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The nonlinear coupled Riemann wave equation serves as a mathematical framework for analyzing 
the interaction between short and long waves in various physical phenomena. Its importance lies in 
capturing both soliton-like behaviors and complex instabilities that arise in nonlinear media. Despite 
this significance, exact solutions for this equation, particularly in fractional-order forms, remain 
limited. In this article, numerous soliton solutions of the NLCRW equation are derived by applying 
novel modified (G′/G2)-expansion method, thereby advancing the state of the art in analytical wave 
modeling. By employing several fractional derivatives, including the M-Truncated, β, and Conformable 
operators, the method produces diverse solution families such as hyperbolic, trigonometric and 
rational forms. Comparative 2D and 3D visualizations further highlight M-type and singular periodic 
solitary wave structures across these derivatives. In addition, the dynamic behavior of a perturbed 
nonlinear Hamiltonian system is investigated using bifurcation analysis, Poincaré sections, and 
Lyapunov exponents. The bifurcation diagrams and phase portraits reveal regime transitions and 
underscore the critical role of system parameters. Sensitivity and multistability analyses confirm the 
influence of initial conditions on long-term dynamics. These results provide insights relevant to ion-
acoustic waves in plasma, shallow-water wave propagation, and the transmission of optical pulses, 
where nonlocal interactions and memory effects play an essential role.
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approach, Conformable derivative, M-truncated derivative, β-derivative, Bifurcation analysis, Sensitivity 
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Nonlinear partial differential equations with common properties are important for modeling nonlinear 
phenomena in science and engineering. To solve these ill-posed problems, it is essential to acquire exact 
solutions for differential equations, allowing researchers to develop efficient methods for solving linear 
and nonlinear equations. In recent years, interest in solutions and Partial Differential Equations (PDEs) has 
increased. Fractional calculus generalizes traditional concepts of differentiation and arithmetic to non-integer 
orders, leading to the investigation of systems with memory and genetics. Fractional order models and equations 
are widely used in physics, viscoelasticity, engineering, finance, modeling, biology, electrochemical processes, 
complex systems, control systems, mechanics, vibration and other fields1–4.

Fractional calculus is an extension of classical calculus and deals with derivatives and integrals of non-integer 
order. This detail provides a strong foundation for describing and modeling patterns arising from memories, 
longevity, and local interactions. In fractional calculus, fractional derivatives (or integrals) are extended beyond 
determinism to include deterministic numbers and even complex derivatives, allowing the construction of 
new mathematical models suitable for fractional differential equations. These equations containing fractional 
components can define processes that differ from traditional behaviors. Recently, many studies have focused 
on understanding the behavior of PFDEs and solving their problems, such as the time-fractional telegraph 
equation5, the time-fractional Klein–Gordon equation6, the solution of fractional Phi-4 and the Allen–Cahn 
equation7, the fractional simplified Camassa-Holm equation8,9, the fractional coupled Burgers equation10, the 
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fractional nonlinear coupled Boussinesq equation11, the space–time fractional Camassa-Holm equation12 and 
the fractional space–time advection dispersion equation13.

The usage of fractional derivatives to model memory and genetic processes has become widespread in many 
materials and systems, including polymers. Polymers are multipart materials whose molecular structure exhibits 
local effects, memories, and time effects that can be accurately termed using mathematical models. In recent 
years, researchers have used many sorts of fractional derivatives, such as the Atangana beta and conformal 
derivatives14, Atangana–Baleanu derivative in Caputo manner (ABC) and Caputo–Fabrizio (CF)15, Caputo 
fractional derivatives16, Grunwald–Letnikov fractional derivatives17, Riemann–Liouville fractional18, modified 
Riemann–Liouville derivative19,20, Atangana-Baleanu derivative21, and generalized fractional Caputo-Liouville 
derivative22.

Due to the existence of FPDEs, finding solutions to these equations is an important and difficult part of the 
research. To solve this difficulty, many ideas have been proposed, including the development of double sub-
equation23, modified exp function method24, new-auxiliary equation method25, the new exponential rational 
function method26, (G′/G)-expansion technique27, bi-variable (G′/G, 1/G)-expansion method28, sine and 
cosine method29, new exponential expansion method30, two-dimensional inequality left and right traveling 
wave solutions31, continuous tanh-coth expansion method and the polynomial function method32, Kudryashov 
expansion method and the simplified bilinear method33, and other34. This technique works by dividing the 
original equation into a simpler or easier-to-solve modified form.

Additionally, the research paper35 provides an in-depth discussion of the (w/g)-expansion method, where w 
and g are functions that satisfy the following condition:

	 g(ε)w′(ε) − w(ε)g′(ε) = Bg2(ε) + Cw2(ε),� (1)

where B and C are capricious constants. The latter approach provides the solution of Eq. (1) and provides an 
explicit formula for evaluating the solution of the nonlinear evolution problem (NEP). This work investigates the 
(w/g)-expansion technique36, where w and g are functions satisfying the conditions specified in Eq. (1).

	 g(ε)w′(ε) − w(ε)g′(ε) = Ag(ε)w(ε) + Bg2(ε) + Cw2(ε),� (2)

if A ̸= 0 and we proceeds  w(ε) = G′(η)
G(η)  and g(ε) = G(η), then we have

	
G′′(η) = AG2(η) + B

(
G′(η)
G2(η)

)2

+ CG′(η) + 2 (G′(η))2

G(η) .� (3)

This modification led to the discovery of several new traveling wave solutions with free parameters for NEP. More 
details about the modified (G′/G2)-expansion can be found in the research paper37. This method leads to the 
solution of many different equations. In our present work, we adopt a novel modified (G′/G2)-expansion method 
introduced by Amna et al.38 to search for new solutions to the NLCRW equation. In this paper we examine 
three fractional derivatives to define the solution of the NLCRW equation39. The beta derivative prolongs the 
idea of fractional derivatives by presenting alpha and beta from the beta function and provides more flexibility 
than traditional derivatives such as the Riemann–Liouville or Caputo derivatives. It is worth perceiving that the 
fractional beta derivative is used less frequently than the other terms. The choice of derivatives depends on the 
particular problem, the behavior of the model, and the preferred solution. The M-truncated derivative, through 
its Mittag–Leffler kernel, smooths variations and introduces stronger memory effects, thereby delaying the onset 
of chaos and stabilizing periodic windows. The  β-derivative enhances system sensitivity, producing sharper 
troughs in wave profiles and leading to an earlier onset of chaos and more complex bifurcation cascades. The 
conformable derivative exhibits intermediate behavior, preserving the qualitative bifurcation structures while 
yielding less intense chaotic oscillations compared to the β-derivative. This comparative analysis shows that 
while all three derivatives preserve the underlying nonlinear structures, they influence the timing and intensity 
of chaotic transitions differently: the M-truncated derivative suppresses it, the β-derivative accelerates chaos 
and the conformable derivative offers a balanced response. These findings highlight that the choice of fractional 
derivative is not only mathematical but also significantly shapes the physical interpretation of nonlinear system 
behavior.

