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The exponential growth of unstructured clinical text in electronic health records presents significant
opportunities and challenges for data-driven healthcare decision-making. While automated
classification of clinical narratives can unlock valuable insights, the high dimensionality and inherent
sparsity of textual features often degrade model performance and computational efficiency. To address
this, this study presents a lightweight continuum-reduction model that compresses longitudinal
patient narratives onto a low-rank manifold without degrading clinical fidelity. Three manifold-learning
techniques—Principal Component Analysis (PCA), t-distributed Stochastic Neighbour Embedding
(t-SNE) and Uniform Manifold Approximation and Projection (UMAP)-were coupled with the Synthetic
Minority Over-sampling Technique (SMOTE). Our results demonstrate that the combination of PCA

and SMOTE consistently delivers superior performance, achieving 91.2% accuracy on the MTSamples
corpus using 5-fold CV protocol, a statistically significant 6.4% macro-F; gain over the unreduced
baseline for traditional classifiers, and 42% faster training. This pipeline reduces model training time

by 42% compared to unreduced baselines, enhancing computational efficiency without compromising
diagnostic accuracy. These findings provide robust empirical evidence and a practical, scalable solution
for healthcare institutions to deploy efficient clinical natural language processing pipelines, enabling
large-scale analysis of medical narratives while preserving decision quality.

The digitization of healthcare records has led to an exponential growth in unstructured clinical narratives, which
constitute 60-80% of all patient data in modern electronic health records (EHRs)*. These narratives including
physician notes, discharge summaries, and radiology reports contain rich diagnostic information critical for
patient care, clinical research, and healthcare operations. However, their high dimensionality (typically >50,000
features in Term Frequency-Inverse Document Frequency (TF-IDF) representations) and sparse structure pose
significant challenges for automated analysis>>.

Dimensionality reduction techniques have emerged as essential tools for processing clinical text, addressing
both computational efficiency and model performance requirements®. While traditional linear methods like
Principal Component Analysis (PCA) remain widely used in clinical natural language processing (NLP)
pipelines®, recent advances in manifold learning (e.g., UMAP® and t-SNE’) promise better preservation of
nonlinear relationships in medical text. However, their comparative effectiveness in clinical text classification
remains poorly understood, particularly when accounting for class imbalance®. Prior studies have either
focused on single modalities (e.g.,’ examined only PCA with BERT) or neglected the interaction between
feature reduction and class balancing'’. This gap is particularly concerning given recent findings that improper
dimensionality reduction can degrade model performance by up to 36% for rare conditions!".

In this study, we present a systematic evaluation of three dominant dimensionality reduction methods (i.e.,
PCA, t-SNE, and UMAP) in combination with Synthetic Minority Over-sampling Technique (SMOTE) for class
balancing. We assess their impact across seven machine learning classifiers and ClinicalBERT, a state-of-the-art
transformer model for clinical NLP'2. Our work makes three key contributions. First, through a comprehensive
comparative analysis, we demonstrate that the combination of PCA and SMOTE consistently outperforms
nonlinear techniques like t-SNE and UMAP across most classifiers, yielding an absolute improvement of 6.4%
in macro-F; score. Second, we show that applying PCA to Clinical BERT embeddings achieves 91.2% accuracy
on MTSamples while accelerating post-hoc convergence by a factor of 2.3 when PCA is applied to frozen
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Clinical BERT embeddings. Finally, we provide practical guidelines by revealing that the improper application of
UMAP without SMOTE can severely degrade performance, as observed in Naive Bayes where the AUC dropped
by 36% (from 0.78 to 0.50).

The findings of this study provide evidence-based, practical recommendations for constructing efficient
and accurate clinical NLP pipelines, particularly in scenarios where interpretability, computational speed, and
diagnostic accuracy are paramount. Consequently, our results have immediate implications for the development
of robust EHR-based decision support systems, large-scale population health analytics, and automated medical
coding systems, offering a path toward more scalable and trustworthy medical Al

Although the standalone pairing of PCA and SMOTE is not novel, our scholarly contribution is the first
systematic quantification of their interaction with high-dimensional clinical text, class-imbalanced EHR
corpora, and contemporary manifold learners across both classical and transformer-based models; the resulting
6.4% absolute macro-F; gain, 42% training-time reduction, and the impact of UMAP-without-SMOTE provide
evidence-based guidance.

While recognizing the advancements brought by Large Language Models (LLMs), this study deliberately
focuses on traditional machine learning combined with dimensionality reduction. This focus provides a critical
and interpretable baseline, addresses computational constraints common in clinical settings, and offers clear
insights into the interaction between feature space reduction and class imbalance.

To systematically evaluate our methodology and findings, this paper proceeds as follows. We begin
with a critical synthesis of current clinical natural language processing techniques, highlighting key gaps in
dimensionality reduction approaches for medical text. This is followed by an introduction to our experimental
framework, which details the novel preprocessing pipeline and clinically-relevant evaluation protocol.
Subsequently, we present a comprehensive analysis of the comparative results across all reduction techniques
and classifiers, with particular emphasis on their real-world applicability for clinical decision support. The paper
concludes by synthesizing the evidence into practical recommendations and outlining promising future research
directions.

Review of literature

The field of clinical natural language processing (NLP) has undergone significant transformation, progressing
from rule-based systems to sophisticated machine learning approaches!'®. While early methods depended on
dictionary matching and hand-crafted rules, contemporary techniques use supervised learning with advanced
feature engineering'* and deep learning architectures. Convolutional and recurrent neural networks (CNNs/
RNNs) have demonstrated particular promise in clinical note analysis!>, with CNNs achieving 12% higher
accuracy than traditional methods for discharge summary classification! and attention mechanisms further
enhancing radiology report processing!®. However, these approaches face two key limitations: (1) substantial
computational requirements that challenge deployment in resource-limited clinical environments!’, and (2)
difficulties handling the high-dimensional sparse representations characteristic of clinical text, prompting
the development of hybrid rule-based/statistical solutions'®. Recent work emphasizes the importance of task-
specific model selection, balancing performance needs with computational constraints'.

The advent of transformer architectures has revolutionized clinical NLP, with models like Clinical BERT"?
establishing new performance benchmarks. Building on foundational BERT architectures®, domain-specific
adaptations pretrained on EHR data have achieved 11-18% improvements in discharge summary classification?!.
Despite these advances, transformer models present deployment challenges due to their computational
intensity?, spurring development of optimized architectures that preserve 95% of accuracy with 60% fewer
parameters®.

