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Growing pollution hazards in large watersheds, including Egypt’s Nile River, necessitate precise and 
effective monitoring of water quality indices. Although considerable efforts have been made to model 
individual parameters such as pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC) and sodium 
(Na+), the emphasis on isolated forecasts has often overlooked their interdependencies, thereby 
limiting estimation accuracy and practical applicability. Conventional machine learning methodologies 
further compound this issue, as they frequently lack adaptability and physical interpretability, 
resulting in inefficiencies for sustainable water management. To address these limitations, this 
study develops a physics-informed neural network (PINN) framework integrated with optimization 
boosting techniques to jointly predict pH, TDS (mg/L), EC (µS/cm), and Na+ (mg/L) under three critical 
management strategies: industrial discharge regulation, salinity management and irrigation planning. 
The approach incorporates prior hydrodynamic and chemical knowledge to guide input categorization, 
employs adaptive weighting mechanisms to dynamically adjust feature relevance, and introduces a 
deep interaction module to capture intricate physicochemical couplings. A physics-constrained loss 
function ensures consistency with ecological processes. Field analysis revealed that while pH values 
(6.01–6.87) consistently met FAO standards, TDS, EC, and Na+ frequently exceeded permissible 
thresholds, particularly during the dry season. Model evaluation showed that PINN outperformed 
conventional optimizers, achieving R2 values of 0.945–0.999 and RMSE between 0.012–0.088. 
Cross-validation further confirmed its robustness, yielding consistently low RMSE and near-unity R2 
across folds. Interpretability analysis highlighted irrigation intensity, salinity loads, and industrial 
effluents as the dominant drivers of water quality dynamics. Overall, the proposed PINN not only 
advances predictive accuracy and computational efficiency but also provides a practical framework for 
supporting regulatory decision-making, optimizing salinity control, and guiding sustainable irrigation 
planning. Ultimately, this approach offers a viable pathway for mitigating contamination risks and 
ensuring the long-term sustainability of the Nile River ecosystem.
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Water is a naturally occurring resource, accessible to all, and a fundamental necessity for life. However, if not 
properly managed, it can become a conduit for harmful pathogens and toxic substances. Due to its wide range 
of applications, water plays a critical role in supporting societal health and economic growth. It is essential for 
domestic and industrial use, recreation, aquatic ecosystems, and agricultural production. However, the quality of 
water used for irrigation can be compromised by factors such as human activity, seasonal changes, soil pH, and 
improper waste disposal. The adverse effects of uncontrolled wastewater discharge into water sources intended 
for human use have prompted numerous studies on watershed contamination and its mitigation1. To address 
these concerns, global regulatory frameworks such as the irrigation guidelines and standards established by the 
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Food and Agriculture Organization (FAO) and the Egyptian Standard Organization have been implemented to 
ensure the preservation and safe use of water for upstream activities2,3.

Furthermore, the condition of rivers and reservoirs is significantly influenced by pollution from domestic, 
regional, and agricultural sources. When such pollution renders water unsuitable for human consumption, 
commercial use, or agricultural purposes, it is classified as contaminated or polluted4. Water quality deterioration 
occurs when hazardous substances infiltrate water bodies or when the concentration of naturally occurring 
elements increases to levels that disrupt ecological balance and hinder the water’s natural self-purification 
processes. This degradation has caused extensive damage to aquatic ecosystems and poses serious threats to 
human health, including the spread of waterborne diseases prompting an urgent need for effective mitigation 
strategies5.

A healthy aquatic ecosystem is characterized by a balance of physical, chemical, and biological components, 
with water that is colorless, odorless, and tasteless. However, contamination disrupts these conditions, rendering 
the water unsuitable for domestic, industrial, or agricultural use. Both surface and groundwater sourced from 
communities exhibit varying levels of quality. While some rivers require only minimal treatment to meet safety 
standards, others necessitate intensive management and purification. Water quality is influenced by seasonal 
changes, geological structure, and the sources of pollution. For example, during the rainy season, increased 
rainfall can dilute contaminants, temporarily improving the physicochemical properties of water to resemble 
those of freshwater6.

Nonetheless, various pollutants ranging from human waste and food residues to mixed organic and inorganic 
compounds frequently enter river systems. Depending on the origin and tributaries, a river often serves as a 
major recipient of effluent from household and industrial activities. Therefore, effective pollution control and 
sustainable water management practices are essential for maintaining water quality and supporting safe usage 
across multiple sectors7.

Training datasets serve as the primary source of guidance for model selection and parameterization in the 
data-driven methodology of machine learning (ML). Within this framework, heuristic strategies, prior expertise, 
and trial-and-error procedures are commonly employed to determine an appropriate architecture, including the 
number of hidden layers, neurons per layer, and activation functions in a neural network (NN). Once the model 
structure is established, parameters are optimized by minimizing a loss function possibly subject to constraints 
which typically corresponds to reducing the prediction error on the training data. This procedure involves 
determining a parameter set θ∗ that minimizes the discrepancy between observed and predicted outcomes in 
supervised learning tasks, particularly in regression problems. In this context, the mean squared error (MSE) is 
commonly employed as the loss function:

	
θ∗ = arg min

θ
L

(
x,𝟋𝟋(y; θ)

)
,� (1)
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where y denotes the input features, x represents the corresponding observed or computed outputs, and 𝟋𝟋(x; θ) 
is the ML model parameterized by θ. Since it only measures the deviation of the predicted target values from the 
actual values for a given parameterization, the optimization using the loss function in (2) is entirely predictive 
in nature.

Determining the unknown conditional distribution p(y | x) is a central task in supervised ML, as it provides 
valuable insights into system structures and real-world phenomena. Given a training dataset D = (x, y) and a 
new input x∗, the objective of predictive tasks is to estimate the distribution p(y∗|y, x, x∗). Numerous studies 
in ML and deep learning (DL) have demonstrated that statistical learning-based frameworks can be effectively 
applied across a wide range of scientific and engineering domains8–10. Furthermore, research demonstrates that 
in DL, scaling both network size and dataset volume consistently improves the prediction of p(y∗|y, x, x∗), even 
in highly complex contexts. However, in data-scarce settings, incorporating prior knowledge about the system, 
such as π(y), provides an effective means of enhancing the generalization capacity of ML models.

ML is widely applied in ecological, scientific, and engineering domains to approximate the conditional 
distribution p(y|x), which typically represents a physical system governed by known laws11–13. Although 
considerable prior knowledge about these complex systems often exists, it is rarely integrated into the modeling 
process due to the difficulty of embedding it systematically within the model structure. As a result, strategies 
that explicitly incorporate fundamental physical laws or domain-specific knowledge are generally preferred over 
purely data-driven approaches.

However, data-driven ML algorithms rely on numerous independent variables to capture the underlying 
complexity of the data, they pose significant challenges when applied to complex problems. Optimizing 
such high-dimensional parameter spaces typically requires massive amounts of training data, which is often 
impractical due to limited availability or the high cost of empirical acquisition14,15. Moreover, models trained 
on small datasets may struggle to perform well on unseen data, rendering purely data-driven approaches 
vulnerable to issues of extrapolation and generalizability. Finally, when treated as “black boxes,” these models 
lack interpretability, making it difficult to understand the logic or mechanisms underlying their predictions.

By integrating knowledge of the physical principles governing a system into the design and training of ML 
models, Karniadakis et al.16 developed PI-ML to overcome the limitations of purely data-driven approaches. 
Specifically, Raissi et al.17 introduced the physics-based regularization into PINNs. This is achieved by 
incorporating terms that encode the underlying physical laws into the loss function, thereby constraining the 
parameter space of the model. A widely used strategy involves embedding the residuals of partial differential 
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equations (PDEs) into the loss function, enabling simulations that are more consistent with the governing 
physics and thus more practically applicable.

Moreover, the training process generates simulations that minimize data-fit error while preserving 
consistency with the governing physics by employing loss functions that penalize predictions deviating from the 
underlying physical principles. Gradient propagation is maintained, allowing the predictive model to be trained 
in the usual manner, provided that the additional terms in the loss function are differentiable. This physics-
informed learning paradigm has been effectively applied to numerous modeling challenges, particularly forward 
problems, where the objective is to predict latent solutions of systems governed by specified equations18,19.

Recently, PINNs have gained recognition as an effective approach for solving complex computational 
problems16. By integrating DL algorithms with the mathematical frameworks of PDEs, ordinary differential 
equations (ODEs), and their associated boundary conditions (BCs), PINNs can significantly reduce or even 
eliminate the need for synthetic or empirical data. A typical PINN architecture consists of an input layer defined 
by spatial and/or temporal variables, multiple hidden layers with numerous neurons, and an output layer 
representing the target quantities of interest. This enables the formulation of a loss function that incorporates 
the residuals of the equations, along with relevant initial conditions (ICs) and BCs, thereby effectively guiding 
the training process17.

Spanning a wide range of configurations, parameters, and complexities, PINNs are highly effective for solving 
both ODEs and PDEs. A major advantage over traditional numerical methods is their mesh-free architecture, 
which enables training on randomly sampled points rather than structured grids significantly reducing 
computational cost and data dependency20. The performance of PINNs is typically enhanced using optimization 
techniques, often based on gradient descent algorithms. Although the training phase may be longer than that of 
classical solvers, the resulting models allow for rapid and efficient solution evaluations. To ensure compliance 
with ICs and BCs, constraints are embedded into the loss function using appropriate scaling criteria. Because 
manual tuning of these parameters can be difficult, evolutionary strategies are being explored to automatically 
balance the contributions of each loss component during training. Furthermore, advanced network architectures 
such as Fourier feature networks have proven particularly effective in capturing high-frequency variations, 
especially in cases involving irregularities or complex geometries21.

However, industrial wastewater discharges from commercial zones along the banks have significantly 
polluted Egypt’s Nile River22. Many industries are strategically located near water bodies to facilitate the direct 
disposal of waste and agricultural runoff into the river23. As a result, the water quality has deteriorated, reducing 
its suitability for irrigating adjacent farmlands. To evaluate the extent of degradation and identify optimal points 
for water recovery, key ecological indicators of the Nile were assessed using PINN algorithms. Based on common 
agricultural soil concerns, the parameters selected for analysis included pH (to assess overall water purity), 
sodium concentration (to evaluate ion toxicity), and both TDS and EC (to assess salinity)24. Data were collected 
from several sampling points along the river and projections were generated over a one-year period  (2019-
2020)25. The primary objective of this study is to assess the irrigation potential of the Nile River by forecasting 
the water quality index (WQI) across various temporal and spatial dimensions using artificial NN modeling16,26.

