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Optimizing the scheduling of integrated electric-heat systems (IEHS) is complex due to fluctuating 
user-side loads and their associated uncertainties. To address this, this paper proposes an integrated 
demand response (DR) optimization strategy for IEHS that accounts for load uncertainty. First, a 
probabilistic model leveraging Copula functions was formulated to capture the temporal correlation of 
load uncertainties. A non-parametric Kernel Density Estimation method was then employed to fit the 
load distribution, and randomized load fluctuation data were generated using Monte Carlo sampling 
to simulate uncertainty. Second, a DR model that incorporates the characteristics of the electric-heat 
system is introduced. The electrical and heating load are coordinated through distinct energy storage 
devices. Finally, the effectiveness of the strategy is validated through the application of an improved 
column-and-constraint generation algorithm. Simulation outcomes indicate that the presented 
optimization approach substantially improves the operational flexibility and performance of IEHS.
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Background
With the increasing integration of power systems and heating systems, “electricity substitution” has emerged 
as a key strategy for promoting the efficient use of clean energy1. In this context, IEHS, as a novel form of 
integrated energy system, has been widely adopted in energy sector, offering a promising solution to facilitate 
the green and low-carbon transition2. The integrated demand response for electricity and heat (IDR-EH) plays 
a crucial role in optimizing energy use, balancing electricity and heat demand, and enhancing system flexibility. 
However, as system scale continues to expand and user needs diversify, the dynamic changes and uncertainties 
of user-side loads have increasingly become critical factors influencing the dispatch optimization of electric-
heat systems. Load uncertainty encompasses not only fluctuations in electrical load but also the time-varying 
nature of thermal load and the impact of external factors such as weather conditions. Therefore, addressing the 
uncertainty of user-side loads by proposing a targeted optimization method for demand response strategies in 
combined heat and power systems is of great significance for improving system scheduling efficiency, reducing 
operating costs, and ensuring the reliability of heat and power supply3.

Motivation for the research
As a typical multi-energy collaborative system, IEHS enhances the operating efficiency of the energy system 
and enables flexible energy distribution through the optimization of combined heat and power and energy 
storage. Literature4 applied IEHS to a building group to achieve globally optimal energy management for the 
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integrated building cluster. Literature5 optimized a three-layer distributed robust optimization scheduling 
model for a multi-region interconnected IEHS, which significantly reduces the scheduling cost. Literature6 
proposed a robust and proactive scheduling method for IEHS, introduced a wind power acceptance risk index, 
and considered both the operating cost and risk of the system to optimize its economy and safety. Literature7 
developed a robust optimization scheduling model for IEHS conditional distributions, which enhances the 
safety and optimality of the scheduling results. Literature8 proposed an IEHS optimization planning method 
that considers the flexible configuration of heat storage as well as the hydraulic and thermal characteristics of 
the heat network, which effectively improves the economic efficiency of the planning scheme and promotes 
the consumption of wind power. Literature9 propose a comprehensive game-theoretic framework addressing 
electricity market bidding and generation scheduling, effectively capturing the complex dependencies and 
strategic behavior of market participants. Although the aforementioned studies provide relatively comprehensive 
discussions on the planning and scheduling of IEHS, they primarily focus on the optimization and scheduling 
of system equipment, without fully addressing the dispatchability of demand-side resources. To further enhance 
the flexibility and responsiveness of IEHS, it is crucial to strengthen the rational scheduling and management of 
demand-side resources.

DR is a critical mechanism that allows users to participate in system scheduling. Consumers modulate 
their load consumption based on market price signals and system demands, aiming to optimize economic 
returns. Although current DR research primarily focuses on regulating electricity loads, the increasing coupling 
of electricity and heat has made IDR-EH a crucial strategy for simultaneously balancing electricity and heat 
supply and demand. Literature10 proposed an AI- and blockchain-enabled framework for demand response 
management in smart EV charging networks, which leverages real-time prediction and dynamic load control 
to enhance flexibility and system resilience, offering a novel approach to scalable and decentralized DR 
implementation Literature11 developed a comprehensive DR model applicable to both electrical and heating 
loads, enhancing energy efficiency and reducing operating costs. Literature12 developed a framework for a retail-
side bilateral competitive bidding energy market for combining electricity and heat, targeting winter electricity 
and heat demand from residents. This approach effectively optimizes the coordination of supply and demand 
resources, enhancing user energy conservation. Literature13 developed a stochastic multi-objective optimization 
framework that integrates demand response programs with mobile energy storage (EVs and E-Bikes) and green 
certificate markets, demonstrating significant improvements in the economic and environmental performance 
of microgrids under renewable energy uncertainty. In literature14, an economic dispatch approach was proposed 
for an Integrated Electric System (IES), emphasizing DR strategies for extensive electric heating applications. The 
model aims to mitigate the issue of limited carbon capture effectiveness during peak load times in the retrofitting 
process of thermal power plants for low-carbon operation. The aforementioned studies provide valuable insights 
into IDR-EH, but most fail to account for uncertainty in DR, which poses a challenge to the efficiency of DR 
optimization and the accuracy of system scheduling.

The successful implementation of DR on the user side relies on uncertainty modeling and the optimization 
of user behavior. Literature15,16proposed an optimal energy storage capacity allocation method that accounts for 
flexibility and uncertainty in both source and load, enabling more reasonable allocation of energy storage and 
reducing system operating costs. Literature17 proposed a method for interval multi-objective optimal dispatch of 
IES in a multi-uncertainty environment, which effectively enhances the system’s ability to cope with uncertainties. 
Literature18 developed a novel flexible cluster regulation method for building clusters, which accounts for 
uncertainty and users’ dynamic electricity satisfaction, thereby enhancing the risk resilience of the building 
cluster grid and aggregator. In literature19,20, an optimal configuration method for IES equipment is proposed 
that accounts for the uncertainty of DR. While enhancing risk resilience, it also integrates probability theory and 
interval theory. Existing stochastic MILP-based DR methods21 typically assume fixed scenarios and centralized 
coordination, which limits their ability to capture load correlations and user-side behavioral dynamics. Similarly, 
adaptive robust optimization approaches22 often rely on predefined uncertainty sets and do not explicitly model 
the nonlinear response characteristics of thermal loads or the strategic interactions among multiple stakeholders. 
However, existing research has not sufficiently addressed the impact of user load uncertainty on combined 
IDR-EH. Therefore, this study fills the gap by proposing a unified and probabilistically-informed optimization 
framework that explicitly considers user-side electric-thermal load uncertainty, incorporates dynamic behavioral 
characteristics, and enables multi-agent hierarchical decision-making for IDR-EH.

Research contributions
Building upon these identified gaps, the present study develops a novel dispatch optimization framework tailored 
for IEHS under user-side uncertainty. Unlike most existing studies that treat electric and thermal DR separately 
or neglect the temporal correlation of load uncertainty, this work proposes a unified and probabilistically-
informed optimization framework for IEHS. By incorporating a Copula-based load uncertainty model with 
KDE and MC scenario generation, the proposed method captures both the randomness and the time correlation 
of user-side loads. Furthermore, the optimization framework considers the distinct dynamic behaviors of 
electric and heat loads, and improves the classic C&CG method by embedding Particle Swarm Optimization 
(PSO) to enhance global search efficiency. These integrated innovations contribute to a more realistic, flexible, 
and computationally efficient solution for dispatch optimization in the face of uncertainty. Specifically, the main 
contributions are as follows:

	(1)	 A Copula-based uncertainty model for load time correlation is proposed. The time correlation is modeled 
using the Copula function, and the uncertainty distribution of electric and heating load is fitted via KDE. 
MC sampling is employed to generate random scenarios within the load fluctuation range. This model more 
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accurately reflects load fluctuations and uncertainties, providing more reliable data to support the dispatch 
optimization of the IEHS.

	(2)	 An optimal DR dispatch model based on electrical and heating uncertainty is developed, aimed at enhanc-
ing the dispatch capability of the IEHS under load fluctuations and uncertainty. In constructing the model, 
special consideration was given to the dynamic characteristics of the heat load and the random nature of 
fluctuations in the electrical load. By incorporating these key factors, the system’s adaptability to complex 
and uncertain environments is significantly enhanced, further improving its flexibility and scheduling ac-
curacy.

	(3)	 The C&CG has been improved, MC sampling is employed to generate columns with uncertainty, and PSO 
is utilized to process the generated constraint columns. Its global search capability effectively avoids local 
optima, enhances global optimization, and complements global optimization with local constraint process-
ing, providing a more efficient and accurate solution for the dispatch optimization of IEHS.

