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Enhanced model inversion via
frequency disentanglement and
latent space optimization

JiaShuaiYang'?, Bin Wen%2*“, JiaTeng Zhao'? & Shang Zhou':?

Model inversion attacks, which aim to reconstruct private training images from a target model’s
outputs, highlight the privacy risks in artificial intelligence systems. Existing methods, relying on
generative adversarial networks, face challenges such as frequency-feature coupling, random latent-
space sampling with initial points distant from the target identity, and insufficient loss functions for
optimizing difficult samples. To address these, this paper proposes three core innovations: frequency
decoupling, Top-K initialization, and dynamic focus boundary loss. Specifically, learnable filters
disentangle and fuse features at multiple scales, achieving fine-grained frequency decomposition.
Top-K initialization retains the best latent codes for each identity, constructing precise latent vectors.
The dynamic focus boundary loss, inspired by focal loss, prevents overfitting to easy samples and
focuses on difficult ones. Experiments on CelebA, FFHQ, and FaceScrub datasets demonstrate that our
method significantly enhances attack performance, especially under large data-distribution shifts.

Keywords Model inversion attack, Dynamic focal margin loss, Frequency decomposition, Latent space
anchoring, Privacy protection

With the rapid development of Deep Neural Networks (DNN), they have been widely used in computer vision,
natural language processing, health care, and other fields. However, the high performance of DNNs usually
depends on the training of private datasets. Recent privacy attack studies have shown that’>* model inversion
attacks can successfully reconstruct private datasets used for training by using target classification models. Model
inversion attacks are divided into white-box and black-box>~® models. This paper will focus on the problem
of face image reconstruction under white-box settings. Under the white-box assumption, the attacker has full
access to the target model.

Early studies® '3 revealed the risk of DNN leaking private data and formalized it as an optimization
problem, which realized the sensitive feature values that were as highly likely as possible under the target model
by iteratively optimizing data samples in the input space. Subsequent studies have used GAN to improve the
efficiency and quality of private data image reconstruction and promote defense'? technology. Existing MIAs
mainly rely on the prior knowledge of the generative model, and the effect of the generative model obtaining
prior knowledge from the public data set directly affects the attack performance. From the perspective of model
training paradigm, the existing methods mainly cover three types: unsupervised!>'*%, semi-supervised'® and
supervised!®!1820 learning frameworks. Compared with semi-supervised and unsupervised training, supervised
training can make better use of category information and provide clearer guidance in spatial search. In recent
years, research has gradually shifted from white-box to black-box models. However, both white-box!'? and
black-box?*?! attacks in MIA tend to use generative models trained in a supervised manner, and the choice of
generative models is more inclined to diffusion models. Although diffusion models show excellent performance
in generative ability, the long training time is still a major defect. In this paper, the supervised training GAN
is used to achieve excellent attack performance without sacrificing efficiency. Although the existing white-box
model MIA has achieved certain results, it still has the following shortcomings:

1. Traditional generative adversarial networks lack the ability to explicitly separate frequency band features, re-
sulting in the coupling of low-frequency and high-frequency features within the class, as illustrated in Fig. 1;
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Fig. 1. Potential search space for different MI attacks.

and the existing conditional normalization of MIA only provides global category guidance, lacking targeted
processing of local details and different frequency features.

2. Existing model inversion attacks generally adopt a random initialization strategy, but the initial sampling
points have no semantic association with any category manifold. To improve the confidence of the target
model, the optimization process often amplifies the activation along any direction, causing the potential vec-
tor to escape to the outside of the manifold, and finally the generated image deviates from the real data area.

3. Previous MIA used the maximum margin loss function as the optimization objective. However, when there
is a large difference in data distribution, the maximum margin loss has limited exploration capability in the
latent space and cannot focus on those samples that are difficult to recover. This leads to poor performance
of the generator when dealing with these difficult samples, thereby affecting the overall attack performance.

Nevertheless, current MIAs still share three core limitations: coupled high- and low-frequency features, random
latent codes that easily drift outside the class manifold, and uniform margin losses that neglect hard samples.
Existing white-box MIAs have not yet simultaneously solved these three problems. This paper explicitly addresses
them by integrating frequency-disentangled generation, manifold-aware Top-K initialization, and difficulty-
weighted boundary loss into one unified framework.

To solve the above limitations, this paper proposes an improved model inversion attack method. First, a
learnable low-pass-high-pass filter is introduced into cGAN to decompose image features' into high-frequency
and low-frequency components to realize the explicit separation and processing of different frequency features
and avoid the coupling of low-frequency and high-frequency features in the generation process. Then, the label
embedding features?? are fused with the image features at multiple scales to provide richer category guidance
for the generator, which can more finely control the image generation process and ensure that the generator
can capture the detail features related to specific categories at different frequency levels. Secondly, the top K
latent codes are retained after the generated samples are scored by the target model, and the mean perturbation
is used as the starting point to limit the optimization space to the surrounding range of the corresponding
category. Finally, a dynamic focal boundary loss is proposed, which pays more attention to the recovery of
difficult samples. By dynamically adjusting the focus of the loss, the optimization process pays more attention to
those samples that are difficult to recover, thereby improving the overall attack success rate. The contributions
are summarized as follows:

1. A generator architecture based on frequency band decoupling and label fusion is proposed to improve the
detail and semantic consistency of reconstructed images through multi-frequency feature fusion.

2. Top K anchor initialization is proposed to replace random initialization, which anchors the optimization
starting point in the real manifold to prevent it from deviating from the real data area.

3. A dynamic focal boundary loss is proposed to replace the maximum boundary loss. The deficiency of the ex-
isting loss function in dealing with difficult samples and large differences in data distribution, which cannot
effectively explore the potential space, is solved.