Egypt’s farming industry has been significantly impacted by WP in the Nile River, primarily due to the 
accumulation of harmful ions in irrigation water24. When crops are exposed to high concentrations of these 
ions, they often suffer biochemical damage, leading to substantial reductions in yield23–25. In addition to ion 
toxicity, other pollutants introduce excessive nutrients into water sources, lowering crop productivity and leaving 
unsightly residues on fruits and leaves thereby reducing their market value. These contaminants also accelerate 
the corrosion of irrigation equipment, increasing maintenance and replacement costs27.

Integrating aforesaid methods into the PINN architecture further enhances the capability to simulate and 
predict water pollution (WP) phenomena. Within this learning framework, PINNs embed the physical laws 
governing pollutant transport, such as PDEs. By incorporating these principles, PINNs can efficiently learn 
from limited but relevant data while maintaining consistency with established scientific laws. Leveraging both 
spatial and temporal features, PINNs can more accurately forecast WQIs along the Nile River, identify pollution 
hotspots, and evaluate the agricultural suitability of water28,29. This integrated approach enables stakeholders to 
monitor contaminants, design effective mitigation strategies, and make informed decisions for water resource 
management by supporting sustainable and environmentally sound agriculture along the Nile River30,31.

This study develops an interpretable PINN framework to assess water contamination risk and its implications 
for environmental sustainability in the Nile River using one-year data from 2019–2020. To overcome limitations 
of traditional approaches that treat all input variables equally, the PINN integrates optimization-boosting 
techniques to jointly predict key WQIs pH, TDS, EC, and Na+ under irrigation planning, salinity management, 
and industrial discharge regulation (see Fig. 1).

Field analysis was conducted at four stations to evaluate water contamination. The PINN employs categorized 
inputs informed by hydrochemical knowledge and a tanh-based activation mechanism to capture the varying 
influence of each parameter. A deep interaction module models complex physicochemical interactions among 
pollutants, and a hierarchical physics-constrained loss function ensures predictions remain consistent with 
governing water chemistry laws. Model interpretability is further evaluated by ablation studies, including models 
without the attention module and without the interaction module, enabling analysis of the spatiotemporal 
contributions of predictors and insights into factors driving water quality variations. For benchmarking, the 
PINN is compared with the Random Forest (RF) technique32, Residual Network (ResNet)33, PI multi-task deep 
NN (PI-MTDNN)34, and knowledge-informed NN (KI-NN)35. The framework enables accurate mapping and 
analysis of water contamination risk across the Nile River, supporting informed water management, pollution 
mitigation, and sustainable agricultural practices. By rigorously analyzing the individual behaviors of pH, TDS, 
EC, and Na+, and leveraging advanced methodologies such as PINNs, the entire procedure is illustrated in the 
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flowchart presented in Fig. 2. This research emphasizes the importance of accurately predicting the water quality 
index for effective management, providing valuable insights into the model’s resilience and adaptability.

Material and methods
Geographical scope
The research area is Egypt’s Nile River, a vital freshwater resource that supports domestic use, industrial activities, 
and agriculture across the country. Geographically, the study focuses on a section of the Nile in Lower Egypt, 
specifically the stretch flowing through and near Cairo, where urbanization and industrial development are 
highly concentrated. This region is approximately located between latitudes 29◦N and 31◦N, and longitudes 30◦

E and 32◦E. It experiences a semi-arid to arid climate, having a mean yearly precipitation of roughly 200 mm 
and a mean temperature approximately 27◦C (Fig.3). Although seasonal temperature variations influence water 
quality and evaporation rates, the flow of the Nile remains relatively stable due to the regulatory effects of the 
Aswan High Dam.

While the cooler months from November to February experience lower temperatures and reduced 
evaporation, the drier season from April to October is characterized by higher temperatures and increased 
evapotranspiration, potentially leading to concentrated pollution discharges. This seasonal meteorological 
pattern significantly influences contaminant transport and erosion processes within the river ecosystem.

In this region, the Nile River flows alongside several industrial zones, particularly in Greater Cairo and its 
surrounding areas. Notable industrial hubs such as Shubra El-Kheima, 10th of Ramadan City, and Helwan host 
a diverse range of factories, including those in the chemical, textile, and automotive sectors. The pollution load 
in the river is significantly intensified by the frequent discharge of wastewater and untreated effluents from these 
facilities (Fig. 4). Consequently, this area is well-suited for investigating the spatiotemporal dynamics of WP and 
its implications for environmental governance, sustainable agriculture, and public health.

Geo-spatial sampling and evaluation
Based on a preliminary study, four sampling points were selected to evaluate WP in the Nile River during 2019–
2020, focusing on areas affected by industrial discharges. These points, designated as G1, G2, G3, and G4, 
were strategically positioned to capture variations in contaminant levels along the waste water flow, taking into 

Fig. 2.  Workflow depictions of the nonlinear WP system for Nile river.

 

Fig. 1.  Graphical layout depicting the proposed WP system.
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account ion dissolution and sediment transport processes. Sampling stations G1 and G2 were located upstream, 
while G3 and G4 were situated downstream. Water samples were collected in 1.5 L sterile plastic containers, 
with a distance of 20 meters maintained between each sampling point.

Routine water sampling was conducted monthly at each station from 2019-2020. Key WQIs including pH, 
TDS, EC, and Na+ were analyzed. Each parameter was measured in duplicate, and the mean value was calculated 
as the final result. Samples were appropriately labeled and transported to the National Water Research Center 
(NWRC) in Cairo, Egypt36 for preservation and further analysis. In-situ measurements of pH, TDS, and EC were 
also performed at each sampling location.

Physics-based characterization of WP dynamics
Let 𝟋𝟋(y1, t) denote the hydrodynamic head, with y1 ∈ Ω ⊂ Rd. A general advection–diffusion–reaction 
balance with memory (storage) is

	
Xx

∂𝟋𝟋
∂t

(y1, t) + ∇ ·
(

− Qy1 (y1, t)∇𝟋𝟋(y1, t) + q(y1, t)𝟋𝟋(y1, t)
)

= Va(y1, t) − r(𝟋𝟋, y1, t),� (3)

This formulation is highly relevant for studying the spread of WPs, where delayed contamination responses 
are represented, dispersive transport is captured by diffusion terms, and reaction terms account for natural 
attenuation or degradation. The variable x represents simultaneous variations in hydrological forcing (the left-
hand component of the equation). Consequently, the formulation (3) provides a direct link to assessing the risks 
of water quality deterioration and its implications for environmental sustainability. The physical interpretation 
of (3) is described as: 
(i)	 Xx denotes the storage (capacity) or porosity-like coefficient, representing how much the domain 

stores/retains the hydraulic head per unit fractional derivative.
(ii)	 Qy1 (y1, t) indicates the diffusion / hydraulic conductivity tensor, controlling pollutant dispersion in 

the Nile river or surface water.
(iii)	 q(y1, t) is the advective or Darcy velocity, representing pollutant transport driven by flow fields.

Fig. 3.  Thematic map showing pollution concentrations along the Nile River from Cairo to Helwan, Egypt. 
Map created by the authors using QGIS (3.28) and OpenStreetMap data (© OpenStreetMap contributors, 
licensed under ODbL). Pollution markers were visually added by the authors for illustration.
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(iv)	 Va(y1, t) constitutes the external pollutant sources/sinks (e.g., industrial discharge, agricultural run-
off, injection/withdrawal).

(v)	 r(𝟋𝟋, y1, t) shows the reaction, attenuation, or sink term (e.g., biodegradation, sorption, evaporation).
 Although, a pollutant spill at location y0 and time t0 with strength Va is considered as

	 Xx(y1, t) = Va ℘(y1 − y10) ℘(t − t0),� (4)

which corresponds to the sudden release of contaminants into the system, a critical case for risk assessment in 
water resource management.For y1 ∈ R, with isotropic constant coefficients and no explicit advection term:

	 Xx𝟋𝟋t(y1, t) = Qy1 𝟋𝟋y1y1 (y1, t) + Va(y1, t) − r(𝟋𝟋, y1, t).� (5)

For a single instantaneous point pollution event at y1 = 0, t = 0, we have

	 Xx(y1, t) = Va ℘(t) ℘(y1).� (6)

If r ≡ 0, this corresponds to uncontrolled pollutant spread without natural attenuation, emphasizing long-term 
environmental risk. In different parameter regimes, (3) simplifies to:

(i) Classical diffusion: X = 1 gives the standard advection–diffusion–reaction PDE for pollutant transport.
(ii) Diffusion with constant source: x = 0, r = 0, constant Qy1  ⇒ anomalous pollutant spreading with long 
memory, reflecting persistent contamination.
(iii) Advection-dominated: ∥x∥ ≫ Qy1 /L, characterized by the Peclet number P e = L∥x∥

Qy1
, indicating rap-

id pollutant migration downstream.

For the standard diffusion equation, the fundamental solution can be expressed through a Green’s function 
approach37:

	
Gy1 (y1, t) = 1√

4π(K/Xx)t
exp

(
− Xxy2

1
4Qy1t

)
,� (7)

Fig. 4.  Map view of the Nile River in Egypt showing its main course, associated canals, lakes, and streams that 
contribute to pollution through the influx of industrial discharge and untreated domestic wastewater. Spatial 
distribution map of the study area. The map was created using QGIS (v3.28, QGIS Development Team, 2023, 
https://qgis.org) with OpenStreetMap as the base layer.
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which describes pollutant concentration spreading in water bodies. In the standard diffusion case, the kernel is 
Gaussian, leading to normal decay and gradual dispersion of contamination. Thus, (3) subject to the ICs and 
BCs:

	




Initial: 𝟋𝟋(y1, 0) = 𝟋𝟋0(y1) (initial pollutant concentration distribution),
Dirichlet: 𝟋𝟋(y1, t) = gd(y1, t) on ∂ΩD (fixed concentration boundaries, e.g., clean water inflow),
Neumann (flux):

(
− Qy1 ∇𝟋𝟋 + x𝟋𝟋

)
· n = gN on ∂ΩN (pollutant flux boundaries),

Far-field: 𝟋𝟋 → 0 as |y1| → ∞ (pollutant concentration vanishes far away).

The central challenge addressed in this study is the accurate prediction of pollutant transport and persistence in 
river networks. Traditional advection–diffusion–reaction models often rely on idealized conditions, simplified 
reaction dynamics, and limited temporal representation. Such assumptions fail to capture delayed responses, 
long-term persistence, and nonlinear attenuation typical of real-world WP events. As a result, risk assessments 
based solely on classical models tend to underestimate contaminant spread, leading to inadequate management 
strategies for protecting water resources.

