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Melanoma is an aggressive skin cancer associated with a poor prognosis, making survival time a 
primary concern for patients. This study applies five machine learning models to predict survival rates 
for melanoma patients, aiming to improve prognostic accuracy and support clinical decision-making. 
Melanoma patient data were extracted from the Surveillance, Epidemiology, and End Results (SEER) 
database. Five machine learning models—Random Forest, Decision Tree, XGBoost, CatBoost, and 
LightGBM—were applied to predict 1-year, 3-year, and 5-year survival rates for melanoma patients. 
The CatBoost model was selected for its superior performance and evaluated using the Area Under the 
Receiver Operating Characteristic Curve (AUC), confusion matrix, calibration curves, and decision curve 
analysis (DCA) to assess its accuracy and clinical utility. This study analyzed data from 4,875 patients 
with cutaneous melanoma, incorporating thirteen demographic and clinical variables to develop 
survival prediction models using five machine learning algorithms. Among these, the CatBoost model 
demonstrated the best overall performance and stability following five-fold cross-validation. The 
model achieved AUC values of 0.7577, 0.7595, and 0.7557 for 1-, 3-, and 5-year survival predictions, 
respectively. Decision Curve Analysis further confirmed its clinical utility, while consistent precision 
across both training and test sets indicated robust generalization and reliable predictive capability. 
These findings highlight the CatBoost model’s potential as a practical and accurate tool for assessing 
melanoma prognosis and supporting individualized clinical decision-making. This model provides 
clinicians with an effective tool for early intervention, which may ultimately contribute to improved 
patient survival outcomes.
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 Melanoma, an aggressive skin cancer originating from melanocytes, poses a significant global health challenge 
due to its high potential for metastasis and variable prognosis1,2. Despite advances in treatment, patient outcomes 
remain dependent on factors such as tumor stage, location, and individual patient characteristics3,4. Accurate 
survival predictions are essential for guiding clinical decision-making and personalizing treatment plans, which 
ultimately improve patient care.

This study utilizes data from the Surveillance, Epidemiology, and End Results (SEER) database, a 
comprehensive resource managed by the National Cancer Institute that provides data on cancer incidence, 
treatment, and survival in the United States. Leveraging SEER data, we developed a multivariable predictive 
model that incorporates key prognostic factors such as Breslow Thickness, Mitotic Rate, lymph node involvement, 
tumor size (Measured Basal Diameter), primary tumor site, and age at diagnosis to predict survival outcomes for 
melanoma patients5–9. These variables have been recognized as significant indicators of melanoma prognosis, 
as Breslow Thickness measures tumor invasion depth10, Mitotic Rate reflects cellular proliferation11, and lymph 
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node involvement indicates potential metastasis. The primary tumor site and patient age further influence 
treatment choices and survival outcomes.

To enhance predictive accuracy, we implemented five machine learning algorithms: Random Forest, Decision 
Tree, XGBoost, CatBoost, and LightGBM, focusing on 1-year, 3-year, and 5-year survival predictions. CatBoost, 
in particular, is a gradient boosting algorithm known for its precision, scalability, and efficient handling of 
categorical features, making it a strong choice for survival prediction in cancer patients12,13. Our model aims to 
support clinicians by improving prognostic assessments, enabling early interventions for high-risk patients, and 
advancing understanding of melanoma biology. The potential of machine learning for personalized treatment 
planning, risk stratification, and future melanoma prognosis and treatment research has been highlighted14,15.

Methods
Data source and patient selection
The data of patients with cutaneous melanoma were obtained from the SEER database, a public database and 
research resource established by the National Cancer Institute of the United States16,17. Based on the International 
Classification of Diseases for Oncology, Third Edition (ICD-O-3/WHO 2008), patients diagnosed with melanoma 
between 2000 and 2021 with primary site codes C44.3-44.9 were included. Cases were excluded if information 
was incomplete, including Age recode, Sex, Year of diagnosis, LDH Pretreatment, Breslow Thickness, Mitotic 
Rate, Ulceration, CS lymph nodes, Marital Status, Median household income, Site recode, Race recode, Primary 
Site, Survival months, and SEER cause-specific death classification. Ultimately, a total of 4,875 eligible patients 
with cutaneous melanoma were included in this study for further analysis. Figure 1 illustrates the study design 
and patient flowchart.

