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Skin cancer is the abnormal growth of skin cells, most often developing on skin exposed to the sun. It 
is among the most fatal forms of cancer, making its early detection and therapy crucial. In addition to 
conventional techniques, deep learning methods are increasingly utilized for accurate identification 
and classification. This study proposes a convolutional neural network (CNN) model using transfer 
learning to detect and classify multiple types of skin cancer. This study focuses on evaluating the 
efficacy of transfer learning techniques in enhancing CNN performance for this critical task. A 
significant contribution of this study is the use of transfer learning to improve CNN performance in skin 
cancer detection and classification by leveraging pre-trained models, including ResNet50, Xception, 
MobileNet, EfficientNetB0, and DenseNet121. The integration of metadata demonstrated a significant 
improvement in accuracy compared to using images alone, enhancing the performance of most 
models. Further enhancement was achieved through ensemble techniques, specifically an adaptive 
weighted ensemble method, which dynamically assigns weights to individual models based on their 
performance, resulting in superior overall accuracy. SMOTE was used as an oversampling technique 
to address class imbalance. The proposed fusion of pre-trained models (ResNet50, Xception, and 
EfficientNetB0) combined with metadata achieved 93.2% accuracy, 93% precision, 93% recall, 93% F1 
score, and 97.3% AUC on the ISIC 2018 dataset. On the ISIC 2019 dataset, it achieved 91.1% accuracy, 
92% precision, 93% recall, 92% F1 score, and 95.5% AUC, surpassing many state-of-the-art methods. 
Experiments on an external dataset, Derm7pt, resulted in 82.5% accuracy, with a precision of 86%, 
recall of 83%, F1 score of 84% and AUC of 89.15%, demonstrating the improved interpretability and 
generalization of the proposed model. The proposed ensemble model optimizes deep learning for 
healthcare applications, enhancing dermatological diagnosis and treatment strategies for skin cancer 
patients.
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Cancer is the uncontrolled growth of abnormal cells in the body1. Among various forms of cancer, skin cancer 
has become one of the most rapidly spreading diseases worldwide. It arises when abnormal skin cells grow 
uncontrollably, leading to the condition known as skin cancer2. Early detection and accurate diagnosis are keys 
to successful cancer treatment.

Melanoma, the most common and deadly form of skin cancer in developed countries, is of particular 
concern. Other forms of skin cancer include squamous cell carcinoma3, basal cell carcinoma4, dermatofibroma5, 
Merkel cell carcinoma6, vascular lesions7, and benign keratosis8. Diagnostic imaging is vital for identifying 
abnormalities in various body parts, including the skin9, breast10, brain10, lung11, stomach cancers12 and colon 
cancer13. Early detection of skin cancer is crucial for better prognosis and reduced mortality rates. However, the 
reliability of tumor detection is often limited by insufficient sensitivity in traditional screening techniques, which 
are later confirmed by clinical specimens. In medical diagnostics, Artificial Intelligence (AI) is increasingly being 
employed by healthcare professionals to enhance and accelerate the diagnostic process. Convolutional Neural 
Network (CNN) architectures have shown considerable effectiveness in various medical diagnostic applications, 
including the detection of Parkinson’s disease through analysis of hand-drawn inputs14 and the classification 
of colon cancer using optimized MobileNetV2 models13. Despite some advancements, AI research in clinical 
diagnosis often lacks proper assessment and reporting of potential defects.
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Computer-Aided Diagnosis (CAD) has proven to be an efficient and cost-effective approach for diagnosing 
various medical conditions, including skin cancer. Imaging techniques such as Magnetic Resonance Imaging 
(MRI)5, Positron Emission Tomography (PET)6, and X-rays7 are commonly used to assess diseases affecting 
human organs. In the case of skin lesions, diagnostic methods like Computed Tomography (CT) and 
dermatoscopy image processing are commonly employed, although their accuracy tends to decrease among less 
experienced dermatologists10,11.

The process of analysing and diagnosing skin lesions is time-consuming, difficult to standardize, and prone 
to errors due to the complexity of lesion imaging. Image analysis requires precise identification of lesion pixels, 
making it a challenging task.

The exponential growth in computational power has driven major advancements in deep learning, 
particularly in computer vision. CNNs have revolutionized medical image analysis, making early detection of 
skin cancer more attainable. Dr. Lee15 highlighted the increasing prevalence of skin cancer, especially among 
younger women, noting its early onset as one of the primary concerns. Deep learning models have outperformed 
human experts in several computer vision tasks15,16, leading to earlier diagnoses and reduced mortality rates. By 
integrating optimized learning strategies into deep learning models, exceptional classification and processing 
accuracy can be achieved17,18.

Despite their significant advancements, one common criticism of deep learning models is their “black box” 
nature, where decision-making processes are not always transparent. Nonetheless, deep learning has emerged 
as a powerful tool capable of classifying skin lesions with accuracy comparable to or even surpassing human 
specialists. The potential for improving preventive screening measures through deep learning-based programs 
that automatically analyse clinical and dermoscopic images is considerable.

This study introduces notable advancements in skin cancer detection by leveraging transfer learning through 
a set of pre-trained models, including ResNet50, Xception, MobileNet, EfficientNetB0, and DenseNet121. The 
integration of metadata, such as patient attributes (e.g., age, anatomical site, lesion ID, sex, and malignancy status 
[malignant/benign]), significantly improves accuracy when combined with image-based models. Metadata 
provides valuable contextual information that enhances model interpretability and allows for more precise 
classification by linking lesion characteristics with demographic and anatomical patterns.

An innovative ensemble technique is employed to aggregate the predictions from the highest-performing 
models—ResNet50, Xception, and EfficientNetB0—using an adaptive weighted method. Unlike traditional 
ensembles that rely on fixed or manually assigned weights, our approach introduces a dynamic weighting 
mechanism where ensemble weights are learned automatically during training via a dedicated trainable layer. 
This enables the model to optimally balance the contributions of each classifier based on their reliability and 
performance, effectively combining the strengths of different architectures and improving both robustness and 
classification accuracy.

The ensemble framework is further enhanced through the integration of a multimodal approach, combining 
clinical images with patient metadata (e.g., age, anatomical site, lesion ID, sex, and malignancy status). 
Comparative analysis between image-only and multimodal models demonstrates the clear advantage of leveraging 
both data types, resulting in superior diagnostic performance. To address class imbalance, we employ SMOTE 
(Synthetic Minority Over-sampling Technique)19, ensuring adequate representation of underrepresented classes 
and contributing to a more balanced and effective training process.

Leveraging pre-trained models enables the network to benefit from knowledge acquired from large-scale 
datasets, thereby reducing both training time and computational cost. This transfer learning strategy, coupled 
with the adaptive ensemble mechanism, significantly enhances the model’s diagnostic capability.

The proposed method shows strong performance on both the ISIC 2019 and ISIC 2018 datasets, demonstrating 
its ability to generalize across different distributions and surpass existing benchmarks. By integrating metadata, 
oversampling techniques, and a learned ensemble strategy, our approach delivers a robust and interpretable 
model that supports automated dermatological diagnosis and assists clinical decision-making for early skin 
cancer detection.

The rest of this paper consists of four main sections. Section "Related Work" examines the related work. 
Section "Experimental evaluation" describes the proposed model used for skin cancer detection. Section 4 shows 
the applied experiments along with analysis on the results. Section 5 provides conclusion and future work.

Related work
In the previous 10 years, there has been an increase in skin cancer cases20. Given that the skin covers most of the 
body, it makes sense to think that dermatological cancer is the most frequent illness among humans. Successful 
treatment of dermatological cancer depends on early detection. Skin cancer signs can now be identified swiftly 
and simply utilizing computer-based methods. For evaluating skin cancer indicators, numerous non-invasive 
techniques have been suggested. Dermoscopy data was used to attempt to categorize benign and malignant 
skin lesions using digital image processing. Another popular method for diagnosis uses ABCD parameters of 
melanoma: Asymmetry—melanoma lesions generally have an asymmetrical form; Border—presence of irregular 
borders in melanoma lesions; Colour—melanoma lesions exhibit multiple colours; and Diameter—melanoma 
width is typically greater than 6 mm. The related work section in this study is structured into subsections based 
on the employed techniques, providing a clearer perspective on the different methodologies used for skin cancer 
detection.

Transfer learning techniques
Transfer learning was applied to a deep CNN in Liao’s21 attempt to create a categorization for all skin diseases. 
The weights of the deep CNN were then fine-tuned by extending the backpropagation process. Instead of 
training a CNN from scratch, Kawahara et al.'s study22 investigated the use of a pre-trained CNN as a feature 
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extractor for classifying non-dermoscopic skin images. It also examined how filters from a CNN trained on 
natural images could be repurposed to distinguish between ten different categories of non-dermoscopic skin 
images, demonstrating the model’s adaptability and effectiveness in feature representation.

The researchers reported new breakthrough performance in Codella et al.23, using ConvNets to extract 
picture characteristics using the Large-Scale Visual Recognition Challenge (ILSVRC) 2012 image dataset and a 
model that had previously been trained24. They also investigated the Deep Residual Network (DRN), which was 
the most recent network structure to triumph in the ImageNet recognition test25.

Sobia Bibi26 proposed a deep-learning architecture for classifying multiclass skin cancer and melanoma 
detection, consisting of four core steps: image pre-processing , feature extraction and fusion, feature selection, 
and classification. They introduced a novel contrast enhancement technique based on image luminance. Two 
pre-trained deep models, DarkNet-53 and DenseNet-201, were modified and trained through transfer learning. 
During learning, the Genetic Algorithm was used for hyperparameter selection. Features were fused using a two-
step serial-harmonic mean approach, followed by feature selection with Marine Predator Optimization (MPA) 
controlled Reyni Entropy. The final classification was performed using machine learning classifiers, achieving a 
maximum accuracy of 85.4% on the ISIC 2018 dataset.

Nugroho et al.27 addressed the issue of class imbalance in the ISIC-2019 dataset by applying an extensive 
pre-processing and augmentation strategy using pre-trained CNNs, including Inception-V3, DenseNet-201, 
and Xception. Their pre-processing pipeline involved duplicate removal, metadata cleaning, image resizing, 
and multiple augmentation transformations such as rotation, flipping, and brightness adjustment. Using the 
Adam optimizer with a learning rate of 0.01 and fivefold cross-validation, the augmented dataset significantly 
improved model accuracy, achieving 88.63% with Inception-V3. While the study effectively demonstrated the 
importance of data balancing and augmentation, it relied on a single dataset and did not incorporate fine-tuning 
or ensemble techniques, limiting its generalizability and innovation.

Subramanian et al.28 presented a federated learning framework for skin cancer classification that prioritizes 
data privacy while maintaining high diagnostic performance across distributed datasets. The study introduced a 
federated architecture integrating CNN and MobileNetV2 models trained locally on four clients, two using the 
ISIC 2018 dataset (seven classes) and two using the ISIC 2019 dataset (eight classes). Model parameters rather 
than raw data were shared with a central server, where they were aggregated using the Federated Averaging 
(FedAvg) algorithm to form a global model. The experiments compared conventional centralized training with 
federated learning across multiple settings. While standalone CNN and MobileNetV2 models achieved accuracies 
of 83% and 89% respectively on ISIC 2018, their generalization dropped when tested on ISIC 2019. In contrast, 
the federated CNN attained 82% and 76% accuracy on ISIC 2018 and 2019, respectively, while the federated 
MobileNetV2 improved further to 80% and 87%, demonstrating stronger cross-dataset adaptability. These 
findings confirm that federated learning enhances generalization and privacy preservation in dermatological 
image analysis, addressing challenges of data centralization, domain shift, and regulatory compliance. The study 
highlights federated learning’s potential for real-world deployment in clinical settings where sensitive medical 
data cannot be shared across institutions.

