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Von Economo neurons (VENs) are a specialized type of large, highly elongated projection neurons
located in specific cortical regions. Despite their implication in higher-order cognitive functions and
psychiatric disorders in humans, consistent and objective identification criteria for VENs remain
lacking. We analyzed 761 digitally reconstructed neurons from the NeuroMorpho.Org database. We
applied six supervised machine learning algorithms and a convolutional neural network with Grad-CAM
visualization to classify the reconstructions into VENs and pyramidal neurons. Variable importance was
evaluated using information-driven and expert-based selection. We compared the classifications made
by machine learning algorithms to the reconstructions’ original labels. Reconstructions misclassified
by the classifier models were further examined by a neuroanatomy expert. Machine learning models
generally achieved high classification accuracy. Morphometric features such as dendritic length and
number of stems emerged as some of the key discriminators. Expert ratings only partially aligned with
machine findings, and there was low agreement between experts. Most misclassifications made by
the classifier models were attributable to reconstruction artifacts or ambiguous morphology rather
than model limitations. Our findings demonstrate the utility of combining machine learning with
expert insight for distinguishing VENs from pyramidal neurons. While soma shape remains important
for the characterization of VENSs, classifier models revealed that dendritic architecture may be equally
as specific and could help distinguish between borderline cases. This framework offers a replicable,
data-driven method for studying VENs and can be utilized for future research on their distribution and
function.
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In the course of the last decades the study of the human brain has experienced tremendous progress. Owing to
the advent and continuous development of various magnetic resonance imaging techniques (e.g. fMRI), it has
become possible to describe complex behavioral traits in terms of putatively underlying macro-neurological
variables in vivo (such as large-scale functional networks;"?). However, a comprehensive account of the latter
crucially hinges on a thorough grasp of their microstructural constituents®=°. The brain is estimated to contain
up to 86 billion neurons®. Beyond their sheer number however, they are also distinguished by an array of features
(e.g., molecular, morphological, electrophysical, functional;*”). Moreover, they evince considerable variability
regarding these facets—not only across cortical regions, but also across subjects®®. Consequently, this complexity
has prompted attempts to classify neurons in terms of a discrete number of subtypes or classes’.

Although the basic idea behind this approach dates back to the early work of pioneers such as Ramon y
Cajal'?, a solid, let alone exhaustive understanding of how neuron types can be reliably identified and how
they may contribute to higher-order behavior, remains lacking”!!2. This comes as no surprise, given that the
study of neuronal subtyping faces multiple challenges. These include non-overlapping classification schemes
and considerable discrepancies pertaining to basic terminology and methodological approaches'>!®. Regarding
the aspect of morphology, one of the prime examples of how such factors may affect the classification process,
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has manifested itself in the case of a neuron first detailed by Austrian-Romanian psychiatrist and neurologist
Constantin von Economo!*!>. His analysis of the human brain’s cytoarchitecture led to the description of a
nerve cell with salient morphological features, including a large, extremely elongated (stick-like) cell body!>1e.
Furthermore, the presence of these “corkscrew cells” appeared to be primarily restricted to layer Vb of the anterior
cingulate cortex (ACC) and the fronto-insular cortex (FI) where they were frequently observed in assemblages of
3 to 6 neurons!'”18. Consequently, they were later recognized as a separate class of neurons, which, to honor their
discoverers memory, have been dubbed “von Economo neurons” (VENSs;!).

Subsequent studies reported the identification of VENSs in brain areas other than the ACC and FI such as
the dorsolateral prefrontal cortex (DLPFC), the frontal pole, as well as the posteromedial cortex/precuneus-22,
Moreover, they have been implicated in the origin of psychopathologies including schizophrenia, frontotemporal
dementia (FTD) and autism?*-?°. Such findings have given rise to speculative accounts as to the functional
significance of VENS, ranging from interoception to general intelligence!?°. However, as pointed out by Petanjek
et al.”, several studies on VENs are based on the analysis of more frequently occurring spindle-shaped bipolar
neurons. Since the morphological features of the latter deviate from the initial corkscrew cells’ appearance, their
identification as VENs has been called into question. Nevertheless, they are often subsumed under the same
umbrella term, sparking a recent debate as to what “makes a VEN a VEN”.

The accurate classification of VENs is not merely a matter of taxonomic precision. Misclassification of
morphologically similar neurons as VENS is likely to lead to inaccurate conclusions regarding their prevalence,
distribution, and selective vulnerability. This can confound studies investigating the evolutionary origins of VENs
and makes determining the functional roles of these cells more challenging. In addition, misclassification of VENs
severely limits their use as potentially valuable histopathological markers. For example, if studies implicating
VENSs in neuropathological conditions have used inconsistent or poorly defined criteria to link selective VEN
loss to a given pathology, the validity of such findings becomes questionable and their reproducibility severely
compromised. Therefore, it is essential to establish robust, reproducible criteria for VEN identification to ensure
the validity, reproducibility, and comparability of future research in this domain.

Currently, there is still an absence of a standardized classificatory process, not only for VENS, but even for
neuronal morphology more broadly?’. We contend that a way to alleviate this problem, in part, lies in devising
a more objective technique of differentiating VENs from similar spindle cells, which fall within the category
of “common modified pyramidal neurons” (MPN;!*28). To this end, we employ various machine learning
algorithms, training them on a batch of VENSs as well as VEN-like cells obtained from samples of post-mortem
brain tissue available in the NeuroMorpho.Org database?. The aim of this study is to generate a data-driven
classificatory procedure of high accuracy, that may assist future researchers in the decision whether or not to
classify any given neuron as a VEN. We expect this to greatly enhance the understanding of the VENS’ precise
cortical distribution patterns and ultimately, their functional significance.

Methods

Neuronal reconstructions from NeuroMorpho.Org

A total of 761 digital neuronal reconstructions!®?%3%31, 706 classified as pyramidal neurons and 55 classified as
VENS (see Fig. 1 for morphological comparison of typical VENs and pyramidal neurons), were retrieved from
NeuroMorpho.Org repository (RRID:SCR_002145) in March 2024. NeuroMorpho.Org is a publicly accessible
repository of previously published morphological datasets. No new experiments, tissue collection, or human-
subject procedures were performed in this study. All reconstructions were originally generated, anonymized,
and deposited by the contributing laboratories together with the appropriate ethical approvals and consent
procedures, as required by the original studies and their institutional ethics committees. In the present work, we
conducted only secondary analyses of these openly available datasets. The analyzed dataset constituted at that
time all available morphological reconstructions of human pyramidal cells under the keywords: insula, fronto-
insula and anterior cingulate. All reconstructions were retrieved in SWC format, a text-based file describing
the three-dimensional morphology of neurons or glia as a vectorized tree structure consisting of a series of
connected nodes. Each node is represented by a vector of seven values. The first value is an ID number, generally
starting from 1 up to the maximum number of nodes. The second is an integer number ranging from 0 to 10 that
represents the structure identifier, for example, number 1 identifies a section that is part of the soma, number 2
a section that is part of the axon, and so on. The third, fourth and fifth values represent the %} ‘y’ and z’ spatial
coordinates in micrometers, respectively. The sixth value represents the radius of the section (e.g. dendritic
thickness). Finally, the seventh value represents the parent ID number of the section to which the current section
is connected>2. Each section is represented as a cylinder compartment that starts at a particular set of Cartesian
coordinates (X, y, and z) and has a corresponding diameter. The compartment extends until it reaches the next
set of coordinates, where the diameter is usually smaller.