Study variables
This study incorporated multiple demographic and clinical factors known to influence melanoma prognosis, 
including age, sex, year of diagnosis, LDH pretreatment level, Breslow thickness, mitotic rate, ulceration status, 
lymph node involvement, marital status, median household income, tumor site, and race. These variables were 
selected to establish a comprehensive framework for analyzing patient survival. Several key variables—LDH 
pretreatment level (88.6%), Breslow thickness (64.03%), and mitotic rate (93.42%)—had high proportions of 
missing data. To preserve sample size and maintain cohort representativeness, cases were not excluded. Instead, 
missing values for these variables were imputed using a random forest algorithm. The imputed data were used 
for model training, while cases with complete or minimally imputed data were reserved for testing. Model 
performance was assessed using five-fold cross-validation. This approach minimized potential bias from data 
exclusion, improved robustness, and enhanced generalizability when analyzing heterogeneous or incomplete 
clinical data. Survival months and SEER cause-specific death classification served as outcome variables for 
assessing melanoma-specific survival.

CatBoost model
CatBoost, a machine learning algorithm based on gradient boosting decision trees, is known for its high 
accuracy, performance, and scalability, particularly when handling categorical features14,15,18. This study employs 
CatBoost, along with other machine learning algorithms, to build predictive models for melanoma patient 
survival. A brief overview of the fundamental principles underlying each algorithm is provided in Supplementary 
Text 1. To ensure robust model performance, we used five-fold cross-validation on the training set, optimizing 
model parameters through repeated adjustments to enhance stability. Furthermore, an independent test set was 
reserved to validate model performance, thereby assessing the generalizability of the developed models.

The primary objective of this study is to create a reliable machine learning model that can predict 1-year, 
3-year, and 5-year survival outcomes for patients with cutaneous melanoma. By leveraging advanced machine 
learning techniques, we aim to improve survival prognosis and support clinical decision-making. This approach 
underscores the potential of machine learning in developing precise prognostic models that accommodate 
complex, multifactorial clinical data, thereby advancing the field of melanoma research and aiding in personalized 
patient management.

Statistical analysis
In this study, we summarized the basic characteristics of melanoma patients by presenting categorical variables 
as counts (n) and percentages (%), while continuous variables were reported as mean ± standard deviation 
for normally distributed data or median (range) for non-normally distributed data. Differences between the 
training and test sets were evaluated using the chi-square test for categorical variables, and t-tests or Z-tests 
for continuous variables, depending on the data distribution. Statistical significance of these differences was 
determined by p-values, allowing us to assess any notable variations between the two datasets.

To develop prognostic models for melanoma patients, we utilized five machine learning algorithms: Random 
Forest, Decision Tree, XGBoost, CatBoost, and LightGBM. We evaluated the models’ predictive performance 
through Receiver Operating Characteristic (ROC) curve analysis and confusion matrices, calculating the Area 
Under the ROC Curve (AUC) to measure the accuracy of each model. Additionally, precision, a key metric 
from the confusion matrix, was calculated to further assess model performance. Calibration curves and decision 
curve analysis (DCA) were also conducted to evaluate the reliability and clinical utility of each model, providing 
a comprehensive assessment of their prognostic value for melanoma survival predictions.
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Results
Patient characteristics
The following factors were included as explanatory variables: age at diagnosis, race, sex, Breslow Thickness, 
LDH Pretreatment Level, Mitotic Rate, lymph node involvement, ulceration status, marital status, and median 
household income (Table 1). The study cohort consisted of 4,875 patients diagnosed with cutaneous melanoma, 
divided into training (n = 3,900) and test sets (n = 975) for model development and evaluation. The average 
age at diagnosis across all patients was approximately 60–64 years, with no significant differences observed 
between the training (60–64 years) and test sets (60–64 years). The majority of patients were male (65.4%) and 