The experimental results show that the attack method improves the attack performance in various data sets and
model architectures and still maintains excellent attack effect in the case of significant distribution differences
between public and private data.

Related technologies

Model inversion attack

Fredrikson et al.!” first studied model inversion attacks in the context of genomic privacy. GMI* proposed
an inversion attack on the generative model and successfully reconstructed the high-dimensional data.
KED_MI" proposed to model the private data distribution for each target category instead of optimizing a
single data point, and VMI'® regarded the optimization process of the attack as variational optimization and
performed variational inference. PPA and IF_MI!*3> use StyleGAN pre-trained on public datasets to attack the
target model. LOMMA?* uses knowledge distillation technology to achieve model enhancement, improve the
generalization ability of attacks, and alleviate overfitting. PLG_MI'® uses Conditional Generative Adversarial
Network (cGAN) to realize category decoupling, solve the problem of feature coupling of different categories
in the latent space, and effectively improve the attack performance under the setting of large data distribution
difference. CMD_MI"® introduces the conditional diffusion model into the white-box scenario and approaches
the target distribution through the two-step strategy of pre-training-fine-tuning, to achieve the balance between
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Fig. 2. Overview diagram of attack methods.
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Fig. 3. Frequency-band decomposition fusion block.

attack accuracy and fidelity. However, CMD_MI not only takes a long time in the training stage of the diffusion
model but also needs an additional 8-10 h for training in the fine-tuning stage, and the attack accuracy is high.
However, the method in this paper can consider both accuracy and fidelity without sacrificing efficiency.

Methodology

Our attack method is primarily developed to address the limitations of the generator architecture, latent vector
sampling, and the attack loss function. Innovations have been made in three key aspects: First, a Frequency
Decomposition Fusion Block (FDFB) has been incorporated into the cGAN architecture to enhance the model’s
ability to process information at different frequencies. Second, a latent vector initialization method based on
Top K class centers has been proposed to improve the sampling efficiency of the latent space. Third, a dynamic
focal boundary loss function has been designed to optimize the loss calculation during the attack process. An
overview of the attack method is shown in Fig. 2. The specific implementations and advantages of these three
methods will be detailed in the order mentioned above.

Frequency-band decomposition fusion block

Design of frequency band decoupling fusion block

Inspired by the idea of wavelet transform!”?%, a frequency decomposition fusion block (FDFB) is introduced into
c¢GAN. The core objective is to explicitly divide the intra-class feature space of the generator through frequency
band decomposition' and pseudo-label fusion and enhance the class-related feature expression by using multi-
scale conditional injection to improve the quality of reconstructed images in the inversion attack process.
Traditional wavelets use predefined fixed filter banks, while the convolution kernels of FDFB are automatically
optimized by backpropagation to achieve parameter learnability. Secondly, the label condition injection is used
to introduce the category information into the frequency band, and the high and low frequency components
are scaled differently to realize the task-oriented frequency band optimization. The detailed design is shown in
Fig. 3.
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1. Frequency band decoupling: The input image features ' € R“***W are decomposed into low-frequency
(global structure) components and high-frequency components (local details). The low-frequency compo-
nents capture the key attributes of the identity to ensure the global semantic consistency of the generated
image, and the high-frequency components refine the details of the intra-class diversity to avoid intra-class
feature confusion.

Fiow = Convl(;w (F)

Fhigh = Convhigh(F - Eow) (1)
where Conv;e,, and Convy;gp are both depth-wise separable convolution layers, and the filter bank with band
selection characteristics is constructed through the adaptive learning of convolution kernel weights, which
respectively simulates the low-pass and high-pass filtering behaviors in the frequency domain. The low-pass is
used to retain the overall structure and smooth information of the image, and the high-pass is used to capture
the edge details.

2. Label embedding feature fusion: The category label y is mapped to the class feature vector E(y) € R”,and
expanded to the same dimension as the feature map through the spatial broadcast mechanism, and spliced
with the low-frequency Fio. component and the high-frequency Fhign component respectively. After splic-
ing, the channel is compressed through 1 x 1 convolution to retain the main frequency band features. Finally,
the fused low-frequency and high-frequency features are superimposed:

Ffused = Concat(Flow’ E(y)) + COHC&t(FMgh, E(y)) (2)

3. Multi-scale optimization: In this paper, the FDFB module is inserted into each up-sampling block (Block2
to Block5) of the generator, as shown in Fig. 4. Multi-scale condition injections can enhance the class-related
feature expression, make up for the deficiency of cgan in the processing of local details, and adopt the pro-
gressive feature processing strategy to gradually refine the frequency domain features from the deep layer to
the shallow layer.

Quantitative analysis of frequency-domain segmentation processing
To verify the necessity of explicitly decomposing image features into low-frequency and high-frequency
components, this paper quantitatively analyzes three types of images in the frequency domain: real private
images, reconstructed images attacked by non-frequency-division.

generators, and reconstructed images attacked by frequency-division generators. Specifically, each group
of images Iis subjected to two-dimensional discrete Fourier transform to obtain the frequency domain
representation F'(I), and the low-frequency and high-frequency regions are divided by a circle with the spectral
center as the center and the radius r=16. The low/high energy ratio (LHR) is used as a quantitative index of the
coupling strength between low and high frequencies to verify the rationality of the frequency division strategy.
The formula is as follows:

> IFLI)(w)

WEQ o

> IFLIDW)I* +e

WERpigh

LHR =

3)

Lower LHR values signify better high-frequency detail preservation and higher image quality, while higher
values indicate greater detail loss and poorer quality. The first 200 categories were extracted from the CelebA
private training dataset and the reconstructed images of the two attack methods, and 5 images were randomly
selected from each category for calculation. Table 1 shows the LHR statistics of the three types of data. As
can be seen from the table, the LHR of the generated image without frequency division is 273.94, which is