In this study, a novel modified (G′/G2)-expansion method is used to provide the solution of NLCRW 
equation40 using three different fractional derivatives. This nonlinear equation has important applications in 
modern communication network technology, especially in the context of tsunami and tidal wave propagation, 
optical fibers, plasmas, ion-acoustic waves and magneto-acoustic waves in homogeneous and stationary media. 
The equation is particularly relevant because it captures both localized soliton structures and the onset of 
instabilities, providing a versatile framework for studying nonlinear wave phenomena. Extending the NLCRW 
equation into fractional-order forms further enriches its modeling capacity by incorporating non-locality 
and memory effects, which are essential in many real-world systems where present dynamics depend on the 
history of the process. Fractional derivatives therefore allow a more realistic description of wave evolution in 
viscoelastic, dispersive, and heterogeneous environments, making the study of fractional NLCRW equations 
both timely and significant. The proposed method produces various types of solutions, namely M-shaped 
solitons, bright solitons and dark solitons. A systematic analysis then leads to the formulation of an unperturbed 
dynamical system represented by an ordinary first order differential equation. We perform a qualitative analysis 
of the model, by using this dynamical system, incorporating principles from bifurcation theory, chaos theory, 
stability analysis, and sensitivity analysis under varying initial conditions. The phenomenon of multistability 

Scientific Reports |        (2025) 15:43559 2| https://doi.org/10.1038/s41598-025-30414-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


recognizes several stable states and helps to understand the role of initial conditions in system’s behaviour. 
However, the Lyapunov exponent measures the rate of divergence between trajectories and thus provides a true 
measure of the stability and chaos of the system. Furthermore, Poincaré maps help as an important technique for 
solving nonlinear systems to examine the stability, chaos and differentiate between periodic, quasi-periodic, and 
chaotic behaviors41,42. These phenomena are studied in different fields of science like engineering, neuroscience, 
economics, weather forecasting, artificial intelligence, and mathematics.

The aim of this work is to find the soliton solutions of NLCRWE by novel modified (G′/G2)-expansion 
method and to provide the dynamical analysis of the NLCRWE. This paper is ordered into following sections. 
Definitions of M-truncated, Conformable and Beta derivatives are given in Sect. “Material and method”. The 
main algorithm of the suggested method is covered in Sect. “The method”. Application of method with the 
obtained results is given in Sect. “Methodological application”, graphical representation and discussion are 
covered in Sect. “Results and discussion”. Section “Bifurcation analyses” discovers the bifurcation analysis of 
the system. Section “Sensitivity analysis” covers the analysis of bifurcation diagram and Sect. “Chaotic analysis” 
explores the sensitivity analysis of the system. To understand the nonlinear behaviour of the system, Section 
“Bifurcation diagram” examines chaotic behavior. Multistability analysis is presented in Sect. “Multistability”, 
illustrating the effect of initial conditions on the system. In Sect. “Poincaré map”, Poincaré maps are presented, 
and Lyapunov exponents are discussed in Sect. “Lyapunov exponents”. Lastly, Sect. “Conclusion” summarizes the 
important findings and implications of our work in different fields of science.

Material and method
Beta derivative
Consider a function U : [y, ∞) → ℜ that is continuous for t ≥ 0 , where y ∈ ℜ . The fractional derivative of 
U(t) of order β ∈ (0, 1], known as β-derivative, is expressed as follows39:

	
DβU (t) = lim

ς→0

U

(
t + ς

(
t + 1

Γ(β)

)1−β
)

− U (t)

ς
,

where Γ  represents the gamma function and defined as:Γ (ν) =
´∞

0 tν−1e−tdt.
Let γ (t) and δ (t)  be differential functions of order 0 < β ≤ 1 where t ≥ 0.

	1.	 Dβ (aγ (t) + bδ (t)) = aDβ (γ (t)) + bDβ (δ (t)) , ∀a , b ∈ ℜ.
	2.	 Dβ (aγ (t) bδ (t)) = γ (t) Dβ (δ (t)) + δ (t) Dβ (γ (t)) .

	3.	 Dβ
(

γ(t)
δ(t)

)
= γ(t)Dβ(δ(t))−δ(t)Dβ(γ(t))

δ(t)2 .

	4.	 Dβ (c) = 0,  for any constant c.

	5.	 Consider ς =
(

t + 1
Γ(β)

)1−β

θ, θ → 0 when ς → 0, therefore we obtain:

	
Dβ (δ (t)) =

(
t + 1

Γ (β)

)1−β
dδ (t)

dt
,

with χ = c
β

(
t + 1

Γ(β)

)β

,  Here, c represents an arbitrary constant. The properties associated with the β-

derivative have been proven in the study presented in43.

M-truncated derivative
Let U : [y, ∞) → ℜ  be a continuous function and β ∈ (0, 1] ,  represent the order of the derivative. The 
M-Truncated derivative of U(t) is expressed as follows44:

	
Dβ

M,tU (t) = lim
α→0

U
(
t + γEδ

(
αt−β

))
− U (t)

α
,

For γ Eδ (.) and t > 0 , δ > 0, and γ Eδ (.) is a truncated Mittag—Leffler function in single parameter 
defined by45:

	
γEδ (t) =

k∑
i=0

ti

Γ (δi + 1) .

THEOREM 2.1. Let β ∈ (0, 1] , and K , L are differentiable of β order and δ > 0 , a , b ∈ ℜ .

	1.	 Dβ
M,χ (aK (ψ) + bL (ψ)) = aDβ

M,χ (K (χ)) + bDβ
M,χ (L (χ)) , ∀a, b ∈ R.

	2.	 Dβ
M,χ (K (χ) L (χ)) = K (χ) Dβ

M,χ (L (χ)) + L (χ) Dβ
M,χ (K (χ)) .

	3.	 Dβ
M,χ

(
K(χ)
L(χ)

)
=

K(ψ)D
β
M,χ

(L(χ))−L(χ)D
β
M,χ

(K(χ))

L(χ)2 .
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	4.	 Dβ
M,χ (c) = 0, for any constant c.

	5.	 Dβ
M,χK (χ) = χ1−β

Γ(δ+1)
dK
dδ

.

Conformable derivative
Let U : [y, ∞) → ℜ be a continuous function and let β ∈ (0, 1] denotes the order of the differentiation. The 
conformal derivative of U(t) of β order is given by46:

	
Dβ

C,tU (t) = lim
ς→0

U
(
t + ς (t)1−β

)
− U (t)

ς
, t > 0.

This definition is valid for all t > 0, and confirms the existence of the conformable derivative of order β. Assume 
that h(t) and f(t)are differential in conformable sense. The conformable derivative satisfies several fundamental 
properties, listed as follows:

	1.	 Dβ
t (λ) = 0  where λ is a constant.

	2.	 Dβ
t (tµ) = µtµ−χ, ∀ µ ∈ R.

	3.	 Dβ
t (a h(t) + b f (t)) = a Dβ

t h(t) + b Dβ
t f (t), for all a , b ∈ R.

	4.	 Dβ
t (h(t) + f (t)) = h(t) Dβ

t f(t) + f(t) Dβ
t h(t).

	5.	 Dβ
t

(
h(t)
f(t)

)
= f(t) D

β
t

h(t)− h(t) D
β
t

f(t)
f(t)2 .

	6.	 If h is differential, then Dβ
t (h(t)) = t1−β dh(t)

dt .

The method
To begin the analysis, we consider the following nonlinear partial differential equation:

	 N (W, Wx, Fx, Wt, Wxx, Fxy, Wtt, Wxyt, ...) = 0,� (4)

where N is a polynomial composed of w = w (x, y, t) and its partial derivatives and w = w (x, y, t) represents 
an unknown function. The essential steps of the method used here are outlined below:

Step 1: Consider the wave transformation η = x + y − ω t, where ω denotes the wave speed. Under this 
transformation, Eq. (1) reduces to a nonlinear ODE of the form:

	 N
(
W, W ′, W ′′, ...

)
= 0,� (5)

	 where w = w (x, y, t) = W (η) .

