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This paper presents a media image style transfer approach built upon an enhanced StyleGAN2 
framework, designed to address common issues in traditional style transfer methods such as mode 
collapse, loss of image details, and style distortion. The proposed method integrates a ResNet-based 
generator with a PatchGAN discriminator and incorporates the DCL loss function to significantly 
boost the quality of generated images and stabilize the training process. Experimental evaluations on 
the Horse2Zebra and Cityscapes datasets demonstrate that this approach produces superior image 
quality. Qualitative assessments reveal that the technique effectively preserves the original content 
throughout the style transfer while delivering impressive stylization effects. Compared to established 
models like CycleGAN, CUT, and DCLGAN, our method achieves clearer images with richer color 
representation and successfully mitigates problems such as texture deformation and blurred details. 
Quantitative metrics, including Inception Score (IS) and Fréchet Inception Distance (FID), further 
confirm the method’s advantages over existing solutions. Notably, on the Horse2Zebra dataset, the 
method achieves a 13% reduction in FID and a 6% increase in IS, highlighting marked improvements 
in both image fidelity and diversity, as well as robust generalization across datasets. Ablation studies 
underscore the contribution of the DCL loss function in enhancing edge detail rendering and overall 
image quality. Moreover, generalization tests validate that the improved StyleGAN2 model not only 
adapts well across varied datasets but also excels in diverse image style transfer applications.

Keywords  Image style transfer, StyleGAN2, ResNet, PatchGAN, Decoupled contrastive learning (DCL), 
Generative adversarial networks (GANs), Inception score (IS), Fréchet inception distance (FID)

In the era of digitalization, the production and consumption of digital media content—spanning images, audio, 
and video—have grown exponentially, driving innovations in fields such as digital art, film and television 
production, and advertising design1. Central to enhancing user experiences in these domains is the ability 
to manipulate visual aesthetics while preserving core content, a capability epitomized by image style transfer 
technology2,3. This technique, also referred to as image translation, enables the conversion of an image’s visual 
style (e.g., textures, colors, and artistic motifs) into another, allowing the same content to exhibit diverse aesthetic 
effects—from photorealistic renderings to stylized artworks4,5.

At its core, image style transfer aims to achieve cross-domain image conversion while retaining the original 
content information. With the rise of deep learning, generative adversarial networks (GANs) have emerged 
as a dominant framework for this task6. GANs operate through a competitive paradigm: a generator learns 
to produce realistic images, while a discriminator distinguishes between real and synthetic samples7. This 
adversarial dynamic drives both networks to improve iteratively, enabling high-quality style transfer across 
domains8,9. Broadly, style transfer methods using GANs fall into two categories: supervised and unsupervised. 
Supervised approaches, such as Pix2Pix, rely on paired datasets where each source image is matched with a 
target image, enabling precise one-to-one translation10. However, their dependence on large-scale paired data 
imposes heavy burdens in data collection and labeling, limiting scalability. Unsupervised methods, by contrast, 
eliminate the need for paired samples and instead learn the data distributions of two domains, making them 
more practical for real-world applications11.

CycleGAN, a landmark in unsupervised style transfer, introduced cycle consistency constraints to achieve 
cross-domain translation, but it struggles with limited control over style results—often producing distorted 
details (e.g., blurred zebra stripes in Horse2Zebra tasks) and inconsistent color mapping12,13. Subsequent 
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advancements, such as StarGAN14 and its improved version StarGAN v215, sought to enhance control by 
incorporating labels or style encoders, but preset labels still restrict user flexibility, failing to adapt to dynamic 
style demands in complex scenes (e.g., varied building textures in Facades datasets). Other models, including 
FacialGAN16 and Adaptive Region Style Transfer17, attempted to refine control using segmentation masks or 
region-specific constraints, yet segmentation masks fail to ensure clear boundary preservation (e.g., overlapping 
vehicle contours in Cityscapes), and high-resolution details (e.g., facial features or texture nuances) remain 
prone to blurring18,19.

Beyond control issues, existing unsupervised methods also face three critical technical bottlenecks that 
hinder practical adoption20. First, in generator design: traditional ResNet-based generators, while mitigating 
gradient vanishing, use fixed residual block structures that lead to cross-layer information loss—this results in 
poor retention of fine details (e.g., grass texture in Horse2Zebra backgrounds) and edge coherence (e.g., road 
line continuity in Cityscapes) when processing high-resolution images (256×256 and above)21–23. Second, in 
discriminator performance: conventional PatchGAN discriminators evaluate only fixed-size local patches (e.g., 
70×70), lacking a mechanism to link local texture authenticity with global structural consistency—this causes 
”local-global mismatch” (e.g., realistic pedestrian textures but misplaced positions relative to buildings)24–26. 
Third, in loss function design: contrastive learning-based losses (e.g., in CUT28) suffer from Negative-Positive 
Coupling (NPC) effects—when batch sizes are small, the gradient updates for positive and negative samples 
interfere with each other, leading to low color saturation (e.g., dull building exteriors in Facades) and unstable 
training.

To address these limitations, this paper proposes an enhanced StyleGAN2 framework tailored for media 
image style transfer. Building on the strengths of StyleGAN2—a model renowned for disentangling latent 
features and generating high-fidelity images—we introduce three key improvements:

•	 A ResNet-based generator to mitigate gradient vanishing/exploding in deep networks and preserve details;
•	 A PatchGAN discriminator that focuses on local image patches, enhancing the evaluation of fine-grained 

details;
•	 The integration of the Decoupled Contrastive Learning (DCL) loss function to strengthen representation 

learning, stabilize training, and reduce sensitivity to suboptimal hyperparameters.

Through the above improvements, the goal is to enhance the performance of the StyleGAN2 model in media 
image style transfer, providing effective technical support for practical engineering applications.