Input Generator
1
|
A
Linear ’ 2D Convé F——— 2D BatchNorm
| T A
| I 1
. A I [ E—
Block2 ; Block5
EEE——
| ‘ Output ‘ f
FDFB FDFB
|

Block3 - —% FDFB |»——> Block4

Fig. 4. Improved generator architecture.
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Low=3.0e+06

High=1.6e+04

Image category LHR mean | LHR standard deviation
Reconstructed image (unfiltered) | 273.94 124.12
Real image 232.70 115.27
Reconstructed image (filtered) 232.23 95.61

Table 1. LHR for three image categories.
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Fig. 5. Spectral comparison of images within the same category.

significantly higher than 232.70 of the real image, indicating that the high-frequency details of the image are
seriously suppressed and the low-frequency information is excessively dominant during the generation process
without frequency division, resulting in the decline of image quality. After frequency decomposition, the LHR
falls from 273.94 to 232.23 closer to the real-image value of 232.70 and the standard deviation shrinks from
124.12 to 95.61. These results indicate that, although the ratio still exhibits a certain gap to the real-image level,
the strategy reduces low- and high-frequency coupling and.

improves the frequency-domain fidelity of reconstructed images relative to the unfiltered baseline; in other
words, it alleviates the coupling problem to a certain extent.

In addition, Fig. 5 shows the spectral comparison of three images of the same category. The LHR of the
non-frequency-separated image is significantly higher than that of the real image, with an overly bright spectral
center and a dim peripheral high-frequency area, indicating severe coupling between low and high frequencies.
In contrast, the image reconstructed after frequency separation shows a significant increase in energy density
outside the circle, with the low-frequency falling back and the high-frequency rising. The LHR value drops from
343 to 287, which is closer to the real image’s 190. In other words, the overall spectral distribution is closer to
that of the real image.

Top K class-centric initialization

Traditional methods often use random sampling strategies to initialize the latent vector z, drawing initial values
from a Gaussian or uniform distribution. However, this initialization method is highly stochastic, and the initial
points may be far from the true distribution area of the target identity, leading to slow optimization convergence.
At the same time, when pursuing high confidence, the latent vector is prone to over-optimization, deviating from
the true distribution of the real category in the latent space and the decision boundary, resulting in overfitting,
which limits the attack accuracy. To address this fundamental deficiency, we innovatively propose a Top K class
center initialization strategy to construct a more representative latent vector library (z_bank), thereby providing
higher quality initial latent vectors for each identity and constraining the optimization process to be close to the
class center in the latent space. The pseudocode for the initialization strategy is as follows:
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Require: generator G, classifier T, num_identities = 1000, z_dim = 128§,
samples per_id = 100, top_k =20, std_scale = 0.05, save_path = *z_bank pt’

: if file exists{save path) then

return loaded tensor from save path

3: end if

4: 5et G and T to evaluation mode

5: z_bank « zero matrix of size (num_identities, z_dim)

6: for iden « 0 to num_identities — 1 do

7. iden labels «— vector of length samples per id filled with iden
8: z candidates < matrix of shape (samples per id, z dim) sampled from N(0, I)
9 with gradient computation disabled

10:  imgs «— G{z_candidates, iden_labels)

11:  logits «+ T(imgs) [take last laver]

12:  probs « softmax(logits) over columns, take column iden

14: end with

13: (top_wvalues, top idx) +— indices of top-k largest entries in probs
14: z topk < z_candidates[top idx]

15: z_mean «+— column-wise mean of z_topk

16: z std « column-wise std of z_topk

17 eps « matrix same shape as z_std sampled from N0, I)

18: z bank[iden] < z_mean + std scale % z std x eps

19: end for

20: Save z_bank to save_path

21: return z_bank

Algorithm 1. Top K mean-variance initialization

1.

Candidate sampling: For each target identity(y; € {0,1,..., Nig — 1} ), sample M latent vectors from the
standard normal distribution to form the selected vector set{z; } 2, ~ N(0,I) , wherez; € R%:.
Reconstructed image evaluation: By inputting the latent vectors of each category {z;} jﬂil along with their
corresponding labels y; into the generator G to synthesize the corresponding images, {z; = G(z;, yl)};wzl
and then inputting the reconstructed images into the target model T, obtaining the predicted confidence on
the identity y;.

p; = Softmax (T (z;)) (4)

. Top K filter for selecting high-quality vectors: Based on the evaluation results, a subset {z*)},_; of vectors

is selected from the M candidate vectors, consisting of the top K vectors that maximize the confidence of the
target identity. This process eliminates many sampling points that are far from the target manifold, signifi-
cantly reducing the variance of subsequent statistical estimates. These vectors represent directions that can
generate images most easily recognized as corresponding identities by the target model.
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4. Building initial latent vectors: calculate the mean piand standard deviation oof the subset.

K K
1 1
= (k) T (k) — ;,.)2 5)
i = E 2 o= E (z 143) (
K k=1 K k=1

Finally, the representation vector of any identity 2z}, in the vector library is composed of the mean plus a small
noise scaled by its standard deviation, where «is the noise intensity coefficient. This introduces a moderate level
of randomness while maintaining the consistency of identity semantics, which helps to avoid getting trapped in
local optima during the optimization process.