Step 2: Consider that the solution of Eq. (5) can be written as a finite series expansion expressed as:

	
U (η) =

N∑
i=−N

ai

(
H + G′ (η)

G2 (η)

)i

,� (6)

where ai and H are constants and (i = ± 1, ..., ± n). The number of terms in the series is determined by 
equating the highest order derivative and nonlinear terms of Eq.  (5). The auxiliary function 

(
G′/G2)

 is 
assumed to obey below Riccati type equation:

	 (G′/G2)′ = A + B(G′/G2)2 + C(G′/G2).� (7)

where A, B and C are constants. Solutions to this Riccati Eq.  (7) yield various forms of the general solution 
mentioned below:

	

G′

G2 =




√
AB(P cos(

√
ABη)+Q sin(

√
ABη))

B(Q cos(
√

ABη)−P sin(
√

ABη))
, AB > 0, C = 0,

−
√

|AB|(P sinh(2
√

|AB|η)+P cosh(2
√

|AB|η)+Q)

B(P sinh(2
√

|AB|η)+P cosh(2
√

|AB|η)−Q)
, AB < 0, C = 0,

− P
B(P η+Q) , A = C = 0, B ̸= 0,

− C
2B

−

√
∆

(
P cosh(

√
∆

2 η)+Q sinh(
√

∆
2 η)

)

2B

(
Q cosh(

√
∆

2 η)+P sinh(
√

∆
2 η)

) , C ̸= 0, ∆ ≥ 0,

− C
2B

−

√
−∆

(
P cos(

√
−∆
2 η)−Q sin(

√
−∆
2 η)

)

2B

(
P sin(

√
−∆
2 η)+Q cos(

√
−∆
2 η)

) , C ̸= 0, ∆ < 0,

� (8)

where, in these cases ∆ = C2 − 4AB and P and Q are arbitrary constants.
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Step 3: To derive algebraic equations for determining W and coefficients ai(i = ± 1, ..., ± N), the powers 
of the term 

(
H + G′/G2)i

, (i = ± 1, ± 2, ...) are collected and their coefficients are set to zero. Equation (6) 
and (7) are then substituted into Eq. (5) to complete this step.

Step 4: The resulting algebraic equations are solved using computational software such as Maple, leading to 
determination of W, and ai, (i = ± 1, ..., ± N).

After calculating these constants, substitute the value of  
(
H + G′/G2)

 from Eq. (8) into Eq. (6) to derive 
the exact solutions of Eq. (4).

A comparison table of the traditional (G′/G)-expansion method and the proposed novel modified (G′/G2)-
expansion method is presented below. The novel modified method gives broader solution families, greater 
flexibility and stronger applicability to fractional models.

Methodological application
The (2 + 1)-dimensional Coupled Riemann Wave Equation39 is taken as a case study in this section:

	 Wt + lWxxy + mW Fx + nF Wx = 0 , Fx = Wy,� (9)

where l, m, n are non-zero parameters. These parameters have physical explanations linked to nonlinear wave 
propagation. The parameters l, m and n are dispersion and coupling coefficients that determine how the short 
and long waves act during evolution. Specially, l controls the effect of linear dispersion on the wave structure, 
whereas m and n define nonlinear coupling between the W and F, adjusting the strength and symmetry of their 
collaboration. The constants A, B and C arise in the formulation of travelling-wave solutions and represent 
scaling amplitudes and phase shifts. In fact, they capture the role of initial and boundary conditions in shaping 
the resulting solitary or periodic wave structures. Understanding these constants in wave-related terms allows 
the mathematical solutions to be connected with noticeable characteristics like sharpness, amplitude and 
localization of the nonlinear waves.

The Eq. (9) can be rewritten using the β–derivative in the following form:

	 Dγ
β,t Wt + l Wxxy + mW Fx + nF Wx = 0 , Fx = Wy,� (10)

In above equation, l, m, n are non-zero parameters and deliberate the relation among the propagation of a 
Riemann wave and a long wave,Dγ

β,t represents β–Derivative of W(x, y, t) where γ is a derivative of fractional 
order satisfying 0 ≤ γ ≤ 1.

Using M-Truncated Derivative, Eq. (9) becomes:

	 Dγ
M,t Wt + l Wxxy + mW Fx + nF Wx = 0 , Fx = Wy ,� (11)

where γ is parameter of fractional order Dγ
M,t is M-Truncated Derivative.

Using Conformable Derivative, Eq. (9) becomes:

	 Dγ
C,t Wt + l Wxxy + mW Fx + nF Wx = 0 , Fx = Wy ,� (12)

where γ is fractional operator and Dγ
C,t is Conformable Derivative.

The travelling wave parameter η has three distinct definitions when considering the wave transformation.
In β-Derivative, η is expressed as follows:

	
W (x, y, t) = w (η) , η = µ x + σ y −

ν
(

t + 1
Γ(β)

)

β

β

,
� (13)

where µ , σ and ν ̸= 0.
In M-Truncated derivative, η is expressed as follows:

	
W (x, y, t) = w (η) , η = µ x + σ y − ν

Γ (δ + 1)
β

tβ .� (14)

In Conformable Derivative, η is expressed as follows:

	
W (x, y, t) = w (η) , η = µ x + σ y − ν

β
tβ ,� (15)

By applying the respective wave transformations given in Eqs. (13), (14), and (15) to Eqs. (10), (11), and (12), the 
system is reduced to a set of ordinary differential equations as follows:

	
lσ2µ F ′′′ + mσ F w′ + nσ wF ′ − ν F ′ = 0, where w′ = µ

σ
F ′,� (16)

taking the zero integration constant after integrating the second equation of (16), we get
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w = µ

σ
F.� (17)

By putting Eq. (17) into Eq. (16) after integration, we obtain:

	 2lσ2µ F ′′ + µ (m + n) F 2 − 2νF = 0,� (18)

Now the highest ordered non-linear and linear terms of Eq. (18) are balanced, and we get the balance number 
i.e. N = 2. Now utilizing N = 2, Eq. (6) can be expressed as:

	 w (η) = a0 + a1
(
G′/G2)

+ a2
(
G′/G2) 2 + a−1

(
G′/G2)−1 + a−2

(
G′/G2)−2

.� (19)

Here, G = G (η) , and the constants a0 , a1 , a2 , a−1, a−2  are to be determined. By substituting Eq. (19) 
along with Eq. (7) into Eq. (18) and equating the coefficients of power of (H + G′/G2)i, (i = 0, ±1, ± 2, ...) 
to zero, we derive a system of nonlinear equations. This system is then solved using Maple 10, yielding the 
following parameter sets.

Set 1:

	

a0 = −
12Bµ2l

(
BH2 − CH + A

)
m + n

, a1 = 12Bµ2l (2BH − C)
m + n

, a2 = −12B2µ2l

m + n
,

ν = −
(
4AB − C2)

µ2lσ, a−1 = 0, a−2 = 0, H = H, A = A, B = B, C = C.

� (20)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W1,1 (x, y, t) = 12Bµ2l (2BH − C)
m + n

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)

− 12B2µ2l

m + n

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)2

−
12Bµ2l

(
BH2 − CH + A

)
m + n

,

� (21)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W1,2 (x, y, t) = −
12Bµ2l

(
BH2 − CH + A

)
m + n

+ 12Bµ2l (2BH − C)
m + n

(
H −

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)

− 12B2µ2l

m + n

(
H −

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)2

,

� (22)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	

W1,3 (x, y, t) = −
12Bµ2l

(
BH2 − CH + A

)
m + n

+ 12Bµ2l (2BH − C)
m + n

(
H − P

B(P η + Q)

)

− 12B2µ2l

m + n

(
H − P

B(P η + Q)

)2

,

� (23)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W1,4 (x, y, t) = 12Bµ2l (2BH − C)
m + n


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




− 12B2µ2l

m + n


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




2

−
12Bµ2l

(
BH2 − CH + A

)
m + n

,

� (24)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:
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W1,5 (x, y, t) = 12Bµ2p (2BH − C)
q + r


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−12B2µ2p

q + r


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




2

−
12Bµ2p

(
BH2 − CH + A

)
q + r

.

� (25)

Set 2:

	

a0 == −
2µ2l

(
6 B2 H2 − 6B CH + 2A B + C2)

m + n
, ν =

(
4AB − C2)

µ2lσ ,

a−1 =
12µ2l

(
2 B2 H3 − 3B CH2 + 2A B H + C2H − AC

)
m + n

,

a−2 == −
12µ2l

(
BH2 − CH + A

)2

m + n
, a1 = a2 = 0, H = H, A = A, B = B, C = C.