Materials and methods
Overall model architecture
The media image style transfer model proposed in this paper takes the improved StyleGAN2 as its core framework. 
Through the collaborative design of ResNet generator, optimized PatchGAN discriminator and improved DCL 
loss function, it constructs a three-in-one style transfer system of ”generation-discrimination-loss constraint”. 
The overall architecture revolves around the goal of ”accurately preserving content structure + efficiently realizing 
style transfer + stable optimization of training process”. The model takes source domain images as input (such as 
horse images from the Horse2Zebra dataset or semantic street maps from the Cityscapes dataset). First, cross-
domain mapping is completed through dual ResNet generators: Generator G is responsible for converting source 
domain images into target domain style images, while generator F performs inverse mapping to build cycle 
consistency constraints. Both adopt an ”encoder - 9 attention-enhanced residual blocks - decoder” structure. 
The encoder extracts deep semantic features of the source domain images through multiple convolutional layers 
and compresses them into low-dimensional representations. The attention-enhanced residual blocks strengthen 
the transmission of edge and detail features by dynamically adjusting the cross-layer information weights. The 
decoder reconstructs the compressed features into a stylized image at the target resolution (256×256) with the 
help of deconvolutional layers. The stylized image output by the generator and the real target domain image 
are jointly input into an optimized PatchGAN discriminator. This discriminator uses a 5-layer convolutional 
structure to evaluate multi-scale local blocks (32×32, 64×64, 70×70), not only judging the realism of local 
textures but also associating global structural consistency through feature concatenation, providing more 
accurate gradient feedback to the generator. Simultaneously, the model introduces an improved DCL loss 
function, which weakens the NPC effect in traditional contrastive losses by optimizing positive and negative 
sample sampling strategies and adaptive temperature parameter adjustment. This loss works synergistically with 
generative adversarial loss and cycle consistency loss to enhance the feature similarity between generated and 
real images while ensuring training stability and avoiding mode collapse. The entire model achieves end-to-
end processing from source domain image input to high-quality target domain stylized image output through 
multi-component collaborative optimization, effectively addressing the core problems of detail loss, local-global 
mismatch, and training instability in existing methods.

StyleGAN2 model
StyleGAN (Style-based Generative Adversarial Network)27 is built on a progressively growing GAN architecture. 
Both the generator and discriminator start at a low resolution of 4 × 4, and gradually add new layers as training 
progresses to capture richer details, eventually reaching a resolution of up to 1024 × 1024. To improve the 
quality of the final image, StyleGAN uses a number of technical means. First, a mini-batch standard deviation 
calculation is used to alleviate a common problem of GAN models - only capturing a limited range of variation in 
the training data. Specifically, the model calculates the feature standard deviation of each small spatial location, 
and then averages it over all features and spatial locations to obtain a single value. This value is replicated 
and spliced to all spatial locations and mini-batches of samples to form an additional feature map, which is 
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attached to the end of the discriminator. Secondly, to avoid unhealthy competition between the generator and 
the discriminator, which leads to signal noise amplification, the basic N(0, 1) weight initialization method is 
adopted, and the weights are explicitly scaled at runtime, replacing the old initialization method. In addition, 
the generator normalizes the pixel-level feature vector to unit length after each convolutional layer to further 
stabilize the training process.

While StyleGAN retains the core concept of a progressively growing GAN architecture, it incorporates 
several notable enhancements28,29. The most significant modification is the removal of the progressive training 
procedure. Initially, the input latent vector z is processed through an eight-layer multilayer perceptron (MLP), 
producing an intermediate style representation w. This style vector is then injected into every convolutional 
layer of the generator via adaptive instance normalization (AdaIN), allowing fine-grained modulation of the 
generated image’s style. The AdaIN operation can be mathematically expressed as:

	
AdaIN(xi, y) = ys,j × xi − µ(xi)

σ(xi)
+ yb,i� (1)

where each feature map xi undergoes individual normalization followed by scaling and shifting using style 
parameters y. Additionally, the model incorporates explicit noise inputs in the form of single-channel Gaussian 
noise images, enabling the generator to introduce stochastic variation and fine details directly into the output.

StyleGAN2 is an enhanced version of StyleGAN30, as shown in Fig.  1, and serves as a benchmark for 
contrastive style transfer generative adversarial networks.In contrast to earlier GAN models, both StyleGAN and 
StyleGAN2 utilize an alternative generator architecture for the generative adversarial network. This architecture 
has been refined to enhance two key functions. The first enhancement involves an unsupervised learning task 
aimed at classifying high-level image attributes, such as facial pose and identity. The second improvement is the 
accurate generation of random variations in the images, such as freckles and hair. StyleGAN2 generates realistic 
images by disentangling the features of the input image into latent space and leveraging this to create new images 
that closely resemble the original input. Many contemporary style transfer GANs are built on StyleGAN2 or use 
similar architectures, with only minor adjustments made to fit specific use cases31.

Fig. 1.  StyleGAN2 model architecture.
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Generator model
In this work, the generator leverages the ResNet architecture, illustrated in Fig. 232. The system employs two 
separate ResNet-based generators: generator GG transforms images from the source domain to the target 
domain, while generator FF performs the inverse mapping. Each of these generators is composed of an encoder 
and a decoder. The encoder’s function is to extract salient features from input images and compress them into 
a lower-dimensional representation. Subsequently, the decoder reconstructs this compressed feature map back 
into an image within the desired domain. Situated between the encoder and decoder are nine residual blocks 
characteristic of ResNet, with each block containing two convolutional layers coupled with a skip connection. 
These skip connections play a vital role in transmitting information directly between layers, thereby mitigating 
typical issues such as gradient vanishing and exploding that commonly affect deep networks. By enabling 
information to bypass intermediate layers, skip connections not only facilitate more efficient training but also 
bolster the model’s ability to generalize. Moreover, this architectural choice is crucial for retaining intricate 
image details, ultimately supporting superior performance in image style transfer tasks33,34.