Fig. 1.  Flowchart of study design. SEER Surveillance, Epidemiology, and End Results; CS Collaborative Stage; 
ROC curve receiver operating characteristic curve; AUC area under the curve.
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Characteristics Total (n = 4875) n (%) Train set (n = 3,900) n (%) Test set (n = 975) n (%) χ2/t/Z P value

Age recodes 13.42 ± 3.16 13.36 ± 3.20 13.67 ± 2.98 773.37 0.9952

Sex 0.46 0.9252

 Male 3189 (65.43) 2567 (65.84) 622 (63.79)

 Female 1685 (34.57) 1332 (34.16) 353 (36.21)

Race 23.34 0.6303

 White 4716 (96.76) 3772 (96.74) 944 (96.82)

 Black 63 (1.29) 46 (1.18) 17 (1.74)

 AI/An 16 (0.33) 15 (0.38) 1 (10.10)

 A/PI 79 (1.62) 66 (1.69) 13 (1.33)

Year of diagnosis 2013 (2010–2015) 2012 (2010–2015) 2013 (2010–2015) -2.47 0.0653

LDH pretreatment 358.10 0.0000

 Unknown 4320 (88.63) 3449 (88.46) 871 (89.33)

 Normal or low 257 (5.27) 204 (5.23) 53 (5.44)

 High 2979 (6.09) 246 (6.31) 51 (5.23)

Breslow thickness 5483.55 0.0000

 > 0.0 or ≤ 0.1 125 (2.56) 109 (2.80) 16 (1.64)

 ≥ 9.8 258 (5.29) 208 (5.33) 50 (5.13)

 No mass/tumor 1370  (28.11) 1117 (28.65) 253 (25.95)

 Unknown 3121 (64.03) 2465 (63.22) 656 (67.28)

Mitotic rate 8101.14 0.0000

 Mitoses absent 90 (1.85) 78 (2.00) 12 (1.23)

 ≥ 11 mitoses 169 (3.47) 133 (3.41) 36 (3.69)

 Other 13 (0.27) 11 (0.28) 2 (0.21)

 Unknown 4553 (93.41) 3637 (93.28) 916 (93.95)

 < 1 mitosis 33 (0.68) 28 (0.72) 5 (0.52)

 Not in chart 16 (0.33) 12 (0.31) 4 (0.41)

CS lymph nodes 731.67 ± 382.02 746.69 ± 374.50 671.52 ± 405.42 5.63 0.0000

Ulceration 778.36 0.0000

 Ulceration present 316 (6.48) 256 (6.57) 60 (6.15)

 Not identified 911 (18.69) 742 (19.03) 169 (17.33)

 Not assessed 3647 (74.83) 2901 (74.40) 746 (76.51)

Marital status 125.66 0.0002

 Widowed 559 (11.47) 451 (11.57) 108 (11.08)

 Unmarried 17 (0.35) 15 (0.38) 2 (0.21)

 Single 956 (19.61) 751 (19.26) 205 (21.03)

 Separated 51 (1.05) 39 (1.00) 12 (1.23)

 Married 2814 (57.73) 2261 (57.99) 553 (56.72)

 Divorced 477 (9.79) 382 (9.80) 95 (9.74)

Median household income 0.00 1.0000

 Median (range) 72499.5  (36,000.0–132,000.0) 72,499.5 (36,000.0–132,000.0) 72,499.5 (36,000.0–132,000.0)

Sites recode 0.00 1.0000

 Skin 4874 (100.00) 3899 (100.00) 975 (100.00)

Primary site 164.52 0.0000

 C44.3-Skin 270 (5.54) 220 (5.64) 50 (5.13)

 C44.4-Skin 265 (5.44) 202 (5.18) 63 (6.46)

 C44.5-Skin 620 (12.72) 479 (12.29) 141 (14.46)