� (26)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W2,1 (x, y, t) = −
2µ2l

(
6 B2 H2 − 6B CH + 2A B + C2)

m + n

+
12µ2l

(
2 B2 H3 − 3B CH2 + 2A B H + C2H − AC

)
m + n

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−1

−
12µ2l

(
BH2 − CH + A

)2

m + n

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−2

,

� (27)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W2,2 (x, y, t) = −
2µ2l

(
6 B2 H2 − 6B CH + 2A B + C2)

m + n

+
12µ2l

(
2 B2 H3 − 3B CH2 + 2A B H + C2H − AC

)
m + n

(
H +

−
√

|AB|(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) + Q)
B(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) − Q)

)−1

−
12µ2l

(
BH2 − CH + A

)2

m + n

(
H +

−
√

|AB|(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) + Q)
B(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) − Q)

)−2

,

� (28)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	

W2,3 (x, y, t) = −
2µ2l

(
6 B2 H2 − 6B CH + 2A B + C2)

m + n

+
12µ2l

(
2 B2 H3 − 3B CH2 + 2A B H + C2H − AC

)
m + n

(
H − P

B(P η + Q)

)−1

−
12µ2l

(
BH2 − CH + A

)2

m + n

(
H − P

B(P η + Q)

)−2

,

� (29)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W2,4 (x, y, t) = −
2µ2l

(
6 B2 H2 − 6B CH + 2A B + C2)

m + n

+
12µ2l

(
2 B2 H3 − 3B CH2 + 2A B H + C2H − AC

)
m + n


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−1

−
12µ2l

(
BH2 − CH + A

)2

m + n


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−2

,

� (30)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:
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W2,5 (x, y, t) = −
2µ2l

(
6 B2 H2 − 6B CH + 2A B + C2)

m + n

+
12µ2l

(
2 B2 H3 − 3B CH2 + 2A B H + C2H − AC

)
m + n


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−1

−
12µ2l

(
BH2 − CH + A

)2

m + n


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−2

.

� (31)

Set 3:

	

a−1 =
2µ2l

(
4AB − C2 ) √

−12AB + 3C2

3B (m + n) , a−2 =
2µ2l

(
C2 − 4 AB

)
3B2 (m + n) , a0 = a1 = a2 = 0 ,

ν =
(
4AB − C2)

µ2lσ, H = C

2B
+

√
−12AB + 3C2

6B
, A = A, B = B, C = C.

� (32)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W3,1 (x, y, t) =
2µ2l

(
4AB − C2 ) √

−12AB + 3C2

3B (m + n)

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−1

+
2µ2l

(
C2 − 4 AB

)
3B2 (m + n)

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−2

,

� (33)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W3,2 (x, y, t) =
2µ2l

(
C2 − 4 AB

)
3B2 (m + n)

(
H −

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−2

,

+
2µ2l

(
4AB − C2 ) √

−12AB + 3C2

3B (m + n)

(
H −

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−1

,

� (34)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	

W3,3 (x, y, t) =
2µ2l

(
4AB − C2 ) √

−12AB + 3C2

3B (m + n)

(
H − P

B(P η + Q)

)−1

+
2µ2l

(
C2 − 4 AB

)
3B2 (m + n)

(
H − P

B(P η + Q)

)−2

,

� (35)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W3,4 (x, y, t) =
2µ2l

(
4AB − C2 ) √

−12AB + 3C2

3B (m + n)


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−1

+
2µ2l

(
C2 − 4 AB

)
3B2 (m + n)


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−2

,

� (36)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:

	

W3,5 (x, y, t) =
2µ2l

(
4AB − C2 ) √

−12AB + 3C2

3B (m + n)


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−1

+
2µ2l

(
C2 − 4 AB

)
3B2 (m + n)


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−2

.

� (37)

Set 4:
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a0 = 48B2C2µ4l2 − 192AB3µ4l2 − m2a2
1 − 2mna2

1 − n2a2
1

48B (m + n) , a1 = a1, a2 = − 12 B2µ2l

B2 (m + n) ,

H = 12BCµ2l + ma1 + na1

24B2µ2l
, ν =

(
4AB − C2)

µ2lσ, a−1 = a−2 = 0 , A = A, B = B, C = C.

� (38)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W4,1 (x, y, t) = 48B2C2µ4l2 − 192AB3µ4l2 − m2a2
1 − 2mna2

1 − n2a2
1

48B (m + n)

+ a1

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)

− 12 B2µ2l

B2 (m + n)

(
H +

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)2

,

� (39)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W4,2 (x, y, t) = 48B2C2µ4l2 − 192AB3µ4l2 − m2a2
1 − 2mna2

1 − n2a2
1

48B (m + n)

+a1

(
H −

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)

− 12 B2µ2l

B2 (m + n)

(
H −

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)2

,

� (40)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	

W4,3 (x, y, t) = 48B2C2µ4l2 − 192AB3µ4l2 − m2a2
1 − 2mna2

1 − n2a2
1

48B (m + n)

+ a1

(
H − P

B(P η + Q)

)
− 12 B2µ2l

B2 (m + n)

(
H − P

B(P η + Q)

)2

,

� (41)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W4,4 (x, y, t) = 48B2C2µ4l2 − 192AB3µ4l2 − m2a2
1 − 2mna2

1 − n2a2
1

48B (m + n)

+a1


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




− 12 B2µ2l

B2 (m + n)


H − C

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




2

,

� (42)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:

	

W4,5 (x, y, t) = 48B2C2µ4l2 − 192AB3µ4l2 − m2a2
1 − 2mna2

1 − n2a2
1

48B (m + n)

+ a1


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




− 12 B2µ2l

B2 (m + n)


H − C

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




2

.

� (43)
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Set 5:

	

a0 =
2

(
4AB − C2)

µ2l2

(m + n) , a2 = − 12 B2µ2l

B2 (m + n) , a−2 = −
3

(
4AB − C2)2

µ2l

4B2 (m + n) ,

H = C

2B
, ν = 4

(
4AB − C2)

µ2lσ, a1 = a−1 = 0, A = A, B = B, C = C.

� (44)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W5,1 (x, y, t) =
2

(
4AB − C2)

µ2l2

(m + n) − 12 B2µ2l

B2 (m + n)

(
C

2B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)2

−
3

(
4AB − C2)2

µ2l

4B2 (m + n)

(
C

2B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−2

,

� (45)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W5,2 (x, y, t) =
2

(
4AB − C2)

µ2l2

(m + n) − 12 B2µ2l

B2 (m + n)

(
C

2B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)2

−
3

(
4AB − C2)2

µ2l

4B2 (m + n)

(
C

2B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−2

,

� (46)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	

W5,3 (x, y, t) =
2

(
4AB − C2)

µ2l2

(m + n) − 12 B2µ2l

B2 (m + n)

(
C

2B
− P

B(P η + Q)

)2

−
3

(
4AB − C2)2

µ2l

4B2 (m + n)

(
C

2B
− P

B(P η + Q)

)−2

,

� (47)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W5,4 (x, y, t) =
2

(
4AB − C2)

µ2l2

(m + n) + 12 B2µ2l

B2 (m + n)




√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




2

+
3

(
4AB − C2)2

µ2l

4B2 (m + n)




√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−2

,

� (48)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:

	

W5,5 (x, y, t) =
2

(
4AB − C2)

µ2l2

(m + n) + 12 B2µ2l

B2 (m + n)




√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




2

+
3

(
4AB − C2)2

µ2l

4B2 (m + n)




√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−2

,

� (49)

Set 6:

	

a0 =
(
C2 − 4AB

)
µ2l

(m + n) , a−2 = −3
4

(
4AB − C2)2

µ2l

B2 (m + n) ,

ν =
(
4AB − C2)

µ2lσ, H = C

2B
, a1 = a2 = a−1 = 0 , A = A, B = B, C = C.