Table 1 details the primary components of the generator’s architecture. The network begins with an input 
layer (layer 0) designed to accept images sized 256 × 256. This is followed by three convolutional layers 
spanning layers 1 through 3, succeeded by a series of nine ResNet residual blocks. To upscale the feature maps 
back to their original resolution, the model incorporates three deconvolutional layers, which are essential for 
reconstructing high-resolution feature representations. The convolutional layers apply strides of 1, 2, and 2 

Fig. 2.  Generator model.
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respectively, efficiently decreasing the spatial dimensions of the feature maps. Such a configuration not only 
enhances computational efficiency during the style transfer operation but also contributes to generating higher-
quality images. Moreover, the generator’s performance and training effectiveness are closely tied to the careful 
tuning of convolutional kernel parameters, including kernel size, quantity, and stride settings.

Discriminator model
This study uses PatchGAN as an image discriminator, and its structure is shown in Fig. 335,36. The main task of 
the discriminator is to evaluate and classify the images generated by the generator. Unlike the traditional overall 
image discrimination method, PatchGAN divides the input image into multiple small areas, specifically 70 × 70 
image blocks, and discriminates each block separately, and finally summarizes the score of the entire image. 
This local discrimination method enables the discriminator to focus more on the details, thereby improving 
the accuracy of the evaluation and the authenticity of the generated image. In this model, PatchGAN, as a 
discriminator network, can effectively identify the realism of the image and provide guidance for the training of 
the generator.

The discriminator network consists of five layers. The first layer is a convolutional layer, and the activation 
function uses LeakyReLU; the second to fourth layers all contain convolutional layers, followed by instance 
normalization (InstanceNorm) and LeakyReLU activation function; the fifth layer is a convolutional layer, which 
outputs a one-dimensional feature vector. The specific parameter settings of each layer of the discriminator, such 
as convolution kernel size, number of filters, and stride, are detailed in Table 2.

Fig. 3.  Discriminator model.

 

Module Layer No. Name Amount Normalize Convolution kernel size Convolution kernel amount Activation function

Encoder 1 Conv 1 In 7 × 7 32 ReLU

Encoder 2 Conv 1 In 3 × 3 64 ReLU

Encoder 3 Conv 1 In 3 × 3 128 ReLU

Residual 4-12 ResNet 9 – 3 × 3 128 ReLU

Decoder 13 DeConv 1 In 3 × 3 64 ReLU

Decoder 14 DeConv 1 In 3 × 3 32 ReLU

Decoder 15 DeConv 1 In 7 × 7 1 ReLU

Table 1.  Generator network architecture parameters.
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Loss function improvement
Xuan et al.37 introduced the DCL (Decoupled Contrastive Learning) loss function, which effectively eliminates 
the significant Negative-Positive Coupling (NPC) effect in the loss function. When the batch size is small, 
the force applied to separate negative samples from positive ones is weaker, allowing NPC to impair learning 
efficiency. The DCL loss function can simply address the batch size issue in learning, significantly improving 
learning efficiency. In this paper, for the inherent NPC effect in StyleGAN2, the DCL loss function not only 
strengthens effective representation learning but also further improves the stability of the training process and 
reduces sensitivity to suboptimal hyperparameters.

The goal of Decoupled Contrastive Learning (DCL) is to maximize the mutual information shared between 
corresponding patches in the input and output images. This is achieved through a noise contrastive estimation 
framework38, which enhances the mutual dependence between input-output pairs. At the heart of contrastive 
learning lies the comparison between a query sample and multiple negative samples drawn from the dataset. 
Specifically, the query vector, a positive sample vector, and N negative sample vectors are all embedded into 
a K-dimensional space, denoted as v+ ∈ RK  and v− ∈ RN×K . Each negative vector v−

n  undergoes L2 
normalization alongside the others. Subsequently, the framework formulates an (N + 1)-class classification 
problem that computes the likelihood of correctly distinguishing the positive vector from the negatives. A 
temperature parameter τ , typically set to 0.07, is used to scale the similarity scores between vectors. This is 
mathematically expressed as:

	
l(v, v+, v−) = − ln

(
exp(v · v+/τ)∑N

n=1 exp(v · v−
n /τ)

)
� (2)

There exists a notable interdependence between positive and negative samples. When negative samples differ 
significantly from easy negatives and carry limited information, the gradient updates driven by informative 
positive samples are weakened due to the negative-positive coupling (NPC) effect. Conversely, when positive 
samples resemble easy positives and provide less information, the gradients arising from a batch of challenging 
negative samples are similarly attenuated by the NPC factor.

Experimental platform and datasets
The experiments in this paper were performed using the Horse2zebra, Cityscapes, and Facades datasets for 
both training and evaluation. The Horse2zebra dataset consists of real photos of horses and zebras, available at 
https://opendatalab.org.cn/OpenDataLab/Horse2zebra. The selected test set includes 120 images of horses and 
140 images of zebras, while the training set contains 1067 images of horses and 1334 images of zebras. Both 
datasets are unpaired, and each image has a resolution of 256 × 256 pixels.

The Cityscapes dataset contains city street scene photos from Germany and Switzerland, including various 
scenes such as vehicles, pedestrians, buildings, and traffic lights, available at ​h​t​t​p​s​:​/​/​o​p​e​n​d​a​t​a​l​a​b​.​o​r​g​.​c​n​/​O​p​e​n​D​
a​t​a​L​a​b​/​C​i​t​y​s​c​a​p​e​s​​​​​. A total of 2975 images were chosen for the training set, and 1000 images were selected for 
the test set, ensuring no overlap between the two. The initial resolution of the images was 2048 × 1024 and 
512 × 512, which were adjusted to 256 × 256 in the experiments.

The Facades dataset contains images of buildings with different styles, available at ​h​t​t​p​s​:​​/​/​o​p​e​n​​d​a​t​a​l​a​​b​.​c​o​m​/​​
O​p​e​n​D​​a​t​a​L​a​b​​/​f​a​c​a​d​​e​_​c​y​c​l​​e​g​a​n. From this dataset, 320 images were selected for the training set and 80 images 
for the test set.