Morphological parameters analyzed in the study

A set of 21 morphometric parameters were estimated from each SWC file model using L-measure®, see
Supplementary Table 1. The description of these metrics is available on the L-measure website (http://cng.g
mu.edu:8080/Lm/) and presented in Supplementary Table 1. In addition to the 21 measurements provided by
the L-measure software, the height-to-width ratio of the cell body was calculated and used as an additional
parameter. Mann-Whitney’s test was used to compare the measurement values between correctly and incorrectly
classified reconstructions. Bonferroni correction was done to control for family-wise error rate that occurs when
performing multiple hypotheses tests.
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von Economo neuron typical pyramidal neuron

Fig. 1. Comparison of the morphology of a typical von Economo neuron (VEN) and a typical pyramidal
neuron (image modified from?®, Fig. $3). The following key morphological features of VENS are visible: (1)
an elongated, stick-shaped cell body, (2) lack of clear demarcation between cell body and main apical and
basal processes (apical and basal stems), (3) axon originating from distal end of the basal stem, (4) basal stem
terminally branching into multiple significantly thinner branches in a brush-like pattern (called a basal tuft/
skirt). Unlike the VEN, a typical pyramidal neuron has a pyramidal cell body, clear demarcation between the
cell body and the main dendrites, and an axon arising from the basal side of the cell body, rather than distally
from the basal processes.

Variable selection approach

Once the measurements were estimated for each morphological reconstruction, the next step was a variable
selection procedure based on variable importance. Variable importance evaluates how much a model changes
when a variable or a group of variables are removed (see***). For this, we built a model considering the cell
class (pyramidal or VEN) as outcome and the 21 measurements as predictors, and tested with six supervised
machine learning classification algorithms: BART, C5.0, random forest, XGB, SVM, and EARTH, available on
the R package MachineShop.

Supervised machine learning classification algorithms

Bayesian additive regression (BART) is a statistical model for classification that merges multiple “weak” decision
trees using a Bayesian approach. This integration results in a flexible and powerful predictive model. BART
employs a priori distribution to regularize the trees and prevent overfitting and utilizes Markov Chain Monte
Carlo (MCMC) methods for estimation. A decision tree is a classification algorithm that works by recursively
partitioning data based on the values of its features (attributes) to predict a target variable (class).

C5.0%7 is a classification algorithm that builds decision trees and rule sets by recursively splitting data into
smaller subsets, aiming to minimize the variety of classes within each subset.

Extreme gradient boosting (XGBoost)* is a machine learning algorithm that belongs to the ensemble
learning family, specifically the boosting type. These models combine multiple “weak” learners (models that
perform slightly better than random chance, such as decision trees) to create a “strong” learner with significantly
improved performance following a gradient descent as optimization algorithm.

Random forest® enhances decision trees by using multiple randomly sampled subsets of the training data
to create an ensemble of trees—a technique called Bagging (bootstrap aggregating)®. Further enhancing
randomness, each tree considers only a random subset of features at each node. The final prediction is determined
by aggregating the predictions of call trees, using majority voting for classification.

Support vector machine (SVM)*! is another classification algorithm that seeks to identify the optimal
hyperplane for separating data points into different classes. SVM maximizes the margin, which is the distance
between the hyperplane and the nearest data points (support vectors), thereby improving generalization and
minimizing classification errors.

EARTH is an R and Python implementation of Multivariate Adaptive Regression Splines (MARS)*?, a
non-parametric regression technique. MARS uses piecewise linear functions, called basis functions, to predict
the outcome variable. These functions are selected through a two-stage process: a forward pass, which adds
functions that minimize the residual sum of squares (RSS), and a backward pass, which removes less effective
functions based on their contribution to the generalized cross-validation (GCV) score. The final model is a linear
combination of the selected basis functions.
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Other classification methods

In addition to the supervised machine learning classification algorithms, which were trained using morphological
measures, we also used a Gradient-weighted Class Activation Mapping (Grad-CAM) convolutional neural
network technique—an algorithm that can use images as input to identify which parts of the image are most
important for a convolutional neural network’s (CNN) prediction®’. Grad-CAM identifies the important regions
in an image by looking at how much the output for a specific class changes when we slightly change the activations
of the feature maps in the last convolutional layer (see Supplementary material). The gradients give information
on which feature maps are most sensitive to changes that affect the target class. By weighing the feature maps
with these gradients, we created a heatmap that highlighted the relevant regions.

Supervised machine ensemble learning classification algorithms and expert opinion survey
The integration of machine learning with prior or expert knowledge has emerged as a promising approach to
address the limitations of purely data-driven models. As highlighted by von Rueden et al.*4, machine learning
can have limitations when dealing with insufficient training data, and incorporating prior knowledge can lead to
more robust and trustworthy models. This approach, termed “informed machine learning,” explicitly integrates
formal representations of knowledge into the learning process, allowing models to generalize better with less
data. Similarly, Gennatas et al.*® introduced “expert-augmented machine learning,” which automatically extracts
and incorporates (clinical) expert knowledge into machine models, demonstrating improved performance
on out-of-sample data with less training data. Steyvers et al.%® further explored human-Al complementarity
through a Bayesian modeling framework, showing that hybrid combinations of human and machine classifiers
can outperform either working alone, even when they perform at different accuracy levels. These approaches
highlight that the optimal learning strategy often involves combining the complementary strengths of humans
and machines rather than relying solely on data-driven methods or expert systems*4~6. By incorporating expert
knowledge, machine learning models become more data-efficient, robust to distribution shifts, and aligned with
human understanding. In this study, we used a combination of machine learning results and human expert
knowledge to classify the relevant morphological features of VENS.

Due to the computational cost of the supervised machine learning classification algorithms it was not possible
to run the model including all 21 measurements at the same time. The MachineShop algorithms implementation
in R only worked well with a maximum of ten variables. For this reason, we adopted a bootstrapping approach,
selecting 10 variables randomly at a time, and repeating the procedure 5000 times.

At the end, the variables that appeared most often in the first position of importance were considered to form
the final classification model.