The proposed Copula-KDE-MC and PSO-C&CG combination represents a fundamental departure from prior 
models, establishing a new paradigm through its closed-loop synergy of high-fidelity uncertainty modeling 
and globally-enhanced robust optimization. Unlike conventional stochastic programming that often relies on 
simplistic parametric assumptions and fails to capture spatiotemporal load correlations21, or standard robust 
optimization that suffers from inherent conservatism and local optima convergence in non-convex settings22,27, 
our framework creates a mutually reinforcing cycle. The Copula-KDE-MC component delivers a probabilistically 
rigorous and realistic input by capturing non-Gaussian margins and temporal dependencies of electro-thermal 
loads. This high-fidelity uncertainty representation, in turn, demands a solver that is both robust and globally 
conscious—a requirement uniquely met by the PSO-C&CG algorithm, which embeds PSO’s exploratory 
power into the C&CG framework to navigate the resulting complexity effectively. This integrated architecture 
systematically overcomes the classic trade-offs between uncertainty realism, computational tractability, and 
solution optimality, delivering a more unified, accurate, and reliable solution for IDR-EH dispatch. The distinct 
advantages of this integrated framework are quantitatively summarized in Table 1, which provides a comparative 
analysis against prior methodological approaches.

Organization of the paper
The remainder of this paper is organized as follows. Section “System structure and methodological framework” 
introduces the structure of the IEHS and the overall methodological framework, highlighting the coordination 
mechanisms among key system components. Section “DR optimization model based on user load uncertainty” 
details the proposed DR optimization model under load uncertainty, including the probabilistic load modeling, 
scenario generation process, and mathematical formulation of electrical and thermal DR strategies. Section 
“Improve the constraint generation algorithm to solve the model” presents the improved solution algorithm, 
which integrates the C&CG method with PSO to enhance computational efficiency. Section “Case analysis” 
discusses the simulation case studies, evaluates the performance of different DR strategies under typical scenarios, 
and compares the proposed method with benchmark approaches. Finally, Section “Conclusion” concludes the 
study with a summary of key findings.

System structure and methodological framework
Structure of the integrated electrothermal energy system
The electrical and heat load is decoupled through an energy storage device, with cogeneration achieved using an 
electric boiler (EB). The rational configuration and scheduling of electrical and heat energy storage devices can 
effectively manage the demand from the user side in IES.

This paper presents an IEHS, the structural schematic of which is depicted in Fig. 1. The system consists of a 
distribution network, a heat and power plant, a controller, electric energy storage (EES), heat storage tank (HST), 
EB, and electrical and heat loads. The system is designed to transform externally supplied energy resources into 
multiple forms for both usage and storage. It receives input energy such as electricity from the power grid and 
thermal energy from a heat station, and it outputs electricity and heating. Internally, it comprises components 
like battery storage and thermal energy storage units.

The system possesses flexible energy management capabilities that optimize operating costs and enhance 
efficiency. During off-peak hours, the system can purchase low-cost electricity for storage and utilize it during 

Characteristic Proposed framework Two-layer DR31 Robust optimization32 Stochastic MILP21 ARO with C&CG22

Non-Gaussian uncertainties √  ×   ×   ×   × 

Temporal load correlation loads √  ×   ×   ×   × 

Integrated EH coordination √  ×   ×   ×   × 

Data-driven modeling √  ×   ×  √  × 

Probabilistic uncertainty set √  ×   ×  √  × 

Global search capability √  ×   ×   ×   × 

Worst-case robustness √  ×  √  ×  √

Reduced conservatism √  ×   ×  √  × 

Table 1.  Compare with other methods.
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peak hours. Simultaneously, EB can convert electricity into heating to meet heat demands or store heat for later 
use. During peak electricity consumption, the EES unit can release electricity to supply the user’s electrical load 
or drive the EB to generate heat, thus ensuring user comfort and the economic operation of the system.

Method framework
This paper presents an optimal DR model that accounts for user-side load uncertainty. The model consists 
primarily of two components: user-side uncertainty analysis and DR optimization model, as shown in Fig. 2.

In this paper, we analyze the uncertainty of the user-side load. Based on historical user load data, we construct 
a histogram from which the probability density function is derived. Subsequently, we perform KDE on the 
probability density function. To account for temporal correlations, we establish a Copula model. Finally, MC 
sampling is conducted to transform the originally uncertain load data into deterministic data.

In addition, in the model of IDR-EH, the system prioritizes the use of electric heat storage devices to regulate 
energy use, thereby smoothing fluctuations in electrical load and optimizing energy efficiency. EES units are 
charged with electricity during off-peak times and supply energy during peak periods, effectively contributing to 
the stabilization of the load profile. When the upper limit of energy storage capacity is reached, other loads (e.g., 
EB) are scheduled with fixed constraints. This strategy optimizes load scheduling by prioritizing energy storage 
resources, enhances system efficiency, reduces operating costs, and improves overall flexibility and economic 
performance.

DR optimization model based on user load uncertainty
Uncertainty analysis
The heat and electrical loads of the IES exhibit a high degree of uncertainty. Therefore, this paper employs KDE 
to statistically analyze the load forecast error, derive the probability density distribution curve, and perform 
random sampling based on this analysis.

This paper employs KDE with a Gaussian kernel to model load forecast error distributions without presuming 
parametric forms. The bandwidth parameter h is optimized via Least Squares Cross-Validation (LSCV) to 
minimize estimation error.

As a non-parametric technique, KDE derives the distributional properties from the data itself, avoiding the 
necessity of assuming any predefined distribution model23.24Assuming z1, z2, ..., zn is an n-sample originating 
from an independent and identically distributed population F with the probability density function f, the 
corresponding KDE can be formulated as24:

	
f̂(x) = 1

nh

n∑
i=1

K
(

z − zi

h

)
� (1)

where, h is the bandwidth. n is the number of samples. K(u) is the kernel function.
The Gaussian kernel function is utilized in this paper, and its mathematical expression is provided below:

Fig. 1.  Structure of an integrated electrothermal energy system.
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K (u) = 1√

2π
e− u2

2 � (2)

	
LSCV (σ) = 1

2
√
πnσ

+ 1
n(n − 1)

∑N

j

[
K√

2σ(xi − xj) − 2Kσ(xi − xj)
]

� (3)

The optimal bandwidth can be obtained by minimizing Eq. (3). This is an unconstrained minimization problem, 
which can be solved using an unconstrained nonlinear optimization solver. This method ensures that the 
bandwidth is selected based on minimizing the root mean square error (RMSE) of the density estimation, 
thereby improving the accuracy of the load uncertainty model.

To construct the time-dependent correlation of sampled user load values for each time period, the marginal 
probability distributions obtained via KDE must be transformed into a multivariate joint distribution. For this 
purpose, Copula theory provides a flexible and powerful framework, allowing separate modeling of marginal 
distributions and their dependence structure. At present, Copula-based modeling has become a mature and 
widely adopted method, with well-established construction logic and rigorous mathematical foundation. It is 
particularly effective in quantitative analyses involving inter-variable correlation, such as price modeling and 
multi-energy system uncertainty analysis.

In this study, Copula functions are employed to describe the temporal correlation among electric and thermal 
load values. Two main families of Copulas are typically used: elliptical Copulas (e.g., Gaussian and t-Copula), 
which assume symmetric dependence, and Archimedean Copulas (e.g., Frank, Gumbel, and Clayton), which 
offer greater flexibility in tail dependence modeling. Among them, the Frank-Copula is selected in this work 
due to its symmetric structure, broad applicability across correlation ranges, and analytical simplicity25. Table 2 
below presents the goodness-of-fit comparison for the candidate Copula models applied to the load time series, 
highlighting the Frank-Copula as the optimal choice based on the evaluation metrics.

Copula type Log-likelihood Akaike information criterion Bayesian information criterion Kendall’s τ Selected

Frank-copula − 1225.13 2454.26 2460.52 0.42 √

Gaussian copula − 1227.94 2459.88 2468.37 0.43 × 

t-copula − 1230.33 2464.66 2472.15 0.44 × 

Clayton copula − 1248.03 2496.06 2501.32 0.39 × 

Gumbel copula − 1239.15 2482.30 2488.77 0.41 × 

Table 2.  Goodness-of-fit evaluation of candidate copula models.

 

Fig. 2.  Methodological framework.
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For a set of random variables (x1, x2, …, xn), H is the joint distribution function and F1,F2, …, Fn are the 
marginal distribution functions. The connection between them is formulated using a Copula function C, such 
that:

	 H (x1, x2, ..., xn) = C (F1 (x1) , F2 (x2) , ..., Fn (xn))� (4)

	 C (u1, u2, ..., un) = H
(
F −1

1 (u1) , F −2
2 (u2) , ..., F −n

n (un)
)

� (5)

When the joint probability density function h (x1, x2, …, xn) of the random variables (x1, x2, …, xn) and its 
marginal probability density function f1, f2, …, fn exist, it can be introduced according to the law of chains:

	

h (x1, x2, . . . , xn) =∂2H (x1, x2, . . . , xn)
∂x1x2 . . . xn

= ∂nC(F1(x1), (F2(x2), ..., (Fn(xn)
∂x1x2 . . . xn

= ∂nC(F1(x1), (F2(x2), ..., (Fn(xn)
∂F1(x1)∂F2(x2)...∂Fn(xn) · ∂F1(x1)

∂x1
· ∂F2(x2)

∂x2
...