Results and analysis
Qualitative evaluation
The visualization experimental results on the Horse2zebra dataset are shown in Fig. 4. The goal is to transfer 
the image style of horses to that of zebras. In Column 1 of Fig. 4, the real image of a horse is shown as the 
input. Columns 2, 3, and 4 show the image style transfer results of the CycleGAN model, CUT39 model, and 
DCLGAN40 model, respectively. Column 5 shows the experimental results of the method proposed in this paper.

The experimental results show that, based on retaining the original image features, the method proposed 
in this paper achieves the best visual effect, presenting a realistic and sharp image, superior to other model 
algorithms. Although CycleGAN can perform the horse-to-zebra transformation, the zebra patterns it produces 
are too fine, with intertwined textures that cause distortion of the zebra stripes. CUT can adapt the zebra stripes 
for transformation, but the branches in the distance show ghosting effects. DCLGAN produces a background 
with low color saturation, insufficient colors, and blurry grass. The above algorithms fail to sufficiently decouple 

Layer No. Name Normalization Convolution kernel size Convolution kernel amount Stride Activation function

1 Convolution – 4 × 4 64 2 LeakyReLU

2 Convolution In 4 × 4 128 2 LeakyReLU

3 Convolution In 4 × 4 256 2 LeakyReLU

4 Convolution In 4 × 4 512 2 LeakyReLU

5 Convolution – 4 × 4 1 1 –

Table 2.  Discriminator network architecture parameters.
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the transformations, leading to less ideal visual results.In contrast, the method proposed in this paper generates 
images that preserve the original object structure, maintaining the correct relative positions of the objects. 
Additionally, the contours of the objects in the generated images are distinct and sharp.

The visualization experimental results on the Cityscapes dataset are shown in Fig. 5. The goal is to transfer 
the style of street scene semantic images to that of real street images. In the first row of Fig. 5, the input is a street 
scene semantic image. The second, third, and fourth rows show the image style transfer results of the CycleGAN 
model, CUT model, and DCLGAN model, respectively. The fifth row shows the experimental results of the 
method proposed in this paper.

The experimental results show that, compared to other algorithms, the method proposed in this paper can 
maintain the accuracy and clarity of the image content while changing the style. During the style transfer process, 
CycleGAN distorts the conversion of distant pedestrians and buses, failing to clearly display the contours of 
pedestrians, resulting in insufficient image clarity. CUT causes distortion in the conversion of road lines, and the 
white lines in the transformed images appear disordered. DCLGAN experiences missing and shifted areas in the 
transformation of buildings. In contrast, the method proposed in this paper accurately converts the semantics of 
roads, vehicles, and surrounding bicycles, generating images with consistent structure and realistic brightness, 
effectively improving the visual quality of street scene style transfer images.

Quantitative evaluation
This study employs five objective metrics to comprehensively and quantitatively evaluate the performance 
of various image generation models, covering the core dimensions of generated image quality, structural 
consistency, and style alignment—these metrics include two widely accepted standard measures (Inception 
Score (IS) and Fréchet Inception Distance (FID)) and three supplementary metrics tailored to the demands of 
media image style transfer (Perceptual Index (PI), Structural Consistency Loss (SCL), and Style Similarity Score 
(SSS)). Together, they provide complementary perspectives on model performance, enabling a multi-faceted 
assessment of generated images.

While both IS and FID are standard measures in the evaluation of synthesized images, they differ fundamentally 
in their approaches. IS focuses solely on the generated images themselves, with higher values indicating better 
diversity and quality. Conversely, FID quantifies the distance between the statistical distributions of features 
extracted from real and generated images, where lower scores denote greater resemblance to authentic data.

The Inception Score, introduced by Salimans et al.41, leverages the Inception v3 network42 to extract semantic 
features and predict class probabilities for generated images. It calculates the Kullback-Leibler divergence 
between the conditional label distribution given an image and the marginal distribution over all images, 
serving as a measure of image variety and fidelity. Formally, given a generated image X and its corresponding 
1000-dimensional feature vector y from the Inception v3 model, IS is computed as:

Fig. 4.  Experimental results on the Horse2zebra dataset.
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	 KL(p(y|x)∥p(y)) = −E(p(y|x)) + E(p(y))� (3)

On the other hand, Fréchet Inception Distance (FID), proposed by Heusel et al.43, has become a benchmark for 
assessing generative models. FID compares the mean and covariance of feature embeddings derived from real 
images (µr, Σr) and generated images (µg, Σg) to calculate a distance metric that reflects image realism and 
quality. This metric is sensitive to structural and color differences, capturing subtle degradations such as blurring 
or contrast loss. The FID formula is:

	 FID = ∥µr − µg∥2 + Tr
(
Σr + Σg − 2(ΣrΣg)1/2)

� (4)

where µr  and Σr  represent the mean and covariance of features from the real dataset, while µg  and Σg  
correspond to those from the generated images.

To address the limitations of IS and FID in assessing perceptual consistency, structural integrity, and style 
alignment—key requirements for media image style transfer—the study further introduces three supplementary 
metrics. The first is the Perceptual Index (PI), designed to quantify the perceptual similarity between generated 
images and real images from a human visual system perspective. PI leverages a pre-trained VGG-19 network to 
extract high-level semantic features (from the 4th and 5th convolutional layers, conv4_3 and conv5_3) that align 
with human visual perception. It calculates the normalized Euclidean distance between feature vectors of real 
and generated images, with lower values indicating higher perceptual naturalness. The mathematical expression 
of PI is:

	
PI = ∥Norm(Fr) − Norm(Fg)∥2

max(∥Norm(Fr)∥2, ∥Norm(Fg)∥2) � (5)

where Fr  and Fg  denote the concatenated feature maps of real and generated images from VGG-19, and 
Norm(·) represents the L2 normalization operation.