Zg;nk:“i+€'a—i'N(07I)a ENN(O,OLQ) (6)

Dynamic focal margin loss

Analysis of limitations of the maximum margin loss function

Previous work!® introduced the Max Margin Loss ML and Poincare Loss functions to replace the cross-entropy
loss function, which solved the problem of gradient disappearance in the attack process, and the maximum
boundary loss function achieved excellent attack performance. The core idea of the maximum margin loss is to
optimize the classification boundary by maximizing the prediction score of the target class and minimizing the
highest competitive score in other categories. The mathematical form is as follows:

Ly (w,ye) = =1y (%) + max;zy l;(x) (7)

ly.is the output score of the target category, and [; is the highest competitive score in the non-target category.
Although the loss function effectively improves the performance of the model inversion attack by directly
optimizing the score difference between the target class and the competitive class®, there are still the following
limitations:

(1) Equal weight allocation: all samples have the same loss contribution, and there is a lack of targeted
attention to difficult samples. (2) Constant-magnitude updates: the constant gradient norm equally updates all
samples, so hard examples may receive insufficient effective updates near the decision boundary.

The gradients of the target class score [, and the competitive class score [;jare as follows:

Vi, =-1 Vi =1 (@)
The differentiation process is as follows, Applying the chain rule to Eq. (7), we first decompose the max-margin
loss into two explicit terms:

Lym (2, ye) = —ly. (z) +1;(z), where j = arg maxyzy,lx(),

Differentiating with respect to the target-class logit gives

Ay, (x) Oy, (x) Ay, (x)
v — Ye — Ye Ye E— 0= —1.
be T OLars Ol (2) | OL(x)

Since the maximal competitor /;(z) does not depend on [, ().
For the competitive-class logit we obtain

ol;(x) l;(x) l;(x)
V .= J = J J = O 1 - 1
YT 9L O(—ly.(x)) * 0l;(x) - -

Regardless of the score difference between the target class and the competing classA = [,,. — [; (the degree of
proximity between the target class and the competing class), the gradient is constant and equal ||V|| = 1, which
makes it difficult for the model to effectively distinguish boundary samples, thereby limiting the model’s ability
to adjust the boundary area and failing to prioritize the optimization of difficult samples. The gradient amplitude
is always constant, and the same intensity of gradient signal will be applied to produce the following limitations:

1. For hard samples: ({,,,=1.0,l;=0.9,A=0.1) fixed gradient leads to few iterations not enough to produce effec-
tive adjustment. Multiple iterations are required to reach the target boundary. At the same time, the gradient
noise of simple samples will also affect the effective signal of difficult samples.

2. For simple samples: (I, =5.0,l;=0.1,A= 4.9) Simple samples are samples that have been optimized and con-
verged. However, fixed gradients will update these samples with the same intensity, causing meaningless
oscillations in the converged region and wasting computing resources.

Design of dynamic focal margin loss function
To solve the above problems, this paper proposes a Dynamic Focal?®?” Margin Loss function (DFML), which is
mathematically expressed as:

Scientific Reports |

(2026) 16:686 | https://doi.org/10.1038/s41598-025-30381-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(=) (—a-1y,) (=) (L)

9
Target-Class Adaptive Loss =~ Competitive-Class Adaptive Loss ©)

['DF]WL =

1. Temperature scaling: The logits value of the target model is smoothed and scaled by the temperature param-
eter to alleviate the influence of extreme values:

_ logits _ maxjzy li(x) (10)

out N ly, = T Im = T

When T>1, the probability distribution is smoothed to enhance the sensitivity to difficult samples. When
T <1, the probability distribution is sharpened to accelerate the convergence of simple samples. Secondly, the
contribution ratio of the target class atand the competitive class loss amis dynamically adjusted through the
weight parameters to enhance the optimization flexibility.

2. Focalloss mechanism: Drawing on the idea of Focal Loss, this paper employs the Focal coefficient to achieve
adaptive adjustment. That is; by using an exponential function and the parameter to adjust the sample
weights, the attack optimization process pays more attention to the low-confidence difficult samples.

(1 — e_lyt )7 i (_lyc) (11)
Target-Class Adaptive Loss

When the confidence of the target class 1 — e~'vis low, it will become smaller. After multiplying the loss
term, the loss value will be amplified, forcing the optimization to increase the target class score faster.

1—e ) 1,

12
Competitive-Class Adaptive Loss (12)

When the confidence of the interval class1 — e~'¥m is high and close to 1, the loss value remains unchanged. On
the contrary, when it is low, the loss value will be amplified, forcing the model to reduce the score of the interval
category faster.

Experiment

Experimental setting

Datsets: We use the same three datasets as the previous workl!®, namely CelebA, FFHQ and FaceScrub. The
CelebA dataset contains 202,599 face images of 10,177 different individuals. FFHQ contains 70,000 high-quality
PNG face images at 1024 x 1024 resolution. FaceScrub®® is a large face recognition dataset consisting of 106,863
face images of 530 celebrities, with an average of about 200 images per person.

Target models: We select three deep learning models with different architectures for our experiments. We
tested the attack on VGG16, FaceNet64 and ResNet152.

Experimental preparation: The attack experiments are divided into standard attacks and attacks under
the condition of large differences in data distribution. According to the previous work, 30,027 images of 1000
identities of CelebA are used as private data sets, and all target models are trained in private data sets. The
remaining part that does not intersect with the private dataset is used to train cGAN. Under the standard
attack, the cGAN trained based on the CelebA public dataset is attacked. In the case of large differences in the
distribution of public and private data sets, flhq and facescrub are used as public data sets to train cGAN.

Experimental parameter settings: When training GAN, the same settings as in previous studies'® were
adopted. In the inversion attack stage, the Adam optimizer with a learning rate of 0.1 is used, and S = (0.9,
0.999). Randomly initialize 5 times and perform 600 rounds of iterative attacks each time.

Evaluation metrics
Qualitative analysis was performed through visual evaluation results, and quantitative indicators were introduced
to ensure the objectivity and repeatability of the evaluation.