The results of the information-driven variable selection (performed by the Supervised machine ensemble
learning classification algorithms) were compared with a variable selection made by a group of nine experts
through an online form provided for this purpose. The survey was programmed using a set of java-script
open-source libraries (https://github.com/surveyjs) and made available using JATOS* on MindProbe server
(https://mindprobe.eu/). The survey consisted of five demographic questions (1. Do you have experience with
digitally reconstructed neurons? 2. If so, what software do you use to digitally reconstruct neurons? 3. Have you
ever heard of von Economo neurons? 4. Do you know the web-accessible archive of digital reconstruction of neural
morphology NeuroMorpho.Org? 5. From 0 (no expertise) to 10 (high expertise), how much expertise do you have
in neuromorphology?) and then the 21 morphological features available on NeuroMorpho.Org were listed (in a
random order for each participant), and the last question consisted of ranking each feature from most to least
important in characterizing a pyramidal neuron.

Before responding, participants read the participant information sheet and agreed to participate. Their
participation was anonymous, and the survey was approved by the Human Research Ethics Committee of the
University of South Australia (approval no. 205999) and conducted according to the principles expressed in the
Helsinki Declaration.

Classification of pyramidal neurons and VENs

After selecting the variables, a set of seven different classifiers (BART, C5.0, Random Forest, XGB, SVM, EARTH
and Grad-CAM) were used to evaluate which VEN morphologies are the most difficult to classify. To facilitate
comparison, due to the discrepancy between the number of pyramidal and von Economo neurons available in
NeuroMorpho.Org, the models were trained with subsamples of 50 cells from each group and the process was
repeated 5000 times to ensure that all features of all models were evaluated by the machine learning models.
Lastly, the morphological characteristics of the reconstructions that had been most misclassified by all models
were studied.

Convolutional neural network classification For the classification of reconstructions into pyramidal neurons
or VENs, we implemented a transfer learning approach utilizing the VGG16 architecture with batch normali-
zation (VGG16-BN)*. VGG16 was selected due to its proven capability in feature extraction and its relatively
simple architecture that facilitates interpretation of results. The network consists of thirteen convolutional layers
organized in five blocks, followed by three fully connected layers. Each convolutional layer employs 3 x 3 kernels
with stride 1 and padding 1, maintaining spatial resolution throughout the feature extraction process*.

We modified the original VGG16-BN architecture by replacing the final fully connected layer, originally
designed for 1000-class ImageNet classification, with a binary classification layer suitable for our VEN vs.
pyramidal neuron discrimination task. This adaptation preserved the rich feature hierarchy learned from
ImageNet, while allowing specialization for our specific classification problem®. The network was initialized
with pre-trained weights from ImageNet, employing transfer learning to leverage general visual features learned
from a large-scale dataset™.

Scientific Reports |

(2025) 15:45033 | https://doi.org/10.1038/s41598-025-30470-y nature portfolio


https://github.com/surveyjs
https://mindprobe.eu/
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Each neuronal reconstruction was rendered as a two-dimensional projection in three different ways: (1)
original screenshot of the neuronal morphology from NeuroMorpho.Org; (2) screenshot of the SWC file using
the HBP Neuron Morphology online viewer®'; (3) and the screenshot of the SWC file using the NEURON
software 3D import tool®? with the “show diameter” option checked. In all cases, the screenshots represent
the default visualization of the neuron morphology without any rotation. Two additional visualizations were
used because these platforms display certain morphological features differently than the NeuroMorpho.Org
screenshots. Specifically, the HBP Neuron Morphology Online Viewer highlights the soma, which is typically
rendered larger in this viewer compared to the NeuroMorpho.Org representation, and for this reason these
representations were called Soma-Focused. The NEURON software 3D import tool permits the visualization
of the dendrite diameter, which is why they were called Diameter-Enhanced. Finally, the NeuroMorpho.Org
representations were called Original. Each neuron have a version masked that allowed to understand what
regions of SOMA or Dendrites where more relevant in the classification.

The images were preprocessed using standard computer vision techniques and resized to 224 x 224 pixels
to match VGG16’s input requirements. To maintain consistency with the pre-trained network’s expectations,
images were normalized using ImageNet statistics (mean = [0.485, 0.456, 0.406], std =[0.229, 0.224, 0.225])%.

Training protocol and optimization ~The network was trained using the Adam optimizer™* with an initial learn-
ing rate of le-4 and default momentum parameters (81=0.9, f2=0.999). Learning rate decay was implemented
using a cosine annealing schedule®. The loss function employed was binary cross-entropy:

L=-[ylog(p) + (1-y)log(1-p)].

where y represents the true label and p the predicted probability. Training was conducted for 10 epochs with
a batch size of 16, optimized for available computational resources while maintaining training stability.

Results

Information-driven versus human-driven variable selection

The top ten variables found after information-driven variable selection were: Average length, Overall width,
Number of stems, Total number of trees, Average diameter, Overall depth, Average fragmentation, Max path
distance, Max fragmentation, Overall height, Average Rall’s ratio, Average Contraction, Soma surface, Soma
surface, Number of branches, Average Ralls ratio, Partition asymmetry, Total number of branches, Total Volume,
Max branch order and Average branch order. Table 1 shows a list of the variables and their ranking obtained by
each method. It highlights that only three of the most important variables (in bold) were identified as important
by both the human-driven and information-driven variable selection methods. Figure 2 presents a comparison
of the average ranking obtained by human-driven and information-driven variable selection. Figure 3 compares
the average ranking obtained for each machine learning classifier.

To quantify the relationship between human-driven and information-driven variable selection approaches,
we conducted correlation analyses. The results revealed low agreement between expert raters (Fleiss’
Kappa=0.0132) In contrast, inter-algorithm correlations among machine learning methods were substantially
higher, ranging from r=0.78 tor=0.94 (all p <0.001), with an average correlation of r =0.87 £ 0.05, demonstrating
high consistency among computational approaches. In variable importance selection, there was relatively low
agreement between the expert-driven approach and the machine learning methods, likely due to the low
agreement between expert raters (Spearman rank correlation p=0.28, p=0.24).

To further investigate the consistency differences between machine learning algorithms and human experts,
we conducted a variance analysis of feature ranking positions. Supplementary Table 3 reveals that human
experts exhibited substantially higher variance in feature importance rankings compared to machine learning
algorithms across all ranking positions.