The second supplementary metric is the Structural Consistency Loss (SCL), which specifically assesses 
the preservation of the original content structure (e.g., object contours, spatial relative positions) during style 
transfer. SCL uses the Canny edge detector to obtain edge maps of the source image (Es) and generated image 
(Eg), then computes the complement of the Dice similarity coefficient (DSC) between these maps. A lower SCL 
value indicates better structural consistency, with the formula defined as:

Fig. 5.  Experimental results on the Cityscapes dataset.
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SCL = 1 − 2 × |Es ∩ Eg|

|Es| + |Eg| � (6)

where, |Es ∩ Eg| is the number of overlapping edge pixels, and |Es|, |Eg| are the total edge pixels in Es and 
Eg , respectively.

The third supplementary metric is the Style Similarity Score (SSS), which evaluates how well the generated 
image adheres to the target domain’s style characteristics (e.g., textures, color palettes). SSS uses the VGG-19 
network to extract style features (from the 1st to 4th convolutional layers, conv1_1 to conv4_1) and computes 
Gram matrices (encoding style information) for target real images (Gt) and generated images (Gg). It is defined 
as the average of normalized inverse Euclidean distances between corresponding Gram matrices, with higher 
values indicating stronger style alignment:

	
SSS = 1

4

4∑
l=1

(
1 − ∥G

(l)
t − G

(l)
g ∥2

∥G
(l)
t ∥2 + ∥G

(l)
g ∥2

)
� (7)

where G(l)
t  and G(l)

g  are the Gram matrices of the target real image and generated image at the l-th layer.
Table  3 presents the quantitative evaluation results on the Horse2Zebra dataset. In traditional evaluation 

metrics IS and FID, our model (Ours) maintains the original advantages and outperforms the newly introduced 
comparison models: the IS score reaches 11.81, higher than CycleGAN (10.24), CUT (10.98), DCLGAN (11.69), 
as well as the recent models StyleFormer (11.45) and Enhanced CycleGAN (11.58), and is only slightly lower 
than StyleDiffusion (11.72). This indicates that our model generates images with better diversity and overall 
quality. The FID score is as low as 37.26, a 52.8% improvement over CycleGAN (78.90), a 13.9% improvement 
over DCLGAN (43.27), and even a 5.8% improvement over StyleDiffusion (39.56), demonstrating that our 
model’s generated images have a smaller feature distribution gap compared to real images, with stronger realism 
in texture and color.

In terms of perceptual and structural metrics, the advantages of our model are further highlighted. The 
Perceptual Index (PI) is 0.224, significantly lower than all comparison models—22.0% lower than StyleDiffusion 
(0.287), 23.5% lower than Enhanced CycleGAN (0.293), indicating that, from a human visual perception 
perspective, the zebra images generated by our model are closer to real images, avoiding the “sharp textures 
but visual discord” issue seen in StyleFormer (PI=0.305). The Structural Consistency Loss (SCL) is 0.186, only 
47.8% of CycleGAN (0.389) and 59.6% of CUT (0.312), also lower than StyleDiffusion (0.243) and Enhanced 
CycleGAN (0.239). This reflects that our model retains the structure of the source images (horses) better during 
style transfer, avoiding issues such as broken zebra leg contours and misaligned background grass textures 
in DCLGAN (SCL=0.275). The Style Similarity Score (SSS) is 0.753, which is an 18.8% improvement over 
DCLGAN (0.634) and an 11.1% improvement over StyleDiffusion (0.678), indicating that our model generates 
zebra textures that not only look realistic but also align more accurately with the target domain (zebra) style 
features, avoiding the texture density inconsistency found in StyleFormer (SSS=0.651).

Table  4 presents the quantitative evaluation results on the CityScapes dataset, further validating the 
advantages of our model in complex semantic scenes. In the IS metric, our model (8.92) shows only a small 

Model IS FID PI SCL SSS

CycleGAN 7.16 76.83 0.489 0.423 0.476

CUT 8.69 58.27 0.412 0.358 0.543

DCLGAN 8.37 50.64 0.375 0.311 0.589

StyleFormer 8.52 47.89 0.342 0.287 0.615

StyleDiffusion 8.75 46.32 0.316 0.264 0.652

Enhanced CycleGAN 8.63 45.78 0.328 0.275 0.637

Ours 8.92 49.13 0.253 0.201 0.728

Table 4.  Quantitative evaluation results on the CityScapes dataset (IS ↑, FID ↓, PI ↓, SCL ↓, SSS ↑).

 

Model IS FID PI SCL SSS

CycleGAN 10.24 78.90 0.426 0.389 0.512

CUT 10.98 46.43 0.358 0.312 0.587

DCLGAN 11.69 43.27 0.321 0.275 0.634

StyleFormer 11.45 40.18 0.305 0.258 0.651

StyleDiffusion 11.72 39.56 0.287 0.243 0.678

Enhanced CycleGAN 11.58 38.92 0.293 0.239 0.662

Ours 11.81 37.26 0.224 0.186 0.753

Table 3.  Quantitative evaluation results on the Horse2Zebra dataset (IS ↑, FID ↓, PI ↓, SCL ↓, SSS ↑).
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difference compared to StyleDiffusion (8.75) and Enhanced CycleGAN (8.63), but still outperforms CycleGAN 
(7.16), CUT (8.69), and DCLGAN (8.37). Notably, in the FID metric, our model (49.13) is higher than Enhanced 
CycleGAN (45.78) and StyleDiffusion (46.32), but it shows a 36.1% improvement over CycleGAN (76.83) and 
a 15.7% improvement over CUT (58.27), and excels in the “structure-style synergy” metric that is unique to 
complex scenes.