� (50)
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Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	
W6,1 (x, y, t) =

(
C2 − 4AB

)
µ2l

(m + n) −
3

(
4AB − C2)2

µ2l

4B2 (m + n)

(
C

2B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−2

,� (51)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W6,2 (x, y, t) =
(
C2 − 4AB

)
µ2l

(m + n)

−
3

(
4AB − C2)2

µ2l

4B2 (m + n)

(
C

2B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−2

,

� (52)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	
W6,3 (ζ) =

(
C2 − 4AB

)
µ2l

(m + n) −
3

(
4AB − C2)2

µ2l

4B2 (m + n)

(
C

2B
− P

B(P η + Q)

)−2

,� (53)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W6,4 (x, y, t) =
(
C2 − 4AB

)
µ2l

(m + n) −
3

(
4AB − C2)2

µ2l

4B2 (m + n)


−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−2

,� (54)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:

	

W6,5 (x, y, t) =
(
C2 − 4AB

)
µ2l

(m + n) −
3

(
4AB − C2)2

µ2l

4B2 (m + n)


−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−2

.� (55)

Set 7:

	

a1 = a2 = 0, a−1 = −3a0
√

4AB − C2

2B
, a−2 = 3a0

√
4AB − C2

4B2 , H = C

2B
+

√
4AB − C2

2B
,

m = −16ABµ2l − 4C2µ2l + na0

a0
, ν =

(
4AB − C2)

µ2lσ, a0 = a0, A = A, B = B, C = C.

� (56)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W7,1 (x, y, t) = a0 − 3a0
√

4AB − C2

2B

(
C

2B
+

√
4AB − C2

2B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−1

+ 3a0
√

4AB − C2

4B2

(
C

2B
+

√
4AB − C2

2B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−2

,

� (57)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W7,2 (x, y, t) = a0 − 3a0
√

4AB − C2

2B

(
C

2B
+

√
4AB − C2

2B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−1

+ 3a0
√

4AB − C2

4B2

(
C

2B
+

√
4AB − C2

2B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−2

,

� (58)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

Scientific Reports |        (2025) 15:43559 11| https://doi.org/10.1038/s41598-025-30414-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

W7,3 (x, y, t) = a0 − 3a0
√

4AB − C2

2B

(
C

2B
+

√
4AB − C2

2B
− P

B(P η + Q)

)−1

+ 3a0
√

4AB − C2

4B2

(
C

2B
+

√
4AB − C2

2B
− P

B(P η + Q)

)−2

,

� (59)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:

	

W7,4 (x, y, t) = a0 − 3a0
√

4AB − C2

2B




√
4AB − C2

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−1

+ 3a0
√

4AB − C2

4B2




√
4AB − C2

2B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−2

,

� (60)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:

	

W7,5 (x, y, t) = a0 − 3a0
√

4AB − C2

2B




√
4AB − C2

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−1

+ 3a0
√

4AB − C2

4B2




√
4AB − C2

2B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−2

.

� (61)

Set 8:

	

a0 = a0, a−1 = a0
√

3C2 − 12AB

3B
, a−2 =

a0
(
4AB − C2)

6B2 , H = C

2B
−

√
3C2 − 12AB

6B
,

ν =
(
C2 − 4AB

)
µ2lσ, m = −8ABµ2l − 2C2µ2l + na0

a0
, a1 = a2 = 0, A = A, B = B, C = C.

� (62)

Substituting the determined constants into Eq. (19) and applying the various solutions from Eq. (8), following 
five distinct cases are derived.

Case 1: For the condition AB > 0 and C = 0, the corresponding solution is obtained as follows:

	

W8,1 (x, y, t) = a0 + a0
√

3C2 − 12AB

3B

(
C

2B
−

√
3C2 − 12AB

6B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−1

+
a0

(
4AB − C2)

6B2

(
C

2B
−

√
3C2 − 12AB

6B
+

√
AB(P cos(

√
ABη) + Q sin(

√
ABη))

B(Q cos(
√

ABη) − P sin(
√

ABη))

)−2

,

� (63)

Case 2: For the condition AB < 0 and C = 0, the corresponding hyperbolic solution is obtained as follows:

	

W8,2 (x, y, t) = a0
√

3C2 − 12AB

3B

(
C

2B
−

√
3C2 − 12AB

6B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−1

+
a0

(
4AB − C2)

6B2

(
C

2B
−

√
3C2 − 12AB

6B
−

√
|AB|(P sinh(2

√
|AB|η) + P cosh(2

√
|AB|η) + Q)

B(P sinh(2
√

|AB|η) + P cosh(2
√

|AB|η) − Q)

)−2

+ a0,

� (64)

Case 3: For the condition A = C = 0 and B ̸= 0, the corresponding solution is obtained as follows:

	

W8,3 (x, y, t) = a0 + a0
√

3C2 − 12AB

3B

(
C

2B
−

√
3C2 − 12AB

6B
− P

B(P η + Q)

)−1

+
a0

(
4AB − C2)

6B2

(
C

2B
−

√
3C2 − 12AB

6B
− P

B(P η + Q)

)−2

,

� (65)

Case 4: For the condition C ̸= 0 and ∆ ≥ 0 where ∆ = C2 − 4AB , the corresponding solution is obtained 
as follows:
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W8,4 (x, y, t) = a0 + a0
√

3C2 − 12AB

3B


−

√
3C2 − 12AB

6B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−1

+
a0

(
4AB − C2)

6B2


−

√
3C2 − 12AB

6B
−

√
∆

(
P cosh(

√
∆

2 η) + Q sinh(
√

∆
2 η)

)

2B
(

Q cosh(
√

∆
2 η) + P sinh(

√
∆

2 η)
)




−2

,

� (66)

Case 5: For the condition C ̸= 0 and ∆ < 0 where ∆ = C2 − 4AB, the corresponding solution is obtained 
as follows:

	

W8,5 (x, y, t) = a0 + a0
√

3C2 − 12AB

3B


−

√
3C2 − 12AB

6B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−1

+
a0

(
4AB − C2)

6B2


−

√
3C2 − 12AB

6B
−

√
−∆

(
P cos(

√
−∆
2 η) − Q sin(

√
−∆
2 η)

)

2B
(

P sin(
√

−∆
2 η) + Q cos(

√
−∆
2 η)

)




−2

,

� (67)

where η = µ x + σ y −
ν
(

t+ 1
Γ(β)

)
β

β

, ζ = µ x + σ y − ν Γ(δ+1)
β

tβ  and ζ = µ x + σ y − ν
β

tβ  are correspond 
to the wave transformations in all the eight solution sets as discussed earlier.

Results and discussion
This study solves the NLCRW Equation using a few fractional derivative operators. Utilizing conformable, Beta 
and M-truncated derivatives, novel modified (G′/G2)-expansion method, a dependable integration technique, 
is utilized to achieve the results. The outcomes generated by the method for three distinct fractional derivative 
operators are visualized through 2-D time evolution plots and 3-D graphical representations. The many kinds of 
optical solitary wave solutions, such as M type and singular periodic solitons are provided by this approach. It 
is very helpful to compare Conformable-Derivative with Beta and M-Truncated derivatives, precisely utilizing 
2-D time evolution graphics. Minor shifts in the wave profile are observed with variations in the fractional 
derivative, although the overall shape of the curve remains consistent. This proves the symmetry of travelling 
wave solutions. If the values of parameters get different particular values, a single solution might result in the 
generation of numerous different types of solutions. The soliton solutions were obtained using novel modified 
(G′/G2)-expansion technique. They offer a graphic depiction of the temporal and spatial behaviours of travelling 
waves. The graphical representations of the exact solutions clearly demonstrate that novel modified (G′/G2)-
expansion method has been found to be dependable and efficient.