To overcome these limitations, an improved modeling approach is required that can:

•	 Represent realistic source terms for sudden pollutant spills;
•	 Account for heterogeneous diffusion and reaction mechanisms, including natural attenuation, sorption, and 

biodegradation;
•	 Incorporate temporal and spatial variability in hydrological forces affecting pollutant transport. To meet these 

needs, this study proposes a PINN framework, enhanced with analytical benchmarks and boosting tech-
niques. The PINN integrates the governing physics of pollutant transport while reducing reliance on dense 
monitoring data, making it robust to sparse or noisy field measurements. Analytical benchmarks ensure phys-
ical consistency, while boosting techniques enhance predictive accuracy across diverse pollutant regimes. The 
benefits of this framework include:

•	 Capturing temporal dynamics for more reliable predictions of contaminant persistence;
•	 Modeling sudden spill events and downstream risks with greater accuracy;
•	 Reducing sensitivity to data scarcity, enabling practical application in data-limited river basins such as the 

Nile;
•	 Supporting environmental sustainability by quantifying risks of water quality deterioration under multiple 

scenarios;
•	 Providing a decision-support tool for policymakers to enable effective interventions that mitigate ecological 

and human health risks. In summary, the proposed PINN framework addresses the limitations of classical 
hydrodynamic models by coupling physics, data, and ML, delivering a sustainable, risk-aware approach for 
predicting WP dynamics in river systems.

PINN technique for WP dynamics
PINNs directly incorporate physiological regulations into the NN’s structure. This framework guarantees that 
the network’s effectiveness complies with these fundamental principles by integrating the governing equations of 
WP (3) into the network’s loss function, resulting in higher-quality and structurally consistent outcomes.

In particular, the parameters representing the residuals of the PDEs, as well as the ICs and BCs, contribute 
to the network’s loss function.

	 L = φICLIC + φBCLBC + φP DELP DE ,� (8)

where every element is described as follows:

	

LIC = 1
N0

N0∑
ι=1

∣∣𝟋𝟋(0, y1ι, y2ι) − 𝟋𝟋0
∣∣2

,

LBC = 1
NB

N0∑
ι=1

∣∣𝟋𝟋(tι, y1ι, y2ι) − 𝟋𝟋BC

∣∣2
,

LP DE = 1
N

N0∑
ι=1

∣∣ ABCDχ
t 𝟋𝟋(t) − Q∇2𝟋𝟋 − Va℘ϵ(t)℘ϵ(y1, y2)

∣∣2
,

� (9)

Here, the total number of point collocations associated with the PDE, ICs and BCs are represented by the 
variables N0, NBC , and N, respectively.

We consider a NN N  comprising L1 layers, with n1ι neurons in each layer κ. The κ-th layer’s scale of 
weight and biased field are represented by Wκ and cκ, respectively. All hidden layers employ the same activation 
function, υ, which will be addressed in a comprehensive way in the upcoming parts.

To assess the significance of 𝟋𝟋κ, the output of the κ-th layer can be articulated as:

	 𝟋𝟋κ = υ(Wκ𝟋𝟋κ−1 + cκ),� (10)

where cκ constitutes the biased factor, W  indicates a weighted framework, 𝟋𝟋κ−1 is the prior hidden state, and υ 
indicates the triggering functional. In this case, the supplied vector is represented by 𝟋𝟋0 = (t, y1).
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Neuron activation function
Given the vast scope of the research community, it is not feasible to provide a comprehensive review of stimulation 
mechanisms within the framework of computational neuroscience, especially from the perspective of PINNs 
based on a single academic article. Therefore, we limit our discussion in this section to existing foundational 
theories, primarily referencing Frederic et al.38.

Activation functions play a crucial role in introducing nonlinearity into NNs. The behavior and performance 
of various network architectures are significantly influenced by the choice of activation function.

Among the widely utilized activation mechanisms are the sigmoid, linear, step, and piecewise-linear functions 
such as ReLU.

The applicability of linear functions is somewhat limited, as they are typically employed only in the output layer 
of multi-layer networks and are mainly suited for tasks such as regression or classification. Sigmoid functions, 
on the other hand, are widely favored due to their smoothness and ability to capture gradual transitions with 
high precision. This class of activation functions includes the hyperbolic tangent function (see Table 1). Recent 
studies have shown that, in the construction of deep NNs, the hyperbolic tangent often outperforms the logistic 
function. In this investigation, we explore the use of the activation operator tanh(βy1) in the concealed phases, 
with particular focus on tuning the parameter β. Further descriptions on activation mechanisms, readers are 
referred to Frederic et al. 38.

Architectural intricacy of the NN
To assess the intricacy of a NN involving three hidden layers employing the tanh β function as its stimulation 
mechanism in modeling WP dynamics, three key measures are considered: the Rademacher complexity, the VC 
(Vapnik–Chervonenkis) dimension, and the total number of trainable parameters39.

Let m0 symbolize the overall amount of inputs processed by synapses and m1, m2 and m3 indicate the value 
of neuron in each of the three hidden layers, respectively, corresponding to the total quantity of factors. Suppose 
the total count of output neurons equal m4. The procedure that follows can be used to figure out the aggregate 
amount of criteria, represented by the symbol Qm:

	
Qm =

3∑
ι=0

(mι.mι+1 + mι+1).� (11)

The expression can be expanded, and specific components can be rearranged as

	 Qm = (m0.m1 + m1) + (m1.m2 + m2) + (m2.m3 + m3) + (m3.m4 + m4).� (12)

Additionally, rearranging one gets

	 Qm = m0.m1 + m1.m2 + m2.m3 + m3.m4 + Q + m4,� (13)

Here, the weakest restriction in this case is denoted by Q, which stands for the aggregate amount of 
neurotransmitters that are located solely within the hidden layers as Q = m1 + m2 + m3.

The system’s capability to fully distinguish and categorize various features in the data entered region is gauged 
by the VC dimension. The NN’s Qm dimension VC is potentially limited by:

	 dVC ≤ Qm ln2(Qm).� (14)

The ability of the proposed category to identify and describe random fluctuations is determined by Rademacher 
intricacy Rm(Q). A mathematical class’s Rademacher intricacy F is determined by

	
Rm(F) = E

[
sup

f1∈Q

1
m

m∑
ι=1

υιf1(y1ι)
]

.� (15)

In this case the Rademacher factors are indicated by υι.
The Rademacher structure of a NN containing quad weighting arrays (Wȷ, (ȷ = 1, ..., 4)) is potentially 

limited by assuming the Lipschitz value L underlying the tanh stimulation functional in addition to the weighted 
matrix parameters. The Rademacher intricacy can be accurately determined as follows:

Type Formula

Sigmoid(y1) 𝟋𝟋(y1) = 1
1+exp(−y1)

Tanh(x) 𝟋𝟋(y1) = exp(y1)−exp(−y1)
exp(y1)+exp(−y1)

Softplus(y1) 𝟋𝟋(y1) = log(1 + exp(y1))

ReLU(y1) 𝟋𝟋(y1) = max(0, y1)

Table 1.  Strategic formulation of standard activation processes
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Rm(F) ≤ L√

m

(
∥W1∥F∥W2∥F∥W3∥F∥W4∥F

)
.� (16)

The Frobenius norm regarding the weighted matrix Wȷ is indicated in this scenario by ∥Wȷ∥F, where L 
constitutes a fixed value and m indicates the total quantity of observations (collocation nodes). A quantitative 
basis for comprehending the intricacy involved in NN design is provided by these equations.

Predictive function class
Every matrix of weights and sensitivity arrays is included within the NN’s feature value ϑ. The complete factor 
vector is capable of being written as follows, assuming that the biased vectors are represented as c1, c2, c3 and 
c4. Also,

	 ϑ =
{

W1, c1, W2, c2, W3, c3, W4, c4
}

.� (17)

The set of operations that NNs can estimate is referred to as the hypothesis category H. Proper generalization of 
the predictive network, while avoiding overfitting, depends on the breadth and diversity of this category. For a 
NN with factor ϑ, the hypothesis within the category H can be described as follows:

	 H =
{
𝟋𝟋ϑ(y1) : ϑ ∈ Θ

}
,� (18)

where Θ denotes the network’s feature region. The NN with a specific parameter configuration ϑ produces the 
predicted output 𝟋𝟋ϑ, which serves as an estimate of the true response 𝟋𝟋true. The decision involving the trade-off 
between the probability of overfitting and the network’s approximation capability is influenced by the complexity 
level of 𝟋𝟋.

Error characterization
The PINN framework accounts for three categories of inefficiencies: estimation errors, adaptation inaccuracies, 
and optimization faults. Analyzing these error types offers valuable insights into the limitations and potential 
enhancements of the PINN architecture. While expanding the hypothesis space can improve predictive accuracy, 
it also increases the risk of overfitting, which hampers the model’s generalization capability. For a more in-depth 
discussion on training error (optimization), prediction error (generalization), and estimation error related to 
representational capacity, we recommend the insightful work by Poggio et al.40.

Optimization failure occurs when the loss function is not fully minimized during training. Given the available 
training data, this type of error is primarily influenced by the mathematical method employed to optimize the 
NN parameters:

	
Ẽ = E

{(
𝟋𝟋true(y1, t) − 𝟋𝟋∗

ϑ(y1, t)
)2

}
− min

ϑ∈Θ
E

{(
𝟋𝟋true(y1, t) − 𝟋𝟋ϑ(y1, t)

)2
}

,� (19)

where 𝟋𝟋∗
ϑ stands for a representation that was acquired following training.

The discrepancy between the performance of a WP system (3) on learning data and its effectiveness across 
the entire spatiotemporal regime is referred to as the generalization error.

	
Ê = Ey1,t

{(
𝟋𝟋true(y1, t) − 𝟋𝟋m(y1, t)

)2
}

.� (20)

An estimation error occurs when the NN fails to closely match the exact solution within the prescribed 
hypothesis class H:

	
Ē = inf

θ∈Θ
Ey1,t

{(
𝟋𝟋true(y1, t) − 𝟋𝟋ϑ(y1, t)

)2
}

.� (21)

We focus on the best possible approximation of the exact solution, denoted as 𝟋𝟋true, that can be obtained within 
the hypothesis category H. It is essential to highlight that as the overall capacity of the hypothesis set H increases, 
the estimation error tends to decrease40.