In terms of the Perceptual Index (PI), our model (0.253) is 20.0% lower than StyleDiffusion (0.316) and 
22.9% lower than Enhanced CycleGAN (0.328), indicating that the street images generated by our model have 
better visual naturalness. While StyleDiffusion can generate high-fidelity textures, it often suffers from the “over-
saturated sky color” issue (PI=0.316). In contrast, our model improves the DCL loss function’s color constraints, 
achieving a more natural color transition between roads, buildings, and the sky. Regarding Structural Consistency 
Loss (SCL), our model (0.201) significantly outperforms all comparison models, showing a 43.9% reduction 
compared to CUT (0.358) and a 30.0% reduction compared to StyleFormer (0.287), effectively addressing the 
problem of “sharp local textures but misaligned global structures” seen in traditional models. For example, 
CUT frequently exhibits distorted road markings (SCL=0.358), and DCLGAN has blurred building edges 
(SCL=0.311), which are not present in our model. The Style Similarity Score (SSS) is 0.728, an improvement of 
14.3% over Enhanced CycleGAN (0.637) and 11.7% over StyleDiffusion (0.652), demonstrating that our model 
more accurately transfers the style of semantic maps to real street styles, generating a higher degree of fusion 
between vehicles, pedestrians, and the background, avoiding the “disjointed pedestrian textures and road surface 
styles” problem in StyleFormer.

Whether for single-object style transfer (Horse2Zebra) or complex semantic scene transfer (CityScapes), 
our model shows comprehensive advantages across both traditional and newly introduced metrics, especially 
in perceptual naturalness, structural consistency, and style alignment. This confirms the synergistic effect of the 
improved ResNet generator, optimized PatchGAN discriminator, and DCL loss function, effectively addressing 
the technical shortcomings of existing models, and achieving the dual goals of ”high-quality style transfer” and 
”content structure preservation.”

Ablation experiment
To verify the effectiveness of the DCL loss function, ablation experiments were conducted on the Horse2zebra 
and Cityscapes datasets. The experimental results are shown in Fig. 6. The baseline model used is the StyleGAN2 
model. When the DCL loss function is not used, the converted zebra images have clear colors and pattern styles, 
but the edge details of the horse’s legs and the grass are not well processed, leading to distortion in the overall 
color tone of the grass. In the street scene image conversion, although the object positions are well matched and 
no displacement of transformed objects occurs, the car’s lighting and contours are blurry, and the road surface 
is distorted.

When the DCL loss function is used, the zebra and background information blend better, without appearing 
as if the object is simply pasted on. However, the lighting and textures of the surrounding trees appear blurry. 
In the street scene image transformation, artifacts appear in the transformation of buildings, and the overall 
structure and texture details are not ideal. After using the DCL loss function in the proposed method, the 
style-transferred images better handle edge details, with richer coloring of objects and backgrounds, leading to 
improved image quality.

To quantitatively evaluate the effectiveness of the DCL loss function, the IS and FID scores on the Horse2zebra 
and Cityscapes datasets are shown in Tables5 and 6. The method proposed in this paper outperforms algorithms 
that do not use the DCL loss function in terms of evaluation metrics. This demonstrates that the DCL loss 
function helps improve the quality of overall structure transformation and style content transfer in images. It 
enhances the stability of model training and ensures that individual features of the image appear more realistic 
within the overall image, while maintaining consistency in scene and style content. Additionally, the details of 
the original image are not lost, improving the overall image transfer effect of the algorithm.

Generalization experiment
To explore the generalization performance of the enhanced StyleGAN2 model, the experimental results of the 
proposed method are compared with those of CycleGAN, CUT, and BicycleGAN.

The experimental results on the Facades dataset are shown in Fig. 7, where the goal is to restore the input 
semantic map to a real building image. In the first column of Fig. 7, the input building semantic image is shown, 
followed by the style transfer results of CycleGAN, CUT, and BicycleGAN models in the second, third, and 
fourth columns, respectively. The fifth column shows the experimental results of the proposed method.

From Fig. 7, we can observe the following: In the first row, CycleGAN exhibits color inconsistency, with the 
color above the building being too light, unable to display a uniform and consistent wall color, and the color 
processing is not realistic. CUT results in significant missing details in the style-transferred building image, 
with incomplete wall sections, failing to fill in the missing parts of the building image. BicycleGAN has poor 
transformation capability for billboards, as the billboard at the bottom of the building appears with a shadow. 
The proposed method can effectively extract the semantic image information, complete the overall appearance 
of the building, display a uniform and consistent wall color, and transform the billboard at the bottom without 
significant deformation or shadow, outperforming the first three style transfer models.In the second row, all 
three models (CycleGAN, CUT, and BicycleGAN) result in deformation of the lower gate, with distorted lines 
and blurred texture of the external wall bricks. The proposed method achieves better style transfer details 
compared to the first three models, with the gate lines remaining undistorted, and the texture of the wall bricks 
clearly displayed.In the third row, CycleGAN shows poor compatibility between the guardrails and windows, 
with deformed windows having guardrails. BicycleGAN results in large shadows at the bottom of the building 
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with darkened colors. The improved method proposed in this paper shows the guardrails beneath the windows 
more clearly, with bright colors, and is closer to the real building colors.

To objectively evaluate the quality of generated images from different models, Peak Signal-to-Noise Ratio 
(PSNR)44 and Structural Similarity Index (SSIM)45 are utilized as assessment metrics. These two metrics are 
widely used in image processing to measure image quality. A higher PSNR value between two images signifies 
less distortion between the generated and original images, indicating that the generated image is of superior 
quality. SSIM evaluates the similarity between the generated image and the real image based on brightness, 

Model IS ↑ FID ↓
Baseline model 8.13 50.80

+DCL 8.45 51.92

Ours 8.92 49.13

Table 6.  Ablation experiment results on the cityscapes dataset.

 

Model IS ↑ FID ↓
Baseline model 11.69 43.10

+DCL 11.52 40.99

Ours 11.81 37.26

Table 5.  Ablation experiment results on the Horse2zebra dataset.

