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Development of a machine
learning-based model for
prognostic prediction in melanoma
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Jianglin Zhang?*5™*

Melanoma is an aggressive skin cancer associated with a poor prognosis, making survival time a
primary concern for patients. This study applies five machine learning models to predict survival rates
for melanoma patients, aiming to improve prognostic accuracy and support clinical decision-making.
Melanoma patient data were extracted from the Surveillance, Epidemiology, and End Results (SEER)
database. Five machine learning models—Random Forest, Decision Tree, XGBoost, CatBoost, and
LightGBM—were applied to predict 1-year, 3-year, and 5-year survival rates for melanoma patients.
The CatBoost model was selected for its superior performance and evaluated using the Area Under the
Receiver Operating Characteristic Curve (AUC), confusion matrix, calibration curves, and decision curve
analysis (DCA) to assess its accuracy and clinical utility. This study analyzed data from 4,875 patients
with cutaneous melanoma, incorporating thirteen demographic and clinical variables to develop
survival prediction models using five machine learning algorithms. Among these, the CatBoost model
demonstrated the best overall performance and stability following five-fold cross-validation. The
model achieved AUC values of 0.7577, 0.7595, and 0.7557 for 1-, 3-, and 5-year survival predictions,
respectively. Decision Curve Analysis further confirmed its clinical utility, while consistent precision
across both training and test sets indicated robust generalization and reliable predictive capability.
These findings highlight the CatBoost model’s potential as a practical and accurate tool for assessing
melanoma prognosis and supporting individualized clinical decision-making. This model provides
clinicians with an effective tool for early intervention, which may ultimately contribute to improved
patient survival outcomes.

Keywo rds Melanoma, Survival prediction, CatBoost, Machine learning, Prognostic model

Melanoma, an aggressive skin cancer originating from melanocytes, poses a significant global health challenge
due to its high potential for metastasis and variable prognosis"2. Despite advances in treatment, patient outcomes
remain dependent on factors such as tumor stage, location, and individual patient characteristics®*. Accurate
survival predictions are essential for guiding clinical decision-making and personalizing treatment plans, which
ultimately improve patient care.

This study utilizes data from the Surveillance, Epidemiology, and End Results (SEER) database, a
comprehensive resource managed by the National Cancer Institute that provides data on cancer incidence,
treatment, and survival in the United States. Leveraging SEER data, we developed a multivariable predictive
model that incorporates key prognostic factors such as Breslow Thickness, Mitotic Rate, lymph node involvement,
tumor size (Measured Basal Diameter), primary tumor site, and age at diagnosis to predict survival outcomes for
melanoma patients®~. These variables have been recognized as significant indicators of melanoma prognosis,
as Breslow Thickness measures tumor invasion depth!’, Mitotic Rate reflects cellular proliferation!!, and lymph
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node involvement indicates potential metastasis. The primary tumor site and patient age further influence
treatment choices and survival outcomes.

To enhance predictive accuracy, we implemented five machine learning algorithms: Random Forest, Decision
Tree, XGBoost, CatBoost, and LightGBM, focusing on 1-year, 3-year, and 5-year survival predictions. CatBoost,
in particular, is a gradient boosting algorithm known for its precision, scalability, and efficient handling of
categorical features, making it a strong choice for survival prediction in cancer patients'>!. Our model aims to
support clinicians by improving prognostic assessments, enabling early interventions for high-risk patients, and
advancing understanding of melanoma biology. The potential of machine learning for personalized treatment
planning, risk stratification, and future melanoma prognosis and treatment research has been highlighted!*!>.