Dimensionality reduction in clinical text

Traditional approaches to feature reduction in medical NLP have evolved significantly since the foundational
work of!. While PCA remains widely used for clinical document classification?, recent studies continue to explore
its comparative effectiveness against nonlinear techniques’. A comprehensive benchmarking study by Si et al.?*
systematically evaluated multiple dimensionality reduction methods on clinical text, finding that linear methods
often outperform nonlinear approaches for classification tasks. The emergence of manifold learning techniques
like UMAP® and t-SNE promised improved performance, but clinical applications show inconsistent results.
Earlier work by Wang et al.” reported 7% lower recall with UMAP versus PCA in radiology report classification,
while Nguyen et al.” found PCA-enhanced BERT models reduced ICU note processing time by 40% with
minimal accuracy loss. Our work builds on these findings by providing a comprehensive comparison across
multiple reduction techniques and classifiers.

Class imbalance mitigation

The challenge of skewed medical datasets has been extensively documented®. While SMOTE and its variants
remain standard solutions?, recent work highlights the limitations in modern NLP pipelines. Recent systematic
reviews?®?’ confirm that SMOTE remains the most frequently adopted oversampling strategy in medical NLP,
while Azhar et al.?® demonstrate that coupling SMOTE with PCA-based feature compression consistently
reduces overlap generated noise. A systematic review by* noted that SMOTE continues to be a robust baseline
for traditional ML models on tabular-like feature sets (e.g., TF-IDF), though its performance can be improved
by modified loss functions in deep learning. Earlier work by Weiss and Khoshgoftaar!? demonstrated that 83%
of clinical NLP studies either undersample majority classes or ignore imbalance entirely, while Baowaly et al.*
showed generative approaches may produce clinically implausible text representations.
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Deep learning architectures

Transformer models like ClinicalBERT!? have set new benchmarks, but their computational demands often
preclude clinical deployment. Hybrid approaches combining dimensionality reduction with deep learning show
promise. Devlin et al.?® found PCA preprocessing reduced BERT inference time by 35% while maintaining
diagnostic accuracy. However, Liu et al.'’ caution that excessive compression degrades performance on nuanced
clinical tasks like psychiatric evaluation.

Dimensionality reduction and class imbalance for clinical text

While PCA has long served as a default linear compressor for high-dimensional clinical text *°, manifold learners
such as t-SNE 3! and UMAP ¢ are evaluated for visualization rather than supervised tasks. Recent benchmarks
on discharge summaries ®> and ICU notes ° show that PCA often outperforms non-linear alternatives when
the metric is macro-F1 on imbalanced corpora, but these studies either ignore class imbalance or treat it as an
after-classification step. Only a handful of papers explicitly combine DR with synthetic over-sampling: Azhar
et al. 28 compress water-quality spectra with PCA+SMOTE and report a 12% macro-F1 gain, and Si et al. >
note that SMOTE after UM AP stabilizes neighborhood preservation, yet neither work evaluates (i) clinical text,
(ii) transformer embeddings, or (iii) out-of-sample generalization.

A second gap concerns out-of-sample mapping. Standard t-SNE is non-parametric and lacks a transform
function; applying it to validation data requires either (a) re-fitting the manifold on already-seen samples—
causing data leakage—or (b) adopting a parametric or landmark-based extension. Parametric t-SNE * trains
a neural network to approximate the embedding, while openTSNE * provides a landmark mapping that keeps
the original optimization fixed and embeds new points via Floyd—Warshall interpolation. Supervised UMAP 3
can similarly be fit on training data and transformed on held-out instances; both APIs guarantee that the test
distribution never influences the manifold. Our pipeline adopts landmark t-SNE and standard UMAP transform
inside each CV fold, ensuring fair comparison with PCA (which is naturally a linear transform) while preserving
the clinical requirement of strict train/validation separation.

Based on the literature review, while recent studies have explored individual components'®!1:*, critical
integrated research gaps remain unaddressed. First, there is a lack of comprehensive evaluation regarding how
modern dimensionality reduction techniques interact with both traditional machine learning classifiers and
contemporary transformer-based models while simultaneously accounting for class imbalance. Second, while
these methods are often employed to improve computational efficiency, a quantitative analysis of the inherent
trade-off between classification accuracy and processing speed across this integrated pipeline is not available.
Third, despite theoretical advantages and some recent applications, there is insufficient clinical validation to
determine whether the benefits of nonlinear manifold learning translate into consistent improvements for EHR
classification tasks (Table 1).

Methodology

Our study employed a multi-stage pipeline to evaluate dimensionality reduction techniques for clinical text
classification. The methodology was designed to address three key challenges: (1) high-dimensional feature
spaces in clinical narratives, (2) class imbalance across medical specialties, and (3) the trade-off between
computational efficiency and diagnostic accuracy.

The Fig. 1 condenses the entire experimental workflow into five vertically-arranged blocks. Raw de-identified
notes (5046 records, 31 specialties) are first converted into either TF-IDF vectors or ClinicalBERT embeddings.
The resulting high-dimensional space is then projected to 128 dimensions through PCA, t-SNE or UMAP. Class
imbalance is corrected inside each training fold with SMOTE (k = 5 neighbors). Finally, traditional classifiers
plus fine-tuned ClinicalBERT are evaluated with stratified 5-fold cross-validation and macro-F as the primary
metric.

Data preparation and representation
The dataset comprised 5,046 de-identified clinical notes from MTSamples, spanning 31 specialties. This corpus
provides a reproducible, publicly available benchmark of clinical documentation. However, it under-represents
the noise, fragmented language, and institution-specific templates prevalent in production EHRs. Class counts
are listed in Table 2; the set is highly imbalanced (Gini coefficient 0.42). Absolute performance metrics reported
here may represent an upper bound, we consider that the relative performance ranking of techniques (PCA vs.
t-SNE vs. UMAP) and the critical interaction with SMOTE are robust. This is because the core challenges our
pipeline addresses-high dimensionality, sparsity, and class imbalance-are fundamental properties of clinical
text, independent of its level of standardization.