Attack accuracy acc: The top-1 and top-5 accuracy of the reconstructed samples on the target class are
calculated using an evaluation model that is pre-trained on the same private dataset but with a different
architecture from the target model. Here, top 1 accuracy (ACC@1) refers to the proportion of samples where
the target class is correctly identified as the most likely class by the evaluation model. Similarly, top 5 accuracy
(ACC@5) indicates the proportion of samples where the target class is among the top five most likely classes
predicted by the evaluation model. The higher the attack accuracy achieved by the reconstructed image, the
more private information is exposed in the data set.

K-Nearest neighbor distance KNN: For a specific target, the shortest feature distance between the
reconstructed image and the private image is calculated. This metric is evaluated by calculating the 12 distance
between two images in the feature space. The smaller the value, the shorter the distance between the two in the
feature space, which means the reconstructed image is closer to the private sample.l

Initial distance FID: It is often used to evaluate GAN generated images. The feature vector is extracted by
InceptionV3 pre-trained on ImageNet, and the distance between the private target data set and the reconstructed
image is calculated. The lower the FID value, the better the quality and diversity of the reconstructed image.
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Model-inversion attacks synthesize images from latent codes; no clean counterpart of a reconstructed image
exists, hence FID/KNN are computed between the reconstructed set and the real private-training set to measure
the overall fidelity and proximity of the synthesized images to the actual training data.

Experimental results

Selecting the current state-of-the-art attack methods as baseline experiments includes KED_MI", LOMMAZ,
PLG_MI'¢, and CDM_MI". LOMMA?, as a plug-and-play enhancement technology, aims to boost attack
performance. In this paper, the enhanced GMI and KED_MI are used as baseline experiments. We also compared
the performance differences in attack capabilities when using the Top K class center latent vector initialization
proposed in this paper versus not using it, with “w/o TK” indicating the method not utilizing it. “t” and “|”
signify that higher/lower scores represent better attack performance.

Standard setting: Under standard settings, as shown in Table 2, the evaluation metrics of the images
reconstructed by our method outperform all baseline experiments. It not only improves the attack accuracy
rate but also significantly optimizes KNN and FID. Specifically, compared to PLG_MI, our method reduces
the average KNN distance by 68 points, and the FID value by an average of 16%. This indicates that the images
reconstructed by our method are closer to the private images. Figure 6 shows a qualitative evaluation visually,
where our method reconstructs images that are more realistic in some categories, effectively enhancing the
visual similarity to the private dataset. Compared to CMD_MI, which mainly focuses on improving the fidelity
of reconstructed images, our method maintains the attack accuracy rate while further optimizing the diversity
of generated samples. As shown in Table 2, when comparing the image quality evaluation metrics of the two
methods, our method achieves better performance in the FID metric, indicating that the reconstructed images
have better quality and diversity. In terms of KNN values, under the attack scenarios based on ResNet152 and
VGGL16, our method’s KNN values are also superior to CMD_MI. With similar attack performance, our training
time only requires 12 h, while CMD_MI requires 48 h of diffusion model training and an additional 6-8 h of
model fine-tuning. We also compared the attack effects without using Top K.

latent vector initialization. The comparison results show that the Top K method not only improves the attack
ACC but also reduces the KNN distance, indicating that this initialization method can indeed generate higher
quality latent vectors.

Large data distribution shifts: In line with the settings of previous studies, we also explored the attack
performance under the condition of large distribution differences between public and private training datasets.
Table 3 shows the performance when attacking with the FFHQ dataset. Compared with PLG_M]I, both the FID
value and KNN Dist decreased. Similarly, compared with CMD_MI, our method has a higher attack accuracy
and a lower FID value than CMD_ML. In the experiment based on the Facescrub dataset, which is composed
of face images crawled from the Internet by web crawlers, we found that most image URL links were invalid.
To ensure comparability of the experimental design, the paper strictly followed the same crawling method and
dataset processing as PLG_MI and only crawled 23,000 images, resulting in a decrease in the performance of the
trained GAN and experimental bias. Although PLG_MI provides pre-trained GAN model nodes, to ensure the

Target model | Method TACC@1 TACC@5 |FID | |KNN
KED_MI 0.67 £0.0025 | 0.89 £ 0.0016 | 36.29 | 1394.55
LOM(GMI) 0.77 £0.0464 | 0.95+0.0216 | 43.21 | 1296.26
LOM(KED_MI) | 0.90 £ 0.0136 | 0.98 +0.0610 | 33.91 | 1147.41
VGG16 PLG_MI 0.97 £0.0001 | 1. +0.0000 18.00 | 1119.35
CMD_MI 0.93 £0.0004 | 0.99 +0.0002 | 23.82 | 1081.98
Ours(w/o TK) 0.99 £ 0.0021 | 1+ 0.0000 17.00 | 998.55
Ours 1 +0.0001 1+0.0000 17.15 | 983.83
KED_MI 0.73 £0.0025 | 0.93 £0.0008 | 26.24 | 1320.22
LOM(GMI) 0.82 £0.0437 | 0.97 £0.0241 | 45.02 | 1254.32
LOM(KED_MI) |0.92+0.0115 | 0.98 +0.0370 | 36.78 | 1138.62
IR152 PLG_MI 1 +0.0000 1 £0.0000 22.35 | 1028.72
CMD_MI 0.97 £0.0004 | 0.99 +0.0002 | 25.77 | 1010.70
Ours(w/o TK) 1+0.0001 1+0.0000 18.72 | 1007.35
Ours 1 +0.0001 1+0.0000 17.69 | 1005.07
KED_MI 0.74+£0.0012 | 0.94 £0.0010 | 27.92 | 1310.10
LOM(GMI) 0.82+0.0351 | 0.93 +0.0242 | 44.07 | 1257.50
LOM(KED_MI) | 0.93 +0.0850 | 0.99 +0.0330 | 38.69 | 1154.32
FaceNet64 PLG_MI 0.99 £ 0.0002 | 1. +0.0000 24.29 | 1112.76
CMD_MI 0.94 +0.0003 | 1+0.0001 28.16 | 1025.36
Ours(w/o TK) 1 +0.0000 1+0.0000 18.39 | 1094.78
Ours 1 +0.0000 1+0.0000 18.40 | 1083.36