Methods

Data source and patient selection

The data of patients with cutaneous melanoma were obtained from the SEER database, a public database and
research resource established by the National Cancer Institute of the United States'®!”. Based on the International
Classification of Diseases for Oncology, Third Edition (ICD-O-3/WHO 2008), patients diagnosed with melanoma
between 2000 and 2021 with primary site codes C44.3-44.9 were included. Cases were excluded if information
was incomplete, including Age recode, Sex, Year of diagnosis, LDH Pretreatment, Breslow Thickness, Mitotic
Rate, Ulceration, CS lymph nodes, Marital Status, Median household income, Site recode, Race recode, Primary
Site, Survival months, and SEER cause-specific death classification. Ultimately, a total of 4,875 eligible patients
with cutaneous melanoma were included in this study for further analysis. Figure 1 illustrates the study design
and patient flowchart.

Study variables

This study incorporated multiple demographic and clinical factors known to influence melanoma prognosis,
including age, sex, year of diagnosis, LDH pretreatment level, Breslow thickness, mitotic rate, ulceration status,
lymph node involvement, marital status, median household income, tumor site, and race. These variables were
selected to establish a comprehensive framework for analyzing patient survival. Several key variables—LDH
pretreatment level (88.6%), Breslow thickness (64.03%), and mitotic rate (93.42%)—had high proportions of
missing data. To preserve sample size and maintain cohort representativeness, cases were not excluded. Instead,
missing values for these variables were imputed using a random forest algorithm. The imputed data were used
for model training, while cases with complete or minimally imputed data were reserved for testing. Model
performance was assessed using five-fold cross-validation. This approach minimized potential bias from data
exclusion, improved robustness, and enhanced generalizability when analyzing heterogeneous or incomplete
clinical data. Survival months and SEER cause-specific death classification served as outcome variables for
assessing melanoma-specific survival.

CatBoost model

CatBoost, a machine learning algorithm based on gradient boosting decision trees, is known for its high
accuracy, performance, and scalability, particularly when handling categorical features'*!>!8, This study employs
CatBoost, along with other machine learning algorithms, to build predictive models for melanoma patient
survival. A brief overview of the fundamental principles underlying each algorithm is provided in Supplementary
Text 1. To ensure robust model performance, we used five-fold cross-validation on the training set, optimizing
model parameters through repeated adjustments to enhance stability. Furthermore, an independent test set was
reserved to validate model performance, thereby assessing the generalizability of the developed models.

The primary objective of this study is to create a reliable machine learning model that can predict 1-year,
3-year, and 5-year survival outcomes for patients with cutaneous melanoma. By leveraging advanced machine
learning techniques, we aim to improve survival prognosis and support clinical decision-making. This approach
underscores the potential of machine learning in developing precise prognostic models that accommodate
complex, multifactorial clinical data, thereby advancing the field of melanoma research and aiding in personalized
patient management.

Statistical analysis

In this study, we summarized the basic characteristics of melanoma patients by presenting categorical variables
as counts (n) and percentages (%), while continuous variables were reported as meanz+standard deviation
for normally distributed data or median (range) for non-normally distributed data. Differences between the
training and test sets were evaluated using the chi-square test for categorical variables, and t-tests or Z-tests
for continuous variables, depending on the data distribution. Statistical significance of these differences was
determined by p-values, allowing us to assess any notable variations between the two datasets.

To develop prognostic models for melanoma patients, we utilized five machine learning algorithms: Random
Forest, Decision Tree, XGBoost, CatBoost, and LightGBM. We evaluated the models” predictive performance
through Receiver Operating Characteristic (ROC) curve analysis and confusion matrices, calculating the Area
Under the ROC Curve (AUC) to measure the accuracy of each model. Additionally, precision, a key metric
from the confusion matrix, was calculated to further assess model performance. Calibration curves and decision
curve analysis (DCA) were also conducted to evaluate the reliability and clinical utility of each model, providing
a comprehensive assessment of their prognostic value for melanoma survival predictions.
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Fig. 1. Flowchart of study design. SEER Surveillance, Epidemiology, and End Results; CS Collaborative Stage;
ROC curve receiver operating characteristic curve; AUC area under the curve.