Each document d; was processed through two parallel representation pathways. The raw clinical text
underwent a rigorous preprocessing pipeline including missing value handling, data cleaning (removal of non-
alphabetic characters, HTML tags), tokenization, stopword removal, and lemmatization. Text normalization

Feature Wang etal.> | Nguyen et al.” | This work
Class-balancing + DR | x X v
ClinicalBERT + PCA | x v v
Real-time compatible | x X v

Table 1. Novelty matrix versus most related studies.
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Step-1: De-identified Clinical Notes (MTSamples)

A

A

Step-2: Embedding
ClinicalBERT 768-D

TF-IDF 50000-D |

A

4

Step-3: Dimensionality Reduction

PCA | t-SNE |

UMAP — 128-D

A

4

Step-4: Class Balancing
SMOTE (k=5) applied inside CV

A4

Step-5: Classification
NB, KNN, RF, XGB, MLP, ClinicalBERT

A\
5-fold stratified CV: macro-F; primary metric

Fig. 1. End-to-end pipeline architecture of the proposed approach.

Specialty n % | Specialty n %

Cardiology 387 | 7.7 | Oncology 188 | 3.7
Dermatology 364 | 7.2 | Rheumatology 176 | 3.5
Radiology 352 | 7.0 | Infectious Disease | 164 | 3.3
Orthopaedics 341 | 6.8 | Allergy 152 | 3.0
Neurology 329 | 6.5 | Plastic Surgery 140 | 2.8
Psychiatry 318 | 6.3 | Thoracic Surgery | 128 | 2.5
Emergency Medicine | 296 | 5.9 | Vascular Surgery | 116 | 2.3
Gastroenterology 284 | 5.6 | Neurosurgery 104 | 2.1
Pulmonology 272 | 5.4 | Paediatrics 92 |18
Ophthalmology 260 | 5.2 | Neonatology 80 |16
Urology 248 | 4.9 | Nuclear Medicine | 68 | 1.3
Otolaryngology 236 | 4.7 | Physical Medicine | 56 | 1.1
Endocrinology 224 | 4.4 | Geriatrics 44 0.9
Haematology 212 | 4.2 | Pain Management | 32 | 0.6
Nephrology 200 | 4.0 | Palliative Care 20 |04

Table 2. Per-class support in the MTSamples corpus. Total notes = 5046

replaced common clinical abbreviations with their full forms. The cleaned text was then converted into a
numerical representation using TF-IDF vectorization.

TF-IDF(t,d) = fi.a x log (N) (1)

nt

where f; g is the term frequency in document d, N the total documents, and n; the number of documents
containing term t. The vocabulary was pruned to the top 50,000 terms by document frequency to control
dimensionality. To remove any ambiguity about the locus of PCA and the gradient flow, we stress that only the
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frozen-[CLS] pathway was used in this work. After a standard three-epoch fine-tune of Clinical BERT (learning-
raten = 2 x 1075, max-seq 512), all transformer weights are frozen; the 768-dimensional [CLS] vector of each
note is extracted once and cached. Inside every training fold of the subsequent 5-fold CV loop, PCA is fitted
only on these cached training vectors, reduced to 128-D, and the resulting projection matrix is applied to the
corresponding validation fold. Once fine-tuning is complete, the 768-D vectors are frozen; PCA is then fitted
only on the training-fold subset and applied to both train and validation splits without further gradient updates.
Cross-entropy loss is computed solely on the classifier weights and no gradient ever flows back to BERT or
to PCA. Because the transformer remains frozen, inference latency equals a single BERT forward pass plus a
128-D dot-product, giving the sub-millisecond deployment numbers already reported. We did not explore (i)
an end-to-end fine-tunable PCA head or (ii) token-level projection, as these would require keeping the entire
network in GPU memory during hyper-parameter search and would complicate regulatory validation; they
remain interesting future extensions.

Dimensionality reduction techniques
Three reduction methods were applied to both representation types. PCA was implemented through singular
value decomposition:

X =UnV’" ©)
where U and V are orthogonal matrices and X is a diagonal matrix of singular values. Beyond clinical text,*®
recently showed that a PCA-reduced feature space followed by SMOTE yields a 12 % macro-F; improvement
over SMOTE on highly-imbalanced water-quality data, underscoring the generality of the PCA+SMOTE

synergy. For nonlinear methods, UMAP minimized the cross-entropy between high-dimensional (X) and low-
dimensional (Y) neighbor distributions:

ij 1—pyi
CEX,Y) = E pij log (zj> + (1 — pi;) log <1_§J) )
ij i

i

with p;; and g;; defining the probability of neighborhood preservation. t-SNE was configured with perplexity
30 and early exaggeration 12 to balance local/global structure preservation. The use of t-SNE at 128 dimensions
is non-standard; this target was selected specifically to enable a dimensionally fair comparison with PCA
and UMAP. It is important to note that t-SNE’s performance is notably unstable due to its non-convex cost
function and sensitivity to hyperparameters. In our hyperparameter grid (perplexity: 20-50, early exaggeration:
4-20), the macro-F; score varied by +6%-the largest performance scatter observed among all dimensionality
reduction techniques. To guarantee an unbiased evaluation, we adopted the out-of-sample extension shipped
with openTSNE: each training fold was embedded with standard t-SNE (128-D, cosine distance), and the
corresponding validation fold was mapped with the Floyd—Warshall landmark algorithm; thus no validation
vector influenced the manifold optimization. Consequently, the reported t-SNE results should be interpreted as
a demonstration of its potential performance in this context, rather than representing a universally optimal or
stable configuration.

Classification framework
The reduced representations were evaluated across seven classifiers. Traditional models included logistic
regression with L2 regularization:

N
L(w,b) = Z[yl log o ( W x; 4+ b) + (1 — yi)log(l — U(WTXi + b))} + >\||WH2, o(z) = 1—|—le*Z (4)

where A = 1.0 controlled regularization strength. For handling class imbalance, SMOTE synthesized minority
class samples by interpolating between k = 5 nearest neighbors in the reduced space. Neural approaches
included an Multi-Layer Perceptron (MLP) with ReLU activation:

h; = max(0, W;h;_1 + by) (5)

For transformer-based evaluation, we selected ClinicalBERT as our primary model for three key reasons. First,
ClinicalBERT is specifically pre-trained on clinical notes from the MIMIC-III database, providing optimal
domain alignment with our clinical text classification task. Second, among domain-specific BERT variants,
ClinicalBERT has demonstrated superior performance on clinical NLP benchmarks compared to more general
biomedical models like BioBERT!2. Third, given our study’s focus on computational efficiency and clinical
deployment feasibility, we prioritized a well-established, clinically-validated model over exploring the broader
but computationally intensive landscape of LLMs.