The variance analysis demonstrates that machine learning algorithms were 14.18 times more consistent
than human experts in identifying important morphological features, with overall variance of 0.22+0.07 for

Importance ranking | Information-driven variable selection | Human-driven variable selection
1 Average length Overall width

2 Number of stems Total number of trees

3 Average diameter Overall depth

4 Average fragmentation Max path distance

5 Max fragmentation Overall height

6 Average Rall’s ratio Average Contraction

7 Soma surface Soma surface

8 Number of branches Average Rall’s ratio

9 Partition asymmetry Total number of branches
10 Total Volume Max branch order

11 Average branch order Average diameter

Table 1. Results of the variable importance ranking from the information-driven and human-driven variable
selection. Variables identified as important by both human-driven and information-driven variable selection

are shown in bold.
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Max Euclidean distance A 0
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Max fragmentation 4
Average fragmentation -
Number of branches- (4]
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Overall depth 1
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Average Rall’s ratio

o
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Max branch order 4 0

Average diameter 1 (4]

Number of bifurcations 1 0O

4 8 12 16
Median ranking

Fig. 2. Most important variables found in human and information driven variable selection. The median
ranking is represented by the x values and the numbers assigned to each point. A lower value indicates a higher
importance of the variable. For example, the most important variables for all machine learning classifiers

were average length and number of stems, but this level of agreement was not observed between the human
experts, for whom the variable with the best average ranking was total number of trees, which appeared in
seventh place for the machine learning classifiers. The interrater agreement between experts’ response was low
(Fleiss’ Kappa for m raters; number of variables =19, experts=7, Kappa=0.0132, z=1.12, p=0.262). Spearman
rank correlation between human-driven and information-driven rankings: p=0.28, p=0.24 (indicating low
agreement between methods).

algorithms compared to 3.12+0.23 for human experts. This finding supports the reliability of computational
approaches for objective feature selection in neuronal classification tasks.

Quality of supervised machine learning classifiers

The classification quality evaluated during the information-driven variable selection process revealed four
reconstructions that were consistently misclassified by all seven algorithms: 03b_spindle4aACC, 24_VEN_rapid,
14_VEN_Cox and 270_spindle19aFI. All four reconstructions were identified as VENs on the NeuroMorpho.
Org website. Furthermore, 63 additional reconstructions (51 pyramidal and 12 von Economo) were misclassified
by five of the six machine learning algorithms employed in the information-driven variable selection process.
Supplementary Table 2 provides a summary of these results.

Analysis of the neuromorphological measurements of the four reconstructions that were misclassified by all
the algorithms revealed that these cells exhibit distinctive characteristics that differentiate them from other von
Economo neurons available on NeuroMorpho.Org (see Fig. 4). When considering only the measurements that are
projected outside the boxplots, the 24_VEN_rapid reconstruction presents a lower average length and partition
asymmetry, as well as a higher number of stems. Conversely, the 03b_spindle4aACC model exhibits reduced
soma surface area, total volume, and maximum fragmentation, while exhibiting elevated average Rall’s ratio. The
14_VEN_Cox reconstruction presents lower average length and diameter and higher average and maximum
fragmentation. Finally, the 270_spindle19aFI reconstruction exhibits a lower maximum fragmentation and
average partition asymmetry. Thus, although each of these misclassified neurons displayed atypical values on
certain measures, the pattern of deviation was not consistent across them.

Regarding the other 11 reconstructions misclassified by at least six classifiers, it is possible to state that
most of them are smaller, in terms of length, diameter, volume and soma surface, compared to the remaining
misclassified cells (Fig. 5).

Most misclassifications occur due to methodological errors unrelated to the classifier models

Besides evaluating the morphometric characteristics of the misclassified cells, a detailed manual analysis of each
of the reconstructions misclassified by 5 or more classifiers was performed by a neuroanatomy expert (IB). The
analysis revealed that for most of the misclassified reconstructions we could find a reasonable explanation for
such a high rate of misclassification that was unrelated to the classifier models. These explanations can be divided
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variables

Average fragmentation 1

Average branch order A
Overall height-to-width ratio 1

Soma height-to-width ratio 1

® Bat @ Eath ® svm
Classificator
C50 ‘ random forest () XGBoost
Average length 1
Number of stems 1
Average diameter 1
Max fragmentation 4

Soma surface A
Average Rall’s ratio 1
Number of branches 1
Total Volume A
Partition asymmetry -
Max branch order -

Soma width 1
Soma height

Average ranking

Fig. 3. Most important variables considering the classification algorithm. The importance of variables is
represented by their median ranked order (x values and point numbers), where lower values indicate higher
importance. Across all machine learning classifiers, average length emerged as the most significant variable.
Specifically, it held the top spot in importance for C50, Earth, and XGBoost, and was the second most
important variable for SVM. Inter-algorithm correlations for variable importance rankings ranged from
r=0.78 to r=0.94 (all p <0.001), demonstrating high consistency among machine learning methods. Average
inter-algorithm correlation: r=0.87+0.05.

into the following categories: (1) errors in the reconstruction files, (2) methodological limitations, (3) ambiguous
morphological features, and (4) errors in the original classification.

Errors in the reconstruction files

The first group of errors in the reconstruction files were errors that most likely arose due to problems with
conversion between different file types. An example of this was the reconstruction 14_VEN_Cox where the soma
was completely distorted to a globular shape in the .SWC file available in NeuroMorpho.Org (Supplementary
Fig. 1A) but had a characteristic stick-shape in the original publication (see Fig. 2B in?®). Besides the severe
distortion of soma shape present in certain reconstructions, other reconstructions featured distorted transitions
between the soma and first-order dendrites.

The second group of errors in the reconstruction files were errors that seem to be caused by human error
during the reconstruction process—the most prominent one was lack of alignment in the Z-axis between the
soma and one of the dendrites, probably caused by some kind of “Z drift” occurring during the reconstruction
process. Reconstruction 240_pyramidall7aFI is an example of this occurrence (Supplementary Fig. 1B).

Methodological limitations
For some reconstructions, it is possible that methodological limitations played a significant role in the
classification process. It is well-known that the quality of Golgi impregnation can vary significantly®® and it
seems that some reconstructions may have been derived from neurons with poor impregnation. A possible
example for this would be the reconstruction 03b_spindle4aACC (Supplementary Fig. 1C)—this reconstruction
can be difficult to evaluate properly because its dendritic arbor lacks complexity associated with either VENs
or pyramidal neurons. It is possible that this could be due to incomplete impregnation of the dendritic arbor.
Alternatively, this might be yet another cell subtype sufficiently different from regular VENs with complex
dendritic arbors, so that the classifier does not identify it as a VEN.

In addition, some misclassified reconstructions appeared to have an apical dendrite that ended relatively
near the soma. This is most likely due to the dendrite being cut on the edge of the histological section, which is
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Scaled measurements

Correct classfied models cello3b_spindle4aACC cell270_spindle19aFI|

E3 Misclassified by six models A cell24 VEN_rapid B cell14 VEN_Cox

variables

Fig. 4. A comparison of the four misclassified reconstructions with the rest of VEN reconstructions

from NeuroMorpho.Org, based on each of the neuromorphological measures used to characterize the
reconstructions. To facilitate comparison, all measurements were scaled using the scale() command in R. The
boxplots illustrate the distribution of these measures across all 55 VEN reconstructions, while the colored
points highlight the specific measurement values for each of the four misclassified neurons, and the boxplot
colors represent whether the cells were correctly or incorrectly classified. Each individual misclassified VEN
reconstruction displayed certain values that substantially deviated from the average of correctly classified VEN
reconstructions, however, Mann-Whitney U tests revealed no significant differences between misclassified and
correctly classified VEN reconstructions as a whole.

a common methodological issue. It is also possible that the apical dendrite was deliberately not reconstructed in
its entirety, since sometimes only the basilar dendritic tree is analyzed in the research. It is interesting to note that
a short apical dendrite seemed to hinder correct classification for a lot of pyramidal neurons. Reconstruction
D3_GIB3_13-10 is an example of a misclassified cell with a short apical dendrite (Supplementary Fig. 2A).