Figure  1 demonstrates the temporal and spatial evolution of the wave profile W2,2 using three different 
fractional derivative operators: β-derivative, M-truncated derivative, and conformable derivative. Figure  1a 
represents the β-derivative case, displaying a symmetric soliton-like structure with a noticeable central peak, 
while Fig. 1b,c demonstrate minor variations in amplitude and width under the M-truncated and conformable 
derivatives, respectively. In spite of these small shifts, the overall structure of the wave remains unchanged, 
indicating the robustness and symmetry of the travelling wave solutions. The 3D plots further confirm the 
uniformity of the soliton profile across the time domain, with all three cases showing stable wave propagation 
and temporal consistency. These visualizations validate that the novel modified (G′/G2)-expansion method 
effectively maintains solution reliability under different fractional operators.

On the other hand, Fig.  2a,b,c demonstrate the wave profile W6,1. In Fig.  2, the dynamics become more 
complex, with the wave structure showing sharper troughs and singular behavior, especially visible in Fig. 2a. 
These suggest the existence of singular periodic soliton characteristics that are more sensitive to the type of 
fractional derivative used. Although the overall wave shape stays similar, the dips become deeper and steeper 
when using the β-derivative as compared to the M-truncated and Conformable derivatives. The 3D graphs 
support this observation, showing deeper and more intense troughs as time evolves. This comparison elaborates 
the effect of derivative choice on the solution structure, strengthening the value of the proposed method in 
capturing distinct physical behaviors of nonlinear systems across fractional models.

The nonlinear dynamics observed here complement the soliton solutions obtained in the first part of the 
study: while the analytical method provides localized traveling waves that describe coherent structures, the 
bifurcation and chaos analysis reveals how these structures can destabilize and evolve into complex oscillatory 
patterns under parameter perturbations. Together, these two perspectives highlight the dual nature of the 
NLCRW equation, capable of supporting both stable solitary waves and chaotic dynamics, depending on the 
parameters regime.

Characteristics Traditional (G′/G)-Expansion Method Proposed Novel Modified (G′/G2)-Expansion Method

Solution types Mainly hyperbolic and trigonometric forms Broader classes including hyperbolic, trigonometric, rational

Flexibility Limited parameter control, solution families 
often narrow

Additional free parameters allow richer structures and more 
general forms

Handling of singularities Weak in capturing rational/singular behaviors Capable of generating rational and singular periodic 
solutions
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Characteristics Traditional (G′/G)-Expansion Method Proposed Novel Modified (G′/G2)-Expansion Method

Adaptability to 
fractional operators Less effective for nonlocal/fractional derivatives Naturally accommodates conformable, β, and M-Truncated 

derivatives with consistent results

Analytical efficiency Requires more balancing steps to match 
nonlinear terms

More direct balancing procedure reduces algebraic 
complexity

Physical relevance Solutions often idealized or symmetric Produces waveforms with adjustable amplitude and width, 
closer to physical solitary and periodic patterns

Comparison of the Proposed Modified (G′/G2)-Expansion Method with the Traditional (G′/G)-Expansion 
Method.

Bifurcation analyses
Bifurcation analysis investigates the behavior of dynamical systems as parameters vary, irrespective of whether 
those parameters are interdependent. The second-order differential Eq. (18) can be reformulated into a system 
of two first-order equations using the Galilean transformation, as outlined in references47,48:

Fig. 1.  2D, time evolution (at t = 0, 1, 2) and 3D plots show the two-peak M-type soliton solution W2,2 using 
m = 0.3, l = 0.6, n = 0.2, A = − 4, B = 1, C = 0, P = 1, Q = 3, σ =− 0.2, µ = 0.4 and different fractional derivatives (a) 
Illustrates the solution using fractional order 0.6 and β -Derivative, (b) Shows the solution using fractional 
order 0.6,γ = 1.3 and M-Truncated Derivative. (c) Shows Conformable Derivative using fractional order 0.6. 
The solitons show a central peak with slight changes in width and amplitude, confirming the symmetry of the 
travelling wave, showing that the soliton preserves its overall shape using different derivative types.
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


dF

dη
= z

dz

dη
= F1 F − F2 F 2 ,

� (68)

where F1 = ν
µσ2 l

, F2 = m+n
2σ2 l

.
The following set of equilibrium points makes up the system:

	
(0, 0) ,

(
F1

F2
, 0

)
.

Once we have the fixed points, we can analyze the stability of these points by computing the Jacobian matrix of 
the system. It is given by:

	
J (F, z) =

[ 0 1
F1 − 2F2F 0

]
,

	
det (J) =

∣∣∣ 0 1
F1 − 2F2F 0

∣∣∣ = −F1 + 2F2F .� (69)

Fig. 2.  2D, time evolution (at t = 0, 1, 2) and 3D plots show singular periodic soliton solution of W6,1 for l = 0.6, 
m = 0.3, n = 0.2, A = 4, B = 1, C = 0, P = 1, Q = 3, σ =− 0.2, µ = 0.4, (a) Illustrates the solution using fractional order 
0.6 and β -Derivative, (b) Shows the solution using fractional order 0.6,γ = 1.3 and M-Truncated Derivative. 
(c) Shows Conformable Derivative using fractional order 0.6. Dynamics are intricate with sharp troughs and 
deeper dips especially under the β-derivative, while the other operators yield smoother troughs.
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The Jacobian gives a linear approximation of the system near the fixed or equilibrium points and helps classify 
these points as saddle points or center points based on the eigenvalues. This analysis is fundamental in 
understanding the local stability of a dynamical system.

The Hamiltonian function, representing the total energy of the system, combines both kinetic and potential 
energy components. Specifically, the kinetic term is quadratic in the velocity variable z, while the potential 
energy is expressed as a nonlinear function of the displacement F, involving both quadratic and cubic terms. 
This formulation allows the system’s trajectories to be analyzed in terms of energy level curves, offering valuable 
insights into the qualitative nature of motion, particularly near equilibrium points and during bifurcation 
transitions.

	
H (F, z) = 1

2z2 − 1
2F1F 2 + 1

3F2F 3,� (70)

It satisfies the canonical equations:

	
dF

dη
= ∂H

∂z
,

dz

dη
= −∂H

∂F
.

The three phase portraits showcase a variety of Hamiltonian energy landscapes driven by changes in the 
parameter sets (F1 and F2). The phase portrait in Fig. 3a exhibits a saddle-type behavior around an unstable 
equilibrium point (0, 0) marked by the red dot. The contour lines form a hyperbolic pattern, characteristic of 
a saddle point in Hamiltonian systems. Trajectories diverge away from this point along distinct separatrices, 
indicating sensitive dependence on initial conditions and lack of periodic motion.

In Fig. 3b, the phase portrait reveals the presence of two distinct equilibrium points: a center at (1, 0) and 
a saddle at the origin (0, 0), represented by the green and red markers, respectively. Around the center, the 
trajectories form closed elliptical loops, indicating stable and periodic behavior in that localized region. Beyond 
this central area, the influence of the saddle point becomes apparent, introducing a more complex structure 
where trajectories may either split apart or diverge. This reflects the coexistence of both stable and unstable 
regions within the system’s dynamics.

The phase portrait in Fig. 3c shows entirely closed and elliptical paths centered around a stable point at (0, 0), 
marked by the green dot. The motion across the entire phase space is periodic and conservative, as there are no 
saddle points or separatrix structures disrupting the flow. This setup implies that no matter the initial condition, 
the system remains confined within fixed energy levels, reflecting consistent, stable oscillations throughout 
which is an indication of overall stability in the system’s behavior.