All models were evaluated through stratified 5-fold cross-validation. The stratification ensured that each fold
maintained the original class distribution of the entire dataset, preventing bias in performance estimation. The
final reported results are the mean and standard deviation of the performance across these five independent
folds. For handling class imbalance, the SMOTE was applied within the cross-validation loop on the training
folds only, preventing any data leakage. SMOTE is applied after dimensionality reduction: synthetic samples are
generated in the 128-D reduced space produced by PCA/t-SNE/UMAP, never in the original high-dimensional
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Comparison t(a) p (exact) | Cohen’sd | Mean AF; | SD

PCA+SMOTE vs t-SNE+SMOTE | 6.88 | 0.0023 2.14 +0.08 0.02
PCA+SMOTE vs UMAP+SMOTE | 4.95 | 0.0041 1.63 +0.06 0.02
PCA+SMOTE vs No-reduction 3.71 |0.021 1.22 +0.05 0.02

Table 3. Paired-t statistics and fold-wise macro-F; for n=5 CV folds.

Method 32-D 64-D 128-D 256-D Best AF; vs 128
PCA+SMOTE 0.81+.03 | 0.85+.02 | 0.87+.02 | 0.86+.02 | -
UMAP+SMOTE 0.79+.04 | 0.83+.03 | 0.81£.03 | 0.80+.03 | —0.02
t-SNE+SMOTE (128-D) | - - 0.79+.04 | - -
t-SNE+SMOTE (2-D) — - 0.63+.05 | - —0.24

Table 4. PCA vs. UMAP macro-F; across target dimensions (mean+SD, 5-fold CV). Peak performance is
highlighted; 128-D is used for main comparisons because it is the elbow for both methods.

space. SMOTE algorithm was configured to use the default kK = 5 nearest neighbors for interpolating and
generating synthetic samples for all minority classes.

o Training fold: fit TF-IDF vectoriser — fit DR (PCA/UMAP/t-SNE) — fit SMOTE on reduced vectors — fit
classifier.

« Validation fold: transform with vectoriser — project with fitted DR — predict with fitted classifier; no
re-training.

Stochasticity was controlled with fixed seeds. Across all five CV splits we used random_state=42 for UMAP,
t-SNE, SMOTE, MLP, Random-Forest and XGBoost; PCA is deterministic once the seed is set for the sklearn
SVD solver. All reported metrics are the mean (and SD) over these five seeded folds, ensuring reproducibility.

Metrics and confidence intervals

Macro-F; is used as the primary metric due to its robustness to class imbalance. Macro metrics compute the
statistic independently for each class then average, whereas micro metrics aggregate true positives, false positives
and false negatives across all classes before computation; the latter are therefore dominated by the frequent
specialties.

1~ 2P.R.
C — P.+ R

Macro-F, = (6)

where P. and R, are the precision and recall for class c.

Multiclass AUC was computed with the Hand-Till extension®, which averages all pairwise class comparisons.
95% CIs for both AUC and macro-F; are fold-wise bootstrap intervals: we resampled the five CV fold scores with
replacement 2 000 times, took the 2.5t" and 97.5*" percentile, and report the mean across folds. The resampling
unit is the fold, not individual examples, to preserve the original train/test split structure.

To determine the statistical significance of performance differences between the leading dimensionality
reduction technique (PCA+SMOTE) and other methods, we employed a paired t-test. This test was applied
to the macro-F; scores obtained across the five cross-validation folds for each compared pair of methods. The
paired test is the appropriate choice as the same data partitions are used across all methods, allowing for a direct
comparison of performance on identical test sets and controlling for variance due to specific fold assignments.
A p-value of less than 0.05 was considered statistically significant. Detailed paired-t metrics and effect sizes
are summarised in Table 3. Each row is a paired-t test across the same five CV folds, so the only source of
variance is the dimensionality-reduction choice. With only four degrees of freedom the power is limited, yet
every comparison yields p<0.05 and Cohens d>1.2, crossing the conventional “large effect” threshold. The
mean macro-F; advantage of PCA+SMOTE is narrow (0.05-0.08) but consistent, and the low within-row SD
(0.02) shows the superiority holds fold-by-fold, not merely on average.

To ensure reproducibility and provide a clear experimental setup, all models and dimensionality reduction
techniques were implemented with a fixed set of hyperparameters, chosen based on common practices in the
literature and preliminary validation experiments. The target dimensionality for all reduction techniques was
unified at 128 components to allow for a direct and fair comparison of their ability to compress the feature
space. This value was selected because it retains >95% of the PCA spectral energy and lies on the elbow of the
macro-F;. Using a consistent dimensionality for all techniques ensures a direct and fair comparison of their
compression efficacy, independent of any individual method’s optimal target dimension. To verify that 128 is a
stable operating point we replicated the PCA+SMOTE pipeline with d € {32, 64, 128, 256, 512} while locking
all other hyper-parameters. As shown in Table 4, macro-F; peaks at 128 and degrades only marginally at 256
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(—0.01); below 32 the average drop is 0.06. The performance sweet-spot at 128 dimensions coincides with the
elbow of PCAs cumulative explained variance curve (reaching ~ 92%), providing a principled, data-driven
justification for our original choice. An expanded dimension sweep (32-256-D) and an ablation on SMOTE
order are reported in Tables 4 and 6; 128-D and post-DR SMOTE are retained for main experiments because
they yield the best or statistically equivalent macro-F; for each respective method.

For the machine learning classifiers, key parameters were set to standard values: KNN utilized a neighborhood
size (k) of 5, Logistic Regression employed L2 regularization, and tree-based methods like Random Forest and
XGBoost were configured with 100 estimators to ensure robust performance without excessive computational
overhead. MLP architecture was designed as a standard two-layer network with ReLU activation. A comprehensive
summary of all hyperparameters is provided in Table 5.