Metadata usage
Nils Gessert29 addressed the challenge of improving skin lesion classification by integrating patient metadata—
specifically age, sex, and anatomical site—with dermoscopic image data. His model architecture processed these 
two data types in parallel, using a convolutional neural network (CNN) branch for dermoscopic images and a 
separate dense layer for metadata. The image branch included an ensemble of pre-trained architectures such as 
EfficientNet variants, SENet154, and ResNeXt models, chosen for their high performance in image recognition 
tasks. The metadata branch contributed contextual clinical information that could assist in distinguishing 
between lesions with similar visual features. The model was evaluated using five-fold cross-validation on the ISIC 
2019 dataset and achieved a balanced accuracy of 74.2%. Incorporating metadata led to slight improvements in 
performance, particularly for smaller models, although the benefit was less pronounced when applied to the 
official test set. Overall, the study demonstrated that integrating patient metadata with image-based models can 
provide marginal gains in classification accuracy and improve robustness in some scenarios.

Qilin Sun30 used the ISIC 2019 dataset along with additional images and applied image pre-processing 
techniques like Shades of Gray colour constancy. Metadata was encoded using one-hot encoding for anatomical 
site and age, while sex was represented numerically. His model architecture was based on EfficientNet (B3 & 
B4), integrating a dense neural network for metadata fusion. To enhance performance, geometric and pixel-wise 
data augmentation was applied, and Test Time Augmentation (TTA) was used during inference. His model 
was trained for 60 epochs with SGD and OneCycle learning rate scheduling, utilizing weighted cross-entropy 
loss, which outperformed focal loss. His results showed 88.7% accuracy for a single model and 89.5% for an 
ensemble model on the ISIC 2018 test set, making it top-ranked on the ISIC leaderboard. Similarly, on ISIC 2019, 
his ensemble model achieved 66.2% accuracy. Additionally, Grad-CAM visualization helped highlight critical 
regions for diagnosis, assisting clinicians. His findings demonstrated that integrating patient metadata and TTA 
significantly improved classification accuracy while maintaining computational efficiency, making it practical 
for real-world use.

Yali Nie31 used clinical patient metadata, including age, sex, lesion location, and clinical history, to enhance 
skin cancer classification on the ISIC 2018 dataset. His research conducted six experiments with different 
model architectures, including CNN-based models, Vision Transformers (ViT), and hybrid CNN-ViT models. 
For image pre-processing , he applied extensive data augmentation techniques, including random flipping, 
rotation, brightness adjustment, and colour jittering, to improve model generalization and reduce overfitting. 
To address class imbalance, he employed the focal loss (FL) function, which significantly improved classification 
performance compared to standard cross-entropy loss. On the metadata pre-processing side, he handled missing 
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values in the clinical data, normalized numerical attributes like age, and balanced the metadata distribution 
to avoid model bias towards certain demographic groups. Unlike other research that combined image data 
and metadata for classification, his research concentrated solely on image-based deep learning techniques. His 
best-performing model, a hybrid CNN-ViT model with FL, achieved an accuracy of 89.48%, surpassing prior 
state-of-the-art methods. His evaluation metrics like AUC, F1 score, precision, and recall showed significant 
improvements, especially for underrepresented classes such as actinic keratosis (AKIEC) and vascular lesions 
(VASC). His research highlighted the importance of using advanced image-based deep learning techniques like 
hybrid CNN-ViT models while suggesting that integrating patient metadata could further improve classification 
performance and diagnostic accuracy in dermatology applications.

Wenjun Yin32 focused on improving skin tumor classification by integrating clinical patient metadata—such 
as age, sex, and medical history—with image data through a deep convolutional network. His research proposed 
a novel architecture that combined the MetaNet and MetaBlock modules with the well-established DenseNet-169 
network, known for its efficient feature propagation and reuse. By incorporating clinical metadata, his model 
enhanced its ability to make more informed decisions based on both visual patterns and patient-specific 
information. The MetaNet and MetaBlock modules effectively fused image and metadata features, enabling his 
network to learn from both the detailed visual characteristics of skin lesions and the contextual medical data, 
ultimately improving performance. Evaluated on the ISIC 2019 dataset, his proposed model achieved a balanced 
accuracy of 81.4%, demonstrating a significant improvement over previous method. This enhancement, ranging 
from 8% to 15.6% compared to earlier image-only classification models, highlighted the impact of integrating 
patient metadata. His research emphasized the importance of combining clinical patient data with deep learning 
models to enhance the precision of skin cancer diagnosis, showing that leveraging both clinical context and 
image data resulted in a more robust and reliable diagnostic tool for dermatological applications.

Ensemble techniques
Ensemble techniques in machine learning are used to combine multiple models, often previously trained 
models, to improve performance. This approach is frequently employed to provide more precise and dependable 
outcomes. It’s applied in various studies as:

Ahmet DEMR33 created a useful technique for early skin cancer diagnosis. His dataset included 2,437 
practice images. Challenges involved in classification were solved using a variety of deep learning systems. After 
data analysis, the response score for the Inception v3 design was 87.42%, while the response score for the ResNet 
101 design was 84.09%.

By using AI-augmented detection techniques, Subhranil Bagchi34 aimed to accomplish this goal at a lower cost 
and in less time than with traditional approaches. His research improved accuracy over individual classification 
models by using a two-level ensemble learning strategy (trained with weighted losses). By reducing overfitting 
caused by the dataset’s class imbalance, the ensemble approach achieved a Balanced Multi-class Accuracy (BMA) 
score of 59.1% without the need for unknown class identification. To detect the existence of photos belonging 
to novel classes during test time, the proposed CS-KSU module collection was appended to the method. For the 
unidentified class, the enhanced method achieved an Area Under the ROC Curve (AUC) score of 0.544.

Josef Steppan35 assessed the state-of-the-art in dermoscopic image classification using the most recent research 
and the ISIC 2019 Challenge for skin lesion classification. He applied various models using the transfer learning 
technique to classify eight classes of skin lesions. Input data was randomly altered based on predetermined 
criteria (translation, rotation, scaling, etc.) during training. Cutout was also applied for regularization. For 
training, a total of 32,748 images were available. To create training data, only images from SD-198 were utilized. 
The “UNK” class was introduced after eliminating image data from the eight classes in the training dataset for 
ISIC-2019. Various models were applied, such as EfficientNet-B5, SE-ResNeXt-101(32 × 4d), EfficientNet-B4, 
Inception-ResNet-v2, and NASNet-A-Large, which achieved accuracies of 60%, 58.2%, 57.7%, 56.9%, and 
50.4%, respectively. Then, he applied the ensemble technique (excluding NASNet) to these pre-trained models, 
achieving an accuracy of 63.4%.

Cauvery36 applied an online augmentation strategy to address the issue of unbalanced classes. His method’s 
need for an internet connection, increased processing cost, reliance on input data quality, and potential for 
overfitting outweighed its advantages, which included not directly increasing the number of training images. He 
aimed to develop a model to classify the eight classes of the ISIC 2019 challenge dataset and applied an ensemble 
technique integrating DenseNet-V2, Inception-V3, InceptionResNetV2, and Xception to effectively combine 
predictions generated by the sub-models. He used the Adam optimizer with an initial learning rate of 1e-3 and 
trained the model for 50 epochs (starting from the fourth epoch) with a batch size of 64. His ensemble achieved 
an accuracy of 82.1%.

Sekineh Asadi Amiri37 introduced an ensemble model that integrated Inception-ResNet v2 with a Soft-
Attention mechanism and an optimized EfficientNet-B4. His model achieved superior performance on the ISIC-
2017 and ISIC-2018 datasets. By employing soft voting, an accuracy of 88.21% was achieved on the ISIC-2018 
dataset, surpassing the results of individual models and previous state-of-the-art approaches. This improvement 
demonstrated the effectiveness of combining multiple architectures to leverage their complementary strengths. 
Various image augmentation techniques, such as rotation, zooming, shifting, and reflection, were applied. During 
pre-processing , nearest-neighbor interpolation resized images to 299 × 299 pixels for Inception-ResNet v2 and 
380 × 380 pixels for EfficientNet-B4. The Soft-Attention mechanism in Inception-ResNet v2 enhanced feature 
extraction by focusing on informative lesion regions while suppressing noise, whereas the additional dense layers 
in EfficientNet-B4 contributed to improved classification performance. Through this ensemble approach, both 
accuracy and model robustness were enhanced, highlighting its potential for real-world melanoma detection 
applications.
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S. Talayeh Tabibi38 proposed an ensemble classifier for skin lesion classification using multiple Convolutional 
Neural Networks (CNNs). Her research focused on increasing diversity at both the data and classifier levels to 
enhance model robustness and accuracy. To achieve this, bootstrapping was applied to generate varied training 
subsets, and Cohen’s Kappa score was used to eliminate highly correlated models, ensuring better ensemble 
diversity. The dataset used was ISIC 2018, containing over 13,000 dermoscopic images across seven classes. 
Different CNN architectures were experimented with, including ConvNext, SENet, DenseNet, and EfficientNet, 
selecting the best-performing models based on accuracy and diversity. The final ensemble classifier, utilizing a 
majority voting strategy, combined ConvNext-Tiny, EfficientNetB0, SENet, DenseNet, and ResNet50 to enhance 
classification performance. Additionally, various pre-processing techniques were applied, including data 
augmentation, normalization, and resizing images to 240 × 240 pixels. This comprehensive approach contributed 
to her model’s robustness, leading to a final accuracy of 90.15%, surpassing individual models and many existing 
methods in skin lesion classification.

In recent studies, H. Fırat39 proposed ensemble and attention-based deep learning frameworks have gained 
prominence for skin lesion classification. For instance, DXDSENet-CM (2024) introduced an ensemble model 
combining Xception, DenseNet201, and a Depthwise Squeeze-and-Excitation ConvMixer (DSENet-ConvMixer) 
to improve multi-class lesion detection. The proposed approach integrated the feature extraction capabilities of 
pre-trained convolutional backbones with depthwise attention mechanisms to enhance both global and local 
representation learning. The ensemble framework aggregated predictions from the three models, demonstrating 
improved robustness compared to individual architectures. Experiments conducted on the ISIC 2018 dataset 
showed that the ensemble significantly outperformed single networks, achieving an accuracy of 88.21%. These 
results highlight the effectiveness of leveraging complementary deep models and channel attention modules to 
improve classification generalization and stability across diverse dermoscopic image distributions.

Custom CNN model
Pandey et al.40 developed a deep learning framework for skin cancer classification using the ISIC-2019 dataset, 
combining Non-Local Means (NLM) denoising, Sparse Dictionary Learning, and a CNN model to enhance 
image quality and classification accuracy. The pre-processing involved resizing images to 100 × 100,100 \times 
100,100 × 100, applying NLM denoising, performing rotations and flips for data augmentation, and using class 
weighting to address class imbalance. Sparse Dictionary Learning (64 atoms, α = 1, 100 iterations) was applied to 
improve feature representation before CNN training. The CNN employed a bottleneck architecture with filters 
(128, 256, 512, 512, 256), ReLU and Softmax activations, and Adam optimization with batch normalization. 
The model achieved 81.23% accuracy on the ISIC-2019 dataset, demonstrating that combining denoising and 
sparse feature learning can effectively improve CNN performance. However, the study did not incorporate 
transfer learning, fine-tuning, or ensemble techniques, which could potentially enhance model generalization 
and further improve classification performance.

Summary
Comprehensive analysis of the related works highlighted the great impact of the use of augmentation and 
pre-processing techniques which increased the amount of training data. They increase the model’s ability to 
generalize, add variability to the data and minimize data overfitting, save on the cost of collecting and labelling 
additional data, and ultimately improve the accuracy of the deep learning model’s predictions.

While many studies have explored deep learning for skin cancer classification, several limitations persist. 
Most evaluate models only on benchmark datasets like ISIC 2018 and 2019, lacking external or cross-dataset 
validation, which raises concerns about generalizability to diverse clinical environments. Additionally, complex 
pre-processing pipelines and handcrafted features increase computational overhead, limiting real-time feasibility. 
Limited comparisons with standard end-to-end architectures and the absence of interpretability tools like Grad-
CAM further restrict clinical trust and adoption.