∂Fn(xn)
∂xn

= c(F1(x1), (F2(x2), ..., (Fn(xn))f1(x1)f2(x2)...fn(xn)

� (6)

When describing the correlation of electric load and thermal load, C(·) is the two-dimensional Frank-Copula 
function with the expression as shown in Equation:

	
C(v1, v2, θ1) = − 1

θ1
ln

[
1 + (exp(−θ1v1) − 1)(exp(−θ1v1) − 1)

(exp(−θ1) − 1)

]
� (7)

where v1 and v2 represent the marginal distribution function of electric load and thermal load respectively. θ1 
represents the parameter of the two-dimensional Frank-Copula function, which is estimated by the maximum 
likelihood estimation method.

Once the time-dependent joint probability distribution of electric and thermal loads is established using 
the Frank-Copula function, it becomes feasible to generate large-scale random scenarios that reflect real-world 
uncertainties in both marginal behavior and temporal correlation. The process of Copula function can be seen 
as Fig. 3.

To this end, we employ a MC sampling method to generate multiple realizations of user-side load trajectories.
The MC sampling process starts with generating uniform random vectors over [0,1]n in the Copula space, 

which are then transformed into corresponding electric and thermal load values through the inverse cumulative 
distribution functions derived from the KDE-based marginal distributions. This process ensures the sampled 
data retains both empirical variability and modeled inter-temporal correlation.

In this study, 1,000 raw scenarios are generated to sufficiently represent the possible variations in load 
profiles. However, directly using all scenarios in optimization would lead to excessive computational overhead. 
Therefore, to reduce dimensionality while preserving diversity, we apply a K-means clustering algorithm to the 
sampled dataset. The number of clusters is empirically set to five, and the cluster centroids are used as typical 
representative scenarios. These typical scenarios are illustrated in Fig. 11 and used as input data for the robust 
dispatch optimization model in subsequent sections.

Fig. 3.  Flowchart of the copula-based uncertainty modeling process.
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DR model
Objective function

	 min f (u) + E [G (x, ξ)]� (8)

	
f (u) =

∑
t∈NT

[
a ·

(
pda

t

)2 + b · pda
t

]
� (9)

	
G (x, ξ) = γvio · pvio

s +
∑

t∈NT

γrtp · prtp
t,s +

∑
t∈NT

∑
i∈NN

(
α · dishvac

i,t,s + β · diswh
i,t,s

)
� (10)

where, a/b is the electricity price factor. pda
t  is the amount of electricity purchased from the day-ahead market. T 

is the total number of hours considered. γvio is the peak load violation rate.pvio
s  is the maximum load in excess 

of the agreed load limit. γrtp is the real-time market purchase price. prtp
t,s  is the amount of electricity purchased 

from the real-time market. dishvac
i,t,s  is the user’s discomfort with the indoor temperature at time t (°C). diswh

i,t,s is 
the user’s discomfort with the water temperature at time t (°C). α/β is the weight factors.

DR constraints
The actual electrical load comprises replaceable load, transferable load, and cuttable load, with the replaceable 
load typically represented by heat, ventilation, and air conditioning (HVAC) systems and electric water heaters 
(EWH).

	




P le
i,t = P rep

i,t + P tran
i,t − P cut

i,t∣∣P tran
i,t

∣∣ ≤ Pmaxtran

T∑
t=1

P tran
i,t = 0

0 ≤ P cut
i,t ≤ Pmaxcut

P rep
i,t = P hvac

i,t + P ewh
i,t

� (11)

where, P le
i,t is the actual value of the electrical load. P rep

i,t  is the replaceable value of the electrical load. P tran
i,t  is 

the transferable value of the electrical load. P cut
i,t  is the cuttable value of the electrical load. P tran

max  is the upper 
limit of the transferable electrical load. P cut

max is the upper limit of the reducible electrical load.

Load model
DR model for electrical load
As illustrated in Fig. 4, user loads can be categorized according to their characteristics into cuttable loads, 
transferable loads, replaceable loads and fixed loads (e.g., lighting loads).

	(1)	 Cuttable electrical load.

 
The load-dependent power supply times can be adjusted based on the schedule. Loads that require a 

reduction in their total demand and whose power supply times span multiple scheduling periods, such as 
washing machines, rice cookers, dishwashers, and microwave ovens, are considered. The reduction interval is 
defined as [tcut1, tcut2], and it must satisfy the continuity constraint of system operation.

Fig. 4.  Classification of electric loads for demand response.
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ε+tc−1∑
t=ε

yt = tc� (12)

where, ε is the start time of the reduction. tc is the duration. yt is the reduction status, a 0–1 variable.
The cuttable load model is

	
Fcut =

tcut2−tc+1∑
t=tcut1

P cut
t

∆P (t)ψ � (13)

where, P cut
t  is the actual power that can be reduced at time t after optimization. ψ is the conversion factor for the 

magnitude of the electrical load of the regional power grid-community. ∆P (t) is the power deviation at time t 
between the typical daily load curve of the regional power grid user community and the typical daily load curve 
of the regional conventional minimum output curve in a typical day of a certain season.

	(2)	 Transferable electrical load.

 
The electricity consumption of transferable loads at various time periods can be adjusted flexibly; however, it 

is essential to ensure that the total load over the entire cycle remains unchanged after the transfer, such as electric 
vehicles, computers, and similar devices. Define the transferable interval as [ttran1, ttran2], ensuring that the total 
power consumption constraint is satisfied.

	

ttran2∑
t=ttran1

Ltran
t =

ttran2∑
t=ttran

P tran
t � (14)

where, Ltran
t  and P tran

t  are the transferable load powers at time t before and after optimization.
The transferable load model is

	
Ftran =

ttran2∑
t=ttran1

P tran
t νt

∆P (t)ψ � (15)

where, νt is a 0–1 variable that determines the load transfer status at time t. ψ is the conversion factor for the 
magnitude of the electrical load of the regional power grid-community. ∆P (t) is the power deviation at time t 
between the typical daily load curve of the regional power grid user community and the typical daily load curve 
of the regional conventional minimum output curve in a typical day of a certain season.

	(3)	 Replaceable electrical load.

 
In this paper, HVAC and EWH are considered as the primary alternative loads, taking into account the effects 

of room and hot water temperatures on user comfort. The operating characteristics of HVAC systems and EWH 
primarily depend on factors such as indoor and outdoor temperatures, the equivalent thermal resistance of the 
building, and the specific heat capacities of air and water.

	(1)	 HVAC model26

	
T in

i,t,s = T in
i,t−1,s +

(
T out

i,t,s − T in
i,t−1,s

Rhouse
i − bhvac

i,t · P hvac
i

)
∆t/Chouse

i � (16)

	 [T in
i0 ∼ T in

i1 ] ≤ T in
i,t,s ≤ [T in

i0 ∼ T
in
i1 ]� (17)

	 dishvac
i,t,s =

∣∣ T in
i,t,s − T ins

i

∣∣� (18)

	where, T in
i,t,s is the room temperature preset point. T in

i,t−1,s is the room temperature at the previous moment. 
T out

i,t,s is the outdoor temperature forecast. Rhouse
i  is the thermal resistance of the house. bhvac

i,t  is the HVAC 
operating state of house i at time t. P hvac

i  is the power of the HVAC. Chouse
i  is the heat capacity of house i 

(J/°C). T in
i0 ∼ T in

i1 /T in
i0 ∼ T

in
i1  is the minimum/maximum indoor temperature limit of house i (°C). T ins

i  is 
the indoor temperature setpoint of house i (°C).

	(2)	 EWH model
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T wh
i,t,s =T wh

i,t−1,s

+
T in

i,t,s − T wh
i,t−1,s

Rwh
i

∆t/Cwh
i

− cwater · mwater
i,t,s

(
T wh

i,t−1,s − T in
i,t,s

)
∆t/Cwh

i

+ bwh
i,t · P wh

i · ∆t/Cwh
i

� (19)

	 [T wh
i0 ∼ T wh

i1 ] ≤ T wh
i,t,s ≤ [T wh

i0 ∼ T
wh
i1 ]� (20)

	 diswh
i,t,s =

∣∣ T wh
i,t,s − T whs

i

∣∣� (21)

	where, T wh
i,t,s is the predetermined water temperature. T wh

i,t−1,s is the room temperature at the previous moment. 
T in

i,t,s is the predetermined room temperature. Rwh
i  is the thermal resistance of the house. bwh

i,t  is the operat-
ing state of the EWH in house i at time t. P wh

i  is the power of the EWH. cwater  is the heat capacity of water i 
(J/°C). mwater

i,t,s  is the hot water consumption of house i in scene s at time t (kg). T wh
i0 ∼ T wh

i1 /T wh
i0 ∼ T

wh
i1  is 

the minimum/maximum water temperature limit of the EWH in house i (°C). T whs
i  is the hot water temper-

ature setpoint of house i (°C).