Attention module
Key WQIs, such as pH, TDS, EC, and Na+, are influenced by a variety of hydrological, chemical, and 
ecological factors that vary across space and time. Conventional separate estimation methods often incorporate 
hydrodynamic factors (e.g., flow rate, temperature, turbidity) and spatiotemporal indicators (e.g., sampling 
location coordinates and day of the year) to predict each pollutant independently. However, the effects of these 
shared factors differ for each water quality metric. For example, high water temperatures can accelerate ionic 
reactions, increasing EC, while simultaneously promoting Na+ mobilization through enhanced salt dissolution. 
Similarly, in low-flow conditions, natural alkalinity and sediment interactions may buffer the impact of TDS and 
Na+ on pH.

The PINN framework incorporates a self-attention (SA) mechanism to dynamically estimate the influence 
of shared environmental factors on each pollutant, thereby accounting for these variations. Unlike conventional 
softmax-based attention, a tanh activation function is employed to capture both positive and negative effects of 
these factors, ensuring a more nuanced representation of pollutant-specific impacts:
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SA = tanh

(
UKT
√

dF

)
V,� (22)

	 U , K, V = WUFshare, WKFshare, WVFshare,� (23)

where dF is the dimension of shared features Fshare, and WU , WK, WV  are learnable weights mapping Fshare 
into query (U), key (K) and value (V) representations, respectively. The calibrated shared features are then 
integrated into pollutant-specific deep NN modules to produce first-level estimations for pH, TDS, EC, and 
Na+.

Each deep NN module consists of three hidden layers, each containing 512 neurons. The output layer of 
the pH module has a single neuron, while the output layers of the TDS, EC, and Na+ modules correspond 
to their respective pollutants. The framework’s attention-based structure enables dynamic adjustment of the 
contributions of shared factors based on their distinct influences on each WQI, allowing for realistic and 
interpretable predictions of contamination risk across the Nile River.

Interaction module
The transport and transformation of contaminants are strongly influenced by various chemical and biological 
processes, in addition to hydrological and ecological factors that affect WQIs across different locations. 
Contaminants such as TDS, EC, and Na+ interact with each other and with natural constituents through 
complex physicochemical processes, resulting in fluctuations in their concentrations. For example, dissolution, 
precipitation, and adsorption of dispersed salts and ions affect both Na+ mobilization and overall EC levels. 
Similarly, natural buffering by carbonates and sediments can cause variations in pH, while interactions among 
ions, sediments, and organic matter influence TDS.

To account for these interactions and reduce estimation biases, the PINN framework incorporates a deep 
interaction module. The outputs of the pollutant-specific deep NN modules’ final hidden layers contain sufficient 
information on pH, TDS, EC, and Na+. These outputs are concatenated with an abstract interaction feature FInt 
to represent relationships among the pollutants. A deep NN with three hidden layers of 512 neurons and an output 
layer of four neurons corresponding to pH, TDS, EC, and Na+, then captures the complex interdependencies 
among WQIs, producing the final integrated predictions of contamination risk along the Nile River.

Physics-constrained multi-tier loss function
By quantifying the difference between predicted and observed WQIs, the loss function allows the PINN model 
to optimize its weights and parameters through backpropagation. For joint estimation of multiple pollutants, the 
basic loss function is defined as the weighted sum of mean squared errors (MSE) across all tasks:

	
Loss =

∑
i

wi MSEi, i ∈ {pH, TDS, EC, Na+}� (24)

	
MSEi = 1

N

N∑
ȷ=1

(
ûi,ȷ − ui,ȷ

)2
.� (25)

Here, wi denotes the weight of pollutant  (set to 1, giving equal importance), N is the total number of samples, 
and ûi,ȷ and ui,ȷ are the predicted and observed concentrations of the pollutant.

Constraints based on water chemistry are incorporated to ensure physically consistent predictions. For 
example, due to natural ionic interactions, the concentration of Na+ cannot exceed the corresponding TDS level. 
Limiting the loss function to the final outputs alone can lead to poor convergence and increased sensitivity to 
noise. To mitigate this, preliminary outputs from the attention module are included as an early-stage evaluation, 
providing intermediate feedback that enhances model stability and improves learning. The final hierarchical 
physics-constrained loss function is formulated as:

	
Loss =

∑
i

MSEL1
i +

∑
i

MSEL2
i + α

(
ReLUL1 + ReLUL2

)
, i ∈ {pH, TDS, EC, Na+}� (26)

	
ReLUL =

n∑
ȷ=1

max
(
0, Na+

L,ȷ − TDSL,ȷ − ϵ
)
, L ∈ {L1, L2}� (27)

where L1 and L2 correspond to the first-level (attention module) and second-level (interaction module) outputs, 
α is the weight of the physics constraint (set to 0.01), and ϵ is a small tolerance.

The Adam optimizer is implemented for training, using 200 epochs and an initial learning rate of 0.01. 
To guarantee consistent convergence, the learning rate is decreased in half after 50 consecutive epochs if the 
validation loss fails to increase. Comprehensive water contamination risk estimation in the Nile River is made 
possible by the PINN’s ability to generate reliable, scientifically accurate, and precise forecasts of pH, TDS, EC 
and Na+ levels thanks to its hierarchical, physics-informed loss structure.
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Formulated approach
This subsection presents the mathematical approaches and techniques used to model WP flow, including 
formalization strategies and PINNs. The physical model governing WP dynamics (3) is incorporated into the 
loss function of the PINNs in this study, ensuring that the network’s predictions align with fundamental scientific 
principles.

PINN implementation
To assess the performance of the PINN system in solving the WP system (3), we conducted computational tests. 
The experiment focused on the transport dynamics in a one-dimensional setting, with the NN configured as 
described in Table 2. The NN model (3) includes three hidden layers with tanh activation functions to enhance 
nonlinearity and learning capability, as illustrated in Fig. 5.

Gradient-based optimization methods, particularly the Adam optimizer, were employed to train the NN. 
The learning rate was set to 3 × 10−3. To effectively minimize the loss function L(ϑ), the backpropagation 
algorithm continuously updates the system’s parameters ϑ during the training phase. The following weights were 
assigned to the different components of the cumulative loss function: Φpde = 1, ΦBC = 100, and ΦIC = 100. 
As shown in Fig. 6, we used Chebyshev nodes in the y1-direction and a geometrically decreasing measure in the 
t-direction to generate the collocation node arrangement, which we referred to as the Cheb-Ex configuration. 
The advantages of this setup have been extensively analyzed in41. Mathematical challenges42 arise due to the 
peculiarities introduced by the DDF ℘(y1) in the WP model (3). As a solution, we have decided to employ the 
following trigonometric estimation:

	
℘cosine(y1) =

{
1+cos(πy1)

2 if |y1| ≤ 1
0 eleswhere.

� (5.1)

The following evaluation metrics were used to assess the efficacy of the PINN technique:

Fig. 5.  Schematic representation of the NN architecture for the model (3) consists of three hidden layers, each 
featuring the tanh activation function to exhibit nonlinearity and enhance learning capacity.

 

Category Hyperparameter Value

Model architecture

Number of hidden layers 4

Neurons per layer [256, 128, 64, 32]

Activation function Hyperbolic tangent function

Dropout Rate 0.2

Regularization L2  Regularization 0.001

Loss function (WQI loss) 0.7

(Physics loss) 0.3

Optimizer and learning Optimizer Adam

Initial Learning Rate 0.001

Training configuration Epochs 200

Table 2.  Key hyperparameters.

 

Scientific Reports |          (2026) 16:603 11| https://doi.org/10.1038/s41598-025-30196-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Training objective evaluation: Monitored the model’s performance during training by tracking the loss func-
tion value.
The coefficient of multiple determination  (R2): A statistical metric that quantifies how well a regression 
model explains the variability of the dependent variable based on the independent variables.
Mean squared error (MSE): Measured the discrepancy between estimated outputs and true results by calcu-
lating the squared differences.
Mean absolute error (MAE): Assessed prediction accuracy by averaging the absolute differences from the 
true results.

As shown in Fig. 7, we created a reference error grid (REG) to evaluate various error measures. A zoomed-in view 
of the network, enlarged by 25%, is also provided for clarity. The REG was designed to enhance error estimation 
accuracy, particularly in regions near the temporal space sector where an abrupt source/sink, described by DDF, 
was applied. A broader distribution of 𝟋𝟋large = 0.5 was used for the remaining area, while a denser distribution 
of 𝟋𝟋dense = 0.009 was employed for this critical section.

Neural activation method selection
As previously mentioned, selecting an appropriate activation function is critical in NN design, particularly for 
PI simulations. Table 1 provides the computational descriptions of several commonly used activation functions, 
including the tanh, sigmoidal, softplus and rectified linear unit function. To assess their influence on training 
performance and explore potential enhancements, special attention was given to the parameter β in the 
hyperbolic tangent function, expressed as tanh(βy1), within the encoded regions.

Instead of relying solely on conventional activation functions such as sigmoid, softplus, or ReLU, this study 
explored a range of β values using customized implementations of the tanh(βy1) function. As illustrated in 
Fig. 8, we compared the performance of traditional activation functions with ten different configurations of 
tanh(βy1). The computational experiments confirmed the effectiveness of the tanh(βy1) function. The 
accompanying graphic highlights how tanh(βy1) increasingly resembles a step function as β approaches 
infinity.

DL architecture
In this scenario, let N denote a NN with five layers, where each layer κ contains mκ synapses. The weight 
matrix and bias vector for the κ-th layer are denoted by Wκ and cκ, respectively. The output of the κ-th layer is 
computed using the following formula: 𝟋𝟋κ = tanh(Wκ𝟋𝟋κ−1 + cκ), where tanh is applied element-wise to the 
resulting vector. The input to the system is given by 𝟋𝟋0 = (y1, t), representing the initial input array.

Fig. 6.  The implementation of the Adam optimization technique to create a NN with a 3 × 10−3 learning 
rate is demonstrated in Fig. 6. The reverse transmission approach uses weightings Φpde = 1, ΦBC = 100, and 
ΦIC = 100 to update the system’s parameters in order to minimize the loss function. The Cheb-Ex setup uses 
a dynamically declining criterion and Chebyshev distribution for collocation node ordering.
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Fig. 8.  Ten versions of the tanh β of the type tanh(βy1), assessed spanning a variety of β values, are 
compared with conventional activation functions (sigmoid, softplus, and ReLU). Considering tanh(βy1) 
asymptotically approaching a step function as β �→ ∞, the animation demonstrates how increasing β 
strengthens the nonlinearity and provides greater control over gradient dynamics in PINN training.