Sensitivity analysis
Sensitivity analysis of a system examines how small changes in initial conditions affect the future behavior of 
the system. This investigation is crucial in understanding the predictability, stability, and chaotic nature of the 
system which is vital in domains like engineering, physics, and control systems where exact initial conditions 
are unachievable49,50.

The plot in Fig. 4a displays the time response of the system variable F(t) under three initial conditions: [0.01, 
0.01], [0.20, 0.20], and [− 0.1, − 0.1]. Across all trajectories, the system exhibits sustained, bounded oscillations 
without any sign of divergence or instability. Although the amplitude varies with the magnitude of the initial 
condition, the overall behavior remains regular and periodic. This suggests that the system can absorb a range 
of perturbations while preserving a stable dynamic regime. The consistent response across different initial states 
points to the presence of a stable nonlinear structure, such as a limit cycle or conservative motion. The plot in 
Fig. 4b shows the time evolution of the variable F(t) under three initial conditions: [0.01, 0.01], [0.21, 0.21], 

Fig. 3.  Hamiltonian Phase portraits of system (68) plotted for three different parameter sets F1 and F2: (a) 
F1 = 4 and F2 = 0.1, (b) F1 = 1 and F2 = 1, (c) F1 = − 4 and F2 = − 0.05.
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and [− 0.11, − 0.11]. The resulting trajectories remain bounded and periodic, with noticeably smaller amplitudes 
compared to previous cases. This indicates that the system is operating in a more damped or less energetically 
responsive regime. Regardless of the minor differences in initial states, the system maintains consistent, stable 
oscillations, further affirming its resistance to divergence and chaotic transitions. Overall, the behavior points to 
a reliably stable dynamic response within a slightly perturbed initial conditions.

Chaotic analysis
In this section, we add an external force in the dynamical system (68) to make it perturbed as shown below:

	




dF

dη
= z

dz

dη
= F1 F − F2 F 2 + ρ cos (τ η) ,

� (71)

where ρ cos (τ η) is known as perturbation term. In your system of equations, τ represents the frequency of the 
external perturbation, determining how often the external force oscillates over time, while ρ is the amplitude 
of the perturbation, controlling the strength of the external force51,52. The term ρcos(τ) models this periodic 
forcing. A higher τ means faster oscillations, and a larger ρ means a stronger force. Together, they define the 
nature of the perturbation, with stronger and more frequent forces potentially driving the system toward more 
complex or chaotic behavior, while weaker or slower perturbations tend to produce smoother, more regular 
dynamics.

Figure 5 shows distinct signatures of chaotic behavior under the parameter setting ρ = 1.5, τ = 4, with F1 = − 2, 
F2 = − 1. The 2D phase portrait (a) reveals a densely packed structure with overlapping loops, suggesting 
sensitive dependence on initial conditions. In the 3D trajectory (b), the motion extends in a helical pattern over 
time, reinforcing the presence of a strange attractor with complex geometry. The time series plots (c) clearly 
demonstrate irregular oscillations in both F and z, with no apparent periodicity, confirming the presence of 
non-repeating, bounded behavior. Collectively, these characteristics strongly indicate a chaotic regime with rich 
dynamic variability.

In Fig. 6, the system is analyzed for ρ = 3 and τ = 3 and the parameter set F1 = − 3, F2 = − 3. The 2D phase 
plot (a) displays thick, nested loops, signifying strongly irregular oscillations and sensitive to initial conditions. 
The 3D phase portrait (b) strengthens this behavior, with the trajectory forming a tangled spiral arrangement 
that shows persistent chaotic pattern. The time series plots (c) of both F and z illustrate quick and irregular 
oscillations without repeating patterns, further describing the presence of chaos. Together, these characteristics 
validate that under the selected parameters, the system demonstrates strong chaotic dynamics with noticeable 
instability.

Figure 7 explores the system’s behavior with parameters ρ = 4.5 and τ = 3 and F1 = − 4, F2 = 1. The 2D phase 
portrait (a) features broad, circular loops with clearer spacing, indicating more regular and less sensitive 
trajectories. The 3D phase space (b) supports this with a visibly layered structure, forming smooth coils over 
time. In the time series plots (c), the oscillations in both F and z appear quasiperiodic, with some repetition and 
structure visible across the time domain. This suggests the system is either in a weakly chaotic or quasiperiodic 
state, reflecting a more predictable, less turbulent regime compared to the previous cases.

Fig. 4.  (a,b) Sensitivity Analysis of the system (68) for F1 = − 1 and F2 = 2, with initial conditions: (a) [0.01, 
0.01] (blue), [0.20, 0.20] (red), and [− 0.1, − 0.1] (green), (b) [0.011, 0.11] (blue), [0.21, 0.21] (red), and 
[− 0.11, − 0.11] (green).
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Bifurcation diagram
Bifurcation diagrams are used to understand how the qualitative behavior of a dynamical system changes as a 
key parameter is varied. This technique helps reveal critical transitions known as bifurcations where the system 
may shift from stability to instability, from periodic motion to chaos, or from a single steady state to multiple 
coexisting solutions. By visualizing these changes, researchers can identify thresholds where small parameter 
adjustments lead to significant differences in long-term outcomes. Bifurcation diagrams are especially valuable 
in nonlinear systems, where analytical solutions are often difficult or impossible to obtain. They offer a powerful 
way to map the global structure of the phase space, detect regions of multistability, and predict the onset of 
complex phenomena such as oscillations, hysteresis, or chaotic dynamics53,54.

In Fig. 8a, the bifurcation diagram with F2 as the control parameter and fixing F1 = − 2 and ρ = 1.5 shows a 
sequence of periodic paths into chaos. For small F2, the system remains periodic with stable oscillations, but as 
F2 increases, complex twigs appear, showing chaotic transitions. On the other hand, In Fig. 8b, when ρ is varied 
while fixing F1 = − 2, F2 = 1, the bifurcation diagram illustrates a broader chaotic state with thick oscillatory 
bands. Periodic paths appear occasionally, but chaotic behaviour is prominent for larger values of ρ. Collectively, 
these findings show that both F2 and ρ strongly effect the stability as increasing ρ increases the chaotic regions, 
while adjusting F2 controls the balance between periodic and chaotic regimes.

Multistability
Multistability refers to the presence of multiple stable states or behaviours that a dynamical system can exhibit 
under the same set of system parameters. It shows that the system can settle into different long-term behaviours 
depending on its initial conditions. In a multistable system, different trajectories can lead to periodic, quasi-
periodic, or chaotic outcomes, even though the system’s parameters remain unchanged. This phenomenon 

Fig. 5.  (a,b,c) Chaotic Analysis of the perturbed system (71) for ρ = 1.5 and τ = 4 and F1 = − 2, F2 = − 1, (a) 2D 
phase portrait (b) 3D phase portrait (c) Time series plot of F and z.
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highlights how sensitive the system is to initial conditions, where small variations in starting points can result in 
vastly different dynamics55,56.

In practical terms, multistability is important because it indicates that the system can respond to perturbations 
or initial differences in a variety of ways, revealing complex underlying structures like attractors. It is commonly 
observed in systems like biological processes, climate dynamics, and mechanical systems, where different 
operational modes can coexist.

Figure  9 shows the multistability of the perturbed system (71) for fixed parameters ρ = 1.5 and τ = 4 and 
F1 =  − 2, F2 = 1, evaluated at three different initial conditions: [0.15, − 0.1], [0.1, 0] and [− 0.2, 0.1]. The 2D 
phase portrait (a) clearly reveals that each initial condition evolves into a distinct trajectory. Although all 
remain bounded, the trajectories form non-overlapping attractor structures, implying the presence of multiple 
coexisting stable states. This is a key indicator of multistability, where the system does not converge to a single 
global attractor but instead settles into different long-term behaviours based on its starting state.