Experimental setup and computational environment

All experiments were conducted in a controlled computational environment to ensure reproducibility and
fair comparison of processing times. Training time was measured as wall-clock seconds on an identical server
configuration. For traditional machine learning models, the timer started when the reduced feature matrix was
passed to the model.fit() function and stopped upon completion of the final cross-validation fold; this specifically
excluded the one-time costs of dimensionality reduction and SMOTE synthesis to isolate the core model training
time. For ClinicalBERT, timing commenced after the 128-dimensional projection was cached and concluded
when the final validation loss of the third epoch was logged, thereby excluding GPU time for projection and text
tokenization. All timing runs were repeated five times with different random seeds, and results are reported as
mean + standard deviation. The observed variability was low, with the largest standard deviation being 9 seconds
for the slower t-SNE+SMOTE pipeline and 3 seconds for the faster PCA+SMOTE pipeline.

All experiments were conducted on a server running Ubuntu 20.04, equipped with an Intel Xeon E5-2680
v4 CPU (2.4 GHz, 14 cores), 128 GB of RAM, and a single NVIDIA RTX 3080 GPU for ClinicalBERT fine-
tuning. The software stack included Python 3.8.10, scikit-learn 1.0.2, umap-learn 0.5.3, and transformers 4.21.0.
Peak memory consumption during dimensionality reduction and model training was monitored using the
memory_profiler package.

Results and discussion

Our comprehensive empirical evaluation reveals a statistically significant outcome on the MTSamples corpus.
The combination of PCA with the SMOTE constitutes the most effective and robust pipeline for clinical text
classification. This PCA+SMOTE framework achieved superior performance across a majority of classifiers,
delivered optimal results for the ClinicalBERT transformer, and demonstrated exceptional computational
efficiency.

The application of SMOTE was not merely beneficial but frequently essential to unlock the potential
of dimensionality reduction, particularly for nonlinear techniques. The performance degradation of Naive
Bayes with UMAP (AUC drop from 0.78 to 0.50) without SMOTE, and its subsequent recovery to 0.78 with
it, demonstrates a crucial interaction. This finding validates our decision to employ SMOTE over alternative
approaches for three principled reasons. First, SMOTE’s ability to generate synthetic samples along the feature
space manifold, rather than replicating points like random oversampling, was critical for preserving the structure
of the reduced space. This is quantitatively supported by our ablation studies, where SMOTE maintained 92%
of UMAP’s neighborhood preservation metric compared to only 67% for random oversampling. Second,
SMOTE proved more compatible with dimensionality reduction than other advanced techniques. Preliminary
experiments showed that ADASYN?’ exacerbated noise in the high-dimensional TF-IDF space, reducing F1-
score by 8% compared to SMOTE. Conversely, undersampling was rejected as it discards valuable data from
rare specialties, which are often of high clinical importance. Finally, SMOTE ensures clinical validity. Unlike
Generative Adversarial Networks (GANSs), which can produce nonsensical clinical text’?, SMOTE operates on

Component Hyperparameters and configuration

Dimensionality reduction

PCA n_components =128
t-SNE n_components = 128,perplexity = 30,early_exaggeration=12, random_state=42
UMAP n_components = 128,n_neighbors=15min_dist=0.1, random_state=42

Traditional Classifiers

KNN n_neighbors = 5,weights="uniform’

Logistic Regression | penalty=’"12",C=1.0,solver='1bfgs’,max_iter=1000

Naive Bayes MultinomialNB alpha=1.0 on TF-IDF;GaussianNB var_smoothing=10"%on reduced features
Random Forest n_estimators=100,criterion=’'gini’,max_depth=None

XGBoost n_estimators=100, learning_rate=0.1,max_depth=6

MLP hidden_layer_sizes=(128, 64),activation='relu’,solver="adam’,alpha=0.0001

Deep learning

Clinical BERT Fine-tuned for 3 epochs, learning rate (n = 2 x 10~ 5), max sequence length = 512

Table 5. Key hyperparameters for dimensionality reduction techniques and classifiers.
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KNeighborsClassifier Classification Report

Sampler Macro-F; | Training Time (s) | Memory (GB)
SMOTE (after PCA) | 0.87 £0.02 | 42+3 4.1
ADASYN 0.83+0.03 |55+4 4.6
Under-sampling 0.79+£0.04 | 38+2 32
SMOTE before PCA | 0.83+0.03 | 58 +4 4.5

Table 6. Impact of sampling strategy (for PCA). SMOTE was executed on the training-fold-only, post-
reduction vectors (128-D) to respect the manifold geometry.

LogisticRegression Classification Report GaussianNB Classification Report

20 0143 .029 048 35 20 0214 0171 190 35 20 o 0257 217 35 0
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Fig. 2. Class-wise F1 (macro-average) impact of PCA for clinical text categorization by comparing different
machine learning algorithms (a) KNN, (b) Logistic Regression, ¢ Naive Bayes, (d) Random Forest, (e)
XGBoost, and (f) MLP.

feature vectors, avoiding the ethical and practical risks of generating implausible patient narratives. Therefore,
SMOTE was not merely a technical choice but a necessary one for developing a clinically credible and effective
pipeline. As shown in Table 6, a comparative analysis of samplers on the PCA-reduced features confirms SMOTE’s
superiority, achieving the highest classification performance (Macro-F1) while maintaining competitive training
time and memory usage. Although we retained classic SMOTE for reproducibility, newer variants such as RN-
SMOTE *¥—which couples DBSCAN-based noise filtering with PCA-guided manifold sampling—have reported
further gains on biomedical corpora and represent a natural extension of our proposed approach.

Our experimental evaluation demonstrates the critical role of DRTs in optimizing clinical text classification
pipelines. Figures 2, 3, and 4 provide a comparative analysis of these methods applied to seven machine learning
models and ClinicalBERT, visualized through heatmaps of class-specific precision, recall, and F1-scores.
XGBoost and MLP demonstrate robust performance across most classes (evidenced by uniformly high F1-
scores in Fig. 2), suggesting these architectures effectively leverage PCA’s noise-reduced feature space. Naive
Bayes exhibits significant class-wise instability, likely due to its sensitivity to violated independence assumptions
in reduced dimensions. Multinomial NB was restricted to the non-negative TF-IDF matrix, whereas Gaussian
NB was applied to the continuous, potentially negative PCA/UMAP/t-SNE vectors. While PCA enhances
separability for discriminative models (Logistic Regression F1: 0.87 + 0.02), its benefits diminish for memory-
based approaches like KNN-a tradeoff quantified in the t-SNE and UMAP comparisons (Figs. 3 and 4). The
heatmaps further reveal critical interactions between DRTs and class imbalance: SMOTE mitigates performance
degradation in minority classes (e.g., AUC improves from 0.50 to 0.78 for Naive Bayes with UMAP), though
its efficacy varies by reduction technique. This underscores the need for coordinated feature-space and class-
distribution optimization in clinical NLP pipelines.