Table 2. Attack performance comparison of different target models trained on the celeba Dataset. tand |
respectively symbolize that higher and lower scores give better attack performance.
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Fig. 6. Visual comparison of reconstructed images using different attack methods for the VGG16 target model

trained on the CelebA dataset.

Target model | Method TACC@1 1ACC@5 JFID | |JKNN
KED_MI 0.34+£0.0021 | 0.61 £0.0018 | 50.00 | 1578.65
LOM(GMI) 0.58 £0.0662 | 0.86 £ 0.0517 | 35.59 | 1338.85
LOM(KED_MI) | 0.62 +0.0229 | 0.85+0.0198 | 40.26 | 1366.94
VGGI16 PLG_MI 0.89 £0.0007 | 0.97 £0.0002 | 26.77 | 1283.25
CMD_MI 0.78 £0.0007 | 0.93 £0.0012 | 28.82 | 1250.04
Ours(w/o TK) 0.89 £ 0.0007 | 0.98 + 0.0002 | 22.06 | 1280.85
Ours 0.89 £0.0007 | 0.98 +0.0002 | 22.44 | 1280.69
KED_MI 0.74 £0.0030 | 0.93 £0.0004 |27.33 | 1321.36
LOM(GMI) 0.82 £0.0437 | 0.90 £0.0316 | 37.58 | 1254.32
LOM(KED_MI) | 0.92 +£0.0115 | 0.92+£0.0570 | 45.67 | 1292.80
IR152 PLG_MI 0.96 £0.0005 |1+ 0.0001 26.02 | 1179.81
CMD_MI 0.94 £0.0003 | 1+0.0003 37.82 | 1140.09
Ours(w/o TK) 0.97 £0.0005 |1+ 0.0001 25.03 | 1153.56
Ours 0.98 £0.0001 | 1+0.0000 24.52 | 1151.49
KED_MI 0.47 £0.0023 | 0.73 £0.0010 | 44.38 | 1490.27
LOM(GMI) 0.64 £0.0469 | 0.89 +0.0273 | 40.03 | 1386.33
LOM(KED_MI) | 0.73 £0.0224 | 0.94 £ 0.0680 | 47.51 | 1321.00
FaceNet64 PLG_MI 0.95+0.0005 | 0.99 +0.0001 |26.47 | 1239.75
CMD_MI 0.92 £0.0004 | 0.98 +0.0006 | 37.73 | 1204.60
Ours(w/o TK) 0.96 +£0.0004 | 1.+ 0.0000 23.06 | 1233.18
Ours 0.97 £0.0003 | 1.+ 0.0001 21.95 | 1230.86

Table 3. Attack performance comparison of different target models trained on the FFHQ Dataset. tand |
respectively symbolize that higher and lower scores give better attack performance.

validity and fairness of the experimental results, we retrained the corresponding GAN models for comparative
experiments according to the training process and parameter settings provided by PLG_MI. Table 4 shows the
attack performance of different model architectures when training GANSs using the Facescrub dataset based on
CelebA. Under the same experimental conditions, our method effectively improved the attack accuracy and
significantly reduced the KNN Dist and FID values. The attack accuracy increased by an average of 4%. It is
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VGG16 FaceNet64 IR152
FaceScrub-CelebA ACCelt FID| | KNN| | ACC@l? FID] | KNN| |ACC@1?t FID| | KNN|]
PLG_MI 0.48 £0.0030 | 30.35 | 1520.50 | 0.71 +£0.0020 | 26.85 | 1414.89 | 0.77 £0.0014 |29.40 | 1340.56
VGG16 Ours(wo/WT) | 0.53 +£0.0015 |23.95 | 1479.89 | 0.71 +0.0025 | 25.08 | 1364.19 | 0.78 + 0.0022 | 24.81 | 1308.65
Ours 0.55 +0.0032 | 24.95 | 1485.43 | 0.72 £0.0021 | 25.37 | 1365.59 | 0.77 £0.0022 |24.94 | 1318.44
PLG_MI 0.51£0.0031 | 2532 | 1488.44 | 0.64+0.0010 | 24.69 | 1446.20 | 0.64 +0.0023 |23.64 | 1423.13
IR152 Ours(wo/WT) | 0.57 +£0.0025 |23.88 | 1459.13 | 0.66 + 0.0021 | 24.02 | 1414.76 | 0.66 + 0.0017 | 23.28 | 1395.70
Ours 0.59 +0.0024 | 24.42 | 1437.02 | 0.69 £ 0.0020 | 24.15 | 1406.23 | 0.69 + 0.0022 | 21.49 | 1390.25
PLG_MI 0.46 £0.0012 | 26.29 | 1520.18 | 0.55+0.0018 | 26.33 | 1532.04 | 0.66 +0.0027 |25.42 | 1403.75
FaceNet64 | Ours(wo/WT) | 0.49 £0.0015 | 25.53 | 1488.78 | 0.55+0.0025 | 25.72 | 1482.68 | 0.66 + 0.0016 |24.80 | 1376.42
Ours 0.51 +0.0024 | 24.21 | 1481.48 | 0.57 £ 0.0018 | 25.68 | 1484.89 | 0.70 = 0.0019 | 25.03 | 1381.08

Table 4. Attack performance comparison across different model architectures during the GAN training phase
and the image reconstruction phase. Tand | respectively symbolize that higher and lower scores give better
attack performance.