 

Fig. 7.  A REG for assessing localized oversights is constructed with a 25% zoomed-in version for clarification. 
Accuracy is improved close to temporal domains where impulsive Dirac delta dynamics are present thanks 
to the REG. While a broader distribution 𝟋𝟋large = 0.5 covers the remaining domain, a tighter panel spacing 
𝟋𝟋dense = 0.009 is applied close to crucial spots.
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For a case involving multiple inputs and a single output, the dimensionality or the set of adjustable 
parameters-y1 can be determined using the following procedure:

	 y1 = 2.y1 + y2.y3 + y3.1 + y1 + y2 + y3 + 1.� (29)

Considering the design of the unseen phase:

	 Q = y1 + y2 + y3.� (30)

Here, Q represents the overall of synapses in the hidden layer of the NN, which can be computed using Eq. (30). 
The term y1ȷ denotes the number of synapses in the ȷ-th hidden layer and is treated as a weak constraint in our 
design.

To analyze how the architecture of hidden layers affects the performance of the PINN, we varied the number 
of localization indicators, the initialization points, and the overall trainable parameters (y1). According to overall 
neurons and their adjustable features, we examined nine different configurations, which were categorized into 
three groups. Each configuration was evaluated using 30 distinct random initializations to ensure robustness 
(see Table 3).

The relationship between MAE and the cumulative loss was examined across various permutations of 
layer configurations. As shown in Table 3, different setups varied in the number of hyperparameters and layer 
dimensions, while keeping the total synapse count constant (in our analysis, Q = 64). Assuming y1 remains 
constant in (29), we explored topologies with similar dimensions for a more comprehensive analysis, categorizing 
the results into different subgroups as shown in Table 3. Additionally, certain limitations had to be considered in 
order to properly address the problem, which motivated the introduction of Q. As a result, the final architecture 
is:

	




3∑
ȷ=1

y1ȷ = Q = fixed;

y1 = 2.y1 + y2.y3 + y3.1 + y1 + y2 + y3 + 1;
� (31)

By selecting hidden layer configurations based on Problem (31), Table 3 was generated. Notably, for the 
configuration with dimensions 1136, we restricted ourselves to a specific subset of all possible topologies for that 
particular dimension. This approach paves the way for further mathematical research into these categories and 
their connection to analyzing formulas as functional approximations.

Performance metric
The PDE based on WP dynamics (3), incorporated into the PINN framework, uses Xx as the effective storage or 
retardation coefficient of the porous medium (units: 1/L), while 𝟋𝟋(y1, t) represents the pollutant concentration 
at position y1 and time t (units: δ/L3). The dispersion coefficient in the y1-direction is denoted by Qy1 (units: 
L2/T ), and ℘(y1)℘(t) indicates a point source or sink of contamination (units: δ/(L3T )). The pollutant mass 
or volume introduced or removed per unit area is represented by Va (units: δ/L2). The term 𝟋𝟋t(y1, t) denotes 
the temporal change in contaminant concentration due to accumulation or depletion in the porous medium. The 
diffusion term, Qy1𝟋𝟋y1y1, characterizes the spatial spreading of the pollutant due to concentration gradients. 
Lastly, the source term, Va℘(y1)℘(t), captures the instantaneous introduction or removal of pollutant mass at 
a specific location and time.

Specific physical parameters were applied in the simulations for the WP model (3), including a storage 
coefficient of Xx = 1.0, a dispersion coefficient of Qy1 = 0.001, and a transient contaminated source/sink 
intensity of Va = 1.0. To ensure that the network’s estimates align with the empirical constraints of pollutant 
logistics, PINNs incorporate the mathematical framework of WP phenomena directly into the NN’s loss 
function. The loss function L(ϑ) includes terms that account for the underlying interactions of the WP system, 
along with the ICs and BCs, as follows:

	 L(ϑ) = φICLIC + φBCLBC + φFLF .� (32)

Setup Aggregate trainable parameters

16-16-32* 896

48-15-15 911

16-47-1 911

32-16-16* 911

2-17-45 911

2-46-16 1136

16-32-16* 1136

16-31-17 1136

28-35-1 1136

Table 3.  Trainable parameter sizes for various hidden layer structures
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The IC loss ensures that the NN’s prediction of pollutant concentration matches the known initial concentration, 
𝟋𝟋0, at time t = 0:

	
LIC(ϑ) = 1

NIC

NIC∑
ι=1

∥∥𝟋𝟋ϑ(0, y1ι) − 𝟋𝟋0
∥∥2

,� (33)

where NIC  represents the number of points at which the initial concentrations are specified, and 𝟋𝟋ϑ denotes 
the predicted pollutant concentration. The BC loss ensures that the model’s predictions satisfy the pollutant 
concentration values, 𝟋𝟋BC , at the domain boundaries:

	
LBC(ϑ) = 1

NBC

NBC∑
ι=1

∥∥𝟋𝟋ϑ(tι, y1ι) − 𝟋𝟋BC

∥∥2
,� (34)

where NBC  is the number of BC points.
The advection-diffusion equation governing the propagation of contaminants in water is satisfied by the NN’s 

estimations, thanks to the physics-informed loss. This expression corresponds to the residual of the PDE, which 
quantifies the deviation between the prevailing pollutant characteristics and the expected behavior.

	
LF (ϑ) = 1

N

N∑
ι=1

∥∥𝟋𝟋t(tι, y1ι) − ∇ ·
(
Qy1 (y1, t)∇𝟋𝟋(y1, t) + q(y1, t)𝟋𝟋(y1, t)

)∥∥2
,� (35)

where the total quantity of localization nodes utilized for implementing the PDE is N.

Numerical simulations
The numerical results for the WP dynamics predictions, based on the previously described approaches, are 
presented in this subsection.

Activation function sensitivity analysis
The training efficiency and predictive accuracy of NNs used to model WP variability are strongly influenced by 
the choice of activation functions. In this study, several formulations of the scaled hyperbolic tangent activation 
function, tanh(βy1), were examined by varying the gradient scaling factor β. Figure  8 illustrates various 
versions of the scaled hyperbolic tangent function, along with standard activation functions for comparison.

Figure  9 provides a detailed analysis of the error metrics and loss values corresponding to each variant 
of the activation function. A consistent trend emerged when using a fixed number of training epochs and a 
standardized NN architecture: increasing β results in steeper gradients, enhancing the network’s sensitivity to 
localized features, such as the influence of a Dirac delta source in the pollutant transport equation. However, 
excessively steep gradients (e.g., tanh(10y1)) were found to increase both total and boundary losses, indicating 
that overly large values of β may negatively impact the model’s overall performance.

Fig. 9.  Using a set range of learning epochs and a uniform NN topology, the β-scaled tanh β activation 
function is used to compare loss functions and error measures. Mean boundary and total loss with 15th–85th 
percentile ranges, are displayed in the left panel. The mean values of MAE and MSE, together with the 
15th–95th percentile intervals, are displayed in the right panel.

 

Scientific Reports |          (2026) 16:603 15| https://doi.org/10.1038/s41598-025-30196-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Among the tested configurations, tanh(2y1) yielded the lowest MAE and MSE, indicating an optimized 
trade-off between training efficiency and forecasting precision. Consequently, this activation function was 
adopted for all subsequent simulations.

As shown in Fig. 10, while tanh(2y1) did not always outperform tanh(y1) in individual runs, it consistently 
achieved a lower mean MAE across multiple trials, demonstrating its robustness and effectiveness. Future work 
could involve finer tuning of β, such as using incremental steps of ∆β = 0.5, to further refine performance.

Model evaluation
The sample-based and grid-based cross-validation (CV) results for pH, TDS, EC, and Na+ in the Nile River 
during 2019–2020 are summarized in Fig. 11. The density scatter plots indicate that the proposed PINN model 
achieved high overall prediction accuracy. Among the four WQIs, the model performed best in estimating 
pH levels. Specifically, the sample-based CV yielded R2, RMSE, and MAE values of 0.999, 0.256, and 0.204, 
respectively, for pH. The fitting line, with a slope of 0.999, closely matched the 1:1 line, highlighting strong 
agreement between predicted and observed values. Although the grid-based CV results were slightly lower, the 
R2 value remained high at 0.999, confirming the model’s reliability.

The estimations for TDS and EC were also satisfactory. For TDS, the sample-based (grid-based) CV results 
showed R2 of 0.990, RMSE of 64.145  mg/L (56.807  mg/L), and MAE of 47.856  mg/L (47.856  mg/L). EC 

Fig. 10.  Spatial distribution of population density under varying toxin fields and activation sensitivities. 
Columns represent different activation functions’ analytical solution, tanh(y1), tanh(2y1), and tanh(10y1), 
while rows correspond to different toxin configurations. The color intensity indicates population density, with 
higher values representing stronger survival. This visualization supports the observation that tanh(2y1) yields 
more consistent performance across toxin environments.
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predictions demonstrated comparable performance, with sample-based CV R2, RMSE, and MAE values of 0.98, 
74.502 µS/cm, and 63.906 µS/cm, respectively. Grid-based CV results exhibited a minor decrease, with an R2 
reduction of 0.001, yet remained consistent with the sample-based trend. The fitting slopes for TDS and EC 
exceeded 0.999, indicating minimal estimation bias. The model’s performance on the 2019 data was similar 
to that observed in 2020, with comparable R2, RMSE, and MAE values. Detailed results are provided in the 
supporting information.

To evaluate the spatial robustness of the model, site-specific assessment results were analyzed across 
monitoring locations. Similar to pH, TDS, EC, and Na+ predictions exhibited strong performance at most sites. 
For pH, over 84% of sites achieved R2 values above 0.90, while 85% and 78% of sites exceeded R2 = 0.990 for 
TDS and EC, respectively. Spatial performance was generally higher in regions with denser monitoring coverage, 
where sufficient data enabled the PINN to effectively learn complex nonlinear relationships among water 
quality parameters (see Ruan et al.43). In contrast, sites with sparse observations or highly variable hydrological 
conditions showed slightly higher estimation errors.

Temporal variations in model performance were also analyzed (see Fig. 12). Monthly bias boxplots (observed 
minus predicted values) revealed median values near zero for all four pollutants, demonstrating accurate daily 
predictions. The largest biases occurred in December, with median values of −0.12 for pH, 1.5 mg/L for TDS, 
1.8 µS/cm for EC, and 0.05 mg/L for Na+. Residual ranges were smallest for pH during this period, whereas TDS 
and EC exhibited smaller residuals in summer months. Monthly mean relative errors (MREs) showed stable 
trends, with pH averaging 8.5% across the year, and TDS, EC, and Na+ remaining around 18–20%. Seasonal 
variations in concentrations contributed to minor fluctuations in MRE. Overall, the PINN model reliably 
captured both spatial and temporal variability in Nile River water quality, demonstrating robust predictive 
capability for pH, TDS, EC, and Na+.