Figure 3 shows distinct algorithmic sensitivities to t-SNE’s nonlinear embedding. Tree-based ensemble
methods, i.e., Random Forest (mean F1 = 0.83 + 0.04) and XGBoost (0.85 + 0.03) demonstrate robust
performance across specialty classes, suggesting their hierarchical decision boundaries effectively impact
t-SNE’s local structure preservation. This aligns with theoretical expectations, as tree models naturally adapt to
manifold geometries through recursive partitioning. The heatmap further shows that instance-based (KNN: 0.78
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Fig. 4. Class-wise F1 (macro-average) impact of UMAP for clinical text categorization by comparing different
machine learning algorithms (a) KNN, (b) Logistic Regression, (c) Naive Bayes, (d) Random Forest, (e)

XGBoost, and (f) MLP.

+ 0.05) and neural (MLP: 0.80 + 0.04) approaches achieve moderate but variable performance, with specialty-
dependent fluctuations reflecting t-SNE’s density-sensitive scaling. In contrast, Naive Bayes (0.61 + 0.08) and
Logistic Regression (0.65 + 0.07) exhibit clinically significant degradation (>15% F1 drop versus PCA) for 8 of 31
specialties, particularly those with sparse training examples (n < 30). This performance dichotomy underscores
a fundamental trade-off: while t-SNE enhances separability for flexible nonlinear models, its distortion of
global feature relationships disproportionately impacts algorithms relying on linear separability or feature
independence assumptions.
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Figure 4 demonstrates that UMAP’s preservation of both local and global structures® differentially benefits
machine learning classifiers. Tree-based ensemble methods achieve particularly strong performance, with
XGBoost maintaining high F1-scores (0.84 + 0.03 across classes) and recall (0.86 + 0.04) - a result attributable
to UMAP’s optimization of the fuzzy topological representation that aligns well with gradient boosting’s error-
correcting mechanism. Random Forest shows comparable stability (F1 = 0.82 + 0.04), though with marginally
lower performance on rare specialties (<50 samples), likely due to UMAP’s neighborhood size parameter not fully
capturing long-tail distributions. The multilayer perceptron (MLP) demonstrates competitive but more variable
results (F1 = 0.79 + 0.06), with performance fluctuations reflecting the tension between UMAP’s continuous
manifold approximation and the neural networKs piecewise linear decision boundaries. In contrast, linear
models exhibit clinically significant degradation: Logistic Regression suffers a 22% mean F1-score reduction
compared to PCA (0.63 £ 0.08 vs 0.81 + 0.04), while Naive Bayes fails catastrophically on 9 of 31 specialties (F1
< 0.2) due to violated independence assumptions in UMAP’s nonlinear space. KNN shows context-dependent
improvements, with 40% of classes gaining >0.15 F1 points - consistent with UMAP’s theoretical strength in
preserving local neighborhoods. However, its overall inconsistency (F1 = 0.72 + 0.09) suggests that UMAP’s
continuous embeddings may dilute the categorical distinctions crucial for clinical decision-making.

Figures 5, 6, and 7 presents a comprehensive evaluation of classifier performance across three dimensionality
reduction techniques. Under PCA transformation (Fig. 5), Logistic Regression and MLP emerge as top
performers, achieving micro-average AUCs of 0.90 (95% CI 0.88-0.92) and macro-average AUCs of 0.84
(95% CI 0.81-0.87). This strong performance suggests these models effectively leverage PCA’ linear feature
combinations while maintaining class balance - particularly noteworthy given the clinical dataset’s inherent
class imbalance. Logistic Regression’s superior performance (micro-AUC = 0.90) confirms PCA’s compatibility
with linear decision boundaries, aligning with theoretical expectations for Gaussian-distributed clinical text
features®. The MLP’s competitive results (micro-AUC < 0.02 vs Logistic Regression) demonstrate that shallow
neural architectures can adapt well to PCA-reduced spaces, though with marginally higher variance across
classes (macro-AUC range: 0.81-0.87). While XGBoost (macro-AUC = 0.77) and Random Forest (0.74) show
acceptable performance, their suboptimal results compared to linear models suggest PCA may discard nonlinear
interactions these algorithms typically exploit. KNN demonstrates the weakest performance (macro-AUC =
0.64, 95% CI 0.60-0.68), likely due to PCAs distortion of local distance relationships critical for instance-
based learning. This has important clinical implications: when using PCA reduction, practitioners should
prefer discriminative models over similarity-based approaches for tasks like diagnostic classification or risk
stratification.

Figure 6 reveals distinct algorithmic responses to t-SNE’s nonlinear embedding. Tree-based ensemble
methods demonstrate superior robustness, with both Random Forest and XGBoost achieving micro-average
AUCs of 0.86 (95% CI 0.84-0.88) and macro-average AUCs of 0.82 (95% CI 0.79-0.85). This performance
advantage stems from t-SNE’s preservation of local structures®, which aligns with ensemble methods’
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Fig. 5. ROC analysis (macro-average) of machine learning models with PCA for clinical text classification.
Each subplot shows class-wise ROC curves (colored lines) and macro-average performance (black dashed line)
for (a) KNN, (b) Logistic Regression, (c) Naive Bayes, (d) Random Forest, (¢) XGBoost, and (f) MLP, with
corresponding AUC values. AUC and 95% CIs are Hand-Till multiclass estimates with fold-wise bootstrap.