The time series plots in Fig. 9b reinforce this result. The evolution of F(η) and z(η) over time shows distinct 
waveform amplitudes and patterns for each initial condition, yet all remain in stable oscillatory regimes. The 
persistence of these differences throughout the entire simulation interval confirms that the divergence is not 
transient but an inherent feature of the system’s dynamics. This behavior highlights the sensitivity to initial 
conditions and emphasizes the nonlinear nature of the system, where small changes at the outset lead to 
qualitatively different yet stable outcomes.

Similarly, Fig. 10 illustrates multi-stability for the system with parameters ρ = 1.5, τ = 4, F1 = − 4 and F2 = − 3. 
The 2D phase portrait in Fig. 10a shows that different initial conditions lead to distinct yet overlapping trajectories, 
indicating coexisting attractors. In Fig. 10b, the time series plots show that each initial condition produces a 
unique oscillatory pattern in both F and z, confirming sustained differences and emphasizing sensitivity to initial 
states within a bounded regime.

Fig. 6.  (a,b,c) Chaotic Analysis of the perturbed system (71) for ρ = 3 and τ = 3 and F1 = − 1, F2 = − 1. (a) 2D 
phase portrait (b) 3D phase portrait (c) Time series plot of F and z.

 

Scientific Reports |        (2025) 15:43559 19| https://doi.org/10.1038/s41598-025-30414-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 8.  (a,b) Bifurcation diagram of the system (71) with: (a) F2 ∈ [0.1, 2] for fixed F1 = − 2 and ρ = 1.5. (b) 
ρ ∈ [0, 3] for fixed F1 = − 2 and F2 = 1.

 

Fig. 7.  (a,b,c) Chaotic Analysis of the perturbed system (71) for ρ = 4.5 and τ = 3 and F1 = − 4, F2 = 1. (a) 2D 
phase portrait (b) 3D phase portrait (c) Time series plot of F and z.
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Poincaré map
Poincaré map is a powerful technique used in the study of dynamical systems, especially for analyzing systems 
exhibiting periodic, quasi-periodic, or chaotic behaviour. It is named after the French mathematician Henri 
Poincaré, who made significant contributions to the study of celestial mechanics and dynamical systems. It helps 
in identifying periodicity, stability, or chaotic behaviour in systems57.

Figure  11a,b,c,d presents three Poincaré sections of the perturbed system (71), each corresponding to a 
different combination of the forcing amplitude ρ and τ, revealing how the system’s dynamics respond to varying 
external perturbation.

The Poincaré section in Fig. 11a for τ = 4 shows a complex, double-lobed structure with scattered points, 
indicating possible chaotic or quasi-periodic behavior.

In Fig. 11b for τ = 5, the map becomes a near-perfect closed loop, suggesting a transition to stable periodic 
motion.

In Fig. 11c at τ = 6, the shape slightly distorts but remains closed, implying persistence of bounded, non-
chaotic dynamics.

The map in Fig. 11d when τ increases to 7 shows that the loop becomes more circular and regular, confirming 
strong periodicity and system stability.

The four Poincaré maps in Fig. 11 illustrate how varying the delay parameter τ influences system dynamics. As 
τ increases from 4 to 7, the system transitions from a more complex, possibly chaotic state (τ = 4) to highly regular, 
periodic behavior (τ = 7). This progression highlights that increasing τ stabilizes the dynamics, suppressing chaos 
and promoting structured, closed-loop trajectories characteristic of limit cycles or periodic orbits.

The overlaid Poincaré section for varying forcing frequencies τ = 4, 5, 6, 7 provides a clear visual comparison 
of the system’s long-term dynamical behavior under different periodic excitations58. Each colored loop represents 

Fig. 9.  (a) Multi-stability analysis (b) Time series analysis of the perturbed system (71) for ρ = 1.5 and τ = 4 and 
F1 = − 2, F2 = 1 at initial conditions [0.15, − 0.1], [0.1, 0] and [− 0.2, 0.1].
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a stroboscopic map that samples the system state at intervals synchronized with the respective forcing period. 
The resulting closed curves suggest that the system exhibits periodic or quasi-periodic behavior for all values of τ 
considered. Notably, the blue loop corresponding to τ = 4 appears more irregular and asymmetrical compared to 
the smoother, more circular loops observed for τ = 5, 6, 7, indicating that the system may undergo bifurcation or 
a change in attractor structure as τ decreases. This visualization highlights the system’s sensitivity to the external 
forcing frequency and captures how small changes in τ can lead to qualitatively distinct dynamical regimes, a key 
characteristic of nonlinear and potentially multistable or chaotic systems.

Lyapunov exponents
Lyapunov exponents serve as a tool to assess how sensitive a dynamical system is to its initial conditions. By 
evaluating how nearby trajectories in the system’s phase space either separate or come together over time, these 
exponents help identify chaotic behavior. A positive value suggests that small differences in initial conditions will 
grow rapidly, showing chaos, while a negative value indicates that trajectories are converging, pointing to stability. 
Overall, Lyapunov exponent analysis offers valuable understanding of the system’s stability, predictability, and 
long-term dynamics, especially in complex nonlinear systems59,60 (Fig. 12).

Figure 13 shows how the two largest Lyapunov exponents evolve over time for the given system. Initially, 
both exponents fluctuate before settling into stable values, λ1 converges to + 0.00477, while the λ2 settles near 
–0.00477. This indicates that the system shows low-dimensional chaotic behavior, as a positive Lyapunov 
exponent confirms sensitive dependence on initial conditions. The near symmetry of the exponents suggests 
that the system is close to volume-preserving, typical of Hamiltonian-like behavior. In contrast, a purely periodic 
system would have all Lyapunov exponents negative or zero, and a quasi-periodic system would show all zero 
exponents. Therefore, the presence of a small but positive Lyapunov exponent confirms mild yet persistent chaos 
in the dynamics.

Fig. 10.  (a) Multi-stability Analysis (b) Time Series Analysis of the perturbed system (71) for ρ = 1.5 and τ = 4 
and F1 = − 4, F2 = − 3 at initial conditions [− 0.05, 0.05], [0.1, 0.1] and [− 0.2, 0.2].
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Fig. 12.  Overlaid Poincaré sections of the system (71) for F1 = − 4, F2 = 1, ρ = 4.5 and τ = 4, 5, 6 and 7, showing 
distinct stroboscopic loops.

 

Fig. 11.  (a,b,c,d) Poincaré maps of the perturbed system (71) with F1 = − 4, F2 = 1, ρ = 4.5 and τ = 4, 5, 6, and 7 
in (a), (b), (c) and (d) respectively.
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Conclusion
In this study, the novel modified (G′/G2)-expansion method is effectively used to find new traveling wave 
solutions for the nonlinear coupled Riemann wave equation. This approach provides an efficient framework 
for constructing solutions to nonlinear fractional differential equations. Several soliton forms, including 
singular periodic and M-type solutions, are derived using Conformal, β and M-Truncated Derivatives. Our 
comparative analysis indicates that the β-Derivative yields more stable and reliable wave patterns, although 
all derivatives confirm the persistence of symmetric wave shapes with fractional parameter variation. Beyond 
the construction of analytical solutions, the study extends to the nonlinear dynamics of a Hamiltonian system 
using various bifurcation-based techniques. Phase portrait analysis reveals distinct energy landscapes, while 
bifurcation diagrams highlight transitions between stable and complex regimes influenced by changes in F2 
and ρ. Sensitivity studies show the robustness of periodic behavior, and multistability investigations confirm 
the coexistence of multiple attractors depending on initial conditions. Poincaré maps and Lyapunov exponent 
calculations further uncover quasi-periodic and chaotic behavior, with evidence of low-dimensional chaos in 
selected parameter sets. These results not only validate the richness of the system’s nonlinear dynamics but also 
demonstrate the versatility of the combined analytical and numerical methodology. The study offers valuable 
insights applicable to nonlinear wave theory, chaotic systems, and engineering problems involving stability and 
transition dynamics.
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