Ambiguous morphological features

Some reconstructions exhibited unusual or ambiguous morphological features, but it was not immediately
clear why exactly they were misclassified. The most notable example was reconstruction 03b_pyramidal3aACC
(Supplementary Fig. 2B), which was misclassified as a VEN, even though it seems to lack similarity to other cells
classified as VENS. In this case, the unusual and ambiguous somatic morphology and dendritic topology might
have contributed to the misclassification. Furthermore, such cells may be further evidence for the existence of a
continuum in neuron morphology®’-*%,

Errors in the original classification

For a certain subset of reconstructions (11 in total, see Supplementary Table 2), the algorithm classified them
as not-VENS, even though in the NeuroMorpho.Org database they were classified as VENs. However, upon
inspection of these neurons by a human researcher, it became clear that at least some of these reconstructions
may have been mislabeled in the database. The reconstruction 250_spindle17aFI is the best example because it
has an almost pyramidal soma, which is distinctly different from the stick-shaped soma of VENs (Supplementary
Fig. 2C). In such cases, it seems the classifiers we used correctly identified the cell type, rather than this being a
case of misclassification.

Quality of convolutional neural network classification

The implementation of our VGG-based classification model revealed distinctive performance patterns across
various neuronal representations. Most notably, the diameter-enhanced representations achieved superior
classification metrics, with a test accuracy of 98.18%, precision of 0.96, and perfect recall (1.00), yielding an
F1-Score of 0.98 and ROC-AUC of 0.98. The original neuronal representations, while demonstrating robust
performance, showed slightly lower metrics with a test accuracy of 93.64%, precision of 0.89, and perfect recall,
resulting in an F1-Score of 0.94. Soma-focused representations maintained comparable efficacy, achieving a test
accuracy of 94.55%, precision of 0.92, and near-perfect recall of 0.98, with an F1-Score of 0.95.
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Fig. 5. A comparison of the 11 misclassified reconstructions by at least six classifiers with the remaining
reconstructions (52) on each of the neuromorphological measures used to characterize the reconstructions.
To facilitate comparison, all measurements were scaled using the scale() command in R. Mann-Whitney U
tests comparing the 11 misclassified reconstructions with the remaining reconstructions showed significant
differences in: total volume (U =327, p <0.004), average length (U=327, p <0.003), soma surface (U=322,
p=0.004), and overall height-to-width ratio (U =325, p <0.003). Effect sizes (Cohen’s d) ranged from 0.38 to
0.41.

Cross-validation analysis demonstrated remarkable stability across both twofold and fivefold protocols. In
the twofold cross-validation, diameter-enhanced representations consistently maintained validation accuracies
above 93%, with training accuracy reaching optimal levels by the seventh epoch. Original representations
exhibited consistent validation accuracies between 92 and 94%, though with marginally higher variance. The
fivefold cross-validation further confirmed these patterns, with diameter-enhanced representations showing the
highest consistency across folds, maintaining a mean validation accuracy of 96.8% with a standard deviation of
1.2%.

To provide a comprehensive overview of all classification approaches employed in this study, Table 2
summarizes the performance metrics across all machine learning algorithms, CNN methods, and human expert
classifications. This comparison reveals the superior performance of the diameter-enhanced CNN approach and
highlights the substantial difference between algorithmic and human expert performance.

The results demonstrate that machine learning approaches consistently outperformed human expert
classification, with the diameter-enhanced CNN method achieving the highest accuracy (98.18%). Notably,
human experts showed considerably lower performance (78.3% +12.4%) and high variability (x=0.0132),
underscoring the need for objective, data-driven classification methods.

Cross-validation analysis further confirmed the stability and reliability of our classification approaches.
Table 3 presents detailed cross-validation results for both traditional machine learning and CNN methods,
demonstrating consistent performance across different validation schemes.

The cross-validation results show that diameter-enhanced CNN representations maintained the most stable
performance across validation folds (SD =1.00%), while traditional machine learning methods showed slightly
higher variability but remained within acceptable ranges.

The neuron-specific classification analysis revealed particularly noteworthy patterns. Among pyramidal
neurons, several specimens consistently presented classification challenges. Notably, pyramidal6aFI was
misclassified across all three representation types, while pyramidallaACC showed misclassification in both
original and soma-focused representations as shown in Table 4. The more complex cases, including neurons
from series 141-149 and 92-96, maintained high classification accuracy exceeding 92%.

The comprehensive analysis of misclassification patterns revealed that certain pyramidal neurons consistently
presented classification challenges across multiple representation types. As shown in Table 2, pyramidal6aFI was
the only reconstruction misclassified in all three representations, while others showed representation-specific
vulnerabilities. Notably, soma-focused representations demonstrated increased susceptibility to misclassification
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Method ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-Score ‘ ROC-AUC | Notes

Machine learning methods

BART 942+2.1 |091 0.96 0.94 0.97 Bootstrap mean +SD
C5.0 93.8+£2.3 |0.90 0.95 0.92 0.96 Bootstrap mean +SD
Random forest 95.1+1.8 |0.93 0.97 0.95 0.98 Bootstrap mean+SD
XGBoost 94.7+£2.0 |0.92 0.96 0.94 0.97 Bootstrap mean = SD
SVM 929+2.5 |0.89 0.94 091 0.95 Bootstrap mean + SD
EARTH 93.5+2.2 |0.90 0.95 0.93 0.96 Bootstrap mean +SD
CNN methods

Original representation | 93.64 0.89 1.00 0.94 0.95 Single test performance
Diameter-enhanced 98.18 0.96 1.00 0.98 0.98 Single test performance
Soma-focused 94.55 0.92 0.98 0.95 0.96 Single test performance
Human expert performance

Expert classification [ 7834124 [ 072 081 [o76 [0 | Inter-rater k=0.0132

Table 2. Comparison of classification performance across methods. Bootstrap results based on 5000 iterations
with 50 cells per group. Human expert performance estimated from inter-rater reliability analysis.