DR model for heat load
The subjective nature of users’ heat temperature perception permits adjustments to heating output within a 
specified range. Additionally, the thermal inertia characteristic of heat transfer allows thermal loads to function 
as flexible participants in DR programs. During heat transfer, the specific heat capacity of water is c, and the 
heat supplied by the heat equipment in the time period t is HHS,t . Subsequently, the thermal change of water 
with mass QHS  as it passes through the heat source, transitioning from a return temperature Th,t to a supply 
temperature Tg,t ,can be calculated as follows:

	 HHS,t = cQHS (Tg,t − Th,t)� (22)

For a load node with heat consumption Hload,t in time period t, the resulting heat variation for water of mass 
QL , transitioning from supply temperature Tg,t to the return temperature Th,t is:

	 Hload,t = cQL (Tg,t − Th,t)� (23)

To ensure user comfort in terms of temperature, the heat absorbed by the load node during period t should 
remain within a specified range:

	 Hmin
load ≤ Hload,t ≤ Hmax

load � (24)

Simultaneously, it must be ensured that the total heat consumption by the thermal load over T periods 
corresponds to the user’s intended heat requirement:

	

n+T ′∑
t=n

Hload,t =
n+T ′∑
t=n

Hideal
load,t� (25)

	 T
′

= m × ∆t� (26)

where, T
′
 is the maximum number of consecutive scheduling periods during the scheduling cycle.

The supply and return temperatures are constrained within the following limits:

	 T min
g ≤ Tg,t ≤ T max

g � (27)

	 T min
h ≤ Th,t ≤ T max

h � (28)

where, T max
h T min

h  are the maximum and minimum return water temperatures. T max
g T min

g  are the maximum 
and minimum supply water temperatures.

Constraint
This paper comprehensively examines the role of user-side energy storage devices in DR. Energy storage systems 
(ESS) can absorb excess electricity and heating during periods of energy surplus and release stored energy during 
times of energy shortage, owing to their flexible scheduling capabilities and efficient energy supply characteristics, 
thus maintaining a balanced energy supply. IES devices significantly enhances the flexibility and stability of DR. 
The system prioritizes the use of energy storage devices during DR participation: energy is released during peak 
consumption periods to meet load demand. Once the energy storage device reaches its capacity limit, the system 
dispatches other loads participating in DR. This mechanism not only incentivizes users to participate in DR but 
also ensures energy comfort. Additionally, the flexible scheduling of energy storage enhances the adaptability 
and efficiency of DR strategies. The parameters of the energy storage device are presented in Table 2.
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Model constraints for EES systems
The EES model comprises an energy state and associated constraints. To facilitate energy state modeling in a 
normalized and scalable manner, the EES system is described using the state-of-charge (SOC), which represents 
the ratio of the current stored energy to the rated energy capacity:

	
SOCt = Et

EES
max

, SOCt ∈ [SOCmin, SOCmax]� (29)

This normalized representation simplifies the formulation of energy-related constraints and improves 
computational tractability. The temporal evolution of the SOC is described in Eq. (30), which accounts for the 
cumulative effects of charging, discharging, and self-discharge losses over time. The operating range of the SOC 
is constrained between specified lower and upper bounds, as expressed in Eq. (31). Equation (32) ensures SOC 
consistency at the beginning and end of the scheduling cycle, which is important for cyclic dispatch planning. 
The charging and discharging power limits of the EES are enforced through Eqs. (33) and (34), while mutual 
exclusivity between charging and discharging is guaranteed by Eq. (35) using binary decision variables. Finally, 
Eq. (36) defines the net charging and discharging power variables used in the model.

	
SOCt = (1 − ε)tSOC0 +

t∑
τ=1

(ηES
P ES,char

τ

EES
n

− P ES,dis
τ

ηESEES
n

)∆t� (30)

	 SOCmin ≤ SOCt ≤ SOCmax� (31)

	

T∑
τ=1

(ηES
P ES,char

τ

EES
n

− P ES,dis
τ

ηESEES
n

)∆t = 0� (32)

	 0 ≤ P ES,dis
t ≤ zES,dis

t P ES
n � (33)

	 0 ≤ P ES,char
t ≤ zES,char

t P ES
n � (34)

	 zES,dis
t + zES,char

t ≤ 1� (35)

	 P ES
t = P ES,dis

t − P ES,char
t � (36)

where, SOCt is the energy state during the period of EES t. ε is the rate of self-energy loss. SOC0, SOCmax, 
SOCmin are the initial value, upper limit, and lower limit of the ESS. ηES is the energy storage charging and 
discharging efficiency. EES

n  is the rated energy storage capacity. P ES,char
τ  is the energy storage power during the 

period of τ. zES,dis
t , zES,char

t  are both binary variables that indicate the state of energy storage and discharge. 
If energy is being released, zES,dis

t  is 1, if energy is being stored, zES,char
t  is 1. P ES

n  is the rated power of energy 
storage. P ES

t  is the power of energy storage and discharge during the t period.

Model constraints for HST systems
The HST model comprises an energy state and associated constraints. Equation (37) represents the percentage 
of the HST state at each moment. Equation (38) represents the energy storage state constraint. Equation (39) 
ensures the consistency of the thermal energy storage state before and after the scheduling cycle. Additionally, 
the charging and discharging power of the HST cannot exceed its upper limit, as expressed in Eqs. (40, 41). The 
HST device cannot charge and discharge simultaneously, as described in Eq. (42). Equation (43) calculates the 
charging and discharging power of the HST.

	
Vt = (1 − ε)tV0 +

t∑
τ=1

(ηHS
P HS,char

τ

EHS
n

− P HS,dis
τ

ηHSEHS
n

)∆t� (37)

	 Vmin ≤ Vt ≤ Vmax� (38)

	

T∑
τ=1

(ηHS
P HS,char

τ

EHS
n

− P HS,dis
τ

ηHSEHS
n

)∆t = 0� (39)

	 0 ≤ P HS,dis
t ≤ zHS,dis

t P HS
n � (40)

	 0 ≤ P HS,char
t ≤ zHS,char

t P HS
n � (41)

	 zHS,dis
t + zHS,char

t ≤ 1� (42)

	 P HS
t = P HS,dis

t − P HS,char
t � (43)

where, V  is the energy state of the heat energy storage for the time period t. ε is the energy self-dissipation rate. 
V0 , Vmax , Vmin are the initial value, upper limit, and lower limit of the HST. ηHS is the energy storage charging 
and discharging efficiency. EHS

n  is the rated energy storage capacity. P HS,char
τ  is the energy storage power for 
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the time period τ. P HS,dis
τ  is the energy release power during the τ period. zHS,dis

t  ,zHS,char
t  are both binary 

variables that indicate the charging and discharging state of the energy storage, with zHS,dis
t  being 1 when 

energy is being released and zHS,char
t  being 1 when energy is being stored. P HS

n  is the rated power of the energy 
storage. P HS

t  is the charging and discharging power during the t period.
The parameters in Table 3, including storage efficiencies, SOC limits, and charging/discharging power 

constraints, are selected based on typical characteristics of commercial lithium-ion battery systems and insulated 
thermal storage tanks. For example, SOC bounds of 0.2–0.8 are commonly applied to avoid degradation due to 
deep cycling. Efficiency values of 0.9 (electric) and 0.8 (thermal) reflect average round-trip efficiency as reported 
in previous studies. These values are representative of medium-scale energy hubs such as community microgrids 
and building-level IES.

To ensure realistic operation of ESS, we impose a mutual exclusivity constraint between charging and 
discharging. This assumption is widely adopted in existing literature and reflects the physical and economic 
limitations of most electrochemical storage technologies, such as Li-ion batteries. Although certain advanced 
systems may technically allow concurrent operation, such behavior is generally suboptimal due to energy 
losses and cost implications, and is therefore avoided in practical dispatch scenarios. In this study, a symmetric 
efficiency assumption is adopted—specifically, both charging and discharging efficiencies are set to 0.9. This 
simplification facilitates model formulation and is consistent with commonly used assumptions in energy 
systems research. Although minor differences may exist between charging and discharging efficiencies due to 
hardware-level asymmetries, such differences are typically small (within 2–3%) for mainstream technologies 
such as lithium-ion batteries. Therefore, the symmetric efficiency assumption has negligible impact on dispatch 
outcomes, especially in aggregated, system-level analyses.

EB model constraint
This paper utilizes EB as the electric heat device. EB is a key component for achieving combined heat and power. 
It utilizes electricity as the energy source to heat water into steam within the heat furnace, which subsequently 
provides the required heat energy to the users. The output thermal power of EB is directly related to its inherent 
characteristics. The specific output power model is expressed as follows:

	 QEB = PEB · ηEB � (44)

	 0 ≤ PEB ≤ P max
EB � (45)

where, QEB  is the EB unit’s output thermal power. PEB  is the EB unit’s power consumption. P max
eb  is the upper 

limit of the electric boiler’s input power.

Other restrictions

	(1)	 Electric power balance constraint

	 P load
E = P dis

ES − P char
ES + P buy

E − PEB � (46)

	where, P load
E  is the electrical load. P dis

ES  is the EES discharge power. P char
ES  is the EES charge power. P buy

E  is the 
grid purchased power. PEB  is the EB power consumption.

	(2)	 Heat power balance constraint

System Parameters Value

Electric energy storage

Capacity(kWh) 500

Maximum charging power (kW) 100

Maximum discharging power (kW) 100

SOCmin 0.2

SOCmax 0.8

Self-discharge rate (/day) 0.46%

Charging efficiency 0.9

Discharging efficiency 0.9

Heat storage tank

Capacity(kWh) 500

Maximum charging power (kW) 100

Maximum discharging power (kW) 100

Charging efficiency 0.8

Discharging efficiency 0.8

Table 3.  Energy storage device parameters. The efficiency value is based on typical Li-ion battery performance. 
It can be modified to represent alternative technologies.
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	 P load
H = P dis

HS − P char
HS + P buy

H + PEB � (47)

	where, P load
H  is the heat load. P dis

HS  is the HST discharge power. P char
HS  is the HST charge power. P buy

H  is the heat 
purchased from the heat station. PEB  is the heat production power of the EB.