This work addresses these gaps by introducing an adaptive weighted ensemble technique that dynamically 
learns optimal model contributions, improving robustness and accuracy beyond fixed-weight methods. By 
integrating multimodal data—including clinical images and patient metadata such as age, anatomical site, 
sex, lesion features, and malignancy status—and employing SMOTE to balance underrepresented classes, our 
approach enhances diagnostic performance. Grad-CAM visualizations improve interpretability, supporting 
clinical relevance. Extensive external cross-dataset evaluations demonstrate strong generalizability and scalability 
for practical melanoma detection.

Proposed model
This study presents a robust model for skin cancer detection utilizing five pre-trained models— ResNet50, 
Xception, MobileNet, EfficientNetB0, and DenseNet121—through transfer learning. A key innovation of this 
approach is the integration of metadata, such as patient demographics and lesion characteristics, with high-
dimensional image features. This dual-input strategy was rigorously evaluated on two datasets, ISIC 2018 and 
ISIC 2019, yielding substantial improvements in model accuracy by incorporating contextual data alongside 
image-based features.

The metadata, comprising attributes like age, anatomical site, and sex, is seamlessly concatenated with the 
deep features extracted by the pre-trained models. This fusion enables the models to leverage both visual and 
contextual information, facilitating a more comprehensive understanding of the input data. Consequently, the 
model’s ability to discern subtle variations and patterns in skin lesions is significantly enhanced.

To further improve the classification performance, an ensemble technique is employed, utilizing the top-
performing models— ResNet50, Xception, and EfficientNetB0. This ensemble approach capitalizes on the 
strengths of each model, combining their outputs to reduce prediction variance, mitigate individual biases, and 
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increase diagnostic reliability. The choice of these three models is motivated by their complementary strengths: 
EfficientNetB0 offers scalable accuracy through compound scaling, Xception excels in capturing fine-grained 
details with depthwise separable convolutions, and ResNet50 leverages residual connections to enable deeper 
architectures and more hierarchical feature extraction. By integrating these models, the ensemble approach 
ensures a more stable and balanced decision-making process.

The selection of three models— ResNet50, Xception, and EfficientNetB0—is strategically made to 
balance diversity in learned features while maintaining high performance and computational efficiency. This 
configuration maximizes feature extraction capabilities and enables a well-rounded classification system that is 
robust across a variety of lesion types.

Additionally, the incorporation of structured metadata alongside image-derived deep features enriches the 
model’s contextual understanding, leading to superior classification performance. This integrated approach 
significantly enhances the system’s ability to capture complex patterns in skin lesions, outperforming traditional 
two-model ensembles in both accuracy and reliability. The datasets, pre-processing techniques, and the proposed 
model architecture are presented in the following subsections.

Datasets
The ISIC 201841 and ISIC 201942 datasets were selected for this study due to their comprehensiveness, high 
quality, and relevance to the task of skin cancer detection27,28,37–40. These datasets are part of the largest publicly 
available collections of annotated dermoscopic images, specifically curated for research in melanoma and skin 
lesion classification. The ISIC 2018 dataset includes a diverse range of lesion types and is benchmarked for 
tasks such as lesion segmentation and disease classification, providing a robust foundation for developing and 
evaluating deep learning models. The ISIC 2019 dataset, which expands upon this, offers an even larger and 
more varied collection of images across multiple classes, including rare skin cancer types, allowing for more 
granular model evaluation. Together, these datasets present real-world variability in skin lesions, ensuring 
that models trained on them are well-equipped to generalize and perform effectively in clinical settings. Their 
extensive use in the research community also facilitates direct comparison with existing methods, making them 
ideal for demonstrating the effectiveness of novel approaches. Particularly for the automatic identification and 
categorization of skin lesions, both datasets are critical to the advancement of dermatological machine learning 
algorithms.

ISIC 2018 dataset
The International Skin Imaging Collaboration (ISIC) 2018 Challenge Dataset41 stands as a pivotal resource in the 
realm of dermatology and medical image analysis. The ISIC 2018 was used as the source for both the training 
and testing datasets for this study. The ISIC 2018 challenge dataset comprises approximately 10,015 dermoscopic 
images. The training dataset comprises of 31.181 sample points, with a range of pixel counts for each image. 
Every sample point is categorized into one of the seven types of skin which are: Basal Cell Carcinoma (BCC), 
Benign Keratosis-Like Lesions (BKL), Melanocytic Nevi (NV), Dermatofibroma (DF), Melanoma (MEL), 
Vascular Lesion (VASC), Actinic Keratosis (AKIEC), each image is meticulously annotated with valuable 
metadata, offering a comprehensive context for research and analysis. Figure 1 displays a few of the example 
pictures. Additionally, Fig. 2 shows the distribution and often each of these seven kinds appeared in the training 
dataset (ISIC 2018 Dataset). The final dataset consists of 7 classes, of which samples are displayed in Fig. 1.

ISIC 2019 dataset
Similarly, the ISIC 2019 Challenge Dataset42 extends the legacy of its predecessor, building upon the success 
and impact of the ISIC initiative. This dataset continues to push the boundaries of dermatological research by 
providing an extensive collection of skin images with diverse lesions and conditions. The ISIC 2019 dataset, 
similar to its precursor, includes detailed annotations and clinical information for each image, enabling 
researchers to delve deeper into the complexities of skin pathology, and it’s composed of 25,331 dermoscopic 
images. It includes 8 types of skin cancer which are: Basal Cell Carcinoma (BCC), Benign Keratosis-Like Lesions 
(BKL), Melanocytic Nevi (NV), Dermatofibroma (DF), Melanoma (MEL), Vascular Lesion (VASC), Actinic 
Keratosis (AKIEC), and squamous cell carcinoma (SCC). The distribution and frequency of each of these eight 

Fig. 1.  ISIC 2018 dataset samples.

 

Scientific Reports |        (2025) 15:45660 6| https://doi.org/10.1038/s41598-025-30534-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


types in the training dataset (ISIC 2019 Dataset) are displayed in Fig. 3. Eight classes make up the final dataset. 
The distribution and frequency of each of these eight types in the training dataset (ISIC 2019 Dataset) are 
displayed in Fig. 4. Table 1 compares between the two datasets.

Derm7pt dataset
The Derm7pt43 dataset is a publicly available dermatological image dataset designed to support the development 
and evaluation of automated skin lesion diagnosis systems. It contains over 2,000 images, including both clinical 
and dermoscopic views, annotated with diagnostic labels as well as the seven-point checklist criteria—clinically 
relevant features used by dermatologists to assess skin lesions, such as atypical pigment networks, blue-white 
veil, and irregular streaks. This inclusion of intermediate semantic attributes enables more interpretable model 
predictions and facilitates multi-task learning, where models can be trained to predict both diagnosis and 

Fig. 4.  Samples distribution in the ISIC 2019 dataset.

 

Fig. 3.  ISIC 2019 dataset samples.

 

Fig. 2.  Samples distribution in the ISIC 2018 dataset.
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associated visual features. The dataset includes a diverse range of diagnostic classes, such as MEL (melanoma), 
NV (nevus), BKL (benign keratosis-like lesions), DF (dermatofibroma), VASC (vascular lesions), and BCC (basal 
cell carcinoma). Many of these classes overlap with those in the ISIC 2018 Challenge dataset, making Derm7pt a 
complementary resource for benchmarking skin lesion classifiers. However, Derm7pt lacks the AKIEC (actinic 
keratosis and intraepithelial carcinoma) class, which is present in ISIC 2018.

Despite some class imbalance issues, Derm7pt’s rich annotations and multimodal images make it valuable 
for developing interpretable and clinically relevant deep learning models. Table 2 shows the distribution of the 
common classes by number. Figure 5 shows sample of each class of these common classes in Derm7pt dataset.

Class name Abbreviation Number of images

Melanocytic Nevi NV 575

Melanoma MEL 251

Benign Keratosis-like Lesions BKL 45

Basal cell carcinoma BCC 42

Vascular lesions VASC 29

Dermatofibroma DF 20

Total – 962

Table 2.  Class Distribution in the Derm7pt Dataset.

 

Feature ISIC 2018 ISIC 2019

Challenge year 2018 2019

Total images Approximately 10,000 Approximately 25,000

Image resolution Varies

Primary task(s)  Lesion segmentation  Multi-class lesion classification

 Lesion attribute detection

 Disease classification

Number of classes 7 classes 8 classes

Classes  Melanoma  Melanoma

 Melanocytic nevus  Melanocytic nevus

 Basal cell carcinoma  Basal cell carcinoma

 Actinic keratosis  Actinic keratosis/Bowen’s disease (intraepithelial carcinoma)

 Benign keratosis (solar lentigo/seborrheic keratosis/lichen planus-like keratosis)  Benign keratosis-like lesions

 Dermatofibroma  Dermatofibroma

 Vascular lesion  Vascular lesions

 Squamous cell carcinoma

Annotations provided  Lesion boundaries (segmentation masks)  Image-level labels

 Lesion attributes (e.g., globules, streaks)

Evaluation metrics  Dice coefficient for segmentation  Balanced multiclass accuracy

ROC-AUC for classification

Data source Multiple clinical centres worldwide

Ground truth Expert dermatologists’ annotations

Availability Publicly available for research purposes

Gaps and challenges Class Imbalance

 Quality and variability of annotations  Complexity of multi-class classification

 Limited number of images  Noise in labels

 Single modality  Intra-class variability

 Lack of longitudinal data  Limited contextual information

Common challenges

 Data augmentation and generalization

 Evaluation metrics

 Interpretability of models

 Integration into clinical workflows

 Ethical and privacy concerns

Table 1.  Comparison between ISIC 2018 and ISIC 2019 datasets.
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Pre-processing techniques
Pre-processing is a crucial step to refine data quality and enhance model performance. This section is divided 
into two subsections: pre-processing for images and pre-processing for metadata. Each focus on preparing the 
respective data types to ensure they are properly structured and optimized for training.

Image pre-processing
Pre-processing techniques are vital in skin image analysis, managing challenges like image variability. They 
ensure uniformity for effective model training, while addressing issues such as annotation consistency and class 
imbalance. Challenges persist in adapting models for clinical use, driving ongoing research and collaboration 
in dermatological diagnostics. In this study, the pre-processing phase focuses primarily on two key steps: image 
resizing and data augmentation, which are described in the following paragraphs.

Data augmentation  Data augmentation is a crucial technique to address the class imbalance in both the ISIC 
2018 and ISIC 2019 datasets, which are commonly used for skin cancer detection. By generating synthetic vari-
ations of existing images, data augmentation helps increase the diversity of underrepresented classes, thus miti-
gating the risk of model bias toward the more prevalent classes. In this study, various augmentation techniques 
were applied with specific parameter values to enhance dataset diversity and model performance. These tech-
niques include random rotations with a rotation range of 30, flips, translations with a width shift range of 0.3 and 
a height shift range of 0.3, shear with a shear range of 0.3, zooming with a zoom range of 0.3, and adjustments to 
brightness and contrast, which preserve the essential features of skin lesions while enhancing the dataset’s size. 
Techniques like horizontal flipping being set to true and applying a nearest neighbour fill mode ensure a more 
balanced learning process and improved performance, particularly for rare skin lesion types.

Resize technique  ISIC 2018 and ISIC 2019 datasets consist of images of different sizes and dimensions while 
convolution neural networks require images of identical sizes to work properly. For this reason, resizing images 
is essential as a pre-processing step. All images in the two sets were normalized and resized to 224 × 224 pixels 
through the ‘ImageDataGenerator’ from Keras44.

Metadata pre-processing
Metadata pre-processing plays a crucial role in enhancing model performance by ensuring the quality and 
consistency of non-image features. It addresses common issues such as missing values and class imbalance, 
which can negatively impact learning and generalization. Techniques like missing value imputation and 
oversampling are applied to create a more balanced and complete dataset. In this study, the pre-processing phase 
focuses primarily on two key steps: handling missing values feature encoding, feature scaling, and applying 
oversampling, which are described in the following paragraphs.