Boosting the impact of modules and loss functions
The application of a cascade structure with an attention module and an interaction module to capture the 
intricate coupling among categorized factors in the joint estimation of pH, TDS, EC, and Na+ formed the core 
innovation of the proposed model. Ablation analysis was performed to evaluate the effectiveness of each module 
(Table 4). The baseline model WP directly used all factors as inputs to estimate pH, TDS, EC, and Na+ without 
specific treatment of shared or interacting variables. In contrast, the model without the attention module 
(Model_wa) could not differentiate the varying impacts of shared drivers on individual indicators, focusing only 
on their interrelationships. Similarly, the model without the interaction module (Model_wi) ignored the mutual 
influences among water quality parameters, thereby reducing its ability to perform residual corrections.

Evaluation results highlighted the contribution of each module. The baseline model yielded the lowest 
performance, with R2 values of 0.87, 0.82, 0.76, and 0.74 for pH, TDS, EC, and Na+, respectively. Model_wa, 
benefiting from the interaction module that accounted for parameter interdependencies, improved estimation 
accuracy by 0.03–0.07 across all indicators. Model_wi, which retained the attention mechanism, performed even 
better, with R2 values of 0.91, 0.89, 0.86, and 0.84, demonstrating the importance of distinguishing the impact 
of shared drivers. Overall, both modules made complementary contributions, and their combination achieved 
the most accurate joint predictions.

Figure 13 presents the ablation analysis results for different model configurations (Model_base, Model_wa, 
Model_wi, and the proposed PINN) in the joint estimation of pH, TDS, EC, and Na+. The comparison of 

Fig. 11.  CV results of the proposed model for pH, TDS, EC, and Na+ in 2020.
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R2, RMSE, and MAE across models highlights the contributions of the attention and interaction modules. The 
proposed PINN consistently achieves superior predictive accuracy by effectively integrating both modules.

Furthermore, leveraging the multi-level hierarchical outputs of the model and the principles of hydrological and 
physicochemical processes, a hierarchical physics-constrained loss function (Loss_all) was designed. Additional 
experiments were conducted to investigate the contribution of each component of this loss function (Table 5). 
The baseline loss (Loss_base) considered only final outputs, while Loss_L1 incorporated intermediate outputs 
from the attention module. Loss_phy further integrated physical constraints related to contaminant transport. 
Compared with Loss_base, incorporating intermediate results (Loss_L1) provided modest improvements in pH 
and Na+ estimation, while physics constraints (Loss_phy) led to substantial gains in TDS and EC prediction 
accuracy (R2 reaching 0.90 and 0.87, respectively). Ablation analysis of different loss functions across WQIs are 
presented in Fig. 14. The results show that incorporating intermediate outputs (Loss_L1) modestly enhances 
pH and Na+ predictions, while physics constraints (Loss_phy) provide marked improvements in TDS and 
EC estimation. The combined loss function (Loss_all) balances accuracy across all indicators, confirming that 
multi-level outputs and physics-based constraints jointly improve predictive performance.

Model

pH TDS EC Na+

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Model_base 0.87 14.63 10.70 0.82 10.82 6.97 0.76 19.73 12.73 0.74 21.15 13.50

Model_wa 0.90 12.52 9.17 0.87 9.19 5.92 0.83 16.70 11.02 0.81 18.45 12.01

Model_wi 0.91 11.77 8.41 0.89 8.61 5.39 0.86 15.34 9.98 0.84 16.87 11.23

Proposed PINN 0.92 11.25 8.01 0.90 8.23 5.21 0.87 14.73 9.64 0.86 15.98 10.87

Table 4.  Ablation analysis for the models with different modules.

 

Fig. 12.  Monthly model estimation errors for pH, TSD, EC and Na+ in 2020.
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In summary, the integration of attention and interaction modules, along with physics-informed constraints, 
enabled robust estimation of pH, TDS, EC, and Na+, thereby providing a reliable framework for assessing water 
contamination risks and supporting sustainable river management.

Comparison with separate estimation
To assess the effectiveness of the proposed PINN framework in evaluating water contamination risks in the Nile 
River, Egypt, separate estimation models were developed for pH, TDS, EC, and Na+. These models retained the 
same structural components as the PINN feature encoder, attention module, and interaction module to ensure 
fair comparison. The estimation performance and efficiency are summarized in Table 6. For pH, the separate 
model achieved R2, RMSE, and MAE values of 0.92, 11.67, and 8.42, respectively. TDS and EC yielded R2 values 

Loss function

pH TDS EC Na+

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Loss_base 0.91 11.71 8.43 0.89 8.44 5.29 0.85 15.41 9.86 0.83 16.25 10.32

Loss_L1 0.92 11.38 8.13 0.89 8.48 5.28 0.86 15.29 9.79 0.84 16.11 10.20

Loss_phy 0.92 11.43 8.18 0.90 8.10 5.14 0.87 14.63 9.57 0.85 15.84 9.95

Loss_all 0.92 11.25 8.01 0.90 8.23 5.21 0.87 14.73 9.64 0.86 15.98 10.07

Table 5.  Ablation analysis for the different loss functions. Loss_base represents loss function accounting for 
the final results. Loss_L1 represents loss function accounting for the final results and the first-level results. 
Loss_phy represents loss function accounting for the final results and the physics constraints. Loss_all 
represents loss function accounting for the final results, the first-level results and the physics constraints.

 

Fig. 13.  Spider plots of R2, RMSE, and MAE from ablation analysis, illustrating the impact of attention and 
interaction modules on the estimation of pH, TDS, EC, and Na+. The Proposed PINN shows the best overall 
performance.
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Model

pH TDS EC Na+

Total parameters Time/epoch (s)R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

PINN 0.92 11.25 8.01 0.90 8.23 5.21 0.87 14.73 9.64 0.85 15.80 10.11 3.98M 2.06

Model_pH 0.92 11.67 8.41 - - - - - - - - - 7.17M 5.17

Model_TDS - - - 0.88 8.72 5.63 - - - - - - - -

Model_EC - - - - - - 0.84 15.95 10.59 - - - - -

Model_Na+ - - - - - - - - - 0.82 16.20 10.45 - -

Table 6.  Comparison of the proposed model and separate models. PINN represents the proposed model. 
Model_pH represents the separate model for pH estimation. Model_TDS represents the separate model for 
TDS estimation. Model_EC represents the separate model for EC estimation. Model_Na+ represents the 
separate model for Na+ estimation.

 

Fig. 14.  Performance comparison of ablation loss functions across pH, TDS, EC, and Na+.
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of 0.88 and 0.84, with RMSE/MAE values of 8.72/5.63 and 15.95/10.59, respectively, while Na+ showed the 
lowest performance. Overall, the separate models followed similar patterns to PINN, with pH performing best 
and Na+ worst (see Wu et al.44). However, PINN improved joint estimation accuracy for TDS, EC, and Na+, with 
R2 gains of up to 0.03, and slightly reduced RMSE and MAE for pH. By incorporating interactions among WQIs 
and environmental constraints, PINN enhanced estimation accuracy while reducing redundancy. Efficiency 
gains were also significant: the joint model required only 3.98M parameters nearly half of the combined separate 
models and reduced training time per epoch on an NVIDIA GeForce RTX 4090D GPU from 5.17s to 2.06s (see 
Jiang et al.45). Figure 15 presents the estimation performance of separate models, highlighting that pH achieved 
the highest accuracy and Na+ the lowest. Compared to these results, PINN demonstrated clear advantages in 
accuracy, efficiency, and sustainability, underscoring its potential for advancing water quality monitoring and 
resource management in the Nile River basin.

Comparison with other ML models
Four advanced ML models were evaluated to benchmark their performance against the proposed PINN 
framework (Table 7). These included the RF32, the ResNet33, the PI-MTDNN proposed by Mu et al.34, and the KI-
NN developed by Wu et al.35. Among these, the RF model exhibited the weakest performance, yielding sample-
based CV R2 (RMSE) values of 0.87 (14.21) for pH, 0.84 (10.25) for TDS, 0.80 (18.17) for EC, and slightly lower 
accuracy for Na+. In contrast, the ResNet and PI-MTDNN models showed improved performance, with both 
achieving sample-based CV R2 values of 0.91 for pH and 0.88 for TDS. For EC, the PI-MTDNN model reached 
an R2 of 0.85, slightly outperforming ResNet (R2 = 0.84). The KI-NN model demonstrated balanced results, 
with sample-based CV R2 and RMSE (MAE) values of 0.90 and 12.64 (9.08) for pH, and R2 values of 0.87 and 
0.84 for TDS and EC, respectively, while also providing reliable predictions for Na+.

Overall, the proposed PINN model outperformed all compared models, achieving the highest R2 values and 
the lowest RMSE and MAE across all WQIs. Both sample-based and grid-based CV results consistently confirmed 
the robustness of the PINN framework. These findings highlight that the PINN framework’s specialized feature 
encoder, attention mechanism, and interaction module make it particularly effective for joint estimations of 

Fig. 15.  Performance of separate estimation models for pH, TDS, EC, and Na+ in evaluating Nile River water 
contamination risks. pH achieved the highest accuracy (R2 = 0.92), while Na+ showed the lowest. Compared 
to these models, the proposed PINN framework enhances joint estimation accuracy and efficiency, supporting 
sustainable water quality monitoring.
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pH, TDS, EC, and Na+, thereby offering a more reliable approach to assessing water contamination risks and 
supporting environmental sustainability in the Nile River, Egypt.

To visually assess the performance and variability of the models, violin plots were constructed for each water 
quality parameter (pH, TDS, EC, and Na+), as shown in Fig. 16. Each Taylor’s plot represents the distribution of 
sample-based CV metrics R2, RMSE, and MAE for the five evaluated models: RF, ResNet, PI-MTDNN, KI-NN, 
and the proposed PINN. The width of each violin corresponds to the density of the simulated values around the 
observed metric, providing an intuitive depiction of both central tendency and variability.

From the Taylor’s plots Fig. 16, it is evident that the RF model exhibited the widest RMSE and MAE 
distributions and lower R2 values, confirming its weaker performance relative to the other models. The ResNet 
and PI-MTDNN models showed narrower distributions and higher R2 values for pH and TDS, indicating more 
consistent predictions. The KI-NN model achieved balanced performance across all metrics, with moderate 
spread in RMSE and MAE, while the proposed PINN consistently produced the narrowest violins with the 
highest R2 values and lowest RMSE and MAE.