Results

Patient characteristics

The following factors were included as explanatory variables: age at diagnosis, race, sex, Breslow Thickness,
LDH Pretreatment Level, Mitotic Rate, lymph node involvement, ulceration status, marital status, and median
household income (Table 1). The study cohort consisted of 4,875 patients diagnosed with cutaneous melanoma,
divided into training (n=3,900) and test sets (n=975) for model development and evaluation. The average
age at diagnosis across all patients was approximately 60-64 years, with no significant differences observed
between the training (60-64 years) and test sets (60-64 years). The majority of patients were male (65.4%) and
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Characteristics Total (n=4875) n (%) Train set (n=3,900) n (%) Test set (n=975) n (%) X/t/Z | Pvalue
Age recodes 13.42+3.16 13.36£3.20 13.67+£2.98 773.37 | 0.9952
Sex 0.46 | 0.9252
Male 3189 (65.43) 2567 (65.84) 622 (63.79)

Female 1685 (34.57) 1332 (34.16) 353 (36.21)

Race 23.34 | 0.6303
White 4716 (96.76) 3772 (96.74) 944 (96.82)

Black 63 (1.29) 46 (1.18) 17 (1.74)

Al/An 16 (0.33) 15 (0.38) 1(10.10)

A/PI 79 (1.62) 66 (1.69) 13 (1.33)

Year of diagnosis 2013 (2010-2015) 2012 (2010-2015) 2013 (2010-2015) -2.47 | 0.0653
LDH pretreatment 358.10 | 0.0000
Unknown 4320 (88.63) 3449 (88.46) 871 (89.33)

Normal or low 257 (5.27) 204 (5.23) 53 (5.44)

High 2979 (6.09) 246 (6.31) 51 (5.23)

Breslow thickness 5483.55 | 0.0000
>0.0 0r<0.1 125 (2.56) 109 (2.80) 16 (1.64)

>9.38 258 (5.29) 208 (5.33) 50 (5.13)

No mass/tumor 1370 (28.11) 1117 (28.65) 253 (25.95)

Unknown 3121 (64.03) 2465 (63.22) 656 (67.28)

Mitotic rate 8101.14 | 0.0000
Mitoses absent 90 (1.85) 78 (2.00) 12 (1.23)

> 11 mitoses 169 (3.47) 133 (3.41) 36 (3.69)

Other 13 (0.27) 11 (0.28) 2(0.21)

Unknown 4553 (93.41) 3637 (93.28) 916 (93.95)

< 1 mitosis 33 (0.68) 28 (0.72) 5(0.52)

Not in chart 16 (0.33) 12 (0.31) 4(0.41)

CS lymph nodes 731.67 £382.02 746.69 +374.50 671.52+405.42 5.63 | 0.0000
Ulceration 778.36 | 0.0000
Ulceration present 316 (6.48) 256 (6.57) 60 (6.15)

Not identified 911 (18.69) 742 (19.03) 169 (17.33)

Not assessed 3647 (74.83) 2901 (74.40) 746 (76.51)

Marital status 125.66 | 0.0002
Widowed 559 (11.47) 451 (11.57) 108 (11.08)

Unmarried 17 (0.35) 15 (0.38) 2(0.21)

Single 956 (19.61) 751 (19.26) 205 (21.03)

Separated 51 (1.05) 39 (1.00) 12 (1.23)

Married 2814 (57.73) 2261 (57.99) 553 (56.72)

Divorced 477 (9.79) 382 (9.80) 95 (9.74)

Median household income 0.00 | 1.0000
Median (range) 72499.5 (36,000.0-132,000.0) | 72,499.5 (36,000.0-132,000.0) | 72,499.5 (36,000.0-132,000.0)

Sites recode 0.00 | 1.0000
Skin 4874 (100.00) 3899 (100.00) 975 (100.00)

Primary site 164.52 | 0.0000
C44.3-Skin 270 (5.54) 220 (5.64) 50 (5.13)

C44.4-Skin 265 (5.44) 202 (5.18) 63 (6.46)

C44.5-Skin 620 (12.72) 479 (12.29) 141 (14.46)

C44.6-Skin 448 (9.19) 373 (9.57) 75 (7.69)