	(3)	 Power purchase constraints

	 0 ≤ P buy
E ≤ P max

buy � (48)

	where, P max
buy  is the maximum electricity purchase.

Improve the constraint generation algorithm to solve the model
To solve the optimization model, this paper employs an improved C&CG algorithm27. Like the Benders 
decomposition algorithm, the C&CG algorithm decomposes the original problem into a main problem and 
a subproblem, alternately solving both to obtain an optimal solution. After generating the constraint column, 
a PSO algorithm is employed for further optimization to avoid local optima. The algorithm progressively 
introduces variables and constraints related to the subproblem while solving the main problem, thus obtaining a 
tighter lower bound on the objective function and reducing the number of iterations.

To clearly illustrate the solution process, the following pseudocode outlines the improved hybrid optimization 
framework, where PSO is employed to solve the master problem and C&CG is embedded to evaluate robust 
performance under uncertain scenarios.
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Parameter Settings:
The key parameters for the algorithm are set as follows, based on common practices in the literature and 

preliminary calibration to ensure a balance between exploration and exploitation: Population size N = 50, 
inertia weight linearly decreases from ωmax = 0.9 to ωmin = 0.4, cognitive and social factors c1 = c2 = 2.0, 
maximum iterations MaxIterPSO = 200. The inner PSO loop terminates if the global best solution shows an 
improvement of less than 0.01% over 50 consecutive iterations. Convergence threshold ε = 0.001, maximum 
iterations MaxCut = 25. The detailed flowchart of the algorithm is shown in Fig. 5.

This procedure enables the PSO to explore the solution space globally while the C&CG algorithm evaluates 
worst-case robustness by generating cuts for uncertain scenarios. The master problem (MP) determines 
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Fig. 5.  Schematic diagram of the PSO-C&CG solution procedure.
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scheduling decisions under a fixed uncertainty realization, and the subproblem (SP) identifies the most violated 
scenario based on the current solution. If convergence is not achieved, a new scenario and corresponding cut are 
introduced, and the process iterates until the gap between upper and lower bounds meets the defined tolerance ε.

In this study, the convergence threshold is set to ε = 0.001, which ensures high-precision convergence while 
maintaining a reasonable computational time. This value is chosen based on a sensitivity analysis, where ε = 0.001 
demonstrates a favorable trade-off between solution quality and computational efficiency.

As shown in Table 4, tightening the convergence threshold from 10−2 to 10−4 results in slightly improved 
solution quality (0.3% improvement in the objective value), but with significantly increased computation time 
(over 60% longer). The difference in objective values between 10−3 and 10−4 is negligible (0.02%), suggesting 
diminishing returns beyond the default setting. Thus, ε = 10−3 provides a well-balanced compromise between 
robustness and computational burden.

Decomposing the objective function gives the main problem in the form of:

	




min
x

α,

s.t.α ≥ cT yl

Dyl ≥ d
Kyl = 0
F x + Gyl ≥ h
Iuyl = u∗

l
∀l ≤ k

� (49)

Subproblems take the form of:

	
max
u∈U

min
y∈Ω(x,u)

cT y� (50)

The solution process is:

	(1)	 Set the initial scenario data as the value of the uncertain variable u0, define the lower and upper bounds 
of the operating cost corresponding to the final scheduling plan, and initialize the number of iterations as 
k = 1.

	(2)	 Considering the uncertainty of the user-side load, solve the main problem to obtain the optimal solution. 
The value of the objective function of the main problem serves as the new lower bound.

	(3)	 Solve the subproblem based on the solution obtained from the master problem x∗
k  to determine the objec-

tive function value fk(x∗
k) of the subproblem and the corresponding value u∗

k+1 of the uncertain variable 
u, and update the upper bound UB = min{UB, fk(x∗

k)};
	(4)	 Given the algorithm’s convergence threshold ε, if UB − LB ≤ ε, stop iteration and return the optimal solutions 

x∗
k  and y∗

k ; otherwise, add the variable yk+1 and following constraints:

	




α ≥ cTyk+1

Dyk+1 ≥ d
Kyk+1 = 0
F x + Gyk+1 ≥ h
Iuyk+1 = u∗

k+1

� (51)

If the stopping criterion is not met, the variable uₖ and the corresponding constraints are added to the master 
problem, and the algorithm proceeds to the next iteration (k = k + 1).

To rigorously evaluate the practical performance of the proposed PSO-C&CG algorithm, an extensive analysis 
was conducted to assess its convergence behavior and sensitivity to key parameters. Such an analysis is critical 
for verifying the robustness and reliability of the algorithm in practical applications. The algorithm was executed 
over 30 independent runs for each parameter configuration to ensure statistical significance of the results. The 
comprehensive findings, which integrate both sensitivity and convergence metrics, are summarized in Table 5.

The population size (N) of the PSO solver was identified as a critical parameter influencing the trade-off 
between solution quality and computational expense. The baseline configuration (N = 50) achieved the lowest 
mean operating cost among all tested setups, demonstrating its superior economic performance. While the large 
population configuration (N = 70) yielded a marginally improved solution stability, as indicated by the lowest 
standard deviation of the objective value, this came at the cost of a 26% increase in computation time compared 
to the baseline. Conversely, the small population configuration (N = 30), despite its computational speed, resulted 
in a significantly higher and more volatile operating cost. This behavior is characteristic of insufficient exploration 

Threshold ε Computation time (s) Iterations Remarks

10−2 81.4 10 Faster convergence; minor loss of accuracy

10−3 90.8 15 Balanced trade-off (default)

10−4 132.6 25 Marginal improvement; high cost

Table 4.  Impact of convergence threshold ε on algorithm performance.

 

Scientific Reports |          (2026) 16:582 15| https://doi.org/10.1038/s41598-025-30090-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of the solution space, leading to convergence to inferior local optima. Therefore, the baseline parameter N = 50 
is justified as it optimally balances exploration and exploitation, ensuring high-quality, cost-effective dispatch 
decisions without prohibitive computational overhead.

A paramount finding is the 100% convergence success rate achieved across all 30 independent runs for every 
parameter configuration. This result unambiguously confirms the inherent numerical stability and reliability 
of the proposed PSO-C&CG framework, irrespective of the initial conditions or specific parameter tuning. 
Furthermore, the convergence process itself is highly predictable. The low standard deviation observed in the 
number of iterations required for convergence (particularly 1.2 for the baseline) indicates that the algorithm’s 
runtime behavior is consistent and repeatable. This predictability is a crucial attribute for the practical 
implementation of optimization algorithms in energy system scheduling, where reliable and timely decision-
making is essential.

The computational complexity of the proposed hybrid PSO-C&CG algorithm exhibits favorable scaling 
properties for large-scale problems. The C&CG framework ensures that the number of iterations grows sub-
linearly with problem size, as the decomposition structure effectively handles the min–max formulation through 
strategic scenario generation. Meanwhile, the PSO component maintains O(N) complexity per iteration, where 
N is the swarm size, which remains constant regardless of problem dimension.

Case analysis
Fitted estimate of uncertainty of the load
The probability distribution of the user load forecast error is represented by a histogram and a distribution 
curve, as shown in Figs. 6 and 7. The blue bars represent the histogram of the user load forecast error, with the 
left vertical axis indicating frequency, while the red curve represents the fitted probability density function, and 
the right vertical axis indicates the probability density. The horizontal axis represents the standard deviation of 
the user load forecast error. As discussed earlier, a probability distribution model for the load forecast error for 
each time period must be established. In this paper, 8:00 and 14:00 are selected as examples. The distribution of 
the 8:00 power load forecast error is shown in Fig. 6a. As shown in the figure, the normal distribution provides 
a poorer fit compared to the actual histogram distribution, whereas the KDE offers a better fit. The difference 
is primarily observed in the interval of ± [0.05, 0.1]. The RMSE of the two distribution fits are 3.52 × 10⁻3 and 
5.45 × 10⁻3, respectively, indicating that KDE more accurately reflects the distribution characteristics of the user 
load forecast error. The distribution of the 14:00 power load forecast error is shown in Fig. 6b. The difference 
between the KDE and the normal distribution is primarily within the interval of ± [0.3, 0.25], with the RMSE of 
the two distribution fits being 2.89 × 10⁻3 and 8.76 × 10⁻3, respectively. The distribution of the heat load forecast 

Fig. 6.  Comparison of forecasting error distributions for electrical load.

 

Configuration Size(N) Value (RMB) Time (s) Mean iterations σ-Iterations Convergence

Small 30 5475.1 78.3 14.2 1.5 100%

Baseline 50 5468.3 90.8 15.0 1.2 100%

Large 70 5469.5 120.5 16.1 1.0 100%

Table 5.  Consolidated performance analysis of the PSO-C&CG algorithm under varying population sizes.
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error at 8:00 is shown in Fig. 7a, and the distribution at 14:00 is shown in Fig. 7b. It is evident that the KDE curve 
provides a significantly better fit for both the overall trend and local details.