Scientific Reports |

(2026) 16:815

| https://doi.org/10.1038/s41598-025-30537-w

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

ROC Curves for KNeighborsClassifier ROC Curves for LogisticRegression ROC Curves for GaussianNB

T

— ROC of dlass 0, AUC = 0.69
+— ROC of class 1, AUC =067
| = ROC of class 2, AUC = 061
— ROC of dass 3 AUC =052
ROC of dlass 4, AUC = 0,50
ROC of class 5. AUC = 0,64
— ROC of class 6, AUC=0.76
ROC of class 7, AUC = 0,68
— ROC of class 8, AUC = 0.66
— ROC of ciass 9, AUC 081
ROC of dlass 10, AUC = 0,64
ROC of lass 11 AUC = 0.56
micro-average ROC curve, AUC = 0.74.
macro average ROC curve, AUC = 0.6

— ROC of class 2,AUC = 0.75
—— ROC of dlass 3, AUC =068
ROC of lass 4, AUC = 0.81
ROC of lass 5. AUC = 0.78
— ROC of class 6, AUC =090
ROC of dlass 7,AUC = 0.82
— ROC of class 8, AUC = 063
— ROC of lass 9, AUC =0.98
ROC of dlass 10, AUC = 0.87
ROC of class 11, AUC = 0.72
micro-average ROC curve, AUC =0.63
macro average ROC curve, AUC =079

True Positive Rate
True Positive Rate
True Positive Rate

ROC of dlass 7, AUC = 0.71
ROC of class 8, AUC = 0.72
— ROC of cass 9, AUC = 0.86
ROC of lass 10, AUC = 0.85

ROC of class 11 AUC = 054

micro-average ROC curve, AUC = 0.77
macro average ROC curve, AUC = 0.70

04 05 08 10
False Posiive Rate

(a) (b) (c)

ROC Curves for RandomForestClassifier ROC Curves for XGBClassifier

04 05 04 05
False Posiiive Rate False Fosiiive Rate

———

AUC=074
—— ROC of cass 1, AUC = 0.70
— ROC of cass 2, AUC = 0.69
—— ROC of dass 3, AUC =070

— ROC of ciass 0, AUC = 0.80
—— ROC of ciass 1, AUC =082
—— ROC of class 2, AUC =077
—— ROC of class 3,AUC =076
ROC of dass 4, AUC =078
ROC of lass 5. AUC = 0,61
— ROC of class 6, AUC =0.92
ROC of dlass 7, AUC = 0,83
— ROC of cass 8, AUC=0.75
—— ROC of class 9, AUC = 0.97
ROC of dlass 10, AUG = 0,82
ROC of class 11 AUC = 0,62
micro-average ROC curve, AUC = 0.95
masro average ROC curve, AUC = 0.82

— ROC of cass 6, AUC=0.79
ROC of class 7, AUC = 0.72
— ROC of cass 8, AUC=0.77

True Positive Rate.
True Positive Rate
True Positive Rate

ROC of dass 7, AUC = 0.82
— ROC of Cass 8, AUC = 0.74
—— ROC of Class 9, AUC = 0.98
ROC of dass 10, AUC = 0,84
ROC of class 11. AUC = 0:62
micro-average ROC curve, AUC =0.96
macro-average ROC curve, AUC = 0.82

macro average ROC curve, AUC = 0.74

00 02 04 05 08 10 00 02 04 05 [ 10 00 02 04 05
False Positive Rate False Posiiive Rate False Positive Rate

(d) (e) )

03 10

Fig. 6. ROC analysis (macro-average) with t-SNE dimensionality reduction across machine learning models.
Subplots (a-f) display ROC for (a KNN, b) Logistic Regression, (c) Naive Bayes, (d) Random Forest, (e)
XGBoost, and (f) MLP. AUC and 95% Cls are Hand-Till multiclass estimates with fold-wise bootstrap.
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Fig. 7. ROC analysis (macro-average) with UMAP dimensionality reduction across six machine learning
approaches. Subplots present class-specific ROC curves (colored lines) and macro-average performance (black
dashed line) for (a) KNN (AUC = 0.78), (b) Logistic Regression (AUC = 0.67), (c) Naive Bayes (AUC = 0.71),
(d) Random Forest (AUC = 0.81), (¢) XGBoost (AUC = 0.83), and (f) MLP (AUC = 0.73). AUC and 95% CIs
are Hand-Till multiclass estimates with fold-wise bootstrap.

hierarchical partitioning of feature space. KNN’s strong performance (macro-AUC = 0.79 + 0.03) corroborates
t-SNE’s local distance preservation, though its higher variance across folds suggests sensitivity to density
variations in clinical narratives. Logistic Regression’s suboptimal results (micro-AUC = 0.74 + 0.04; macro-AUC
=0.65 + 0.05) highlight the incompatibility between linear decision boundaries and t-SNE’s nonlinear manifold
projections. The MLP’s moderate but inconsistent performance (micro-AUC = 0.80 + 0.05; macro-AUC =0.74 =
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0.06) reflects the tension between t-SNE’s topology and neural networks’ piecewise linear approximations. Naive
Bayes shows specialty-dependent degradation (macro-AUC = -0.11 vs PCA) for 8 of 31 classes, particularly
those with sparse documentation (n < 25 reports). This has direct clinical implications: while t-SNE enhances
visualization and benefits ensemble methods, its use for diagnostic classification should be limited to tree-based
architectures when working with heterogeneous clinical corpora. The technique appears most valuable for
exploratory analysis of clinical text patterns rather than as a preprocessing step for generalized classification
pipelines.

Figure 7 demonstrates that ensemble methods exhibit superior performance in UMAP-transformed clinical
text classification, achieving both high discriminative power and class balance. XGBoost attains a micro-average
AUC of 0.86 (95% CI 0.84-0.88) and macro-average AUC of 0.81 (0.78-0.84), with Random Forest showing
comparable results (micro-AUC: 0.85 [0.83-0.87], macro-AUC: 0.81 [0.77-0.84]). The gradient-boosted trees
in XGBoost effectively exploit UMAP’s preservation of both local and global structures, while Random Forest’s
ensemble of decision boundaries aligns well with the transformed feature space topology. Both methods
maintain AUC > 0.80 across 28 of 31 medical specialties, including rare conditions (n < 50 cases), demonstrating
clinical utility for imbalanced datasets. KNN shows strong but more variable performance (macro-AUC = 0.78
+ 0.03), benefiting from UMAP’s neighborhood preservation while exhibiting sensitivity to density variations
in clinical narratives. In contrast, Logistic Regression struggles significantly (micro-AUC = 0.73 [0.70-0.76],
macro-AUC = 0.67 [0.63-0.71]), with complete failure (AUC < 0.5) on 5 specialty classes - a critical limitation
for clinical deployment. The moderate performance of MLP (macro-AUC = 0.73) and Naive Bayes (0.71) reveals
important trade-offs. MLP’s nonlinear activation functions provide some adaptation to UMAP’s manifold but
suffer from inconsistent convergence across specialties. Naive Bayes’ performance degradation (macro-AUC =
-0.12 vs PCA) highlights its incompatibility with UMAP’s transformed feature dependencies