C44.7-Skin 447 (9.17) 357 (9.16) 90 (9.23)

C44.9-Skin 2824 (57.94) 2268 (58.17) 556 (57.03)

Table 1. Baseline characteristics of melanoma patients. *Age categories, where a code of 0 indicates 0 years, 1

indicates 1-4 years, 2 indicates 5-9 years, 3 indicates 10-14 years, and so on, up to 18 which indicates 85 years
and above; "PMedian household income (in tens) in U.S. dollars; CAI/An: American Indian/Alaska Native; A/PI:
Asian or Pacific Islander.
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White (96.7%), while other racial groups, including Black, AI/AN, and A/PI, represented less than 4% of the
cohort. Notably, a large proportion of patients had missing LDH Pretreatment data (88.6%), with only 6.11%
presenting high levels. Breslow Thickness data was also frequently missing (64.03%), and 28.65% of patients had
no measurable tumor or mass.

Clinical variables such as the Mitotic Rate and lymph node status were largely unreported, with 93.42%
of patients missing mitotic rate information and only 17.82% having documented lymph node involvement.
Ulceration status was similarly sparse, with 6.48% of cases confirmed to have ulceration. Marital status data
indicated that the majority were married (57.75%), followed by single (19.61%) and widowed (11.47%) patients.
The median household income for the cohort was $72,499.5, with a range of $6,000 to $132,000. All patients had
skin as the primary site, with the most frequent code being C44.9 (74.85%). Statistically significant differences
were identified between the training and test sets for LDH pretreatment levels (P <0.0001), Breslow Thickness
(P<0.0001), and marital status (P=0.0002), suggesting potential disparities in the clinical and demographic
distributions across these subsets. The primary outcome variables assessed in this study included survival
months and overall survival, serving as essential endpoints for the analysis.

Feature predictor selection

Using the CatBoost algorithm, we quantified the relative importance of clinical and demographic variables in
predicting 1-, 3-, and 5-year survival among patients with cutaneous melanoma (Fig. 2). In the 1-year model,
Mitotic Rate (31.75) and LDH Pretreatment (12.55) were the most influential predictors, followed by Year of
Diagnosis (9.34), Primary Site (9.27), CS Lymph Nodes (7.32), and Breslow Thickness (6.85). Age recode (6.61)
and Ulceration (5.59) showed moderate contributions, whereas Sex (5.22), Marital Status (4.91), Race recode
(0.36), Median Household Income (0.23), and Site recode (0.00) had minimal effects. Comparable patterns were
observed in the 3-year and 5-year models, where Mitotic Rate remained the strongest predictor (29.58 and 28.57,
respectively), with LDH Pretreatment (11.93-11.30) and Age recode (13.79) maintaining high relevance. Across
all timepoints, clinical indicators—particularly Mitotic Rate, LDH Pretreatment, and Age recode—consistently
outperformed demographic factors, underscoring their central role in melanoma prognosis.

1-year Prognostic Model of CatBoost Algorithm CatBoost 3-year Prognostic Model of CatBoost Algorithm CatBoost
B
3175 Mitotic Rate 29.58
12.55 LDH Pretreatment 1.93
Age recode 10.96
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Year of diagnosis 8.4a
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Fig. 2. The importance of each feature in the CatBoost prognostic model. The importance of each feature for
(A) 1-year, (B) 3-year, and (C) 5-year prognostic model. CatBoost categorical boosting.
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Construction of Al prognostic model

A total of 4,875 eligible melanoma patients were randomly divided into training and test sets. To preserve data
completeness and cohort representativeness, cases with missing values were retained, and missing clinical
variables were imputed using a random forest method. The training set incorporated all imputed data, while
the test set included cases with complete data or only a single imputed feature. Model development employed
five-fold cross-validation for repeated tuning and optimization. The final CatBoost model used optimized
hyperparameters: subsample = 1.0, learning_rate=0.01,12_leaf_reg=20, iterations = 1,000, depth =6, colsample_
bylevel=0.6, border_count=32, bootstrap_type = “Bernoulliy and boosting_type = “Ordered” Model
performance was evaluated on the test set using Receiver Operating Characteristic (ROC) analysis, Area Under
the Curve (AUC), confusion matrix, calibration curves, and Decision Curve Analysis (DCA) to comprehensively
assess predictive accuracy and clinical utility.