Metadata features
In this study, a subset of clinical metadata features was selected based on domain knowledge and relevance to the 
classification task. The chosen features included: age_approx (patient’s approximate age), anatom_site_general 
(general anatomical site of the lesion), benign_malignant (lesion malignancy status), sex (patient’s sex), and 
diagnosis (disease category).

Prior to modeling, the distributions of the metadata were analyzed to understand the data characteristics 
and detect potential imbalances. Visualizing these distributions guided the application of data preprocessing 
techniques such as imputation for missing values and one-hot encoding for categorical variables, ensuring the 
model receives clean and informative input.

Figures 6 and 7 show the distribution of metadata features of ISIC 2018 and ISIC 2019 datasets respectively.

Fig. 5.  Sample images from the Derm7pt dataset showing common classes.
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Handling missing values  To effectively handle the missing data in our dataset, we identified missing values in 
the ‘age_approx’ column and imputed them using the mean age across the dataset. For categorical columns with 
missing values, such as ‘sex’ and ‘anatom_site_general’, we replaced the missing entries with a default value of 
‘unknown’. Rather than excluding these rows, this imputation approach allowed us to maintain the integrity and 
completeness of our data while ensuring that our model could still leverage valuable information from entries 
with previously missing data. After this pre-processing step, we proceeded to scale the numerical features and 
encode the categorical ones, allowing us to seamlessly integrate both metadata and image data into our model 
for more accurate predictions. This method ensured a balanced treatment of missing data while preserving the 
overall quality and quantity of the dataset.

Feature encoding  To prepare the categorical metadata for input into the machine learning model, feature en-
coding was applied using One-Hot Encoding. The categorical variables selected for encoding were meta.clinical.
sex, meta.clinical.anatom_site_general, and meta.clinical.benign_malignant. Using Scikit-learn’s OneHotEn-
coder with sparse_output = False, each unique category within these columns was transformed into a separate 
binary column. This process ensures that the model does not assume any ordinal relationship between categories 
and treats each class independently. For example, the meta.clinical.sex column, which includes values such as 
“male,” “female,” and “unknown,” was expanded into three distinct binary features. Even binary columns like 
meta.clinical.benign_malignant were encoded into two separate columns to maintain consistency across all cat-
egorical variables. This encoding step is essential for enabling the model to effectively interpret categorical data 
and learn meaningful patterns without introducing bias from the feature representation.

Feature scaling  Feature scaling is an essential preprocessing step in machine learning, particularly when nu-
merical features have different ranges or units. In this project, the numerical metadata feature meta.clinical.
age_approx was standardized using Scikit-learn’s StandardScaler. This method transforms the data so that it has 
a mean of zero and a standard deviation of one. Standardizing the age feature ensures that it contributes appro-
priately during model training and prevents it from having an outsized influence due to its original scale. This 
step helps the model learn more effectively and improves the overall stability and performance of the training 
process.

Oversampling  Oversampling is a critical technique employed in machine learning and data analysis to address 
class imbalance within datasets. Class imbalance arises when certain classes have significantly fewer instances 

Fig. 6.  Metadata features distribution of ISIC 2018 dataset.

 

Scientific Reports |        (2025) 15:45660 10| https://doi.org/10.1038/s41598-025-30534-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


compared to others, leading to biased model performance that favours the majority class. To mitigate this issue, 
oversampling methods artificially increase the number of samples in the minority classes, thereby achieving a 
more balanced dataset.

One of the most widely used techniques for addressing class imbalance is the Synthetic Minority 
Oversampling Technique (SMOTE)19, which generates synthetic samples by interpolating between existing 
minority class instances instead of simply duplicating them. In our implementation, SMOTE (with random_
state = 42) is applied to the encoded and scaled metadata features, guided by the diagnosis labels to identify 
minority classes. This process generates new synthetic feature samples for underrepresented diagnosis classes, 
effectively increasing both the number of metadata feature instances and the corresponding diagnosis labels. By 
balancing the dataset in this way, SMOTE enhances data diversity and improves the model’s ability to generalize 
across all classes.

In dermatological image analysis, datasets such as ISIC 2018 and ISIC 2019 frequently exhibit class imbalance, 
posing challenges for effective skin lesion classification. By applying oversampling techniques like SMOTE, the 
distribution of lesion types is balanced, leading to improved model accuracy, robustness, and generalization. 
Tables 3 and 4 present the class distribution before and after applying SMOTE to the ISIC 2018 and ISIC 2019 
datasets, respectively, illustrating the impact of this technique in improving model training and prediction 
reliability.

Proposed model architecture
The proposed model integrates image data with structured metadata features to enhance skin lesion classification 
using an ensemble deep learning approach. It utilizes two publicly available datasets, ISIC 2018 and ISIC 2019, 
where ISIC 2019 contains additional metadata attributes such as age_approx, anatom_site_general, lesion_id, sex 
and malignancy status, which are absent in ISIC 2018. Given that ISIC 2018 is a subset of ISIC 2019, metadata 
was merged based on image names to create a unified dataset. The proposed model consists of three primary 
modules: a pre-processing module, a classification module, and a concatenation module.

The pre-processing module in the proposed model is divided into two components: image pre-processing 
and metadata pre-processing . In the image pre-processing stage, data augmentation techniques are applied to 

Fig. 7.  Metadata features distribution of ISIC 2019 dataset.
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increase dataset diversity and improve model generalization. Additionally, all images are resized to 224 × 224 
pixels to maintain consistent input dimensions across the deep learning models.

The metadata preprocessing process involves several key steps. First, only the most relevant metadata features 
are selected from the original dataset, including meta.clinical.age_approx, meta.clinical.anatom_site_general, 
meta.clinical.benign_malignant, meta.clinical.sex, and meta.clinical.diagnosis. Missing values in the numerical 
feature meta.clinical.age_approx are filled using the column mean, while missing values in categorical features 
such as meta.clinical.sex and meta.clinical.anatom_site_general are replaced with a default value of “unknown”. 
Categorical variables—including meta.clinical.sex, meta.clinical.anatom_site_general, and meta.clinical.
benign_malignant—are transformed into numerical format using one-hot encoding. The numerical feature 
meta.clinical.age_approx is standardized using z-score normalization to ensure consistent scaling across inputs. 
The target labels for skin lesion diagnosis (meta.clinical.diagnosis) are also one-hot encoded to make them 
suitable for multi-class classification. Additionally, SMOTE (Synthetic Minority Over-sampling Technique) is 
applied to the training metadata and labels to address class imbalance by generating synthetic examples for 
underrepresented classes, improving the model’s ability to learn from all categories.

For classification, the proposed model employs a deep learning ensemble model consisting of ResNet50, 
Xception, and EfficientNetB0, where each model extracts deep image features through multiple layers. The 
GlobalAveragePooling2D layer reduces the spatial dimensions of the feature maps while preserving important 
information. A Dropout layer (0.5) is then applied to prevent overfitting by randomly deactivating neurons 
during training. Subsequently, a BatchNormalization layer stabilizes and accelerates the learning process by 
normalizing activations. Finally, a Dense layer with 64 neurons and ReLU activation captures high-level feature 
representations for the classification stage. The outputs from all models are fused using an adaptive weighted 
ensemble technique, where weights are dynamically learned based on each model’s validation performance, 
rather than being fixed or uniformly assigned.

This approach evaluates the reliability and predictive strength of each model during training and assigns 
higher weights to models that consistently perform better, while reducing the influence of weaker or less 
consistent ones. Unlike fixed or equal-weight averaging, the adaptive weighted ensemble enhances robustness by 
tailoring the contribution of each model to its actual effectiveness, leading to a more accurate and generalizable 
combined prediction. This dynamic weighting strategy strengthens the final image feature representation and 
improves the overall classification performance.

Metadata features are processed through a dedicated neural network comprising Dense layers (32 and 64 
neurons) with ReLU activation for non-linearity, Dropout (0.5) for regularization, and BatchNormalization to 
stabilize training. The fusion of image and metadata features is achieved through a concatenation layer, followed 
by Dropout (0.6) to reduce overfitting, GlobalAveragePooling2D for feature refinement, and a Softmax activation 
layer for final classification into 7 or 8 classes, depending on the dataset’s labelling scheme. The integration 
and fusion of image and metadata features significantly enhance classification accuracy compared to using 
image data alone, as metadata provides crucial contextual information that aids in distinguishing lesions with 

Class Before oversampling After oversampling

MEL 3,607 10,308

NV 10,308 10,308

BCC 2,665 10,308

AK 690 10,308

BKL 2,088 10,308

DF 191 10,308

VASC 191 10,308

SCC 524 10,308

Total 20,264 82,464

Table 4.  Class distribution before and after SMOTE on metadata of ISIC 2019 training dataset.

 

Class Before oversampling After oversampling

MEL 874 5,367

NV 5,367 5,367

BCC 408 5,367

AKIEC 265 5,367

BKL 893 5,367

DF 93 5,367

VASC 112 5,367

Total 8,012 37,569

Table 3.  Class distribution before and after SMOTE on metadata of ISIC 2018 training dataset.
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similar visual characteristics. The ensemble learning technique further improves robustness, demonstrating the 
effectiveness of combining deep learning-based image analysis with structured metadata to achieve superior 
diagnostic performance. Figure 8 shows the workflow of the proposed model classification process for ISIC 2018 
and ISIC 2019 datasets.

Fig. 8.  Workflow of the proposed model for classification for ISIC 2018 and ISIC 2019 Datasets.
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Experimental evaluation
This section provides an in-depth evaluation of the proposed model, including the experimental setup, 
evaluation metrics, benchmark models, experimental results and insights on the results. The methodology 
ensures a comprehensive assessment of the model’s performance and reliability. The details of this evaluation are 
presented in the following subsections.

Experimental setup
A well-structured experimental setup is crucial for ensuring the reliability and effectiveness of the proposed 
model. This section outlines the training procedure setup and hardware and software setup, detailing the dataset 
split strategy, training configurations, and computational resources used for model evaluation.

Training procedure setup
The experimental setup involves a meticulous division the dataset into a training-validation-testing split ratio of 
80:10:10, ensuring a comprehensive representation for model training and evaluation. Specifically, for the ISIC 
2019 dataset, the split includes a training set of 20,264 images, a validation set of 2,533 images, and a testing set 
of 2,534 images. For the ISIC 2018 dataset, the split includes a total of 10,015 images before splitting, a training 
set of 8,012 images, a validation set of 1,001 images, and a testing set of 1,002 images. This approach allows the 
model to learn from a substantial portion of diverse data during training, while the remaining dataset portions 
serve as validation and testing sets to assess generalization and overall model performance.

We harness the computational power of Google Colab45 to efficiently execute the model training process, 
leveraging its cloud-based infrastructure. The applied parameters for training include steps per epoch set to 100, 
batch size of 32, total epochs of 100, a learning rate of 0.0001 (adjusted to improve convergence), and the Adam 
optimizer. To ensure optimal performance, early stopping is implemented with a patience of 10 epochs and a 
learning rate reduction strategy with a factor of 0.2 and patience of 5 epochs. All experiments were conducted 
using Google Colab with a Tesla T4 GPU, where the model—an ensemble of ResNet50 (~ 25.6 M parameters), 
Xception (~ 22.9 M), and EfficientNetB0 (~ 5.3 M)—was trained for 100 epochs This setup balances accuracy 
and efficiency, making it well-suited for high-memory GPUs and robust clinical image classification tasks. Table 
5 shows the hyperparameters used in the experimental setup.

Hardware and software setup
The experiments were conducted using a combination of cloud-based and local computing resources. Primarily, 
Google Colab was utilized, providing 12.7 GB of RAM. For enhanced computational capacity, Google Colab 
Pro was occasionally employed, offering 51 GB of RAM. Additionally, some experiments were performed on 
a local machine with the following specifications: Processor—Intel(R) Core(TM) i7-9700 CPU @ 3.00  GHz, 
Installed RAM—16.0 GB (15.8 GB usable), and a 64-bit operating system with an × 64-based processor. The 
software setup included TensorFlow 2.x, Keras, Python 3.x, and other necessary libraries. This setup leveraged 
both Google Colab’s cloud-based infrastructure and the local machine’s capabilities to ensure efficient model 
training and evaluation.