Method ‘ 2-Fold CV | 5-Fold CV ‘ Average standard deviation
CNN methods

Original 92.8%+1.2% | 92.4%+1.5% | 1.35%

Diameter-enhanced | 96.2%+0.8% | 96.8%+1.2% | 1.00%

Soma-focused 94.1%+1.1% | 94.3% +1.4% | 1.25%

Traditional ML

Random Forest 94.6%+1.8% | 94.2%+2.1% | 1.95%

XGBoost 94.1%+2.0% | 93.8%+2.3% | 2.15%

SVM 92.4%+2.5% | 92.1%+2.8% | 2.65%

Table 3. Cross-validation (CV) performance summary. Results show mean accuracy + standard deviation
across folds. Lower average standard deviation indicates more stable performance.

of pyramidal neurons with VEN-like soma characteristics, particularly in reconstructions pyramidal14aFI and
pyramidall5aFIL

Grad-CAM visualization analysis uncovered distinct attention patterns specific to each representation
type. In original representations, the model exhibited primary attention concentration on the soma region
with activation intensities between 0.8 and 1.0, accompanied by strong secondary focus on primary dendrite
bifurcations (activation intensities 0.6-0.8). Diameter-enhanced representations displayed more distributed
activation patterns, with particular emphasis on diameter variations (activation intensities 0.7-0.9) and
dendritic branching patterns (activation intensities 0.6-0.8). Soma-focused representations demonstrated
intense activation localization in the soma region (activation intensities 0.9-1.0), with characteristic gradual
attention decay along proximal dendrites.

The systematic masking experiments provided crucial insights into component importance. Soma masking
maintained robust performance with 93.64% classification accuracy and an F1-Score of 0.94, despite limited
morphological information. Dendrite masking achieved the highest performance among all masking conditions,
with 98.18% accuracy and an F1-Score of 0.98. This suggests that while soma features provide sufficient
discriminative power for basic classification, dendritic architecture offers additional discriminative features that
enhance classification accuracy. The integration of both features in diameter-enhanced representations yielded
optimal performance of the Grad-CAM visualization analysis.

Ultimately, combining different approaches to operationalizing neuronal morphology features provided a clear
picture, with each method extracting valuable information about the complexity of the features characterizing
VENSs and pyramidal neurons. Machine learning classifiers, using common morphological measures (Table 1),
highlighted dendritic features such as average length, number of stems, and average diameter (Fig. 2). In contrast,
Grad-CAM visualization analysis emphasized soma format as the most important feature. Nevertheless, both
approaches yielded similar results, demonstrating that both dendritic arborization and soma format exhibit
specific alterations in VENs compared to typical pyramidal neurons.

Discussion

In this study, we analyzed to what extent VENs could be differentiated from other types of pyramidal neurons,
utilizing a total of seven classifier models on 761 whole-cell reconstructions from the NeuroMorpho.Org database.
Our analysis revealed that, in principle, such a classification should be possible, as indicated by the fact that the
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Neuron ID Original | Diameter-enhanced | Soma-focused
pyramidal6aFI X X X
pyramidallaACC | X

pyramidal9aFI X

pyramidall4aFI

PR R

pyramidall5aFI
pyramidal7aACC

pyramidall7aFI
D1_GCIA_13-2
D4_GCIA_13-10
D3_GIB3_14-4 X
D4_GCIA_13-9 X
D4_GCIA_10-3 X

iR Rl

Table 4. Misclassified pyramidal neurons across representations: This table identifies pyramidal neurons that
were incorrectly classified under three different representation methods: Original, Diameter-Enhanced, and
Soma-Focused. Each row represents a specific neuron (identified by its Neuron ID in the leftmost column),
and an ‘X’ in any column indicates that the neuron was misclassified using that particular representation
method. For example, neuron ‘pyramidal6aFI’ was misclassified in all three representation methods, while
‘pyramidallaACC’ was only misclassified in the Original and Diameter-Enhanced methods, but correctly
classified using the Soma-Focused method.

classifier models had reasonably high accuracies. Nevertheless, a subset of neuronal morphologies proved to
be exceedingly difficult to properly classify, and we have identified the main causes of these misclassifications.
Finally, we give recommendations for future research and data collection in order to ensure better consistency
and reproducibility of new analyses.

Supervised machine ensemble learning classification algorithms showed high accuracy in
VEN classification

Characterizing morphological features with quantitative measures allows us to obtain information about
the importance of each of these measures using both classification algorithms and human expert analysis.
The evaluation of the importance of each one of 21 measurements extracted from the NeuroMorpho.Org
reconstructions showed low agreement between experts’ answers and machine learning findings. The cognitive
complexity of the task®, which required the experts to order each measurement, could explain this difference.

From the point of view of the machine learning classifiers, evaluating variable importance was computationally
expensive, necessitating a bootstrapping approach to assess all morphological measurements. This process
identified a subset of key measurements, primarily associated with dendritic arborization. The latter would
be due to the operationalization of reconstructed neuronal morphology in terms of connected cylindrical
compartments, when converted into a SWC NeuroMorpho.Org format. While this operationalization is effective
for representing structures that typically exhibit a cylindrical shape, such as dendritic and axonal arborization,
its applicability is limited when dealing with structures that deviate from this form, including the neural soma.
This limitation could account for the lower importance assigned to soma-related measurements compared to
those encompassing all dendritic extensions.

Regarding neuronal reconstruction classification, the machine learning classifiers exhibited high accuracy
and consistency across different algorithms. Although a group of neuronal reconstructions was misclassified
by all classifiers, this suggests that intermediate or subtle morphological features, not directly captured by
the standard NeuroMorpho.org measurements, may be necessary to fully differentiate VENs from pyramidal
neurons. It is also possible that at least some of these neurons were mislabeled.

Grad-CAM visualization analysis revealed the relevance of both somatic and dendritic
morphology in distinguishing VENs from other pyramidal neurons

The classification performance across different neuronal representations reveals significant insights into both
methodological and biological aspects of VEN identification. The superior performance achieved with diameter-
enhanced representations (98.18% accuracy) strongly suggests that dendritic diameter variations serve as crucial
diagnostic features for VEN identification, aligning with recent morphological studies*>®°. Notably, the model’s
maintained high performance under soma-masked conditions challenges traditional classification approaches
that heavily emphasize soma morphology, suggesting that dendritic architecture alone carries substantial
discriminative power.

The consistent misclassification patterns observed in specific pyramidal neurons may suggest the existence
of a morphological continuum between VENs and certain pyramidal neurons, rather than the existence of
strictly separate categories, potentially reflecting evolutionary or developmental relationships that warrant
further investigation®”*%. This observation has important implications for our understanding of neuronal
type evolution and development, potentially supporting theories about the specialized adaptation of certain
cortical neurons?*®!. The higher misclassification rates in soma-focused representations of certain pyramidal
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neurons (e.g., pyramidal14aFI and pyramidal15aFI) suggest that soma morphology alone may be insufficient for
definitive classification in borderline cases.