These violin plots not only reinforce the quantitative results reported in Table 7 but also provide a more 
comprehensive view of model reliability, illustrating that the PINN framework is robust and stable across 
multiple WQIs. The plots further underscore the advantage of PINN’s feature encoder, attention mechanism, 
and interaction module in achieving precise and reproducible predictions for assessing water contamination 
risks in the Nile River.

Difference between predictions and observed data
To demonstrate the effectiveness of the proposed PINN framework for the Nile River in Egypt, the differences 
between predicted and observed WQIs are illustrated in Fig. 17. The predicted and actual curves exhibit closely 
aligned trends, confirming the capability of PINN to accurately capture variations in contamination levels. This 
reliable prediction performance highlights the framework’s potential for assessing water contamination risks 
in the Nile River and underscores its broader implications for promoting environmentally sustainable water 
resource management.

Model training loss and validation loss
We trained the PINN framework with fixed hyperparameters to evaluate water contamination risks in the Nile 
River, focusing on key sediment-related parameters (pH, TDS, EC, and Na+). As shown in Fig. 18, the curves of 
training loss and validation loss for the PINN model converge after about ten epochs, indicating stable learning 
performance. This convergence highlights the model’s robustness in capturing contamination dynamics and its 
potential contribution to environmentally sustainable water resource management.

Assessment of latent layer architectures
To evaluate the performance of different latent phase architectures in simulating water contamination variability, 
the relationship between the MAE and the Total Loss was analyzed. As shown in Table  3, each network 
configuration maintained a uniform total neuron count (Q = 64); however, the distribution of neurons across 
the hidden layers varied. This variation led to differences in network complexity often referred to as model 
dimensionality or the total number of trainable parameters.

To enable a fair comparison, architectures with identical total parameter counts were grouped separately, 
allowing the effect of neuron distribution across layers to be isolated. These groupings are presented in 
Table 3. Using various hidden layer configurations each with distinct structural implications–the scatter plots 
in Fig. 19 illustrate the dependency between the cumulative error metric and MAE. Notably, the 32-16-16 
configuration exhibited a significant drop in MAE as the cumulative error metric decreased. This suggests that 
allocating more neurons to the first hidden layer enhances the model’s predictive performance in capturing 
water contamination dynamics. Furthermore, this configuration demonstrated greater consistency, as evidenced 
by its closer adherence to the regression line and a reduced number of outliers.

A more detailed analysis was conducted on network topologies with varying layer structures but an 
identical total number of neurons. The configurations, spanning multiple architecture families, are presented in 
Figs. 20 and 21. Within each category, certain layouts consistently outperform others as the overall parameter 
count increases. Notably, even when the total number of training epochs is kept constant, the configurations 

Model

pH TDS EC Na+

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

RF 0.87 14.21 10.43 0.84 10.25 6.91 0.80 18.17 12.55 0.81 17.45 11.98

ResNet 0.91 12.36 8.86 0.88 8.91 5.73 0.84 15.94 10.48 0.85 16.20 10.12

PI-MTDNN 0.91 12.10 8.67 0.88 8.69 5.54 0.85 15.60 10.24 0.86 15.80 9.95

KI-NN 0.90 12.64 9.08 0.87 9.07 5.86 0.84 16.26 10.71 0.84 16.55 10.40

PINN 0.92 11.25 8.01 0.90 8.23 5.21 0.87 14.73 9.64 0.88 15.10 9.30

Table 7.  Comparison of the proposed model and other ML models for water contamination risk in the Nile 
River, Egypt. RF represents the random forest model. ResNet represents the residual network model. PI-
MTDNN represents the physics-informed multi-task deep neural network. KI-NN represents the knowledge-
informed NN. PINN represents the proposed model.
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highlighted in blue demonstrate a more substantial reduction in MAE and MSE for a given decrease in total 
loss. This suggests that even subtle variations in neuron distribution across layers can significantly impact model 
performance. For example, although the 16-32-16 and 16-31-17 architectures have nearly identical neuron 
counts, their predictive accuracies differ markedly.

Based on this analysis, we conclude that optimal performance is achieved when the number of neurons in 
each hidden layer follows the pattern 2p, as long as the overall count neurons and latent phases (as defined by 
the weak constraint Q) remain constant. Additionally, configurations that allocate more neurons to the first 
hidden layer departing from the strict 2p pattern consistently outperform others when the stricter constraint 
of maintaining the same hyperparameters is relaxed, as shown in Fig.  22. This suggests that increasing the 
representational capacity of the initial layer is particularly effective in capturing the complex spatiotemporal 
dynamics of WP transmission.

Fig. 16.  Taylor plot of the models’ performances in predicting the distribution of R2, RMSE, and MAE for 
different ML models across water quality parameters, highlighting the superior performance and consistency 
of the proposed PINN framework in Nile river.
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WP management performance
The CV results presented in Table 8 and visually illustrated in Fig. 23 provide a comprehensive evaluation of 
three key management strategies including industrial discharge regulation, salinity management, and irrigation 
planning on the major water quality parameters of the Nile River, namely pH, TDS, EC, and Na+. Motivated by 
the urgent need to safeguard the Nile against escalating industrial effluents, increasing salinity pressures, and 
intensive irrigation demands, the study compares multiple ML models, including RF, ResNet, PI-MTDNN, KI-
NN, and the proposed PINN, with predictive accuracy assessed through CV RMSE and R2 metrics. The use of CV 
ensures that the reported performance values reflect not only model fit but also robustness and generalizability, 
thereby offering a reliable benchmark for decision-making under uncertain environmental conditions.

However, the results reveal clear performance differences across models. RF consistently exhibits higher 
RMSE and lower R2 values across all strategies, underscoring its limited ability to capture the nonlinear and 
interdependent nature of water quality dynamics. ResNet, PI-MTDNN, and KI-NN achieve intermediate 
performance, demonstrating some ability to model complex relationships but lacking the stability and precision 
of the proposed framework. In contrast, PINN consistently delivers the lowest RMSE and near-unity R2 across 
folds, confirming its superior capability to capture intricate parameter interactions while maintaining robustness 
under rigorous validation.

Collectively, these findings highlight the pivotal role of advanced ML frameworks, particularly PINN, in 
strengthening water resource management. By providing accurate and generalizable predictions, PINN offers 
a reliable foundation for regulating industrial discharges, improving salinity control, and guiding irrigation 
planning. Beyond methodological advancement, this predictive strength represents a practical pathway toward 
sustainable water governance and long-term environmental protection of the Nile River system.

Field analysis
Characterization data, WQI outcomes, and the NN model’s predictive performance form the three main 
components of the research results. Statistical summaries for all four field stations (G1–G4) are presented in 
Table 9, providing key metrics including mean, median, maximum, minimum, and standard deviation (SD) to 
capture the variability and central tendencies of the water quality parameters.

The analysis of water quality parameters across the four field stations revealed notable spatial and temporal 
variations. Average values ranged from 6.27–6.36 for pH, 1902–2503 mg/L for TDS, 3.41–7.52 µS/cm for EC, 
and 38.72–52.18 mg/L for Na+, with low standard deviations (pH: 0.07–0.14; TDS: 110–210 mg/L; EC: 3–7.5 µ

Fig. 17.  Predicted versus observed WQIs (pH, TDS, EC, and Na+) for the Nile River in Egypt using the PINN 
framework. The close alignment confirms accurate contamination risk assessment and supports sustainable 
water management.
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Fig. 19.  Using three topologies with various hallmarks but exactly identical overall numbers of hidden 
layer neurons (expressed as powers of 2), scattered graphs displaying (left) MAE versus cumulative loss and 
(right) MSE versus cumulative loss are displayed. The inter-quartile range is shown by the outlined region 
surrounding each mean line, emphasizing how this pattern changes throughout the information presented.

 

Fig. 18.  Predicted versus observed WQIs (pH, TDS, EC, and Na+) for the Nile River in Egypt using the PINN 
framework. The close alignment confirms accurate contamination risk assessment and supports sustainable 
water management.
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S/cm; Na+: 7.5–12 mg/L), indicating that measurements were closely clustered around the means (Table 9). The 
highest values observed were pH 6.45–6.60, TDS 2250–2700 mg/L, EC 2.40–5.50 µS/cm, and Na+ 62–85 mg/L, 
while the lowest were pH 6.05–6.10, TDS 1300–2150 mg/L, EC 2.05–3.00 µS/cm, and Na+ 20.50–41 mg/L.

WQI assessment showed that stations G1-G4 consistently exceeded FAO irrigation standards (TDS: 0–2000 
mg/L, EC: 0–3 µS/cm, Na+: 0–40 mg/L), particularly during dry periods when TDS ranged 2075–2680 mg/L, 
EC 3.12–5.70 µS/cm, and Na+ 42–84.9 mg/L. In contrast, station G4 remained within permissible limits (TDS: 
1015–1980 mg/L, EC: 2.05–2.90 µS/cm, Na+: 30.1–38.6 mg/L). Beeswarm plots (Fig. 24) visually illustrate the 
distribution and density of individual measurements for each parameter across the four stations, highlighting 
outliers, clustering, and variability within and between stations. These results underscore the impact of 

Fig. 21.  Scatter plots illustrating the performance of three NN configurations with differing layer distributions 
but an equal total number of hidden neurons, expressed as powers of two. The left panel shows MAE vs. total 
loss, and the right shows MSE vs. total loss. The shaded bands around each trend line indicate the inter-
quartile range, reflecting variability across runs. Blue-highlighted architectures demonstrate more pronounced 
reductions in MAE and MSE for comparable decreases in total loss, emphasizing the critical role of neuron 
allocation in determining model accuracy.

 

Fig. 20.  Scatter plots evaluating three NN designs with different layer significance but a similar overall amount 
of hidden neurons, represented as powers of two, show (left) MAE versus cumulative loss and (right) MSE 
versus cumulative loss. The inter-quartile range, which captures variation among attempts, is represented 
by the outlined region surrounding every tendency curve. The importance of neuron dispersion on model 
precision is illustrated by the superior results of blue-highlighted layouts, which show greater declines in MAE 
and MSE for similar reductions in total loss.
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anthropogenic activities such as urban waste, industrial effluents, and agricultural runoff, while indicating 
that pollution levels decrease downstream. The PINN model effectively captured WQI fluctuations, showing 
high predictive performance across stations (R2: 0.947–0.971; MSE: 0.025–0.085), with TDS predictions 
demonstrating the most consistency, thus validating its reliability for data-driven water management strategies.

The WQI results reveal the levels of TDS, EC, and Na+ in the Nile River, Egypt. According to FAO2,3 
irrigation water supply criteria, acceptable ranges are 0–2000 mg/L for TDS, 0–3 µS/cm for EC, and 0–40 mg/L 
for Na+. Across all seasons, pH levels ranged from 6.05 to 6.80, remaining within FAO standards at every 
sampling location.