Evaluation metrics
The evaluation of the proposed models involved a comprehensive set of metrics46 to gauge their performance in 
skin cancer detection. Accuracy, a fundamental measure, evaluates the total precision of the model’s predictions 
and is expressed as the proportion of successfully predicted occurrences to all instances.

	
accuracy = true positives + true negatives

total instances
� (1)

Precision, a crucial metric, quantifies the model’s ability to correctly identify positive cases, minimizing false 
positives. It is computed as the ratio of true positive predictions to the sum of true positives and false positives.

	
prescision = true positives

true positives + false positives
� (2)

Parameter Value

Steps per epoch 100

Batch size 32

Total epochs 100

Learning rate 0.0001

Optimizer Adam

Early stopping patience 10 epochs

Learning rate reduction factor 0.2

LR reduction patience 5 epochs

Table 5.  Hyperparameters used in the experiments.
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Recall, or sensitivity, assesses how well the model can find all pertinent cases while reducing false negatives. The 
ratio of true positive predictions to the total of false negatives and true positives is used to calculate it.

	
recall = true positives

true positives + false negatives
� (3)

The F1 score, a balanced metric combining (2) and (3), offers a holistic view of a model’s efficiency. It is calculated 
using precision and recall harmonic means.

	
F 1 score = 2 · precision · recall

precision + recall
� (4)

Specificity measures the proportion of actual negative cases that are correctly identified by the model. It is 
especially important in medical diagnosis to avoid false alarms (false positives).

	
Specificity = true negatives

true negatives + false positives
� (5)

AUC (Area Under the Curve) is a performance metric that measures a classifier’s ability to distinguish between 
classes. Specifically, it represents the probability that the model will rank a randomly chosen positive instance 
higher than a randomly chosen negative one.

These metrics collectively provide a robust assessment of the models’ effectiveness in skin cancer detection, 
offering insights into their accuracy, precision, recall, and overall performance.

Benchmark approaches
A variety of benchmark deep learning models were employed in this study, selected for their architectural 
efficiency, innovative design, and established performance in image classification tasks. Many previous studies 
have utilized models pretrained on large-scale datasets and subsequently fine-tuned them for specific medical 
tasks. Pretrained models in medical disease diagnosis leverage transfer learning (TL)47,48, enabling the adaptation 
of knowledge acquired from extensive generic datasets to domain-specific medical applications. This approach 
significantly reduces computational requirements and training time, while enhancing model generalization on 
smaller, specialized datasets. However, without fine-tuning, models may not effectively capture disease-specific 
hierarchical feature patterns, resulting in reduced performance in medical diagnosis tasks49.

This diverse selection of models serves as a reference point for evaluating the effectiveness of skin cancer 
detection methods, providing valuable insights into the comparative strengths of different convolutional 
architectures. An ensemble strategy was also adopted to integrate the predictive capabilities of these models and 
enhance overall classification performance. The details of these models and the applied ensemble approach are 
discussed in the following subsections.

Xception
Xception50, short for "Extreme Inception," is a deep learning model introduced by Google. It is an extension of 
the Inception architecture, designed to improve the efficiency of learning representations. Xception employs 
depth-wise separable convolutions, which factorize the standard convolution into a depth-wise convolution and 
a pointwise convolution. This allows for more efficient use of parameters and reduces computational complexity. 
Xception has shown strong performance in image classification tasks and is known for its ability to capture 
intricate features in images.

ResNet50
ResNet5051 is a deep learning architecture that is part of the ResNet family, which introduced the concept of 
residual learning. Developed by Microsoft Research, ResNet50 is designed to solve the problem of training very 
deep neural networks by utilizing residual connections, also known as skip connections. These connections 
allow the network to learn residual functions, which makes it easier to train deeper models without facing the 
vanishing gradient problem. ResNet50, with its 50 layers, has been particularly successful in computer vision 
tasks such as image classification, object detection, and segmentation. By introducing batch normalization and 
other architectural innovations, ResNet50 achieves a balance between depth and performance, making it an 
efficient and widely adopted model for a range of applications in visual recognition.

MobileNet
MobileNet52 is a deep convolutional neural network design created especially for mobile and edge-based 
gadgets with constrained processing power to enable effective deployment. Introduced by Google researchers. 
MobileNet achieves a balance between accuracy and computational efficiency by utilizing depth-wise separable 
convolutions. This technique factorizes standard convolutions into depth-wise convolutions and pointwise 
convolutions, significantly reducing the number of parameters and computations. MobileNet is particularly well-
suited for real-time image classification tasks on resource-constrained devices, making it a popular choice for 
mobile applications, embedded systems, and edge computing scenarios. Its lightweight nature and competitive 
performance have contributed to the widespread adoption of MobileNet as a go-to model for on-device machine 
learning applications.
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EfficientNetB0
EfficientNetB053 is the baseline model in the EfficientNet family, introduced by Google researchers. It is a 
convolutional neural network that achieves optimal performance by scaling the model’s depth, width, and 
resolution systematically using a compound scaling method. EfficientNetB0 achieves superior accuracy with 
fewer parameters and less computation compared to traditional architectures. By employing this compound 
scaling method, it manages to maintain a balance between efficiency and performance. Despite being the 
simplest model in the EfficientNet family, EfficientNetB0 has demonstrated excellent performance on image 
classification tasks while remaining computationally efficient, making it ideal for both resource-constrained 
environments and high-end applications. EfficientNetB0 has been widely adopted for various computer vision 
applications, including image classification and object detection.

DenseNet121
DenseNet12154 is a deep convolutional neural network model that is part of the DenseNet family. DenseNet121 
addresses the vanishing gradient problem by employing dense connectivity, where each layer receives the feature 
maps from all preceding layers. This dense connectivity leads to improved gradient propagation, enhanced 
feature reuse, and efficient use of parameters. With 121 layers, DenseNet121 strikes a balance between depth 
and computational efficiency, providing superior performance on image classification tasks, object detection, 
and segmentation. The model’s densely connected architecture enables the creation of deeper and more efficient 
networks with fewer parameters compared to traditional architectures. As a result, DenseNet121 achieves 
competitive accuracy while being highly efficient, making it a strong candidate for modern computer vision 
applications.

Ensemble techniques
Ensemble techniques in convolutional neural networks (CNNs) aim to improve accuracy and generalization 
by combining predictions from multiple models. Common approaches include simple averaging and stacking, 
where a meta-learner combines base model outputs. Diversity among models—whether in architecture (e.g., 
ResNet, DenseNet), training setup, or data exposure—helps reduce individual model bias. These methods have 
proven effective in computer vision tasks and are widely used in challenges like ImageNet, where ensemble 
models often achieve top performance55.

More recently, adaptive weighted ensemble CNN models enhance prediction accuracy by combining multiple 
convolutional neural networks, each trained on the same task, and dynamically assigning weights to their outputs 
based on performance metrics such as confidence scores or validation accuracy. This adaptive mechanism 
allows the ensemble to emphasize models that perform better on specific inputs, often using attention-based 
strategies or meta-learners to optimize weight distribution. The final prediction is typically a weighted average 
of individual model outputs, resulting in improved generalization and robustness across diverse datasets. Such 
approaches have shown significant promise in applications like image classification, medical diagnosis, and 
deepfake detection, where model diversity and adaptability are crucial56.

Experimental results
To comprehensively assess the performance of the proposed model, a rigorous set of experiments have been 
conducted on the ISIC 2018 and ISIC 2019 datasets as follows. Experiment 1 investigates the performance of five 
pre-trained state-of-the-art models— ResNet50, Xception, MobileNet, EfficientNetB0, and DenseNet121, and 
EfficientNetB0. This experiment focuses solely on image data, without incorporating metadata. In Experiment 
2, transfer learning techniques were applied to incorporate metadata alongside image data for improved skin 
cancer classification. Experiment 3 aimed to further improve classification accuracy by employing an ensemble 
approach. Details on these experiments are presented in the following subsections.

Experiment 1
Experiment 1 investigates the performance of five pre-trained state-of-the-art models— ResNet50, Xception, 
MobileNet, EfficientNetB0, and DenseNet121, and EfficientNetB0—on the ISIC 2018 and ISIC 2019 datasets. 
This experiment focuses solely on image data, without incorporating metadata. Key evaluation metrics, including 
accuracy, precision, recall, and F1 score, are used to assess the models’ ability to classify skin cancer types. Tables 
6 and 7 present the performance metrics before metadata integration for each model on the ISIC 2018 and ISIC 
2019 datasets, respectively.

For ISIC 2018, Xception achieved the highest performance with an accuracy of 83.4% and an F1 score of 
84%, followed closely by ResNet50 and EfficientNetB0, which also maintained balanced precision and recall. In 
contrast, MobileNet recorded the lowest performance, with an accuracy of 77.6% and an F1 score of 78%. For 

Model Name Accuracy Precision Recall F1 score

MobileNet 0.776 0.82 0.77 0.78

Xception 0.834 0.85 0.83 0.84

ResNet50 0.825 0.85 0.82 0.83

EfficientNetB0 0.823 0.82 0.82 0.81

DenseNet121 0.814 0.85 0.81 0.82

Table 6.  The experimental results on ISIC 2018 using pre-trained models before metadata integration.
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the ISIC 2019, Xception again led with both accuracy and F1 score at 83.4%, indicating strong generalization 
across datasets. EfficientNetB0 also performed well (accuracy: 82.1%, F1 score: 82%), whereas MobileNet had 
the weakest performance, with an accuracy of 73.2% and an F1 score of 71%.

Overall, the results show that Xception consistently outperformed the other models across both datasets, 
particularly in terms of F1 score. On the other hand, MobileNet showed limitations, likely due to its lightweight 
architecture, which may sacrifice representational depth. These baseline metrics serve as a clear reference point 
to assess the improvements introduced by metadata integration in the following experiment.

Experiment 2
Experiment 2 presents a metadata-aware ablation study, it focuses on evaluating the impact of metadata 
integration on the performance of five pre-trained models—ResNet50, Xception, MobileNet, EfficientNetB0, 
and DenseNet121—using the ISIC 2018 and ISIC 2019 datasets. Transfer learning techniques were applied to 
incorporate metadata alongside image data for improved skin cancer classification. Pre-processing steps such as 
oversampling with SMOTE and handling missing values were employed to address class imbalance and enhance 
the models’ generalization capabilities. Tables 8 and 9 present the performance metrics after metadata integration 
for the ISIC 2018 and ISIC 2019 datasets, respectively. These results highlight the significant improvement in 
model performance achieved through the integration of metadata and robust pre-processing . This experiment 
clearly demonstrates the value of combining metadata with image data, which contributes to more accurate and 
reliable skin cancer classification.

After metadata integration, a noticeable improvement in performance was observed across all models for 
both ISIC 2018 and ISIC 2019 datasets. On the ISIC 2018 dataset, EfficientNetB0 achieved the highest overall 
performance, with an accuracy of 89.7%, recall of 89%, and an F1 score of 89%, indicating a strong balance 
between precision and recall. Xception and ResNet50 also showed significant gains, with accuracies of 88.0% 
and 87.5%, respectively. Even MobileNet, which previously underperformed, improved its accuracy from 77.6% 
to 81.6%, reflecting the positive impact of metadata inclusion.

Similarly, for ISIC 2019, EfficientNetB0 continued to lead, reaching an accuracy of 87.8% and an F1 score of 
87%. Xception also maintained strong performance (accuracy: 86.3%, F1 score: 86%), while ResNet50 improved 
to an accuracy of 83.2%. Notably, MobileNet showed a modest but meaningful increase in performance, 
improving from 73.2% to 76.4% accuracy. These results clearly demonstrate that metadata integration 
significantly enhanced model performance, especially for models like MobileNet and DenseNet121 that had 
relatively lower baseline scores. The consistent improvement across all architectures reinforces the importance 
of incorporating patient metadata in medical image classification tasks for more accurate and reliable results.

