2023
[ ]0-0.1 8.28 8.97 | 12.18 | 12.98 | 12.98 | 14.90
1T |0.1-0.3 | 50.82 | 50.32 | 48.16 | 47.48 | 46.28 | 44.03
T | 0.3-0.7 | 19.21 | 19.34 | 27.69 | 28.04 | 29.65 | 26.72
IV 10.7-0.8 | 8.76 8.65 | 7.15| 694 | 6.64 | 741
V | 0.8-1 12.93 | 12.70 | 4.82 | 4.56 | 445 | 6.95

Average
habitat 0.387 | 0.384 | 0.342 | 0.339 | 0.341 | 0.346
quality

Table 4. The proportion of different grades of habitats in different years (Unit:%).

proportions of these categories remained largely stable. The proportion of Grade [ continued to increase, while
the proportion of Grade V continuously declined from 2000 to 2020, especially during 2005-2010. A reversal
emerged only in 2023, when the proportion of Grade V areas exhibited an increasing trend.

Grade [ areas were relatively concentrated, mainly distributed in regions with higher levels of urbanization.
The largest area was occupied by Grade II, which highly overlapped with regions of frequent human activities
such as farmland and construction land, indicating significant human impact and relatively severe damage to
the ecological environment integrity. Areas with Grade Il and IV habitat quality were more dispersed, with
surface vegetation mainly consisting of forests and grassland. High-value habitat quality areas (Grade V) were
concentrated in mountainous regions, showing a high degree of overlap with high DEM values, suggesting
minimal human impact and vegetation coverage dominated by forest land.

The habitat quality changes are displayed in Fig. 6. To be specific, there were 31,172.2 km? of areas with
improved habitat quality, 76,084.9 km? with unchanged quality, and 108,426.2 km? with degraded habitat quality
during 2000-2010, indicating an overall trend of degradation in habitat quality during this period. Between 2010
and 2023, the areas with improved habitat quality expanded by 27,201.1 km? compared to the 2000-2010 period.
Opverall, the habitat quality in 2023 was still worse than that in 2000.

Under BAU scenario, the decreased forest and grassland areas coupled with the expansion of construction
land, accelerate habitat quality degradation, leading to significant ecological and environmental challenges. The
average habitat quality is projected to be 0.341 in 2035 and 0.337 in 2050. From 2023 to 2050, the average habitat
quality decreases by 0.009, with degraded areas becoming increasingly fragmented and continuously expanding.
By 2050, degraded areas are expected to reach 30,192.4 km?, accounting for 14.0% of the total area. Meanwhile,
regions maintaining stable or improved habitat quality show a contracting trend. The CLP scenario slows urban
expansion, with average habitat quality values projected at 0.345 in 2035 and 0.343 in 2050. From 2023 to 2050,
the average habitat quality decreases by 0.003, indicating weakened degradation intensity. Compared to the
BAU scenario, areas with habitat quality improvement expand, reaching 21,520.3 km? by 2050, which implies
that strict prohibitions on occupying basic cultivated land and maximal restrictions on existing cultivated land
conversion contribute positively to habitat quality improvement. Under EP scenario, average habitat quality
is projected to be 0.343 in 2035 and 0.345 in 2050, showing subtle changes from 2023 to 2050. Compared to
2035, areas with improved habitat quality in 2050 increase by 932.0 km?, demonstrating that the restoration of
cultivated land to forests and grasslands on barren hills effectively promotes environmental recovery.

Human activities significantly influence LULC change through multiple channels, including urban expansion,
intensive agricultural development, industrial construction, and natural resource extraction. Conversely, the
dynamic changes in LULC also act back on human systems through complex feedback mechanisms®*. For
instance, the sharp reduction of forests leads to a decline in carbon sequestration capacity, exacerbating climate
warming; the degradation of wetlands results in the loss of hydrological regulation functions, increasing the
risk of floods; the degradation of cultivated land threatens food security; and the reduction of ecological spaces
caused by urban expansion directly affects the quality of human living environments. Changes in construction
land, unused land, and cultivated land are the primary determinants influencing habitat quality®.

As displayed in Fig. 7, the transition of cultivated land to ecological land types contributed positively to habitat
quality. This process reduced the damage and pollution caused by agricultural activities to land and water, thus
increasing forest coverage and biodiversity. Additionally, the conversion of cultivated land to grassland mitigated
the degradation of grassland caused by overgrazing and human activities. By contrast, the transformation of
ecological land to alternative LULC types exerted a detrimental influence on the overall environmental balance.
Notably, the conversion of cultivated land to construction land emerged as the most significant factor impeding
habitat quality improvement, with a contribution coeflicient of -0.8453%. This notable decline could be attributed
to multiple intertwined factors, including accelerated land degradation, heightened soil erosion, and escalating
tensions between human activities and land resource utilization. These findings were in line with Wu et al.>,
which similarly emphasized the adverse ecological consequences of such land use shifts.