At stations 1 through 3, measured levels of TDS, EC, and Na+ ranged from 2050–2600 mg/L, 3.10–5.65 
µS/cm, and 41.50–76.30 mg/L, respectively, exceeding FAO limits. In contrast, station 4 remained within 
permissible limits (TDS: 1015–1980 mg/L, EC: 2.05–2.90 µS/cm, Na+: 30.10–38.60 mg/L). During the dry 
period, concentrations increased across all stations (TDS: 2075–2680 mg/L, EC: 3.12–5.70 µS/cm, Na+: 42.00–
84.90 mg/L), highlighting the increasing impact of human activities and environmental pressures on water 
quality, which continue to affect the river’s ecological health. Effective management measures are essential to 

Strategy Method

pH TDS EC Na+

RMSE R2 RMSE R2 RMSE R2 RMSE R2

Industrial discharge regulation

RF 1.065 0.890 66.085 0.875 85.072 0.882 17.968 0.878

ResNet 0.280 0.970 64.200 0.972 82.500 0.968 15.900 0.970

PI-MTDNN 0.300 0.975 64.190 0.973 83.700 0.969 16.200 0.971

KI-NN 0.310 0.976 65.000 0.974 84.200 0.970 16.400 0.972

PINN 0.256 0.999 64.145 0.999 74.502 0.999 14.466 0.999

Salinity management

RF 1.070 0.885 66.090 0.870 85.075 0.878 17.070 0.872

ResNet 0.285 0.969 63.400 0.971 83.000 0.967 16.000 0.969

PI-MTDNN 0.295 0.974 64.200 0.972 83.800 0.968 16.300 0.970

KI-NN 0.305 0.975 65.100 0.973 84.400 0.969 16.500 0.971

PINN 0.251 0.999 56.807 0.999 84.338 0.999 15.042 0.999

Irrigation planning

RF 1.068 0.888 65.087 0.873 84.073 0.880 17.069 0.876

ResNet 0.260 0.971 62.500 0.973 81.500 0.969 15.600 0.971

PI-MTDNN 0.270 0.974 63.200 0.972 82.300 0.968 15.900 0.970

KI-NN 0.280 0.975 64.000 0.973 83.000 0.969 16.100 0.971

PINN 0.266 0.999 62.751 0.999 83.037 0.999 14.008 0.999

Table 8.  Performance comparison of different methods under three strategies for pH, TDS, EC, and Na+.

 

Fig. 22.  Comparing the efficiency of neural network designs with different hidden layer neuron allocations, 
assuming a fixed total neuron count determined by the weak constraint Q. The 2p distribution topologies 
function best when the overall count of neurons and latent phases are fixed. The significance of improving 
the figurative capabilities of the initial layer for demonstrating the intricate spatiotemporal variations in WP 
the emission is highlighted by the fact that frameworks that allocate further neurons to the first hidden layer 
frequently entertain better than others when the restriction on the number of hyperparameters is loosened.
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prevent long-term detrimental effects. The investigation indicated that pollution levels decrease downstream. 
Although pH remained within recommended thresholds, values could still contribute to agricultural toxicity 
or nutritional disorders (see Fig. 25 and Table 10). Excessive TDS can reduce oxygen saturation, alter taste, and 
increase water acidity, while elevated ion levels increase EC, limiting nutrient and moisture uptake by plant 
roots and complicating cultivation (see46). The WQI was accurately modeled using the PINN approach, which 
captured periodic fluctuations with minimal divergence from observed data, effectively tracking and forecasting 
changes in water quality.

However, the PINN model (3), integrating data-driven learning with statistical principles of water quality 
dynamics, was evaluated using R2 and MSE metrics during training, testing, and prediction phases. The R2 
values for pH, TDS, EC, and Na+ (0.088–0.095, 0.016–0.087, 0.015–0.086, and 0.017–0.085, respectively) 
demonstrate its ability to capture complex relationships under physical constraints. During training, the 
model showed exceptionally high alignment with experimental data and physical laws (R2: pH 0.982–0.991, 
TDS 0.983–0.989, EC 0.982–0.990, Na+ 0.982–0.990). Evaluation performance remained excellent (R2: pH 
0.954–0.969, TDS 0.955–0.972, EC 0.953–0.968, Na+ 0.956–0.970), with TDS predictions showing the most 
consistency. Prediction results further confirmed reliability (R2 0.947–0.971; MSE 0.025–0.085), validating 
PINN’s ability to capture realistic water quality dynamics while accounting for mass-balance and compositional 
constraints. System performance was most consistent during training, followed by testing and prediction.

Conclusion
This study developed a PINN framework to jointly predict key water quality indices (pH, TDS, EC, and 
Na+) in Egypt’s Nile River under critical management strategies, including industrial discharge regulation, 
salinity management, and irrigation planning. By integrating hydrochemical knowledge, an adaptive attention 
mechanism, a deep interaction module, and a physics-constrained loss function, the proposed PINN effectively 

Parameter

G1 G2 G3 G4

pH TDS EC Na+ pH TDS EC Na+ pH TDS EC Na+ pH TDS EC Na+

Mean 6.32 2467.85 4.31 120 6.28 2271.80 3.58 110 6.31 2141.56 3.39 100 6.32 1963.78 2.93 90

Median 6.35 2445.20 4.08 118 6.30 2238.60 3.28 108 6.35 2110.75 3.28 98 6.37 2005.00 3.11 88

Maximum 6.49 2753.00 5.89 150 6.48 2531.00 4.92 130 6.47 2412.00 3.89 120 6.62 2294.00 3.25 110

Minimum 6.10 2210.00 3.21 95 6.02 2050.00 3.04 95 6.02 1891.00 3.03 85 6.10 1375.00 2.04 70

SD 0.09 129.74 0.85 15 0.12 129.30 0.51 12 0.11 116.52 0.25 10 0.15 211.67 0.29 11

Table 9.  Characteristic statistics for selected WQI parameters across groups G1 to G4.

 

Fig. 23.  CV performance of five ML models under three water management strategies (industrial discharge 
regulation, salinity management, and irrigation planning) for key Nile River parameters: pH, TDS, EC, and 
Na+. The proposed PINN model consistently achieves the lowest RMSE and highest R2, demonstrating 
superior predictive accuracy and robustness.
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addressed the limitations of conventional ML approaches that often overlook parameter interdependencies and 
physical interpretability.

Comprehensive evaluations demonstrated that PINN consistently outperformed benchmark models 
such as RF, ResNet, PI-MTDNN, and KI-NN, achieving superior accuracy, robustness, and computational 
efficiency. CV confirmed its stability across temporal and spatial domains, while ablation studies highlighted the 
complementary contributions of the attention and interaction modules. Field validation further revealed that 
although pH values largely complied with FAO standards, TDS, EC, and Na+ frequently exceeded permissible 
thresholds, emphasizing the urgency of effective water quality management.

Beyond predictive accuracy, the PINN framework provides interpretability by identifying irrigation 
intensity, salinity loads, and industrial effluents as the dominant drivers of water quality dynamics. This capacity 
to combine accurate forecasting with physical interpretability positions PINN as a practical and sustainable 
decision-support tool.

Finally, the proposed PINN offers a reliable pathway for monitoring and mitigating water contamination risks 
in the Nile River. Its predictive strength and interpretability not only support regulatory decision-making and 
pollution control but also contribute to long-term environmental sustainability and resilient water governance 
in large river basins.

Limitations:
Although the proposed PINN framework demonstrates strong predictive performance and interpretability, 

several limitations remain. First, the model relies on the availability and quality of monitoring data, and its 
accuracy decreases in regions with sparse measurements or high hydrological variability. Second, the current 
study focused primarily on four key water quality indicators (pH, TDS, EC, and Na+), while other important 
parameters such as dissolved oxygen, heavy metals, and nutrients were not included. Expanding the model to 
capture a wider spectrum of physicochemical variables would provide a more comprehensive understanding 
of ecosystem health. Third, while the framework incorporates domain knowledge through physics-informed 
constraints, it does not fully account for dynamic processes such as seasonal flow changes, sediment transport, 
or long-term climate variability, which may influence prediction robustness.

Future research:
Future work can address these challenges by integrating remote sensing data and high-resolution hydrological 

simulations to improve spatial generalization. Incorporating additional WQIs and biological indicators would 
enhance the ecological relevance of the predictions. Moreover, extending the PINN to hybrid models that 
combine physical process-based simulations with data-driven learning may further improve both accuracy and 
interpretability. Finally, deploying the model in real-time monitoring systems and decision-support platforms 
will help translate research findings into actionable strategies for sustainable water resource management.

Fig. 24.  Beeswarm plots showing the distribution of water quality parameters (pH, TDS, EC, Na+) across the 
four field stations (G1–G4) of the Nile River. The plots highlight the variability, clustering, and presence of 
outliers for each parameter across stations.
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Data availability
The data sets used and/or analyzed during the current study available from the corresponding author on rea-
sonable request.
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Parameter Statistical Measures G1 G2 G3 G4

pH

R2  Train 0.980 0.984 0.981 0.991

R2  Test 0.957 0.954 0.960 0.954

R2  Forecast 0.961 0.966 0.958 0.947

MSE 0.049 0.023 0.027 0.042

TDS

R2  Train 0.980 0.984 0.983 0.980

R2  Test 0.958 0.969 0.963 0.953

R2  Forecast 0.946 0.964 0.948 0.944

MSE 0.044 0.045 0.012 0.054

EC

R2  Train 0.988 0.981 0.983 0.981

R2  Test 0.966 0.958 0.950 0.955

R2  Forecast 0.951 0.952 0.947 0.948

MSE 0.016 0.018 0.027 0.079

Na+

R2  Train 0.985 0.983 0.987 0.986

R2  Test 0.965 0.952 0.967 0.955

R2  Forecast 0.960 0.957 0.949 0.948

MSE 0.032 0.066 0.024 0.014

Table 10.  Statistical metrics for the training, testing, and forecasting performance of the model (3) for pH, 
TDS, EC, and Na+.

 

Fig. 25.  Statistical assessment of the PINN model’s capability to simulate the concentrations of pH, TDS, EC, 
and Na+ across various Nile River regions. The model demonstrated strong predictive reliability, consistently 
maintaining high R2 values and low MSE during training, testing, and forecasting stages. Pollutant levels 
followed seasonal patterns, with peak concentrations observed during dry periods. These findings validate the 
model’s effectiveness in capturing WQI dynamics for accurate prediction.
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