Model name Accuracy Precision Recall F1 score

MobileNet 0.764 0.76 0.76 0.75

Xception 0.863 0.85 0.86 0.86

ResNet50 0.832 0.82 0.83 0.83

EfficientNetB0 0.878 0.88 0.87 0.87

DenseNet121 0.794 0.78 0.79 0.78

Table 9.  The experimental results on ISIC 2019 using pre-trained models after metadata integration.

 

Model Name Accuracy Precision Recall F1 score

MobileNet 0.816 0.86 0.81 0.82

Xception 0.880 0.87 0.88 0.88

ResNet50 0.875 0.88 0.87 0.85

EfficientNetB0 0.897 0.88 0.89 0.89

DenseNet121 0.854 0.86 0.85 0.85

Table 8.  The experimental results on ISIC 2018 using pre-trained models after metadata integration.

 

Model Name Accuracy Precision Recall F1 score

MobileNet 0.732 0.72 0.72 0.71

Xception 0.834 0.83 0.83 0.83

ResNet50 0.787 0.78 0.79 0.78

EfficientNetB0 0.821 0.80 0.82 0.82

DenseNet121 0.772 0.76 0.77 0.76

Table 7.  The experimental results on ISIC 2019 using pre-trained models before metadata integration.
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Furthermore, paired t-tests were conducted to evaluate whether integrating metadata significantly improved 
the performance of five pretrained models on the ISIC 2018 and ISIC 2019 datasets. The performance metrics 
before and after metadata fusion for each model were treated as paired samples to directly assess these changes. 
Tables 10 and 11 below summarize the t-statistics, p-values, and the statistical significance for key metrics 
including Accuracy, Precision, Recall, and F1 Score of ISIC 2018 and ISIC 2019 datasets.

The paired t-test results demonstrate statistically significant improvements across all four metrics after 
metadata fusion. In both datasets, all four evaluated metrics—Accuracy, Precision, Recall, and F1 Score—show 
statistically significant improvements with p-values well below the 0.05 threshold. Notably, Recall demonstrates 
the highest t-statistic in both datasets (9.1287 for ISIC 2018 and 7.0602 for ISIC 2019), indicating that metadata 
fusion most strongly enhances the model’s ability to correctly identify positive cases. Accuracy follows closely, 
with t-values of 7.9455 (ISIC 2018) and 5.9324 (ISIC 2019), reflecting consistent improvements in overall 
classification correctness. Precision and F1 Score also show meaningful gains in both datasets, confirming that 
metadata contributes to reducing false positives while maintaining a balanced performance.

The statistical analysis across both datasets provides robust evidence that integrating metadata leads to 
significant and consistent enhancements in model performance, particularly in recall and accuracy. This supports 
the value of metadata fusion as an effective strategy for improving deep learning models in dermatological image 
analysis.

Experiment 3
Following the integration of metadata in Experiment 2, which significantly enhanced the performance of 
individual models, Experiment 3 aimed to further improve classification accuracy by employing an ensemble 
approach. The top-performing models from the previous experiment—ResNet50, Xception, and EfficientNetB0—
were selected based on their strong individual performance. We explored three ensemble methods: unweighted 
(simple) averaging, stacking, and an adaptive weighted ensemble technique. The advanced weighted averaging 
method dynamically assigns weights to each model’s predictions based on their individual performance and 
reliability, rather than using fixed or equal weights. This adaptive weighting allows the ensemble to better 
leverage the strengths of each model while minimizing the impact of weaker predictions, resulting in improved 
robustness and accuracy. These ensemble techniques were combined to capitalize on complementary features 
from different architectures, and this strategy proved highly effective, achieving superior results across both 
datasets.

Figures  9, 10, and 11 illustrate the confusion matrices generated using the stacking, unweighted simple 
average, and adaptive weighted ensemble methods, respectively, on the ISIC 2018 dataset. Likewise, Figs. 12, 13, 
and 14 present the corresponding confusion matrices for the ISIC 2019 dataset. These visualizations highlight 
the robustness of the ensemble approaches in addressing the challenges of multi-class skin lesion classification 
involving 7 and 8 classes.

Tables 12 and 13 summarize the performance of three ensemble techniques—simple average, stacking, 
and adaptive weighted ensemble for the ISIC 2018 and ISIC 2019 datasets, respectively. Table 12 presents the 
evaluation metrics for different ensemble techniques applied to the ISIC 2018 dataset. The proposed adaptive 
weighted ensemble achieved the highest overall performance, with an accuracy of 93.2%. It showed a slight 
improvement of approximately 0.6% over the simple average ensemble (92.6%) and a more notable improvement 
of about 2.5% compared to the stacking method (90.7%). The proposed ensemble using the adaptive weighted 
technique and the simple average ensemble produced relatively close results, particularly in precision, recall, 
and F1 score. However, the proposed technique maintained a consistent edge, achieving 93% precision and 
93% F1 score. Although the loss value was slightly higher (0.225 vs. 0.205 in the simple average), the proposed 
method achieved the highest AUC of 97.3%, indicating stronger overall classification confidence. Overall, while 

Metric t-statistic p-value Statistical Significance

Accuracy 5.9324 0.0040 Statistically significant (p < 0.05)

Precision 3.6515 0.0217 (p < 0.05)

Recall 7.0602 0.0021 (p < 0.05)

F1 Score 6.5169 0.0029 (p < 0.05)

Table 11.  Paired T-test results showing performance improvements after metadata fusion on ISIC 2019 
dataset.

 

Metric t-statistic p-value Statistical Significance

Accuracy 7.9455 0.0014 Statistically significant (p < 0.05)

Precision 3.7199 0.0205 (p < 0.05)

Recall 9.1287 0.0008 (p < 0.05)

F1 Score 4.1184 0.0146 (p < 0.05)

Table 10.  Paired T-test results showing performance improvements after metadata fusion on ISIC 2018 
dataset.
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both simple and adaptive weighted methods performed similarly, the proposed adaptive weighted ensemble 
demonstrated the most reliable and superior results across all metrics.

Similar to the trends observed on the ISIC 2018 dataset, Table 13 shows that the stacking ensemble again 
delivered the weakest performance on ISIC 2019, with an accuracy of 88.5%, precision of 90%, and an F1 score 
of 89%. In contrast, the simple average ensemble improved these results, pushing accuracy to 90.3% and F1 score 
to 91%, while also reducing the loss from 0.405 to 0.319. The proposed adaptive weighted ensemble achieved the 
strongest results overall, reaching an accuracy of 91.1%, precision of 93%, and F1 score of 92%. It also achieved 
the lowest loss (0.306) and the highest AUC (95.5%), indicating more confident and consistent predictions. These 
results reinforce the effectiveness of the proposed method, consistently outperforming traditional ensemble 
strategies across different datasets.

Tables 14 and 15 show the evaluation metrics of the proposed ensemble model per each class in ISIC 2018 
and ISIC 2019 datasets respectively.

The proposed ensemble model demonstrated high classification performance on the ISIC 2018 dataset as 
shown in Table 14, particularly for prevalent and high-risk skin lesion types. For Melanoma (MEL), the model 
achieved a perfect recall of 1.000, indicating that all actual MEL cases were correctly identified, alongside a 
high specificity of 0.993, which reflects minimal misclassification of non-MEL cases. Nevus (NV) classification 
was also highly accurate with a recall of 0.986 and a precision of 0.981, resulting in an F1 score of 0.984. Basal 
Cell Carcinoma (BCC) showed more modest results, with a recall of 0.661 and a specificity of 0.988, suggesting 
that while the model accurately excluded non-BCC cases, it missed a considerable number of true positives. 
Actinic Keratoses (AK) and Dermatofibroma (DF) had the lowest F1 scores (0.481 and 0.606, respectively), 
reflecting difficulty in recognizing these underrepresented classes. Despite this, the model maintained high 
specificity (above 0.98) across all classes, meaning it was effective at ruling out incorrect classifications even 
when sensitivity varied.

Table 15 presents the model’s performance on the ISIC 2019 dataset, which contains more classes and greater 
complexity. The model continued to perform strongly for major categories. MEL achieved a high recall of 
0.944, although with a reduced precision of 0.768 due to an increase in false positives. NV maintained excellent 

Fig. 9.  Confusion matrix using stacking technique on ISIC 2018 dataset.
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precision (0.991) but experienced a lower recall (0.900), leading to missed true cases. Performance on BCC and 
BKL was consistent and reliable, with F1 scores above 0.92 and specificity near-perfect at over 0.99. Notably, AK 
saw significant improvement compared to ISIC 2018, achieving balanced precision and recall (both at 0.861). 
For rare classes, the model showed mixed outcomes: DF achieved a perfect recall of 1.000, meaning no actual DF 
cases were missed, but low precision (0.429) due to false positives. VASC also showed strong recall (0.964) but 
moderate precision (0.659). The newly included class, Squamous Cell Carcinoma (SCC), was well classified with 
an F1 score of 0.920 and specificity of 0.997, indicating the model’s ability to adapt to new lesion types.

Furthermore, Figs. 15 and 16 showcase Grad-CAM visualizations for representative samples from the ISIC 
2018 and ISIC 2019 datasets, respectively. These visual explanations are critical for understanding the model’s 
decision-making process, as they highlight the most salient regions in the input images that contribute to the 
final classification. The inclusion of Grad-CAM enhances model interpretability and supports clinical trust by 
aligning model attention with relevant dermatological features. Overall, the combined analysis of performance 
metrics and visual explanations underscores the impact of the proposed ensemble framework—particularly 
when integrated with metadata—in improving both the accuracy and transparency of automated skin lesion 
classification.

Additionally, Fig.  17 shows the performance of the individual models alongside the proposed ensemble 
after applying metadata integration on the ISIC 2018 dataset, while Fig. 18 presents the corresponding results 
on the ISIC 2019 dataset, emphasizing the contribution of the ensemble technique in enhancing classification 
performance across both datasets.

Figures 17 and 18 illustrate the progressive improvement in model performance following the integration 
of metadata features and the development of the proposed adaptive weighted ensemble model. The bar charts 
clearly demonstrate a consistent enhancement across all models after metadata fusion, confirming that combining 
clinical metadata with image features enriches the learning process and improves classification accuracy. In 
Fig. 17, corresponding to the ISIC 2018 dataset, each baseline model exhibits a noticeable accuracy increase 
after metadata integration, with the adaptive weighted ensemble achieving the highest overall performance. 
Similarly, Fig. 18 presents the results for the ISIC 2019 dataset, where a comparable upward trend is observed, 

Fig. 10.  Confusion matrix of the simple average on ISIC 2018 dataset.
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emphasizing the robustness and generalizability of the fusion strategy across different datasets. The adaptive 
weighted ensemble, which dynamically assigns optimal weights to each base learner, further refines prediction 
confidence and yields superior accuracy compared to individual models and simple averaging ensembles. 
Overall, these results highlight the effectiveness of metadata fusion and adaptive weighting in significantly 
enhancing the discriminative capability of deep learning models for skin cancer classification.

Proposed model validation on Derm7pt dataset
To further validate the robustness and generalizability of our proposed ensemble, we evaluated its performance 
on an independent external dataset, Derm7pt43. Derm7ptis a publicly available dermoscopic image dataset 
commonly used for skin lesion classification. We identified six common classes between Derm7pt and the 
combined ISIC 2018 & 2019 datasets, enabling a fair comparative evaluation. These classes include all ISIC 
2018 classes except Actinic Keratosis (AKIEC). The six common classes are: Melanocytic Nevi (NV), Melanoma 
(MEL), Basal Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL), Dermatofibroma (DF), and Vascular 
Lesions (VASC).