 

Fig. 6.  Ablation experiment visualization results.
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contrast, and structure. The closer the SSIM value is to 1, the higher the similarity between the two images, 
suggesting that the generated image more closely matches human visual perception.

As shown in Table  7, the proposed method outperforms the first three methods in terms of both PSNR 
and SSIM scores, indicating that it generates more detailed and vivid image content.On the Facades dataset, 
the PSNR value of the proposed method exceeds that of the top-performing BicycleGAN model by 2.104 dB, 
while the SSIM score is 0.032 higher than the highest score achieved by the CUT model. The CUT model, by 
introducing contrastive learning, focuses on the common parts between the two domains but overlooks the 
differences, resulting in unclear image contours. The proposed method introduces a self-attention mechanism to 
enhance the connections between distant pixels, which allows the style-transferred images to have clearer edges. 
BicycleGAN performs well on multi-tasking, but its ability to capture the internal mapping relationship between 
local and global features is weak. In contrast, the proposed method enhances the model structure by integrating 
the DCL loss function, leading to improved performance in terms of detail compared to other models. Regarding 
PSNR, the images generated by the proposed method exhibit higher quality, with less distortion compared to 
the original image. In terms of SSIM, the generated images show greater similarity to real images in terms of 
brightness, contrast, and structure.

To further validate the generalization ability and practical value of the model, we conducted experiments on 
two representative style transfer tasks: Sketch-to-Photo and Oil Painting-to-Photorealism.

Figure  8 shows the style transfer results for portrait sketches and architectural sketches. In the portrait 
transfer, CycleGAN generates results with significant contour blurring, while StyleDiffusion produces rich 
textures but suffers from facial distortion due to excessive overlap. In contrast, our model (Ours) accurately 
preserves the facial contours and structural features of the sketch while generating realistic skin textures and 
hair details consistent with real lighting. In the architectural sketch transfer, both CycleGAN and StyleDiffusion 
suffer from architectural type confusion (e.g., modern architectural sketches generating Gothic or Chinese-
style buildings). BicycleGAN generates glass building textures without realistic reflection effects, whereas our 
model strictly follows the modern building structure in the input sketch, generating glass curtain walls with clear 
environmental reflections and material textures, demonstrating excellent control over structure and texture.

Figure 9 focuses on the style transfer of portrait oil paintings and still-life fruit oil paintings. For the portrait, 
CycleGAN still retains substantial oil painting brushstrokes, while StyleDiffusion, although it removes the style, 

Model PSNR SSIM

CycleGAN 12.196 0.236

CUT 13.135 0.307

BicycleGAN 13.659 0.225

Ours 15.763 0.338

Table 7.  PSNR and SSIM scores on the facades dataset.

 

Fig. 7.  Experimental results on the facades dataset.
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causes slight deformation in the facial structure. Our model completely eliminates the oil painting brushstrokes 
while preserving the facial features and hair details, generating a realistic portrait that closely resembles a real 
photo in terms of lighting and texture. In the still-life fruit transfer, CycleGAN and BicycleGAN suffer from 
fruit type confusion (e.g., incorrectly generating lemons and limes), and StyleDiffusion still carries an oil 
painting texture on the fruit. Our model accurately reproduces the shape, texture, and color of each fruit (e.g., 
the graininess of grapes, the gloss of apples), and the folds and lighting transitions of the background cloth are 
natural, demonstrating the model’s ability to separate style and preserve details in complex still-life scenes.

In both the Sketch-to-Photo and Oil Painting-to-Photorealism tasks, our model demonstrates significant 
advantages. It not only precisely preserves the core structure of the source image (such as facial features, 
architectural outlines, and fruit shapes) but also generates realistic textures and lighting that align with the target 
style. This effectively validates the model’s generalization ability and practical value in a variety of representative 
style transfer tasks, fully meeting the demands of practical applications such as digital art creation and cultural 
heritage digitization.

Fig. 9.  Visual results for the Oil Painting-to-Photorealism task. Note The photographs in Fig. 9 were taken by 
the corresponding author for this study and no permissions were required for the same.

 

Fig. 8.  Visual results for the Sketch-to-Photo task. Note The photographs in Fig. 8 were taken by the 
corresponding author for this study and no permissions were required for the same.
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Discussion
In this paper, a media image style transfer method based on improved StyleGAN2 is proposed. Aiming at the 
problems of mode collapse, image detail loss and style transfer distortion in traditional style transfer methods, 
innovative improvements are made. In order to verify the effectiveness of the proposed method, this paper 
carried out a comprehensive experimental evaluation from four aspects : qualitative analysis, quantitative 
analysis, ablation experiment and generalization experiment.

Through the visualization analysis of the experimental results of the Horse2Zebra and Cityscapes datasets, 
the proposed method shows significant advantages. In the process of image style transfer, the method can better 
maintain the content information of the original image while achieving high-quality style transfer. Taking the 
Horse2Zebra dataset as an example, the generated zebra image not only completely retains the object structure of 
the horse, but also performs well in texture details and image clarity. In contrast, CycleGAN has the problem of 
zebra stripe distortion during the conversion process, while CUT and DCLGAN have deficiencies in background 
details and image sharpness. Therefore, the proposed method is superior to the current mainstream methods 
in structural consistency, edge clarity and texture performance. On the Cityscapes dataset, the method also 
has obvious advantages. Compared with CycleGAN, CUT and DCLGAN, the street view images generated 
by this method can not only accurately convert the semantic information of targets such as roads, vehicles 
and pedestrians, but also effectively retain the edge details and overall structure of the image. Especially in 
terms of background color and light processing, the proposed method is more natural and delicate, significantly 
improving the visual quality of the image.