To assess the effectiveness of LSCV for bandwidth selection in KDE, we conducted a comparative study 
using three representative distributions: standard normal (light-tailed), t-distribution with 5 degrees of freedom 
(moderately heavy-tailed), and Cauchy distribution (strongly heavy-tailed). In each case, samples were drawn 
from the theoretical distribution, and its analytical probability density function (PDF) was taken as the True 
PDF for evaluation. Although the normal distribution is shown to be less accurate in modeling real-world load 
profiles, it is still adopted here as a representative light-tailed benchmark for validating the performance of 
bandwidth selection methods in KDE. For each case, KDE was performed using bandwidths determined by 
LSCV. Although the normal distribution is shown to be less accurate in modeling real-world load profiles, it 
is still adopted here as a representative light-tailed benchmark for validating the performance of bandwidth 
selection methods in KDE.

As illustrated in Fig. 8, the LSCV method enables accurate tail fitting while maintaining overall smoothness, 
especially under moderate and heavy-tailed distributions. Hence, LSCV demonstrates greater adaptability 
and robustness in modeling the uncertainty of electricity and thermal loads, especially in capturing marginal 
behavior.

To compare the probability distributions of electric-heat load forecasting errors at different time periods, this 
paper takes electric load as an example and illustrates, as shown in Fig. 9, the comparison between the normal 
distribution and the kernel density distribution in terms of their RMSE over various time intervals. The results 
indicate that the normal distribution provides a poorer fit, particularly during certain time periods (e.g., 10:00–
14:00 and 16:00–20:00), where the RMSE is significantly higher. In contrast, the kernel density distribution 
demonstrates lower RMSE for most time periods, suggesting that it more effectively captures the characteristics 
of the forecasting errors, especially in time intervals with considerable variability. Similarly, the kernel density 

Fig. 8.  KDE performance evaluation under different theoretical distributions.

 

Fig. 7.  Comparison of forecasting error distributions for heat load.
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distribution also exhibits advantages in the context of heat load forecasting errors. Therefore, the kernel density 
distribution model is better suited for modeling the forecasting errors of electric-heat loads, as it yields more 
accurate predictions and error analyses.

Figure 10 illustrates the probability density distribution of load forecast errors across various time periods. 
The analysis reveals that near midday (e.g., 12:00), the forecast error distribution appears relatively “short and 
fat,” indicating that errors are concentrated during this period, corresponding to higher prediction accuracy. 
In contrast, during the morning (e.g., 10:00) and afternoon (e.g., 16:00) periods, the forecast error distribution 
becomes “tall and thin,” suggesting a broader error distribution with greater variability. Overall, the distribution 
of errors across the entire period exhibits a wide range, reflecting the high volatility of load forecast errors. Based 
on this analysis, using the distribution of all errors to generate scenarios may overlook significant differences 
between time periods, leading to less accurate forecast error scenarios. Therefore, a time-specific sampling 
generation method is more appropriate, as it can more accurately capture the characteristics of load forecast 
errors during different time periods, ultimately enhancing the accuracy and reliability of the forecast model.

In this study, the joint statistical characteristics of electric and thermal load uncertainties are modeled using 
a Copula-based framework, which effectively captures the dependency structure among multiple correlated 
stochastic variables. A total of 1,000 joint scenarios are generated via MC simulation and subsequently reduced 

Fig. 10.  Probability density function curves for different time periods.

 

Fig. 9.  Comparison of RMSE for different distribution functions.
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using the K-means clustering algorithm, with Euclidean distance adopted as the similarity metric. This method 
partitions the high-dimensional scenario space by minimizing the within-cluster sum of squared errors, and 
selects the centroid of each cluster as a representative scenario. The probability of each reduced scenario is then 
assigned proportionally to the size of its corresponding cluster, thereby preserving the statistical relevance and 
probabilistic weight of each realization.

To rigorously justify the selection of five representative scenarios and validate the efficacy of the K-means-
based reduction technique, a comprehensive quantitative assessment was conducted. This assessment evaluates 
the statistical congruence between the reduced scenario set and the original 1,000 Monte Carlo samples through 
moment preservation analysis and distributional similarity measurement via the Wasserstein distance.

A critical criterion for effective scenario reduction is the preservation of key statistical moments. Table 6 
compares the first four moments—mean, variance, skewness, and kurtosis—of the electrical and thermal load 
distributions between the original and reduced scenario sets. The results demonstrate that the relative errors 
for all moments remain below 5%, with errors for the central moments (mean and variance) within 2%. This 
indicates that the reduced set not only accurately captures the central tendency and dispersion of the original 
data but also effectively retains the shape characteristics, including asymmetry (skewness) and tail behavior 
(kurtosis).

Beyond moment matching, the Wasserstein distance (also termed the Earth Mover’s Distance) was employed 
to quantify the overall distributional discrepancy. This metric provides a robust, non-parametric measure of the 
minimal cost required to transform one distribution into another. The computed distances are: Electric load: 
4.72, Thermal load: 4.35.

A sensitivity analysis on the number of clusters revealed that using three clusters resulted in substantially 
larger Wasserstein distances (exceeding 12), indicating poor representation. In contrast, increasing the number 
of clusters to ten yielded only marginal improvements (distances ≈ 3.5) at a significant computational cost. 
The five-cluster configuration thus represents an optimal trade-off, achieving high distributional fidelity—as 
evidenced by the low Wasserstein metrics—while maintaining computational tractability for the subsequent 
optimization model.

The combined evidence from the moment preservation analysis and the distributional similarity assessment 
conclusively demonstrates that the five-cluster scenario set provides a statistically sound and computationally 
efficient representation of the original uncertainty space.

To determine an appropriate number of representative scenarios, a sensitivity analysis is conducted by 
comparing scenario sets of size 5, 10, and 20 in terms of operational fidelity and computational efficiency. As 
summarized in Table 7, selecting five scenarios achieves a favorable trade-off—limiting the economic deviation 
in operating cost to a mere 0.62% compared to the full-scenario benchmark, while significantly reducing the 
computational burden of the subsequent robust optimization problem.

The resulting five typical scenarios are illustrated in Fig. 11, each representing a distinct temporal evolution 
pattern of electric and thermal loads along with their associated realization probability. As shown in the figure, 
the 24 h load profiles under these five scenarios exhibit two characteristic peaks: the first typically occurs between 
10:00 and 12:00, and the second between 18:00 and 22:00. These peak periods correspond to higher daytime 
energy demand and align well with observed consumption patterns, underscoring the representativeness of the 
reduced scenario set. The final reduced scenarios are then used as inputs for robust scheduling optimization.

Number of Scenarios Relative error (%) Computation time (s) No. of decision variables Remarks

5 − 0.62 45.2 3200 Balanced accuracy and efficiency

10 − 0.46 87.5 6200 Accuracy improves, but time doubles

20 − 0.26 171.3 12,400 Marginal gain, significant cost increase

Table 7.  Comparison of optimization performance under different scenario quantities.

 

Statistic Original set Reduced set Relative error (%)

Electric load

Mean (MW) 290.17 288.95 0.41

Variance (MW2) 8100.45 7950.23 1.85

Skewness 0.32 0.31 3.12

Kurtosis 2.95 2.87 2.71

Thermal load

Mean (MW) 275.32 273.80 0.55

Variance (MW2) 7000.78 6850.49 2.15

Skewness 0.28 0.27 3.57

Table 6.  Statistical moment preservation between original and reduced scenario sets.
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Analysis of the operating results under different strategies
In order to rigorously evaluate the performance of the proposed PSO- C&CG algorithm, we conducted 30 
independent runs under identical experimental settings and compared its results to the traditional C&CG 
method. The comparison focuses on two key aspects: computational efficiency and computational accuracy.

Computational efficiency is defined as the total average solving time per run, including the master problem 
and subproblem iterations. As shown in Fig. 12, the PSO- C&CG algorithm significantly reduces the average 
computation time from 139.6 s (traditional C&CG) to 95.8 s, achieving a 31.4% reduction in solving time. This 
improvement is attributed to the PSO component’s ability to accelerate convergence via parallel exploration of 
the solution space, particularly beneficial in large-scale stochastic optimization.

Computational accuracy is defined as the relative reduction in objective function value compared to the 
baseline C&CG solution:

	
AccuracyGain (%) = FCCG − FP SO−CCG

FCCG
× 100%� (52)

where FCCG and FP SO−CCG are the objective values obtained by the traditional and proposed algorithms.
Strategy 1: Optimizes the output of supply-side equipment without accounting for DR.
Strategy 2: The thermoelectric coupling is decoupled by an energy storage device, and the user side participates 

solely in electric load DR to optimize the output of supply-side equipment.
Strategy 3: The thermoelectric coupling is decoupled by an energy storage device, and the user side participates 

solely in the selective response of the heat load to optimize the output of supply-side equipment.

Fig. 12.  Performance comparison with traditional algorithms.