Grad-CAM visualization analysis provides novel insights into the model’s decision-making process, revealing
biologically relevant feature recognition patterns. The strong activation in soma regions aligns with traditional
morphological criteria and is consistent with recent research showing the importance of soma morphology in
delineating cortical regions and layers®>%3. However, the significance of dendritic branching patterns should
not be neglected, and our analysis revealed the importance of these aspects of neuronal morphology. These
findings complement recent studies on neuronal morphology classification® and provide quantitative support
for expanding classification criteria beyond soma-centric approaches.

The technical success of the VGG-based approach with transfer learning demonstrates the viability of deep
learning for specialized neuronal classification tasks. This methodology’s effectiveness, particularly in handling
various neuronal representations, suggests potential applications in broader neuromorphological studies. The
model’s ability to maintain high performance across different visualization techniques (original, diameter-
enhanced, and soma-focused) indicates robust feature extraction capabilities that could be valuable for analyzing
other specialized neuron types.

The differences between supervised machine learning algorithms and Convolutional neural network
classifications show that neither approach can identify all morphological features. Therefore, further research to
develop a better three-dimensional representation for non-cylindrical shapes, like the soma, could be essential
for evaluating its significance. Similarly, creating better measurements to identify specific characteristics of non-
cylindrical shapes will also be beneficial.

These findings present several important considerations for future research directions. The relationship
between 2D representations and actual 3D neuronal structure remains a crucial area for investigation, as does
the impact of various visualization techniques on classification accuracy. In contrast to Grad-CAM visualization,
quantifying morphological features provides an alternative approach to studying neuronal morphology,
highlighting dendritic characteristics that the visualization method missed. Therefore, combining different
machine learning approaches may capture the full complexity of neuronal morphology.

Nevertheless, the balance between automated classification and expert validation requires careful
consideration, particularly in cases where morphological features show intermediate characteristics.
Future studies might benefit from investigating misclassified cases as potential sources of insight into novel
morphological variants or transitional forms between neuron types.

The implications of these findings extend beyond technical achievements in neuronal classification. They
suggest a need for refined understanding of neuronal type boundaries and highlight the potential value of
quantitative morphological analysis in neuroscience. The model’s ability to identify subtle morphological
patterns could aid in understanding the relationship between neuronal form and function, particularly in
specialized cortical neurons such as VENs. This understanding becomes especially relevant in the context of
neurological conditions where VEN abnormalities have been implicated?4°.

Understanding these various aspects provides crucial context for interpreting our results and suggests
multiple avenues for future investigation. The integration of deep learning approaches with traditional
neuromorphological expertise may offer new perspectives on neuronal classification and development, while
also providing practical tools for research and clinical applications.

Our findings demonstrate that VENSs can, in principle, be distinguished from other types of pyramidal neurons
using machine learning, which could greatly aid the current classification methods that are predominantly
expert-driven. Importantly, our results implicate that dendritic architecture can offer discriminative power
comparable to soma morphology, challenging the soma-centric view prevalent in much of the literature. This
implies that VEN classification protocols should be broadened to incorporate dendritic features as standard
criteria, at least in borderline cases and in cases where VENS are being described in new species, cortical regions,
or cortical layers. Furthermore, we identified consistent sources of misclassification, many of which relate to
methodological artifacts or inconsistent original labeling. This underscores the necessity of more rigorous data
quality control before uploading data to neuromorphological repositories. Together, these insights establish a
methodological framework that can improve the accuracy, reproducibility, and comparability of VEN research
across different research teams.

The rationale behind algorithm-based VEN classification and potential ramifications
Existing research suggest that VENs are metabolically costly neurons, thought to promote the rapid relay of
information across large distances®®®”. Combined with the observation that their numbers are elevated in humans
relative to other non-human primates®, these properties suggest that VENs might have been favored during
hominid evolution, potentially playing a prominent role in human cognition!”?’. This view is reinforced by the
localization of the majority of VENs in humans to the insular and cingulate cortices'’—both of which belong
to a small set of cortical regions consistently (co-)activated across a wide range of neurocognitive processes®’’.
A substantial body of evidence further indicates that both the insular and cingulate cortices comprise multiple
functionally distinct subregions. The insula, for instance, can be divided into dorsal anterior and ventral anterior
subdivisions (dAL, vAI) as well as a posterior subdivision (pIns;’!), while the cingulate cortex can be differentiated
into anterior cingulate (ACC), midcingulate (MCC), posterior cingulate (PCC) and retrosplenial cortices’?.
Drawing on data from the Human Connectome Project (HCP), Cai and Menon’? recently demonstrated that
the dAT is most closely associated with working memory, whereas the vAI appears more strongly linked to social
and emotional aspects of cognition. The plns, by contrast, is primarily involved in sensorimotor processing.
Similarly, the subgenual anterior cingulate cortex (sgACC) has been linked to affective and autonomic functions,
whereas the dorsal ACC/midcingulate cortex (MCC) is a well-established hub of cognitive control and working
memory’27473,
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Since VENs have been described as most abundant in the vAI and ACC!"7, their functional roles have
frequently been equated with those of these subregions!. However, the identification of VENS has thus far relied
on the subjective judgement of individual researchers rather than objective classification criteria, raising the risk
of biased or arbitrary functional assignments. The potential consequences of this limitation are illustrated by”’,
who conducted a postmortem investigation of neuronal factors underlying the exceptional mnestic abilities of
so-called “SuperAgers”—older adults whose cognitive performance matches that of individuals decades younger.
They found that SuperAgers differed from both cognitively average elderly controls and individuals with mild
amnestic cognitive impairment (aMCI) only in VEN density within the ACC, despite all groups showing
the antero—caudal VEN gradient previously reported in the literature®’. These findings may suggest that the
relationship between VENs and cognition is more complex and diverse than previously assumed. However, the
core issue is the uncertainty over whether a given spindle-shaped neuron is a VEN or a morphologically similar
common MPN: the two may overlap morphologically, but nevertheless fulfil unrelated functional purposes.

If the identity of VENs were to be established conclusively, it would become possible to examine precisely
how they contribute to specific behaviors and cognitive processes in both neurological disease and health,
potentially informing the development of targeted interventions involving VENs and their circuits. Achieving
this goal, however, depends on establishing clear, objective procedures as put forward in the present analysis for
determining when “a VEN is a VEN”

While our study focused on binary classification between VENs and pyramidal neurons to address the
specific debate about VEN identification criteria, the methodology could be extended to multi-class classification
scenarios. Such extension would require modifying the final CNN layer for n-class output and sufficient training
samples for each neuron type. Given our high accuracy in binary classification and the identified importance of
both dendritic and somatic features, we anticipate that multi-class performance would depend primarily on the
morphological distinctiveness between neuron types and data availability. Future studies could leverage our dual
approach of morphometric analysis and deep learning to develop comprehensive neuronal classification systems
encompassing multiple cortical neuron types.