 C44.6-Skin 448 (9.19) 373 (9.57) 75 (7.69)

 C44.7-Skin 447 (9.17) 357 (9.16) 90 (9.23)

 C44.9-Skin 2824 (57.94) 2268 (58.17) 556 (57.03)

Table 1.  Baseline characteristics of melanoma patients. aAge categories, where a code of 0 indicates 0 years, 1 
indicates 1–4 years, 2 indicates 5–9 years, 3 indicates 10–14 years, and so on, up to 18 which indicates 85 years 
and above; bMedian household income (in tens) in U.S. dollars; cAI/An: American Indian/Alaska Native; A/PI: 
Asian or Pacific Islander.
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White (96.7%), while other racial groups, including Black, AI/AN, and A/PI, represented less than 4% of the 
cohort. Notably, a large proportion of patients had missing LDH Pretreatment data (88.6%), with only 6.11% 
presenting high levels. Breslow Thickness data was also frequently missing (64.03%), and 28.65% of patients had 
no measurable tumor or mass.

Clinical variables such as the Mitotic Rate and lymph node status were largely unreported, with 93.42% 
of patients missing mitotic rate information and only 17.82% having documented lymph node involvement. 
Ulceration status was similarly sparse, with 6.48% of cases confirmed to have ulceration. Marital status data 
indicated that the majority were married (57.75%), followed by single (19.61%) and widowed (11.47%) patients. 
The median household income for the cohort was $72,499.5, with a range of $6,000 to $132,000. All patients had 
skin as the primary site, with the most frequent code being C44.9 (74.85%). Statistically significant differences 
were identified between the training and test sets for LDH pretreatment levels (P < 0.0001), Breslow Thickness 
(P < 0.0001), and marital status (P = 0.0002), suggesting potential disparities in the clinical and demographic 
distributions across these subsets. The primary outcome variables assessed in this study included survival 
months and overall survival, serving as essential endpoints for the analysis.

Feature predictor selection
Using the CatBoost algorithm, we quantified the relative importance of clinical and demographic variables in 
predicting 1-, 3-, and 5-year survival among patients with cutaneous melanoma (Fig. 2). In the 1-year model, 
Mitotic Rate (31.75) and LDH Pretreatment (12.55) were the most influential predictors, followed by Year of 
Diagnosis (9.34), Primary Site (9.27), CS Lymph Nodes (7.32), and Breslow Thickness (6.85). Age recode (6.61) 
and Ulceration (5.59) showed moderate contributions, whereas Sex (5.22), Marital Status (4.91), Race recode 
(0.36), Median Household Income (0.23), and Site recode (0.00) had minimal effects. Comparable patterns were 
observed in the 3-year and 5-year models, where Mitotic Rate remained the strongest predictor (29.58 and 28.57, 
respectively), with LDH Pretreatment (11.93–11.30) and Age recode (13.79) maintaining high relevance. Across 
all timepoints, clinical indicators—particularly Mitotic Rate, LDH Pretreatment, and Age recode—consistently 
outperformed demographic factors, underscoring their central role in melanoma prognosis.

Fig. 2.  The importance of each feature in the CatBoost prognostic model. The importance of each feature for 
(A) 1-year, (B) 3-year, and (C) 5-year prognostic model. CatBoost categorical boosting.
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Construction of AI prognostic model
A total of 4,875 eligible melanoma patients were randomly divided into training and test sets. To preserve data 
completeness and cohort representativeness, cases with missing values were retained, and missing clinical 
variables were imputed using a random forest method. The training set incorporated all imputed data, while 
the test set included cases with complete data or only a single imputed feature. Model development employed 
five-fold cross-validation for repeated tuning and optimization. The final CatBoost model used optimized 
hyperparameters: subsample = 1.0, learning_rate = 0.01, l2_leaf_reg = 20, iterations = 1,000, depth = 6, colsample_
bylevel = 0.6, border_count = 32, bootstrap_type = “Bernoulli,” and boosting_type = “Ordered.” Model 
performance was evaluated on the test set using Receiver Operating Characteristic (ROC) analysis, Area Under 
the Curve (AUC), confusion matrix, calibration curves, and Decision Curve Analysis (DCA) to comprehensively 
assess predictive accuracy and clinical utility.