 

Fig. 11.  Five representative scenarios of electrical load and heat load after K-means reduction.
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Strategy 4: The thermoelectric coupling is decoupled by an energy storage device, and the user side participates 
in both electric load DR and thermal load supply selection response, optimizing the output of supply-side 
equipment.

Strategy 5: The thermoelectric coupling is decoupled by an energy storage device, and the user participates 
in both electric load DR and selective heat load supply response, considering the impact of load uncertainty.

The operating conditions for the five strategies are summarized in Table 8. Strategy 1 does not consider DR, 
with electricity and heat being operated independently. The system’s load demand is primarily met by purchasing 
electricity and heat, leading to a higher operating cost of 5,872.3 RMB. Strategy 2 incorporates demand-side 
management into the system’s economic operation. By regulating the power consumption of controllable and 
time-shifted loads during peak periods, the system reduces its electricity purchase cost, resulting in a reduced 
total operating cost of 5,615.9 RMB. Strategy 3 uses complementary load characteristics for replacement DR 
to reduce peak power purchases. However, the cost of operating the electric boiler increases, leading to a total 
operating cost of 5,603.4 RMB. Strategy 4 combines both DR methods from Strategies 2 and 3. While the boiler 
cost increases compared to the previous strategies, the peak-period electricity purchase is reduced, optimizing 
the total operating cost to 5,375.8 RMB. Strategy 5 builds upon Strategy 4 by factoring in the impact of load 
uncertainty. Due to the volatility in the load, both the boiler and exchange costs increase slightly, causing the 
total operating cost to rise to 5,468.3 RMB.

For a transparent interpretation of the results in Table 8, the derivation of the DR participation rate and 
carbon emission values is explicitly stated below:

DR Participation Rate: This metric was calculated to quantify the degree of demand-side flexibility utilized. 
It is defined as the ratio of the total flexible load actively dispatched by the optimization model (the sum of 
curtailed, shifted, and replaced loads during the scheduling horizon) to the total technical potential of flexible 
loads available from user-side devices (e.g., HVAC, EWH, shiftable appliances). The result is expressed as a 
percentage, providing a clear measure of resource engagement.

Carbon Emissions: The total carbon emissions were derived by combining the optimal dispatch results from 
the model with standardized emission factors. The calculation is primarily based on the equation:

	 Total Emissions = Σ
(
P buy

E × η + PEB × µ
)

� (53)

where, η is grid emission factor, µ is fuel emission factor.
The grid emission factor corresponds to the average value for the regional power system. Consequently, the 

observed reduction in emissions under the proposed strategy (S5) is a direct outcome of the model’s decisions to 
minimize costly and carbon-intensive peak electricity purchases from the grid, leveraging instead local energy 
storage and flexible thermal loads.

Table 9 provides an economic comparison across five typical scenarios and their associated probabilities. Due 
to differences in scenario occurrence probabilities, the total costs vary accordingly. Therefore, the probability-
weighted expected value of the total costs across these five typical scenarios is adopted in this paper to represent 
the total cost considering load uncertainty.

As shown in Tables 8 and 9, Strategy 5, which incorporates user-side load uncertainty, results in a slight 
increase in user cost by approximately 1.7% compared to other strategies. This cost increment primarily arises 
from the conservative scheduling adjustments designed to hedge against potential load fluctuations, thereby 
ensuring the system’s robustness and feasibility in practical operation. References28–30 similarly indicate that 
robust optimization under uncertainty typically leads to moderate cost increases, which are widely regarded 

Scenario Probability Total fee/RMB

1 0.19 5468.3

2 0.17 5567.2

3 0.18 5501.8

4 0.24 5479.4

5 0.22 5437.6

E(x) 5487.05

Table 9.  Economic comparison under five representative scenarios.

 

Strategy Boiler fee/RMB Exchange fee/RMB Demand-side fee/RMB Total fee/RMB

1 0 5872.3 0 5872.3

2 780.6 4419.0 416.3 5615.9

3 845.7 4379.6 378.1 5603.4

4 857.2 3765.2 753.4 5375.8

5 871.3 3822.7 774.3 5468.3

Table 8.  Operating results for different strategies.
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as a reasonable and acceptable trade-off in integrated energy systems. Specifically, this modest increase in 
cost yields enhanced system adaptability and improved operational reliability under uncertain conditions, 
effectively mitigating risks of violations or failures caused by unforeseen fluctuations. In real-world engineering 
applications, this slight economic burden is generally outweighed by the avoidance of potentially far greater 
losses due to system risks, thus providing significant practical and application value.

The practical relevance of the identified 1–2% cost reduction, as evidenced by Strategy 5’s performance against 
the baseline (Strategy 1), extends beyond its nominal percentage. In the context of capital-intensive integrated 
energy systems with high annual operational expenditures, a 1.7% reduction translates into substantial absolute 
savings—approximately 100 RMB daily and over 36,500 RMB annually for the studied system. For utilities 
managing multiple such systems, these accumulated savings significantly enhance the economic viability 
and return on investment for deploying integrated demand response infrastructures. Furthermore, this cost 
efficiency is not achieved in isolation; it is concomitant with enhanced system flexibility and robustness against 
uncertainties, as quantified by the following uncertainty analysis. This combination of economic benefit and 
operational resilience underscores the strategic value of the proposed method for real-world applications.

To provide a more rigorous and quantitative assessment of the economic performance under uncertainty, 
Table 10 summarizes the statistical analysis of the total operating cost for Strategy 5, which explicitly incorporates 
load uncertainty. The expected cost is calculated as 5487.05 RMB, consistent with the weighted average cost 
presented in Table11. Furthermore, the standard deviation of 97.46 RMB indicates a moderate level of cost 
variability across scenarios.

Importantly, the 95% confidence interval, computed based on the normal distribution approximation, ranges 
from 5297.03 RMB to 5677.07 RMB. This interval quantifies the uncertainty band within which the actual 
operating cost is likely to fall with high confidence, reflecting the system’s robustness against load fluctuations.

Such probabilistic evaluation enhances the reliability of the economic analysis by moving beyond deterministic 
single-point estimates and demonstrating that the proposed uncertainty-aware strategy maintains stable and 
cost-effective operation under realistic, stochastic conditions.

The provision of this 95% confidence interval for the expected operating cost (5487.05 ± 95.02 RMB) is 
critical for a comprehensive economic risk assessment. It quantifies the economic uncertainty inherent in the 
system due to load fluctuations, providing a bounded estimate rather than a single, potentially misleading, point 
value. The relatively narrow range, with a standard deviation of 97.46 RMB, indicates that while the day-to-day 
cost may vary, the long-term economic performance of Strategy 5 is predictable and stable. Decision-makers 
can therefore be highly confident that the operational cost will fall within this range, facilitating more reliable 
budgeting and risk management. This probabilistic assurance is a key advantage over deterministic optimization 
methods, which cannot characterize such economic risks.

Analysis of the results of the electrical energy operation
Figure 13 presents the results of the electrical energy operation for each strategy. The results indicate that, during 
the 22:00–6:00 tariff valley hours, when the electrical load is predominantly supplied by the grid, EB in all 
strategies are activated at 4:00, with the electrical storage devices operating in charging mode. In comparison to 
Strategy 3, Strategies 2 and 4 exhibit higher purchased power during the tariff valley period due to the shifting 
of part of the electric load to this period. During the peak tariff hours of 6:00–12:00, as both the electric load 
and tariff increase gradually, the system’s purchased power decreases correspondingly, and the electric storage 
equipment begins discharging. In comparison to Strategies 2 and 3, Strategy 4 notably reduces purchased 
power by curtailing and shifting some of the power usage, while guiding users to optimize their energy supply. 
Moreover, the electric storage discharge power in Strategy 4 is lower than that in Strategy 3 during this period, 
demonstrating superior energy management. During the 12:00–18:00 tariff flat period, the system’s purchased 
power increases as both the electric load and tariff decrease. During the 18:00–22:00 period, the second peak of 
the tariff, the system operates in a manner similar to the first peak period (6:00–12:00). However, in the latter 

Strategy DR framework Uncertainty modeling Operating cost (RMB) DR participation rate (%)

S5 Proposed multi-energy DR KDE + Copula + MC 5468.3 38.7

S6 Electricity-only DR Deterministic 5806.1 27.6

S7 Robust DR Box-type polyhedral set 5584.7 23.1

Table 11.  Comparative performance of proposed and benchmark strategies.

 

Metric Value (RMB) Description

Expected cost (mean) 5487.05 Probability-weighted expected cost

Standard deviation 97.46 Variability across 5 scenarios

95% confidence interval [5297.03, 5677.07] Based on normal approximation

Minimum cost 5437.6 Among all 5 scenarios

Maximum cost 5567.2 Among all 5 scenarios

Table 10.  Statistical analysis of total cost under load uncertainty (Strategy 5).
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half of the peak period, as the electrical load gradually decreases, the electrical storage discharge power and 
discharge frequency are significantly reduced across all strategies. Strategy 5 incorporates the uncertainty of 
the electrical load, which is supplied by the grid during the 22:00–6:00 tariff valley hours. The electrical storage 
device charges, and the electric boiler activates around 4:00 to provide thermal support. However, the purchased 
power and boiler power increase, thereby raising operating costs due to load fluctuations. During the 6:00–12:00 
tariff peak hours, the purchased power gradually decreases as both the tariff and load rise, and the electric 
storage equipment begins discharging, though the discharge power fluctuates slightly. Between the 12:00 and 
18:00 tariff hours, purchased power increases, system operation stabilizes, and both boiler and electrical energy 
exchange costs rise slightly due to fluctuations. During the second peak period (18:00–22:00), the operational 
mode mirrors that of the first peak period. Power purchase and discharge power are adjusted in response to load 
fluctuations, and the discharge power and equipment operation frequency are significantly reduced in the latter 
half as the load decreases.