FFHQ-CelebA CelebA->CelebA
Target model | Method | ACC@11 ACC@51 FID| | KNN| |ACCe@l1t ACC@51 | FID] | KNN|
G,+L, ]0.89+0.0007 0.97 £0.0002 | 26.77 |1283.25 | 0.97 £0.0001 | 1.+0.0000 | 18.00 | 1119.35
G,+L, ]0.90+0.0005 |0.97+0.0002 |24.72 |1277.56 |0.99 £0.0001 | 1.+0.0000 |19.81 |1116.21
vaais G,+L, |0.87+0.0011 0.98 £0.0001 |23.41 |1282.02 |0.99+0.0002 | 1.+0.0000 |17.33 | 1085.50
G,+L  10.89+0.0007 0.98 £0.0002 |22.06 |1276.85 | 0.99 +0.0001 | 1. +0.0000 | 16.91 | 1089.49
G+ L, |0.96+0.0005 1.+ 0.0001 26.02 | 1179.81 | 1.+0.0001 1.£0.0000 |22.35 | 1028.72
G,+L, ]0.98+00.0001 | 1.+00.0000 |25.69 |1155.57 | 1.+0.0000 1.£0.0000 | 19.68 | 1026.22
IR152 G,+L, ]0.98+0.0004 1. £ 0.0000 25.63 | 1154.04 | 1.+ 0.0001 1.£0.0000 | 18.29 | 994.78
G,+L 1097 +0.0005 1.+ 0.0001 25.03 | 1153.56 | 1. = 0.0000 1.+ 0.0000 | 18.72 | 1007.35
G+ L, |0.95+0.0005 0.99 £0.0001 |26.47 |1239.91 |0.99+0.0002 | 1.+0.0000 |24.29 | 1112.76
FaceNet6a G,+L, ]0.96+0.0005 0.99 £0.0001 |26.09 |1236.67 |0.99+0.0001 | 1.+0.0000 |23.40 | 1104.87
G, +L, ]0.96+0.0003 |0.99+0.0000 |22.36 |1235.70 | 1.+0.0001 1.£0.0000 | 19.62 | 1081.71
G,+L 1096 +0.0003 1. £ 0.0000 23.06 |1233.18 | 1. £ 0.0000 1. £ 0.0000 | 18.39 | 1094.78

Table 5. Ablation study on three target models using the FFHQ and celeba dataset. tand | respectively
symbolize that higher and lower scores give better attack performance.

worth noting that when attacking VGG16, the attack accuracy increased by up to 8%. The KNN Dist decreased
by an average of 36, and the FID value decreased by an average of 7%. Even without using Top K class center
initialization, although the attack accuracy decreased slightly, it still increased by an average of 3%.

Ablation study

Ablation study. Based on sampling from the original standard normal distribution latent space (without using
Top-K class-centered latent initialization), we further conducted a more detailed and in-depth evaluation of the
contributions of the improved generator and loss function. First, we used FFHQ and CelebA as public datasets
to attack the three target models trained on CelebA. The design was to use the original cGAN combined with
dynamic focal boundary loss to demonstrate the contribution of our designed loss function, and the improved
cGAN used maximum boundary loss to evaluate the effect of the improved cGAN, as shown in Table 5. G
represents the original cGAN, G, represents the improved cGAN, L_ is the maximum boundary loss function,
and L_is the dynamic focal boundary loss function. Even when using the two methods separately, improvements
were observed in attack accuracy, FID values, and KNN distances. The main role of the dynamic focal boundary
loss function is to improve the accuracy of model inversion attacks, although it can also slightly improve image
reconstruction quality. In comparison, the improved cGAN performs better in KNN and FID, especially in
terms of FID values.

Secondly, without employing the Top-K class-centered latent initialization, we conducted attack tests on the
three target models trained on the CelebA dataset using FaceScrub as the public dataset. Figure 7 shows the
comparison of attack performance using.

different loss functions under the PLG_MI cGAN architecture. The use of the DFML loss function increased
the attack accuracy on all three target models by more than 5%, and KNN also decreased, although FID was
slightly worse. Figure 8 shows the impact of different generators architectures on attack performance when using
the ML loss function. The decrease in attack accuracy due to the improved cGAN is because the band decoupling
makes the generator fit the feature distribution of the FaceScrub dataset more closely, which leads to a decrease
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Fig. 9. Rescaled gradient/loss/logit curves (FFHQ->CelebA).

Iterations

in attack accuracy when there is a large difference in data distribution. However, it performs better in terms of

FID.

To further demonstrate the dynamic focal margin loss function, without employing the Top-K class-centered
latent initialization. This paper uses the pre-trained generator provided by PLG_MI as the baseline model to
compare the Poincaré, maximum margin, and dynamic focal margin loss functions. Specifically, FFHQ and
FaceScrub are used as public datasets and CelebA as the private dataset. The VGG16 model is used as the target
model to attack the first 100 classes of CelebA. During the 600-iteration attack process, the average values of
the gradient, loss, and target logit values are plotted as trend curves. To address the issue that different loss
functions, which lead to large differences in gradient and loss values that are difficult to compare, the loss values
and gradient values are normalized by dividing them by the absolute value of their initial values. As shown in
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Figs. 9 and 10, in the first figure, the gradient magnitude of DFML closely tracks that of ML and remains stable
throughout the attack. In the second figure, the Poincaré loss remains unchanged, making it difficult to judge the
optimization situation. The loss function proposed in this paper does not minimize as quickly and continuously
as ML within the same number of iterations because ML cannot effectively identify and optimize difficult
samples. It can quickly optimize and reduce the loss value for easy samples. In contrast, the proposed loss.

function focuses more on low-confidence difficult samples and does not waste resources on converged easy
samples. This results in slow but stable loss optimization and effectively improves the performance of inversion
attacks, which is confirmed by third image. Within 600 iterations, compared with the other two functions, the
dynamic focal margin loss function can quickly increase the logits value of the reconstructed samples and reach
a higher value.