Evaluating predictive models for estimating the prognosis of patients with melanoma
As shown in Fig. 3, Receiver Operating Characteristic (ROC) curve analyses demonstrated consistent predictive 
accuracy of the CatBoost algorithm across 1-, 3-, and 5-year survival models under five-fold cross-validation. 
The 1-year model (Fig. 3A) achieved an AUC of 0.7577, reflecting moderate predictive performance, while the 
3-year model (Fig. 3B) attained the highest AUC of 0.7595, indicating strong generalizability. The 5-year model 
(Fig. 3C) yielded an AUC of 0.7557, confirming reliable long-term prediction capability. Collectively, the AUC 
values ranging from 0.7557 to 0.7595 highlight the model’s stable and consistent performance across survival 
periods, with the 3-year model demonstrating the best overall discrimination for melanoma prognosis.

As shown in Table 2, five machine learning models—Random Forest (RF), Decision Tree (DT), XGBoost, 
CatBoost, and LightGBM—were evaluated for 1-, 3-, and 5-year survival prediction. In the training set, 
CatBoost achieved the highest AUCs of 0.8895, 0.8730, and 0.8667, respectively, demonstrating strong in-sample 
performance. In the test set, CatBoost maintained superior generalization with AUCs of 0.6979, 0.6975, and 
0.7101 for the corresponding timeframes. These results highlight CatBoost’s consistent advantage over other 
algorithms, confirming its robust predictive accuracy and generalizability for melanoma survival estimation 
across both short- and long-term outcomes.

Fig. 3.  CatBoost model evaluation. ROC curve for A 1-year, B 3-year, and C 5-year prognostic model in five-
fold cross-validation. CatBoost: categorical boosting; ROC: receiver operating characteristic curve; AUC: area 
under the curve.
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Model accuracy was further assessed using confusion matrices and calibration curves (Supplementary 
Figures S1 and S2). In the training set, the CatBoost model achieved accuracies of 85%, 84%, and 84% for 1-, 
3-, and 5-year survival predictions, respectively, while test set accuracies were 70%, 72%, and 73%, reflecting 
stable yet slightly reduced performance on unseen data. As summarized in Supplementary Table S1, CatBoost 
outperformed other models in both datasets. Calibration curves demonstrated strong agreement between 
predicted and observed survival probabilities across all timeframes in both the training (Supplementary Figure 
S2A–C) and test sets (Supplementary Figure S2D–F), confirming the model’s reliability and well-calibrated 
predictive behavior.

Decision Curve Analysis (DCA) further demonstrated the CatBoost model’s clinical utility across all survival 
timeframes (Fig. 4). For the 1-year model (Fig. 4A and D), the greatest net benefit was observed at threshold 

Fig. 4.  Decision curve analysis curves of the CatBoost model in the training and test. Decision curve analysis 
curves for (A) 1-year, (B) 3-year, and (C) 5-year prognostic models in the training set and (D) 1-year, (E) 
3-year, and (F) 5-year prognostic models in the test set. CatBoost: categorical boosting.

 