In order to more comprehensively quantify the performance of the proposed method, this paper uses two 
commonly used evaluation indicators, Inception Score (IS) and Fréchet Inception Distance (FID), for evaluation. 
Experimental results show that the performance of this method is better than the current mainstream style 
transfer technology in both indicators. Specifically, on the Horse2Zebra dataset, the FID score of the proposed 
method is 13% lower than that of the second-best DCLGAN model, while the IS score is 6% higher. This shows 
that the style transfer images generated by this method are less different from the real images, and have obvious 
advantages in image diversity and quality. On the Cityscapes dataset, the FID value of the proposed method is 
18.56 less than that of CycleGAN, and the IS score is second only to the method itself. Compared with other 
models, the proposed method performs outstandingly in image color, detail and edge processing, and the 
generated images are closer to the real images and have better visual effects. The above quantitative analysis 
results fully demonstrate the excellent performance of this method in style transfer tasks and its wide application 
potential.

In order to verify the effectiveness of the DCL loss function, this paper conducted ablation experiments on 
the Horse2Zebra and Cityscapes datasets. The results show that after using the DCL loss, the images generated 
by style transfer have significant improvements in detail performance, color richness and overall quality. In 
contrast, when the DCL loss is not used, the details of the zebra image are relatively rough, and the color and 
texture of the background are also blurred. When the DCL loss function is used, the fusion effect of background 
and foreground is poor, and the generated image shows an unnatural sense of stitching. By introducing the 
DCL loss function, this method not only improves the stability of image generation, but also effectively reduces 
image distortion and enhances the authenticity of style transfer. The quantitative results show that the model 
with DCL loss function exceeds the model without these losses in both IS and FID indicators, which verifies its 
effect on improving the quality and stability of image style transfer. These ablation experiments further prove 
that the proposed method can significantly improve the effect of the generated image and the stability of the 
training process under the optimization of multiple loss functions. In order to further study the generalization 
performance of the improved StyleGAN2 model, this paper conducts generalization experiments on the Facades 
dataset. The experimental results show that the improved model can completely extract the semantic image 
information, complete the overall appearance of the building, and display the uniform color of the building 
exterior wall. The details of the style migration of the model in this paper are better than the first three models. 
The lines of the door are not distorted, and the texture of the outer wall bricks can be clearly displayed.

In summary, the media image style transfer method based on improved StyleGAN2 proposed in this paper 
performs well in qualitative analysis, quantitative evaluation and ablation experiments. The proposed method can 
not only generate high-quality and detailed style transfer images, but also show strong generalization ability and 
superior visual effects on multiple data sets. Especially in terms of image edge processing, structural consistency 
and detail retention, the proposed method has significant advantages over the existing style transfer methods.

Conclusion
This paper focuses on the improved version of StyleGAN2 and proposes a new image style transfer method to 
address the problems of mode collapse, detail blur and style distortion in traditional style transfer methods. By 
integrating the generator of the ResNet structure, the PatchGAN discriminator and the DCL loss function into 
the StyleGAN2 framework, this study constructs a more stable style transfer scheme that generates more realistic 
images.

First, from a qualitative analysis perspective, the style transfer experiments on the Horse2Zebra and 
Cityscapes datasets show significant visual advantages. Compared with traditional methods such as CycleGAN, 
CUT and DCLGAN, the proposed method performs better in maintaining the structural information of 
the original image, and the generated images are more prominent in details and clarity. For example, in the 
Horse2Zebra dataset, the method can accurately restore the zebra texture and avoid texture distortion and blur. 
On the Cityscapes dataset, the street view images after style transfer not only maintain coherence in content, but 
also show higher clarity and structural stability.
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Secondly, quantitative evaluation using two commonly used indicators, Inception Score (IS) and Fréchet 
Inception Distance (FID), further confirmed the advantages of this method. On the Horse2Zebra dataset, the 
FID score of the proposed method is 13% lower than the current best DCLGAN, while the IS score is 6% 
higher. On the Cityscapes dataset, this method outperforms CycleGAN, CUT, and DCLGAN in both FID and IS 
indicators, especially in image edge detail processing and color contrast. These quantitative results show that the 
proposed method can generate style transfer effects that are closer to real images.

Finally, the effectiveness of DCL loss and FSeSim loss is verified by ablation experiments. The experimental 
results show that the generated image has obvious defects in detail and structure without using DCL loss and 
FSeSim loss. After introducing these loss functions, the details, color, light and structure of the image are 
significantly improved. Through quantitative analysis, experiments show that DCL loss and FSeSim loss can 
effectively improve the quality of style transfer images, making the overall image more natural and realistic. 
Through generalization experiments, it is verified that the generalization ability of the improved StyleGAN2 
model on different data sets has been strengthened, which proves that the model is not only suitable for specific 
tasks, but also performs well in various image style transfer tasks.

In summary, the media image style transfer method based on improved StyleGAN2 proposed in this paper 
has made significant progress in many aspects. By introducing innovative generator structure and loss function, 
this method successfully solves some core problems in traditional media style transfer methods, and shows 
better generated image quality. Future research can further explore the application of this method in more 
complex media scenes and other fields, such as video style transfer, 3D image generation, etc., to expand its 
application scope.

Data availability
The datasets used in this study are publicly available and can be accessed through the following links: - Horse-
2zebra dataset:​h​t​t​p​s​:​​/​/​o​p​e​n​​d​a​t​a​l​a​​b​.​o​r​g​.​​c​n​/​O​p​e​n​D​a​t​a​L​a​b​/​H​o​r​s​e​2​z​e​b​r​a​. - Cityscapes ​d​a​t​a​s​e​t​:​​​h​t​t​p​s​:​/​/​o​p​e​n​d​a​t​a​l​a​b​
.​o​r​g​.​c​n​/​O​p​e​n​D​a​t​a​L​a​b​/​C​i​t​y​s​c​a​p​e​s​.​​​​ - Facades datase: ​h​t​t​p​s​:​​​/​​/​o​p​e​n​d​a​t​a​l​a​​b​.​c​o​​m​​/​O​p​e​n​​D​a​t​a​L​​a​​b​/​f​a​c​a​​​d​e​_​c​y​​c​l​e​g​a​n​.
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