Evaluating predictive models for estimating the prognosis of patients with melanoma

As shown in Fig. 3, Receiver Operating Characteristic (ROC) curve analyses demonstrated consistent predictive
accuracy of the CatBoost algorithm across 1-, 3-, and 5-year survival models under five-fold cross-validation.
The 1-year model (Fig. 3A) achieved an AUC of 0.7577, reflecting moderate predictive performance, while the
3-year model (Fig. 3B) attained the highest AUC of 0.7595, indicating strong generalizability. The 5-year model
(Fig. 3C) yielded an AUC of 0.7557, confirming reliable long-term prediction capability. Collectively, the AUC
values ranging from 0.7557 to 0.7595 highlight the model’s stable and consistent performance across survival
periods, with the 3-year model demonstrating the best overall discrimination for melanoma prognosis.

As shown in Table 2, five machine learning models—Random Forest (RF), Decision Tree (DT), XGBoost,
CatBoost, and LightGBM—were evaluated for 1-, 3-, and 5-year survival prediction. In the training set,
CatBoost achieved the highest AUCs of 0.8895, 0.8730, and 0.8667, respectively, demonstrating strong in-sample
performance. In the test set, CatBoost maintained superior generalization with AUCs of 0.6979, 0.6975, and
0.7101 for the corresponding timeframes. These results highlight CatBoost’s consistent advantage over other
algorithms, confirming its robust predictive accuracy and generalizability for melanoma survival estimation
across both short- and long-term outcomes.
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Fig. 3. CatBoost model evaluation. ROC curve for A 1-year, B 3-year, and C 5-year prognostic model in five-
fold cross-validation. CatBoost: categorical boosting; ROC: receiver operating characteristic curve; AUC: area
under the curve.
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‘ 1-year survival | 3-year survival | 5-year survival

Train set

RF 0.8831 0.8654 0.8566
DT 0.7342 0.7089 0.7061
XGBoost | 0.8790 0.8634 0.8583
CatBoost | 0.8895 0.8730 0.8667
LightGBM | 0.8706 0.8562 0.8514
Test set

RF 0.7416 0.7469 0.7426
DT 0.6836 0.6719 0.6727
XGBoost | 0.7380 0.7621 0.7646
CatBoost | 0.7551 0.7671 0.7690
LightGBM | 0.7274 0.7506 0.7589

Table 2. Performance of prognostic models built by machine learning algorithms in the training and test sets
(area under the ROC curve). ROC receiver operating characteristic curve; RF random forest; DT decision
tree; XGBoost extreme gradient boosting; CatBoost categorical boosting; LightGBM light gradient boosting
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Fig. 4. Decision curve analysis curves of the CatBoost model in the training and test. Decision curve analysis
curves for (A) 1-year, (B) 3-year, and (C) 5-year prognostic models in the training set and (D) 1-year, (E)
3-year, and (F) 5-year prognostic models in the test set. CatBoost: categorical boosting.

Model accuracy was further assessed using confusion matrices and calibration curves (Supplementary
Figures S1 and S2). In the training set, the CatBoost model achieved accuracies of 85%, 84%, and 84% for 1-,
3-, and 5-year survival predictions, respectively, while test set accuracies were 70%, 72%, and 73%, reflecting
stable yet slightly reduced performance on unseen data. As summarized in Supplementary Table S1, CatBoost
outperformed other models in both datasets. Calibration curves demonstrated strong agreement between
predicted and observed survival probabilities across all timeframes in both the training (Supplementary Figure
S2A-C) and test sets (Supplementary Figure S2D-F), confirming the model’s reliability and well-calibrated
predictive behavior.