Our proposed ensemble was trained on six common lesion classes from the ISIC 2018 and 2019 datasets, 
achieving a high training accuracy of 98.3% and a validation accuracy of 95.4%. It was then tested on the Derm7pt 
dataset without any additional training or fine-tuning, ensuring an unbiased assessment of its performance 
on unseen data. The results demonstrate that the metadata fusion approach incorporated in our ensemble 
significantly enhances its ability to generalize beyond the original ISIC datasets, maintaining competitive 
accuracy and robust performance across all evaluation metrics. Specifically, the ensemble achieved an accuracy 
of 82.5%, with a precision of 86%, recall of 83%, F1 score of 84%, and AUC of 89.15%, indicating a strong balance 
between sensitivity and specificity.

The observed drop in accuracy from 95.4% (validation on ISIC) to 82.5% (external Derm7pt) reflects the 
natural challenge of applying models trained on one dataset to a different, unseen dataset with possible variations 
in image quality, acquisition conditions, and class distributions. Despite this decline, the model maintains strong 
precision and recall, suggesting it still effectively identifies skin lesion types with relatively few false positives 

Fig. 11.  Confusion matrix using proposed adaptive weighted ensemble on ISIC 2018 dataset.
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and false negatives. This highlights the robustness and generalizability of the ensemble and metadata fusion 
approach, which helps mitigate performance degradation when encountering diverse real-world data. Table 
16 summarizes the per-class performance, including precision, recall, F1 score, and specificity for each lesion 
category. Figure 19 shows the Grad-CAM Visualization Sample of Derm7pt Dataset while Fig. 20 illustrates the 
confusion matrix, providing a visual representation of the model’s classification behaviour across the six classes.

Insights on experimental results
In Experiments 1 and 2, five pre-trained models— ResNet50, Xception, MobileNet, EfficientNetB0, and 
DenseNet121—were employed, utilizing transfer learning to create a robust model for skin cancer detection. A 
key feature of this approach was the integration of metadata with image data, evaluated on two datasets: ISIC 
2018 and ISIC 2019. This integration led to significant improvements in model accuracy, precision, recall, and 
F1 score.

The metadata, encompassing patient demographics and lesion characteristics, was seamlessly fused with 
the high-dimensional image features extracted by the pre-trained models. This fusion involved concatenating 
metadata vectors with deep features learned by the neural networks, allowing the models to leverage both visual 
and contextual information. To address class imbalance in the metadata, SMOTE was applied to oversample 
underrepresented categories, and missing data was handled using imputation methods to ensure no crucial 
information was lost. Data augmentation techniques were applied exclusively to the image data, enhancing the 
diversity of the training set and improving the models’ generalization.

Together, these strategies—transfer learning, metadata integration, SMOTE, data augmentation, and 
regularization—improved the model performance by preventing overfitting, enhancing generalization, and 
providing more reliable predictions for skin cancer detection.

To further improve the accuracy, an ensemble technique was employed in Experiment 3, combining the top-
performing models— ResNet50, Xception, and EfficientNetB0. This ensemble approach mitigated individual 
model biases, reduced prediction variance, and increased diagnostic reliability. With metadata integration, the 
ensemble model achieved an impressive final accuracy of 93.2% on the ISIC 2018 dataset and 91.1% on the ISIC 

Fig. 12.  Confusion matrix using stacking technique on ISIC 2019 dataset.
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2019 dataset, demonstrating the efficacy of combining model ensemble, metadata utilization, and advanced data 
handling techniques for enhanced performance.

On the ISIC 2018 dataset, the integration of metadata led to notable performance improvements across all 
models. MobileNet achieved a 5.15% increase in accuracy, with gains of 4.88% in precision, 5.19% in recall, 
and 5.13% in F1 score. Xception improved by 5.52% in accuracy, 2.35% in precision, 6.02% in recall, and 4.76% 
in F1 score. ResNet50 showed a 6.06% accuracy increase, along with improvements of 3.53% in precision, 
6.1% in recall, and 2.41% in F1 score. EfficientNetB0 experienced the most significant boost, with a 9.00% 
increase in accuracy, 7.32% in precision, 8.54% in recall, and 9.88% in F1 score. DenseNet121 also showed solid 
performance gains, improving by 4.91% in accuracy, 1.18% in precision, 4.94% in recall, and 3.66% in F1 score. 
These consistent enhancements—particularly in recall and F1 score—underscore the effectiveness of metadata 
integration in refining deep learning model performance for medical image classification.

Furthermore, the ensemble model combining ResNet50, Xception, and EfficientNetB0, which were the top-
performing individual models, benefited substantially from metadata integration, achieving a final accuracy of 
93.2% and AUC of 97.3%. This result highlights how the fusion of metadata and ensemble learning significantly 
enhances generalization and robustness in classifying skin lesions, contributing to more accurate and reliable 
outcomes in medical image analysis.

Similarly, on the ISIC 2019 dataset, the integration of metadata proved particularly beneficial, emphasizing 
the importance of additional contextual information to enhance each model’s predictive capabilities. Accuracy 
improvements after metadata integration included 4.37% for MobileNet, with 5.56% precision, 5.56% recall, 
and 5.63% F1 score; 3.47% for Xception, with 2.41% precision, 3.61% recall, and 3.61% F1 score; 5.72% for 
ResNet50, with 5.13% precision, 5.06% recall, and 6.41% F1 score; 6.94% for EfficientNetB0, with 10.00% 
precision, 6.1% recall, and 6.1% F1 score; and 2.85% for DenseNet121, with 2.63% precision, 2.6% recall, and 
2.63% F1 score. These improvements demonstrate the impact of metadata and pre-processing techniques in 
elevating model performance across critical evaluation metrics. The highest accuracy was achieved through an 

Fig. 13.  Confusion matrix of the simple average on ISIC 2019 dataset.
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ensemble of ResNet50, Xception, and EfficientNetB0, combined using an adaptive weighted ensemble technique. 
This ensemble method achieved 91.1% accuracy and AUC of 95.5%, outperforming all individual models. The 
effectiveness of this approach highlights the strength of fusing multiple high-performing models, offering a 
balanced and computationally efficient strategy for improving classification performance in skin cancer 
detection. The results emphasize the effectiveness of ensemble learning in boosting performance and advancing 
medical image analysis.

Ensemble technique Accuracy Precision Recall F1 score Loss AUC

Stacking 0.885 0.90 0.89 0.89 0.405 0.905

Simple average 0.903 0.92 0.90 0.91 0.319 0.948

Proposed adaptive weighted ensemble 0.911 0.93 0.91 0.92 0.306 0.955

Table 13.  Evaluation metrics for the ensemble techniques on ISIC 2019 dataset.

 

Ensemble technique Accuracy Precision Recall F1 score Loss AUC

Stacking 0.907 0.91 0.91 0.91 0.357 0.940

Simple Average 0.926 0.92 0.93 0.92 0.205 0.962

Proposed adaptive weighted ensemble 0.932 0.93 0.93 0.93 0.225 0.973

Table 12.  Evaluation metrics for the ensemble techniques on ISIC 2018 dataset.

 

Fig. 14.  Confusion matrix using proposed adaptive weighted ensemble on ISIC 2019 dataset.
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The experimental results in Experiment 3 clearly demonstrate the superiority of the proposed adaptive 
weighted ensemble over both stacking and simple averaging methods on the ISIC 2018 and ISIC 2019 datasets. 
On ISIC 2018, the proposed method achieved an accuracy of 93.2%, representing a 2.76% improvement over 
stacking and a 0.65% gain over simple averaging. Similarly, the AUC improved by 3.51% compared to stacking 
and 1.14% over simple averaging, confirming enhanced discriminative power. Other metrics such as precision, 
recall, and F1 score all reached 93%, showing consistent performance gains. On ISIC 2019, the model again 
outperformed its counterparts, achieving 91.1% accuracy, which is 2.94% higher than stacking and 0.88% 
higher than simple averaging. The AUC on this dataset improved by 5.52% over stacking and 0.74% over simple 
averaging. These consistent improvements across all evaluation metrics indicate that the adaptive weighting 
mechanism effectively balances the strengths of individual models, leading to better ensemble behaviour, 
reduced misclassification, and improved generalization. The results highlight not only the robustness of the 
proposed method but also its practical relevance in real-world dermatological diagnosis tasks.

The proposed ensemble model was trained on six common lesion classes from the ISIC 2018 and 2019 
datasets. It achieved a high training accuracy of 98.3% and a validation accuracy of 95.4%, with training accuracy 
even higher, indicating strong performance on the source data. To assess its generalization capability, the model 
was evaluated directly on the external Derm7pt dataset without any additional training or fine-tuning, ensuring 
a fully unbiased test. Despite natural domain differences, the model maintained robust performance on unseen 
data, achieving 82.5% accuracy, 86% precision, 83% recall, 84% F1 score, and an AUC of 0.8915. This ~ 13% drop 
from validation to external accuracy is within acceptable limits for cross-dataset evaluation in medical imaging. 
The inclusion of patient metadata significantly enhanced the model’s ability to differentiate between lesion types 
with similar visual characteristics. These results confirm the model’s generalizability, supported by per-class 
metrics, Grad-CAM visualizations, and a confusion matrix that further illustrate its classification behaviour and 
interpretability.

Comparative analysis
To evaluate the proposed model ‘s performance, a comparative analysis against relevant studies conducted on 
ISIC 2018 and ISIC 2019 datasets is performed. For the ISIC 2018 competition, balanced accuracy was used 
as the primary evaluation metric. To contextualize our findings, Table 17 provides a comparative summary of 
related studies and their results on ISIC 2018 and ISIC 2019, highlighting the advancements in the field and 
positioning our approach within the broader research landscape.

Table 17 presents the summary of comparing the performance of the proposed model on the ISIC 2018 
and 2019 datasets against various related works. First, for the ISIC 2018 dataset, the proposed model demonstrates 
significant improvements in accuracy.

For ISIC 2018, compared to30, which reported 89.5%, the proposed model surpasses it by 4.13%. Their 
study incorporated metadata fusion with EfficientNet‑B3 and B4, test‑time augmentation (TTA), and colour 
constancy pre‑processing. Although metadata fusion contributed to their model’s improved performance, 
dataset complexity and class imbalance constrained further accuracy gains.

Similarly, compared to31, which achieved 89.48%, the proposed model shows a 4.15% improvement. This 
study leveraged a hybrid CNN‑ViT architecture with Focal Loss (FL) and metadata handling techniques such as 

Class TP FP FN TN Precision Recall F1 Score Specificity AUC

MEL 403 122 26 2545 0.768 0.944 0.847 0.942 0.953

NV 1165 11 129 1791 0.991 0.900 0.943 0.991 0.974

BCC 319 18 32 2727 0.947 0.909 0.927 0.992 0.936

AK 87 14 14 2981 0.861 0.861 0.861 0.994 0.923

BKL 234 12 24 2826 0.951 0.907 0.929 0.995 0.954

DF 21 3 0 3072 0.429 1.000 0.600 0.989 0.951

VASC 27 14 9 3046 0.659 0.964 0.783 0.994 0.984

SCC 52 7 2 3035 0.881 0.963 0.920 0.997 0.969

Table 15.  Evaluation metrics for the proposed ensemble per each class of ISIC 2019 dataset.

 

Class TP FP FN TN Precision Recall F1 Score Specificity AUC

MEL 118 6 0 882 0.952 1.000 0.975 0.993 0.997

NV 657 14 9 326 0.981 0.986 0.984 0.961 0.973

BCC 37 14 19 936 0.771 0.661 0.712 0.988 0.968

AK 13 11 19 983 0.542 0.433 0.481 0.989 0.964

BKL 86 7 16 918 0.925 0.843 0.882 0.992 0.971

DF 10 7 6 1007 0.588 0.625 0.606 0.993 0.969

VASC 13 13 1 1007 0.500 0.929 0.650 0.987 0.971

Table 14.  Evaluation metrics for the proposed ensemble per each class of ISIC 2018 dataset.
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normalization and distribution balancing. While metadata integration improved classification performance, our 
enhanced feature extraction and balancing strategies resulted in superior accuracy.