The expansion in construction land during this period was not an isolated phenomenon but rather a complex
outcome shaped by various driving forces. Socio-economic development initiatives, rapid population growth, the
ongoing acceleration of urbanization processes, and the implementation of Beijing-Tianjin-Hebei coordinated
development strategy collectively propelled this expansion. However, this rapid transformation came at a cost,
as it posed significant challenges to regional sustainable development goals and exerted far-reaching impacts on
the local ecological environment. Under EP scenario, habitat quality improved, but inhibited the development of
urban production and living spaces. These findings were largely consistent with research conclusions on regions
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Fig.6. Habitat quality changes during 2000-2050. (a) 2000-2010, (b) 2010-2023, (c) 2000-2023, (d) 2023-
2035BAU, (e) 2023-2035CLP, (f) 2023-2035EP, (g) 2023-2050BAU, (h) 2023-2050CLP, and (i) 2023-2050EP.

such as Gansu-Qinghai contiguous region and the Ebinur Lake Basin?>*. These effects underscore the necessity
of adopting more balanced and sustainable LULC policies to mitigate potential negative consequences.

Analysis of driving factors of habitat quality

This study employed a multi-scenario simulation analysis approach to model the anticipated LULC patterns for
2035 and 2050, and subsequently investigated the evolutionary features of regional habitat quality under various
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Fig.7. Contribution rate of LULC changes during 2000-2023 on habitat quality impact.

Natural environment factors Social-economic factors

X1 X2 X3 X4 |X5 X6 | X7 X8 X9 X10 |X11 |X12
0.324 | 0.282 | 0.169 | 0.212 | 0.255 | 0.105 | 0.246 | 0.229 | 0.055 | 0.283 | 0.220 | 0.147
p | 0.000 | 0.000 | 0.000 | 0.000 |0.000 | 0.000 | 0.000 | 0.000 |0.000 | 0.000 | 0.000 | 0.000

Table 5. Factor detection results of habitat quality.

scenarios from a spatial heterogeneity perspective. The simulation results demonstrate that the EP scenario
can significantly enhance regional habitat quality indices, with its spatial optimization effects being particularly
pronounced in the Yanshan-Taihang Mountain Ecological Barrier Zone. The research results hold important
reference value for delineating ecological protection red lines and establishing cross-administrative regional
ecological compensation mechanisms. However, it is important to recognize that the factors influencing habitat
quality changes are complex and multifaceted™.

The contribution rates of driving factors to habitat quality were obtained by factor detection (Table 5). The
main driving factors with higher explanatory power (g value) for habitat quality were DEM, nighttime light
index, TEM, NPP, POP, NDV], distance from town center, and PRE. This indicated that DEM was the primary
influencing factor for habitat quality, with an explanatory power of 0.324. Higher-altitude areas with less human
activity demonstrated better habitat quality, which was consistent with the research conclusions of Wang et
al.’® and Xie et al.”’. Topography could affect habitat quality through multiple pathways: (1) altitude directly
determined the vertical differentiation of hydrothermal conditions, and environmental characteristics such
as low temperature and strong ultraviolet radiation in high-altitude areas limited the invasion of non-native
species and maintained the ecosystem originality; (2) slope and aspect indirectly regulated the composition and
distribution of vegetation communities by changing surface runoff and soil development processes.

The second dominant factor was the nighttime light index, with an explanatory power of 0.283. To some
extent, construction lands with higher nighttime light index typically showed poorer habitat quality. Areas with
high light index values typically correspond to highly urbanized built-up areas, leading to severe fragmentation
of natural habitats. These results were in line with the pattern that “the faster the urbanization process, the more
pronounced habitat quality degradation”®. The rapid expansion of construction land area has become the main
factor causing habitat quality degradation'®. Therefore, scientific planning of construction land area is crucial for
ensuring habitat quality in this region.

The interplay of multiple influences on alterations in habitat quality was examined by interaction detection
(Fig. 8). These results indicated that the interaction of any two factors had a more substantial impact on habitat
quality changes than individual factors alone. This phenomenon fully reflected the complexity of habitat quality
change processes. Changes in each factor were constrained or promoted by other factors, collectively forming a
complex network that jointly determined the dynamic changes in habitat quality.

Most interactions exhibited EB-type relationships, while some showed EN-type indicators. The overall
interaction detection outcomes revealed that habitat quality changes were influenced by multiple indicators,
highlighting the complexity and heterogeneity of these dynamics. The combined effect of DEM and NDVT had
the most pronounced influence on habitat quality, with an explanatory power of 0.497, underscoring the crucial
role of topographical features and vegetation conditions in shaping habitat quality, which was consistent with
Li et al.!®. Previous studies have also shown the correlation between fractional vegetation coverage and terrain
as well as elevation®>®°. Topographic features not only directly affected the physical structure of habitats but
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also indirectly influenced the growth and distribution of vegetation by affecting hydrothermal conditions, soil
types, and other factors. As an important component of habitats, the vegetation condition not only provided
food and habitats for organisms but also played a crucial role in soil conservation and climate regulation. The
interaction between these two elements jointly determines the suitability and quality of habitats. In the future,
planning schemes that are differentiated and ecological should be formulated based on the spatial differentiation
characteristics of natural factors such as DEM and NDVT. In addition, attention should be paid to the key role
of natural factors such as temperature and precipitation in vegetation restoration®2. In contrast, the interaction
between PET and GDP showed the least influential effect, explaining only 13.7% of the variation, indicating that
while economic and hydrological factors played a role, their combined influence on habitat quality was relatively
minor compared to other interacting variables.