Decision Curve Analysis (DCA) further demonstrated the CatBoost models clinical utility across all survival
timeframes (Fig. 4). For the 1-year model (Fig. 4A and D), the greatest net benefit was observed at threshold
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probabilities between 0.1 and 0.6 in the training set and 0.1-0.5 in the test set, reflecting an optimal balance
between true and false positives. Similar patterns were observed for the 3- and 5-year models (Fig. 4B, C and
E, and 4F), where maximum net benefit occurred within comparable threshold ranges. Beyond 0.6, the net
benefit declined as false positives increased. These consistent trends across all models underscore the robustness,
reliability, and practical value of the CatBoost algorithm in supporting clinical decision-making for both short-
and long-term melanoma survival prediction.

Discussion

This study developed and validated a machine learning model to predict 1-, 3-, and 5-year survival outcomes in
patients with cutaneous melanoma using SEER data. Five algorithms—Random Forest, Decision Tree, XGBoost,
LightGBM, and CatBoost—were compared to identify the optimal predictive framework for integrating
demographic and clinical variables. The CatBoost model demonstrated the most stable and generalizable
performance, achieving AUCs 0f 0.7577, 0.7595, and 0.7557 for 1-, 3-, and 5-year survival, respectively, indicating
consistent predictive accuracy across timeframes.

Leveraging a large, population-based dataset, this study highlights the strength of combining advanced
machine learning with clinical data to generate interpretable and robust survival models. CatBoost effectively
managed categorical and missing data while minimizing overfitting. Key prognostic factors identified included
Mitotic Rate, LDH pretreatment level, Age recode, Year of Diagnosis, and Breslow Thickness. Breslow Thickness
remained a dominant predictor of poor outcomes, whereas elevated LDH reflected greater tumor burden.
The influence of Year of Diagnosis likely represents indirect effects of advances in diagnostics, treatment, and
healthcare access.

Among all algorithms, Light GBM performed best in training, but CatBoost achieved superior generalization
on the test set, confirming its robustness. Calibration and Decision Curve Analyses verified that predicted
probabilities closely matched observed outcomes and offered consistent net clinical benefit across thresholds.
Overall, CatBoost provides a reliable, interpretable, and clinically applicable framework for melanoma survival
prediction, supporting individualized risk stratification and evidence-based treatment planning.

Despite the promising results, several limitations should be acknowledged. Key prognostic variables, including
pre-treatment LDH (88.6%), Breslow thickness (64.03%), and mitotic rate (93.42%), had high proportions of
missing data. These values were imputed using the random forest method to preserve sample size and maintain
cohort representativeness; however, such missingness may still affect model robustness and external validity. The
SEER database’s predominantly White population (96.7%) also limits generalizability, as differences in genetics,
environment, socioeconomic status, and healthcare access may influence outcomes in other groups. Moreover,
some predictors, such as year of diagnosis, likely serve as proxies for unmeasured factors—such as socioeconomic
conditions, healthcare accessibility, and advances in diagnostic and therapeutic practices—rather than direct
biological determinants. Recognizing these as proxy indicators enhances interpretability but underscores the
need for caution in causal inference. Future studies should validate the model in multi-ethnic, multi-center
cohorts and integrate explainable AI techniques to strengthen generalizability and clinical applicability.

Conclusion

This study establishes a robust and interpretable machinelearning-based model for melanoma survival prediction,
demonstrating that CatBoost effectively balances accuracy, generalizability, and clinical relevance. Utilizing a
large population-based dataset and multiple prognostic features, the model delivers consistent survival estimates
across 1-, 3-, and 5-year intervals, enabling early intervention and individualized treatment planning. Future
work should include external, multi-center validation and integrate molecular and genetic markers alongside
explainable AI frameworks to enhance interpretability and clinical utility. Overall, these findings underscore
the potential of machine learning to improve melanoma prognosis, optimize patient stratification, and advance
precision oncology in routine clinical practice.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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