Using FaceScrub as the common benchmark, we conducted attack tests on three target models trained
on CelebA to independently assess the contribution of each module. Taking PLG-MI and our full pipeline
as baselines, we systematically compared the differential performance and incremental gains brought by
individually introducing TOP-K, FDFB and DFML under three evaluation metrics. As shown in Figs. 11, 12
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Fig. 14. The performance comparison analysis of different attack methods.

and 13, individually applying TOP-K leads to minor degradations across all three metrics, remaining almost on
par with PLG. In contrast, standalone FDFB notably hurts attack accuracy, whereas DFML effectively boosts it.
Moreover,

FDFB clearly outperforms DFML in terms of FID, while KNN distances are largely comparable except for
a larger gap on VGG16. Ultimately, combining all three modules yields balanced and consistent improvements
across all metrics.

To investigate the differences in enhancing attack performance between DFML, and Top-K class center
initialization, we utilized a generator trained on the FaceScrub dataset with the IR152 model, targeting the
VGG16 as the model for attack. Using the original node provided by PLG_MI, which was trained on the
complete FaceScrub dataset, as our benchmark, we tested the attack performance of DFML, Top-k, and their
combination, as well as comparing with the complete method presented in this paper. It should be noted that
the cGAN improved in this paper was trained on an incomplete dataset, with a significantly smaller data volume
compared to PLG_MI. Despite this, by integrating the three optimization methods, we demonstrated that its
attack performance can match that of the original PLG_MI node, which not only reveals the performance
differences among the optimization methods but also shows that our method remains effective even when the
data volumes are unequal, as shown in Fig. 14.

Firstly, the experimental results clearly demonstrate that DFML can effectively enhance attack performance,
showing improvements across all three-evaluation metrics. The Top K method significantly reduces the FID
and KNN values, indicating that Top K indeed provides higher quality latent vectors. Secondly, the attack
strategy that combines DFML and Top K optimization methods achieved the lowest FID value, dropping below
20, and performed well in terms of attack accuracy, improving by 4% compared to the original model. This
result fully confirms the synergistic effect when using both optimization methods in combination. Lastly, the
complete method we propose closely approaches the attack performance of the original model node provided by
PLG_MI across all three-evaluation metrics. Despite being trained on an incomplete dataset, its performance is
comparable to that of the original model trained on a complete dataset, further demonstrating the effectiveness
and robustness of our optimization methods.

Conclusion

This paper proposes an enhanced model inversion attack method. First, we inserted a frequency-domain
decoupling module into the cGAN and fused its output with label-embedded features to explicitly separate
low-frequency and high-frequency components. This allows the generator to learn low-frequency and high-
frequency cues for specific categories separately, preventing entanglement that degrades image fidelity. Second,
we introduced the Top K category center latent initialization method, which firmly anchors the starting point
of optimization within the semantic manifold, effectively suppressing the “runaway” phenomenon of trading
high confidence for unrealistic samples. Finally, we proposed a dynamic focal boundary loss function to
compensate for the insufficient exploration of hard examples during the optimization process. Extensive
experiments demonstrate that this method achieves consistent performance improvements across various model
architectures and application scenarios. Future work includes extending the approach to black-box attacks and
model inversion attack defense.

(1) Optimization algorithm improvement: Under the black-box model, attackers cannot rely on the gradient
information of the target model for optimization. Therefore, the design of efficient optimization algorithms is
crucial. In the future, we will explore heuristic optimization algorithms?*3’, such as genetic algorithms. These
algorithms can efficiently search for optimal solutions in complex optimization spaces without relying on
gradient information, thereby achieving efficient attack optimization. (2) Query efficiency optimization: To cut
query costs, we can first pinpoint the image regions that most black-box models rely on. Next, we train (or fine-
tune) the generator to keep features in those regions close to the target model’s manifold>!. During attack we
restrict zero-order optimization® to the latent vectors tied to these fixed spots, adjusting only them to produce
high-fidelity reconstructions while keeping the number of black-box queries as low as possible.
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Defense strategies: (1) The attack process can be incorporated into the training process of the recognition
model, enabling the model to learn how to resist inversion attacks during the training phase and thus possess
stronger attack resistance in practical applications. (2) Model inversion attack detection technology can be
developed to monitor and identify suspicious attack behaviors in real time. When potential attacks are detected,
corresponding defense measures can be taken to counteract them.

Data availability

In this study, we utilized the following three face datasets to evaluate the attack performance of our proposed
method.CelebA: A large-scale face dataset released by the MultimediaLaboratory of The Chinese University of
Hong Kong, (availabel at: https://www.kaggle.com/datasets/jessicali9530/celeba-dataset?select=img_align_cele
ba). FFHQ: A high-quality face dataset created by NVIDIA Research, (availabel at: https://www.kaggle.com/da
tasets/arnaud58/flickrfaceshq-dataset-fthq).FaceScrub: A benchmark face dataset containing images of public
figures.The download links for the facial images of 530 celebrities can only be obtainedby applying through the
official website (http://vintage.winklerbros.net/facescrub.html). We used the following script to crawl the compl
ete dataset: https://github.com/faceteam/facescrub.
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