Impact of policy and macroeconomics on habitat quality

Between 2000 and 2023, habitat quality of Beijing-Tianjin-Hebei region was also markedly influenced by the
policy interventions and economic development. The implementation of key national strategies, particularly
the coordinated development plan for Beijing-Tianjin-Hebei region initiated in 2014, has driven substantial
ecological restoration efforts, including afforestation projects and the establishment of ecological conservation
redlines. These policies have enhanced the habitat quality in designated protected areas. However, rapid
urbanization and industrial expansion, fueled by regional economic growth, have simultaneously exerted
pressure on natural ecosystems, leading to habitat fragmentation in peri-urban zones. The introduction of
market-based environmental mechanisms, such as cross-regional ecological compensation policies since 2018,
has created new financial incentives for habitat protection. Nevertheless, economic development, as both a
driver of environmental degradation and a source of funding for ecological restoration, has led to a complex
spatiotemporal pattern of regional habitat quality changes, which requires a more comprehensive policy
approach to balance conservation and development objectives.

Advantages and limitations of this research

The InVEST model can visually demonstrate the spatial variations in ecosystem services and has been widely
applied in assessing habitat quality?® , water conservation?’, and carbon storage?®. Furthermore, when coupled
with the FLUS model, it supports scenario simulations based on different management strategies (e.g., BAU,
CLP and EP scenarios)®. Compared to other models, the FLUS model shows higher accuracy in LULC
simulation and effectively addresses precision challenges in large-scale regional simulations®**>. We analyzed
and forecasted the responses of habitat quality and landscape pattern to LULC changes in Beijing-Tianjin-Hebei
region between 2000 and 2050 in this study, offering valuable insights for regional planning and habitat quality
enhancement. However, some limitations also existed. The potential errors at the data level have not been fully
considered. For example, the applicability of grid resolution to the spatial scale of this study area has not been
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fully evaluated. The uncertainty in LULC type prediction stems from multiple aspects, such as the selection
of key driving factors, model parameter settings, deviations in socioeconomic scenarios, and uncertainties in
policy interventions. The habitat quality module primarily considered anthropogenic threat factors, but partially
neglected natural influences such as internal threats from natural predators and population competition.
Additionally, the correlation and connection between habitat quality grades and environmental indicators are
still unclear. In the future, it is necessary to fully evaluate the reliability of prediction results through multi-
scenario simulation, parameter sensitivity analysis, and uncertainty quantification. What’s more, future research
should concentrate on enriching and improving the indicator system construction, and clarifying the actual
conditions corresponding to different habitat quality grades, so as to provide a more robust scientific basis for
planning and decision-making.

Conclusions

Substantial alterations have transpired in the LULC patterns and habitat quality of Beijing-Tianjin-Hebei region.
Between 2000 and 2023, cultivated land experienced significant loss, primarily being converted into ecological
land types and construction land. Construction land area expanded by a total of 14,316.7 km?, indicating that
the accelerating urbanization process led to increasingly significant conflicts between the growing demand
for construction land and the preservation of natural land. In the future, strict restrictions should be imposed
on the unordered conversion of cultivated land to construction land, farmland and ecological protection red
lines should be delimited, and ecological compensation mechanisms as well as incentive policies for ecological
restoration should be implemented. From a landscape perspective, the degree of landscape fragmentation
decreased from 2000 to 2005, but it intensified from 2005 to 2023. Therefore, it is highly necessary to construct
ecological corridors by means of vegetation restoration, water system connectivity, and other measures to enhance
landscape connectivity. A decrease in habitat quality from 0.387 to 0.346 occurred in the period of 2000-2023.
Specifically, it decreased during 2000-2015 but improved from 2015 to 2023. The conversion of cultivated land
to ecological land, alongside the shift of construction land to other LULC types, exerted a positive effect on
improving habitat quality. Conversely, the conversion of cultivated land to construction land constituted the
primary threat to habitat quality, with a contribution rate of -0.8453%. By 2035 and 2050, the values of average
habitat quality under EP scenario are projected to be 0.343 and 0.345, respectively, higher than those under
BAU and CLP scenarios. Moreover, EP scenario shows lower values of NP and PD, indicating lower landscape
fragmentation and significant improvement effects. Geodetector is employed to pinpoint the principal causes
influencing fluctuations in habitat quality. DEM and nighttime light index are the main factors determining the
habitat quality spatial heterogeneity, and the nonlinear interaction between DEM and NDVI demonstrates the
strongest explanatory power. Therefore, the ecological priority strategy and zoned regulation constitute the key
path to achieving high-quality development. These findings can provide a basis for scientifically formulating
future LULC policies and accurately implementing ecological protection strategies.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary
Information files).
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