Figure 14 illustrates the output characteristics of electric storage over a 24-h period under different strategies, 
with Strategy 5 representing the output under integrated DR that accounts for uncertainty. The figure reveals 
a significant difference in the temporal distribution of the output characteristics of EES across the various 
strategies (Strategies 2 to 5). During peak load hours (e.g., 7:00–11:00 and 18:00–22:00), EES supports the system 
by providing positive output, thereby alleviating peak load pressures. In contrast, during low load hours (e.g., 
0:00–6:00 and 12:00–16:00), the EES operates in the negative direction, storing excess energy in preparation for 
the regulation of subsequent peak hours. Strategy 5, which incorporates integrated DR considering uncertainty, 
results in increased volatility in the output of electric storage, reflecting the system’s greater regulation task in 
response to load uncertainty.

Fig. 13.  The results of the electrical energy operation.
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Analysis of the results of the heat energy operation
The thermal performance results for each strategy are illustrated in Fig. 15. During the 22:00–6:00 tariff valley 
hours, thermal loads in each strategy are primarily supported by EB and HST. Compared to Strategies 2 and 3, 
Strategy 4 releases more thermal energy from storage, resulting in a smaller output from the EB. During the 
6:00–12:00 period, Strategies 3 and 4 significantly reduce the power of electric heat equipment by optimizing 

Fig. 15.  The results of the heat energy operation.

 

Fig. 14.  Electric energy storage operation patterns across different strategies.
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its operation strategy, which increases the power of the heat load and further elevates the operating power of 
the EB. Additionally, Strategy 4 has a longer duration of heat storage compared to Strategy 3, thereby storing 
more thermal energy. During the 12:00–18:00 period, the heat output from the EB in each strategy decreases, 
while the HST begins to release heat. The 18:00–22:00 period represents the second tariff peak, during which 
the system operates similarly to the 6:00–12:00 period. Consequently, the heat load power increases, and the EB 
operate at higher power. During the 22:00–6:00 tariff valley hours, the thermal load in Strategy 5 is shared by 
EB and HST; however, the EB operating power fluctuates due to load variations, and the HST charging power 
also exhibits instability. During the 6:00–12:00 peak tariff hours, the EB operates at significantly higher power, 
while the HST’s heat storage duration is slightly shorter, leading to insufficient thermal energy reserves. During 
the 12:00–18:00 tariff period, the HST gradually releases heat to balance the load, although the release process is 
subject to fluctuations. During the second tariff peak (18:00–22:00), the EB operating power fluctuates slightly, 
the HST heat release power decreases, and the overall operating cost increases due to load uncertainty.

Figure 16 illustrates the output characteristics of thermal storage over a 24-h period under different strategies, 
with Strategy 5 representing the output under integrated demand response that accounts for uncertainty. From 
the figure, it is evident that the thermal storage outputs in Strategies 2 to 5 exhibit significant temporal differences. 
During peak load hours (e.g., 0:00–6:00 and 18:00–24:00), the positive output of HST is higher, indicating that 
it releases heat to meet system demand. In contrast, during low load hours (e.g., 7:00–17:00), HST primarily 
functions by storing thermal energy through negative output. Specifically, Strategy 5 exhibits more significant 
output fluctuations, reflecting the ability of thermal storage to regulate output more flexibly in response to load 
fluctuations and system uncertainty under integrated DR that accounts for uncertainty.

Comparison with existing methods
To further verify the superiority of the proposed integrated DR strategy under uncertainty, this section conducts 
a comparative analysis with two representative benchmark methods from recent literature. Reference31 presents 
an electricity DR strategy based on a bilevel optimization model, which incorporates user participation and 
mixed response schemes. The model employs a Stackelberg game framework to coordinate demand flexibility 
in the electricity market. Reference32 proposes a robust load restoration model that accounts for uncertain 
dynamic loads, utilizing a stability-constrained polyhedral uncertainty set. This model represents a state-of-the-
art framework for uncertainty-aware optimization.

These two methods are selected as benchmarks for advanced DR coordination and robust optimization 
under uncertainty. To ensure a fair comparison, both models are adapted to the same scenario dataset generated 
through Copula-KDE-based MC sampling, and applied to an identical multi-user IEHS structure.

Strategy 5: The proposed integrated DR framework.
Strategy 6: Two-layer power DR based on deterministic modeling31.
Strategy 7: Robust optimization and centralized dispatch based on box-type uncertainty sets32.
The comparative results are summarized in Table 11. The proposed Strategy 5 consistently outperforms 

both benchmark strategies across all performance indicators. Compared to Strategy 6, which focuses solely on 
electric DR, Strategy 5 reduces operating costs by 5.8%, boosts user participation by over 11%. This demonstrates 
the advantage of incorporating heat load flexibility. Compared to Strategy 7, which emphasizes uncertainty 
robustness but lacks flexibility due to its worst-case conservatism, the proposed model achieves better economic 
efficiency and demand-side responsiveness. Notably, the Copula-based joint distribution model captures both 
inter-variable dependency and temporal variability, allowing for a more realistic representation of user-side 
uncertainties than traditional box-type sets.

Scalability analysis
To comprehensively evaluate the scalability of the proposed PSO-C&CG algorithm, we conducted extensive 
numerical experiments on three systematically scaled test systems. Small-Scale System: The original case study 
presented in previous sections, serving as the baseline for comparison. Medium-Scale System: An expanded 
configuration with four times the number of users compared to the small-scale system. Large-Scale System: A 
significantly larger system with 900% more users, representing a challenging regional-scale integrated energy 
system.

Fig. 16.  Heat energy storage operation patterns across different strategies.

 

Scientific Reports |          (2026) 16:582 25| https://doi.org/10.1038/s41598-025-30090-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The computational performance across different scales is summarized in Table 12, which includes the 
following key metrics.

To evaluate the scalability of the proposed PSO-C&CG algorithm, its performance was rigorously tested 
across systems of varying user scales. The results demonstrate favorable scaling properties: firstly, the number 
of C&CG iterations exhibits a sub-linear increase, rising only from 15 to 22 as the user base scales up by a 
factor of ten (from 50 to 500 users). This indicates that the core logic of iteratively identifying critical worst-case 
scenarios remains highly efficient and does not deteriorate significantly with increasing problem dimensionality. 
Secondly, the total computation time grows predictably with the number of users, and the computational load 
maintains a consistent, near-equal split between the master problem and the subproblem (each consuming 
approximately 50% of the total time). This balanced profile confirms the robustness of the hybrid framework 
design, as neither component becomes a disproportionate bottleneck with increasing system size. Finally, for the 
large-scale system with 500 users, the total computation time remains at approximately 12 min, which is well 
within practical limits for day-ahead scheduling applications. This analysis confirms that, although the proposed 
framework is applied here at the community level, it possesses the computational tractability and reliability for 
problems of significantly larger scale, underscoring its potential for broader application.

Conclusion
This paper investigates the uncertainty of user-side load and develops an IDR-EH optimization model. To 
characterize the volatility and uncertainty inherent in multi-dimensional load data, a Copula-based load time-
correlation uncertainty model was constructed, and the distribution of forecasting errors was fitted using the 
non-parametric KDE method. Subsequently, the MC sampling approach was utilized to obtain predictive 
fluctuations for each load, enabling the replacement of uncertain data with sampled datasets. Furthermore, by 
employing an EB as the electricity-heat coupling device and utilizing energy storage devices for decoupling, the 
proposed integrated DR optimization model comprehensively accounts for load uncertainties and coordinates 
electricity and heat demands. The major findings from the numerical analysis are summarized as follows:

Compared with the single electricity DR, the proposed IDR-EH yields an 81% increase in user compensation 
and a 0.7% reduction in total operating costs. In comparison with the single heat DR, user compensation 
improves by 99%, and the total operating costs decrease by 0.5%. Moreover, the IDR-EH demonstrates the 
most effective peak shaving and valley filling capability. After considering uncertainties, the operating costs are 
slightly higher than those under deterministic integrated demand response scenarios due to system fluctuations; 
however, the costs remain lower compared to scenarios without DR strategies.

The scalability analysis conducted in Section “Scalability analysis” demonstrates that the proposed PSO-
C&CG framework maintains computational efficiency across systems of varying scales. While absolute 
computation time increases with problem size, the near-linear scaling relationship and stable convergence 
patterns confirm the method’s applicability to realistic large-scale integrated energy systems. For extremely large 
systems beyond those tested, potential enhancements such as parallel computing or hierarchical decomposition 
could be explored in future work.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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