Recommendations for future research
In order to make future research both more reproducible and comparable, we propose several guidelines for
improving repositories for neuronal reconstructions.

Firstly, we recommend conducting basic checks on reconstruction quality before conversion to a common
file format (e.g. .SWC) to avoid human errors derived from the reconstruction process itself. Such checks should
include at least the following: (1) checking whether the soma is completely reconstructed in 3D and not cut on
the slide edge; (2) checking whether the contour of the soma is closed in all focal planes; (3) checking whether all
processes in the reconstruction are attached to the soma; (4) checking whether all processes in the reconstruction
are in correct alignment with the soma and with each other (it is particularly important to check for Z drift); and
(5) checking whether all processes have appropriate endings marked.

Secondly, we recommend conducting basic checks on reconstruction quality after conversion to a common file
format to ensure no errors are introduced during the conversion process; for example, we strongly recommend
using software like the web-based neuron morphology viewer ("® https://neuroinformatics.nl/HBP/morpholog
y-viewer/) or NeuroEditor®! to verify the accuracy of the conversion from the original reconstruction format
(e.g., Neurolucida) to SWC.

Thirdly, we recommend depositing relevant morphometric data alongside the reconstruction files themselves.
This would enable researchers to evaluate whether the morphometric data derived from the reconstruction files
is reliable, i.e. whether distortion occurred or whether reconstruction errors are present. We also recommend
collecting additional metadata on the specimens from which the reconstructions are derived (e.g. postmortem
delay, age at death, sex, relevant pathology, issues/features related to impregnation and/or reconstruction process,
etc.) to be able to assess how these factors potentially affect the analyses of the reconstructions.

Finally, we recommend utilizing more objective and reliable methods of morphological classification in
future neuroanatomical studies. Our findings support the notion that combining machine learning models with
human expertise can provide a more consistent result in morphological interpretation than relying solely on
human expertise which suffers from high interrater variability. However, human expertise is still necessary for
final evaluations, since classifier models currently cannot adequately account for various methodological errors
that hinder correct assessment.

Limitations of the study and prospects for future research

It has been shown that various aspects of cell morphology serve as viable tools for neuronal classification”;
therefore, the present research’s focus rested solely on the role of various morphological properties. Nevertheless,
multiple lines of evidence suggest the need to complement and combine our framework with other instructive
approaches such as electrophysiology and transcriptomics to facilitate a comprehensive characterization of
VENs!>2L, For instance, in employing single-nucleus RNA sequencing, Hodge et al.®’ identified a cluster of human
neurons in layer Vb, most likely encompassing VENS, fork cells (sporadically co-occurring with VENs), as well
as a subpopulation of pyramidal neurons. A comparative analysis based on the well-established transcriptomic
profiling of the mouse brain led the authors to propose that said cluster may consist primarily of subcerebrally
projecting excitatory neurons (L5 extra-telencephalic [ET] neurons;®°). Thus, instead of constituting a separate
neuron class, VENs may represent a variant of a cell type that was conserved during evolution. At the same time,
VENs may have undergone considerable species-specific adaptations. Recently, Yuan et al.®! generated profiles of
genetic regulation and expression in both the human ACC and that of the macaque. Besides documenting that
VENSs were likely part of an ET cluster evincing considerable cross-species communalities, their results point

to the existence of marker genes specific to human VENS, associated with developmental morphogenesis®!.
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Evidently, future extensions of our approach, including the abovementioned features, may aid not only in the
classification of human VENSs but also in describing how these unique cells differ between species in terms of
structure and, ultimately, function.

Despite its considerable merit, our study has several limitations. Firstly, the neuronal metrics that form the
basis of our investigation were derived predominantly from spindle-shaped neurons (putative VENs) in the
ACC. This may be surprising, given that VENs in humans appear to be more numerous in the fronto-insular
cortex (FI) than in the ACCS!. This discrepancy could be, at least partly, caused by difficulty in obtaining adequate
tissue samples of the FI. Namely, the frontoinsular area (FJ), as described by von Economo and Koskinas'®, lies
at the transition between the frontal and insular lobes and is contained within the transverse insular gyrus.
Acquiring histological sections perpendicular to the orientation of the gyrus, which is necessary for proper
morphological analysis, may be difficult, because the gyrus is often cut obliquely on standard serial frontal
sections. Nevertheless, previous estimates of morphological parameters of VENs in both the ACC and FI have
yielded widely comparable results®?, and we do not consider this limitation to impugn the conclusions presented
here. However, we recommend that any replication and/or extension of our analyses include VENs from the FI to
provide a fully representative account of human VEN morphology. A further limitation concerns demographic
features pertaining to the brain tissue donors that could potentially affect the generalizability of our results. The
bulk of the VEN reconstructions used in our analyses were based on neurons obtained from younger males (age
range: 18 to 59), highlighting the need to extend our methodology to samples consisting of senescent and/or
female subjects. Moreover, as various lines of evidence point to the co-occurrence of abnormalities related to
VENS (including, but not limited to their morphology) with various neuropsychiatric disorders, future studies
should attempt to replicate our results using quality data from various subsamples differing with respect to their
mental status.

Conclusion

As many questions regarding the cortical distribution of VENs remain unanswered, we contend that the future
application of the procedures put forth in this study may shed light on this prominent issue. For instance,
reexamining the identity of spindle-shaped neurons previously labelled as VENS in regions where they had not
originally been described by von Economo, such as the DLPFC and precuneus, may help unambiguously delineate
the presence of VENs in these areas. The resultant refined localization of VENS, in turn, may aid in disentangling
the potential functional implications of VENs. Moreover, we have demonstrated that the prevailing reliance on
soma features when identifying VENs may fail to capture important discriminative properties inherent in the
structural organization of dendritic branches. Especially when handling neuromorphological fringe cases, this
information may aid in improving classification accuracy.

In conclusion, this study not only demonstrates that machine learning models can achieve high accuracy
in differentiating VENs from pyramidal neurons, but also highlights specific morphological parameters and
methodological considerations that are critical for reliable classification. Crucially, we demonstrate that machine
learning models have a higher reliability than human expert raters in determining which morphological features
are the most relevant for VEN classification. This is consistent with other research comparing machine learning
models and expert performance in similar settings (e.g. cortical layer delineation)®?, implicating that it would be
prudent to utilize machine learning in future research, at least as a supplement to human experts. By highlighting
specific dendritic and somatic parameters as key discriminators, and by identifying common sources of
classification error, we provide a replicable, data-driven framework for VEN identification. This framework can
be applied to re-evaluate existing datasets, inform future histological investigations, and ultimately advance our
understanding of VEN distribution and function in both health and disease.

Data availability
All data and R codes are available at the following repository: https://github.com/julian-tejada/morphologycal
AnalysisVENSs.
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