1-year survival 3-year survival 5-year survival

Train set

 RF 0.8831 0.8654 0.8566

 DT 0.7342 0.7089 0.7061

 XGBoost 0.8790 0.8634 0.8583

 CatBoost 0.8895 0.8730 0.8667

 LightGBM 0.8706 0.8562 0.8514

Test set

 RF 0.7416 0.7469 0.7426

 DT 0.6836 0.6719 0.6727

 XGBoost 0.7380 0.7621 0.7646

 CatBoost 0.7551 0.7671 0.7690

 LightGBM 0.7274 0.7506 0.7589

Table 2.  Performance of prognostic models built by machine learning algorithms in the training and test sets 
(area under the ROC curve). ROC receiver operating characteristic curve; RF random forest; DT decision 
tree; XGBoost extreme gradient boosting; CatBoost categorical boosting; LightGBM light gradient boosting 
machine.
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probabilities between 0.1 and 0.6 in the training set and 0.1–0.5 in the test set, reflecting an optimal balance 
between true and false positives. Similar patterns were observed for the 3- and 5-year models (Fig. 4B, C and 
E, and 4F), where maximum net benefit occurred within comparable threshold ranges. Beyond 0.6, the net 
benefit declined as false positives increased. These consistent trends across all models underscore the robustness, 
reliability, and practical value of the CatBoost algorithm in supporting clinical decision-making for both short- 
and long-term melanoma survival prediction.

Discussion
This study developed and validated a machine learning model to predict 1-, 3-, and 5-year survival outcomes in 
patients with cutaneous melanoma using SEER data. Five algorithms—Random Forest, Decision Tree, XGBoost, 
LightGBM, and CatBoost—were compared to identify the optimal predictive framework for integrating 
demographic and clinical variables. The CatBoost model demonstrated the most stable and generalizable 
performance, achieving AUCs of 0.7577, 0.7595, and 0.7557 for 1-, 3-, and 5-year survival, respectively, indicating 
consistent predictive accuracy across timeframes.

Leveraging a large, population-based dataset, this study highlights the strength of combining advanced 
machine learning with clinical data to generate interpretable and robust survival models. CatBoost effectively 
managed categorical and missing data while minimizing overfitting. Key prognostic factors identified included 
Mitotic Rate, LDH pretreatment level, Age recode, Year of Diagnosis, and Breslow Thickness. Breslow Thickness 
remained a dominant predictor of poor outcomes, whereas elevated LDH reflected greater tumor burden. 
The influence of Year of Diagnosis likely represents indirect effects of advances in diagnostics, treatment, and 
healthcare access.

Among all algorithms, LightGBM performed best in training, but CatBoost achieved superior generalization 
on the test set, confirming its robustness. Calibration and Decision Curve Analyses verified that predicted 
probabilities closely matched observed outcomes and offered consistent net clinical benefit across thresholds. 
Overall, CatBoost provides a reliable, interpretable, and clinically applicable framework for melanoma survival 
prediction, supporting individualized risk stratification and evidence-based treatment planning.

Despite the promising results, several limitations should be acknowledged. Key prognostic variables, including 
pre-treatment LDH (88.6%), Breslow thickness (64.03%), and mitotic rate (93.42%), had high proportions of 
missing data. These values were imputed using the random forest method to preserve sample size and maintain 
cohort representativeness; however, such missingness may still affect model robustness and external validity. The 
SEER database’s predominantly White population (96.7%) also limits generalizability, as differences in genetics, 
environment, socioeconomic status, and healthcare access may influence outcomes in other groups. Moreover, 
some predictors, such as year of diagnosis, likely serve as proxies for unmeasured factors—such as socioeconomic 
conditions, healthcare accessibility, and advances in diagnostic and therapeutic practices—rather than direct 
biological determinants. Recognizing these as proxy indicators enhances interpretability but underscores the 
need for caution in causal inference. Future studies should validate the model in multi-ethnic, multi-center 
cohorts and integrate explainable AI techniques to strengthen generalizability and clinical applicability.

Conclusion
This study establishes a robust and interpretable machine learning–based model for melanoma survival prediction, 
demonstrating that CatBoost effectively balances accuracy, generalizability, and clinical relevance. Utilizing a 
large population-based dataset and multiple prognostic features, the model delivers consistent survival estimates 
across 1-, 3-, and 5-year intervals, enabling early intervention and individualized treatment planning. Future 
work should include external, multi-center validation and integrate molecular and genetic markers alongside 
explainable AI frameworks to enhance interpretability and clinical utility. Overall, these findings underscore 
the potential of machine learning to improve melanoma prognosis, optimize patient stratification, and advance 
precision oncology in routine clinical practice.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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