Compared to26, which achieved 85.4%, the proposed model demonstrates an improvement of 9.13%. Their 
method applied contrast enhancement as a pre‑processing step and used DarkNet‑53 and DenseNet‑201 with 
transfer learning. While contrast enhancement enhances lesion visibility, it lacks the comprehensive feature 
extraction capabilities integrated into our approach.

In comparison to37, which achieved 88.21%, the proposed model shows a 5.66% improvement. Their study 
utilized an ensemble of Inception ResNet v2 and EfficientNet‑B4 trained with an Adam optimizer. While their 
model leveraged strong architectures, the absence of metadata utilization limited its ability to incorporate 
additional clinical features for enhanced classification.

The proposed model also shows a 3.38% improvement over38, which obtained 90.15%. This study employed 
an ensemble of ConvNext‑Tiny, EfficientNetB0, SENet, DenseNet, and ResNet50 with pre‑processing techniques 
such as resizing, data augmentation, and normalization. Although their diverse ensemble approach contributed 

Fig. 15.  Grad-CAM visualizations of ISIC 2018 dataset.
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Fig. 18.  Models performance after metadata fusion and ensemble integration on ISIC 2019 dataset.

 

Fig. 17.  Models performance after metadata fusion and ensemble integration on ISIC 2018 dataset.

 

Fig. 16.  Grad-CAM visualizations of the ISIC 2019 dataset.
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to robust feature extraction, our optimized model integrates advanced learning strategies that improve 
classification accuracy.

Recent studies39 have shown that ensemble and attention‑based deep learning frameworks significantly 
enhance skin lesion classification. For example, DXDSENet‑CM (2024) combined Xception, DenseNet201, and 
a Depthwise Squeeze‑and‑Excitation ConvMixer (DSENet‑ConvMixer) to leverage the strengths of multiple 
convolutional backbones and attention mechanisms. This ensemble achieved an accuracy of 88.21% on the 
ISIC 2018 dataset; compared to this, the proposed ensemble model shows a 5.66% improvement, demonstrating 
superior ability to improve classification performance and generalization across diverse dermoscopic images.

Lastly, compared to28, which achieved 80% accuracy on ISIC 2018, the proposed ensemble model 
demonstrates a 16.5% improvement. Their study leveraged a federated learning framework combining CNN 
and MobileNetV2 models to ensure data privacy while addressing domain shifts across distributed datasets. 

Fig. 20.  Confusion matrix of Derm7pt dataset after using the proposed ensemble model.

 

Fig. 19.  Grad-CAM visualization sample of Derm7pt dataset.

 

Class TP FP FN TN Precision Recall F1 Score Specificity AUC

Melanoma 171 14 80 697 0.9243 0.6813 0.7844 0.9803 0.9235

Nevus 555 28 20 359 0.9520 0.9652 0.9585 0.9276 0.8450

Benign Keratosis 21 37 24 880 0.3621 0.4667 0.4078 0.9597 0.9025

Basal Cell Carcinoma 23 33 19 887 0.4107 0.5476 0.4694 0.9641 0.8515

Vascular Lesion 18 32 11 901 0.3600 0.6207 0.4557 0.9657 0.9925

Dermatofibroma 6 24 14 918 0.2000 0.3000 0.2400 0.9745 0.8340

Table 16.  Evaluation metrics of each class in Derm7pt dataset using the proposed model.
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While federated learning enhanced cross‑dataset adaptability and privacy preservation, our ensemble’s advanced 
feature extraction and model integration strategies contributed to significantly higher classification accuracy.

Regarding the ISIC 2019 dataset, we compared to29, which obtained 74.2%, the proposed model shows a 22.7% 
improvement. Their ensemble of EfficientNet models (B0, B1, B2) applied image‑based data augmentation and 
standardization, with metadata handled via imputation, but the proposed model’s advanced feature extraction 
strategies led to higher performance.

Similarly, we compared the performance of the proposed model with several related works, also showing 
substantial improvements in accuracy. Compared to30, which reported 66.2%, the proposed model surpasses 
it by 37.61%. This study integrated EfficientNet‑B3 and B4 with metadata fusion, but the proposed model’s 
optimization strategies and refined metadata utilization led to superior accuracy.

Compared to35, which achieved 63.4%, the proposed model shows an improvement of 43.7%. Their ensemble 
approach included EfficientNet‑B5 and SE‑ResNeXt‑101, but their model lacked metadata integration, which 
limited its accuracy.

Compared to36, which achieved 82.1%, the proposed model demonstrates a 10.96% improvement. Their 
study used an ensemble of DenseNet‑V2, Inception‑V3, and Xception with pre‑processing techniques like 

Study Dataset Pre-processing
Use 
metadata Classifier and training algorithm Parameters

Accuracy 
(%)

Proposed 
model

30

ISIC 
2018

Data augmentation, colour 
constancy (Shades of Gray), 
metadata encoding

Yes EfficientNet-B3 & B4 with metadata 
fusion, TTA

SGD, OneCycle LR, weighted cross-entropy 
loss 89.5%

93.2%

31

Image: Data augmentation 
Metadata: Handling missing 
values, normalization of 
numerical attributes (age), 
balancing metadata distribution

Yes Hybrid CNN-ViT with Focal Loss 
(FL)

Adam optimizer, learning rate = 0.001, batch 
size = 32, focal loss for class imbalance 89.48%

26 Contrast enhancement No DarkNet-53 and DenseNet-201 using 
transfer learning

-Epochs = 100-Learning 
rate = 0.0002,-Momentum = 0.6557-Batch 
size = 128

85.4%

37 Data augmentation and resize No Inception ResNet v2 and 
EfcientNet-B4 ensemble Adam optimizer with lr = 0.01, Epsilon = 0.1 88.21%

38 Resize, data augmentation and 
normalization No ConvNext-Tiny, EfficientNetB0, 

SENet, DenseNet, ResNet50 ensemble
Adam optimizer with 
lr = 0.001-Epochs = 100-Batch size = 32 90.15%

39 Image resizing No

The DXDSENet-CM ensemble model 
combines Xception, DenseNet201, and 
a Depthwise Squeeze-and-Excitation 
ConvMixer for enhanced skin lesion 
classification

Adam optimizer with learning rate schedule 
ReduceLROnPlateau (factor 0.3, min_lr 
1e-6),Batch size: 128 Epochs: 100  Input size: 
224 × 224 Activation:GELU ReLU, Softmax

88.21%

28 Image resizing -Normalization No Federated MobileNetV2 4 clients total (2 trained on ISIC 2018); 7 
classes 80%

29

ISIC 
2019

Image: Data augmentation 
resizingMetadata: 
Standardization Missing 
metadata (mean imputation 
for numerical values and mode 
imputation for categorical 
values)

Yes

Ensemble of EfficientNet models 
(EfficientNetB0, EfficientNet-B1, 
EfficientNet-B2) for image path, 
metadata processed through separate 
path and fused with image features for 
final classification

Adam optimizer with lr = 0.001, batch 
size = 32

74.2% 
(balanced 
accuracy)

91.1%

30
Data augmentation, colour 
constancy (Shades of Gray), 
metadata encoding

Yes EfficientNet-B3 & B4 with metadata 
fusion, TTA

SGD, OneCycle LR, weighted cross-entropy 
loss 66.2%

35 Black borders removal andreal 
time data augmentation No

Ensemble of EfficientNet-B5, SE-
ResNeXt-101(32 × 4d),EfficientNet-B4 
andInception-ResNet-v2

-Number of epochs over 32- Weighted 
Cross-Entropy Loss 63.4%

36 Normalization, data 
augmentation and cropping No Ensemble of DenseNet-V2,Inception-

V3,InceptionResNetV2 andXception

-Adam optimizer with learning rate 
(initial) = 1e-3Learning rate = 1e-4-
Epochs = 50 (starting from the 4th epoch-
Batch size = 64

82.1%

32
Image: -Metadata: Clinical 
data (age, sex, medical history) 
integrated

Yes DenseNet-169 with MetaNet and 
MetaBlock modules

Adam optimizer, learning rate = 0.001, batch 
size = 32

81.4% 
balanced 
accuracy

40
-Image resizing 
(100 × 100),-Non-Local Means 
denoising,-Data augmentation

No Custom CNN with Sparse Dictionary 
Learning

Adam optimizer, batch size = 32, 
epochs = 100, filters (128, 256, 512, 512, 
256), kernel sizes (11 × 11 → 1 × 1), ReLU and 
Softmax activations

81.23%

27
-image resizing (299 × 299)-Data 
augmentation -Class balancing 
through oversampling

No Inception-V3
Adam optimizer, learning rate = 0.01, 
dropout = 0.25, batch size = 20, epochs = 50, 
fivefold cross-validation

88.63%

28 Image resizing -Normalization No Federated MobileNetV2 4 clients total (2 trained on ISIC 2019); 8 
classes 87%

Table 17.  Comparative analysis against relevant studies on ISIC 2018 and ISIC 2019 datasets. Significant 
values are in [bold].
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normalization and data augmentation, but the proposed model’s advanced learning strategies and metadata 
integration contributed to its higher accuracy.

Compared to32, which achieved 81.4%, the proposed model outperforms it by 11.92%. Their study used 
DenseNet‑169 with MetaNet and MetaBlock modules but did not leverage metadata for enhanced classification.

In comparison to40, which achieved an accuracy of 81.23%, the proposed model shows a 12.16% improvement. 
Their method involved a custom CNN architecture combined with Sparse Dictionary Learning and pre‑processing 
steps such as image resizing (100 × 100), Non‑Local Means denoising, and data augmentation. While effective, 
the significant performance gap can be attributed to the proposed model’s use of deeper ensemble architectures, 
advanced feature integration, and inclusion of clinical metadata, which collectively enhance its generalization 
and decision‑making capabilities.

Lastly, in27, which achieved an accuracy of 88.63%, the proposed model demonstrates a 2.78% improvement. 
Their approach utilized the Inception‑V3 architecture along with pre‑processing techniques such as image 
resizing (299 × 299), data augmentation, and class balancing through oversampling. Despite their use of a strong 
baseline and cross‑validation, the proposed model’s integration of metadata and ensemble learning further 
enhances classification performance, leading to a more robust and accurate system for skin lesion analysis.

Conclusion and future work
This study fundamentally advances the domain of automated skin cancer detection by demonstrating the critical 
synergy between metadata integration, sophisticated pre-processing, and adaptive ensemble learning. Beyond 
improving raw classification metrics, this study collectively addresses key challenges such as data imbalance, 
variability in clinical metadata, and the heterogeneity of dermoscopic images, thereby pushing the limits of CNN 
applicability in real-world medical contexts.

The adaptive weighted ensemble approach—combining ResNet50, Xception, and EfficientNetB0—exemplifies 
how dynamically optimized model fusion can outperform conventional fixed-weight or simple averaging 
ensembles, resulting in enhanced robustness and generalization across multiple datasets. The proposed model 
achieved 93.2% accuracy, 93% precision, 93% recall, 93% F1 score, and 97.3% AUC on ISIC 2018. On ISIC 
2019, it reached 91.1% accuracy, 92% precision, 93% recall, 92% F1 score, and 95.5% AUC. On the external 
Derm7pt dataset, without fine-tuning, the model maintained strong performance with 82.5% accuracy, 86% 
precision, 83% recall, 84% F1 score, and 89.15% AUC, demonstrating strong and balanced performance even 
under domain shift conditions. The strategic incorporation of metadata not only enriches feature representation 
but also facilitates more nuanced decision boundaries, highlighting the untapped potential of multimodal data 
in dermatological diagnostics.

Future work could focus on how metadata contributes to individual predictions and its impact on refining 
the fusion process, leading to better generalization across different datasets. These improvements can further 
strengthen the reliability and clinical relevance of automated skin cancer detection systems.

Data availability
The ISIC 2018 and ISIC 2019 datasets analysed during the current study are available in the ISIC archive repos-
itory, https://challenge.isic-archive.com/   Additionally, the Derm7pt dataset used in this study is available on 
Kaggle at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​m​​e​n​a​k​a​m​​o​h​a​n​a​k​​u​​m​a​r​/​d​e​r​m​7​p​t
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