Figure 8 reveals distinct learning behaviors across models when trained on PCA-transformed clinical text
features. The KNN classifier demonstrates classic overfitting, with training scores (0.92 + 0.03) significantly
exceeding cross-validation performance (0.68 + 0.07). The wide confidence intervals (+0.07) in validation scores
indicate instability across clinical specialties, suggesting PCA-transformed features may not preserve the local
distance relationships critical for KNN’s performance. This has important implications for clinical decision
support systems relying on similar-case retrieval. Logistic Regression shows concerning underfitting trends by
having steady score degradation with additional data and persistent 0.07 gap between training and validation
curves. This suggests PCA’s linear projections may oversimplify clinical text patterns needed for accurate
diagnosis. Naive Bayes exhibits similar underfitting but with greater instability (validation SD=0.09 vs 0.05 for
Logistic Regression), likely due to violated independence assumptions in the reduced space. Random Forest
maintains strong training performance (0.94 + 0.02) but shows 22% relative drop in validation scores (0.73 +
0.05) and negative learning curve slope. This indicates PCA may discard nonlinear feature interactions that
tree ensembles typically exploit, particularly problematic for rare disease detection where complex symptom
combinations matter. The MLP exhibits high initial variance (validation SD=0.12) that stabilizes with more data,
but reveals training-validation gap of 0.15 (0.91 vs 0.76). This suggests neural networks may memorize PCA
artifacts rather than learn clinically meaningful representations, raising concerns about model generalizability
across institutions.

The learning curves in Figure 9 reveal distinct model behaviors when trained on t-SNE-transformed clinical
text features. KNN demonstrates gradual improvement in both training and validation performance (validation
AUC increasing from 0.68 to 0.76), though the persistent 0.12 gap between curves indicates mild overfitting
- likely due to density variations in clinical narratives. This pattern nevertheless confirms KNN’s ability to
leverage t-SNE’s preserved local neighborhoods, suggesting potential utility for patient similarity applications.
Surprisingly, Logistic Regression shows better-than-expected generalization with a narrow train-validation gap
(0.05 + 0.02) and steady convergence (AUC = +0.08), implying t-SNE may reveal latent linear separability in
certain clinical feature subspaces despite the overall nonlinear transformation. However, two models exhibit
fundamental incompatibilities: Naive Bayes displays high instability (validation SD = 0.11) due to violated
independence assumptions in the transformed space, while Random Forest shows severe overfitting (training
AUC 1.00 + 0.00 vs validation 0.71 + 0.06) as t-SNE’s clustering appears to disrupt its feature importance
hierarchies. In contrast, the MLP emerges as particularly well-suited to t-SNE transformation, demonstrating
strong learning progression (validation AUC = +0.15) with minimal overfitting (gap = 0.07 £ 0.03), suggesting
neural networks can effectively navigate the nonlinear manifold while extracting clinically meaningful patterns.

(a)

(b) (c) (d) (e)

Fig. 8. Learning curves demonstrating the effect of PCA dimensionality reduction on model training
dynamics for clinical text classification. Plots compare Training accuracy (solid line) and validation accuracy
(dashed line) versus training set size for (a) KNN, (b) Logistic Regression, (c) Naive Bayes, (d) Random Forest,
and (e) MLP. Shaded regions represent standard deviation across folds.
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(a)

(a)

(b) () (d) (e)

Fig. 9. Learning dynamics of machine learning models with t-SNE for clinical text classification. Training
accuracy (solid blue) and validation accuracy (dashed orange) are plotted against increasing training set size
for (a) KNN, (b) Logistic Regression, (c) Naive Bayes, (d)Random Forest, and (e) MLP, with shaded regions
indicating the 95% confidence interval.

(b) (c) (d) (e)

Fig. 10. Learning curve analysis of machine learning models with UMAP dimensionality reduction. Plots
show training accuracy (solid blue) and validation accuracy (dashed orange) as functions of training set
size for (a) KNN, (b) Logistic Regression, (c) Naive Bayes, (d) Random Forest, and (e) MLP. Shaded regions
represent 95% confidence intervals.

These results indicate t-SNE works best with flexible nonlinear models for tasks like diagnostic pattern discovery,
while traditional ensemble methods may require alternative dimensionality reduction approaches for optimal
performance in clinical text analysis.

Figure 10 reveals how different machine learning models adapt to UMAP’s nonlinear dimensionality
reduction of clinical text data. The KNN classifier shows progressive improvement in both training and
validation performance (validation AUC increasing from 0.65 to 0.78), with a consistent but moderate gap
between curves (0.10-0.12 AUC points) indicating stable, though slightly overfit, learning behavior. This pattern
confirms UMAP’s effectiveness in preserving clinically meaningful neighborhood structures that KNN can
leverage for patient similarity analysis. Logistic Regression demonstrates particularly strong compatibility with
UMAP, evidenced by closely aligned training and validation curves (average gap = 0.04 AUC points) that both
show steady improvement (AUC = +0.13), suggesting UMAP can reveal latent linear separability in certain
clinical feature subspaces despite its nonlinear nature. In contrast, Naive Bayes exhibits unstable performance
(validation SD = 0.09) despite the reduced dimensionality, reflecting its fundamental limitations in modeling
complex clinical text patterns even in compressed feature spaces. Random Forest displays severe overfitting
(training AUC = 0.99 £ 0.01 vs validation = 0.70 % 0.05), likely because UMAP’s manifold compression disrupts
the rich feature interactions that tree ensembles typically exploit. The MLP shows promising but variable
adaptation to UMAP’s transformations, with reasonable generalization (train-validation gap = 0.08) but wide
confidence intervals (£0.07) suggesting instability across different clinical specialties. These results collectively
indicate that UMAP works best with models capable of leveraging its topological preservation properties (like
KNN) or discovering latent linear separability (like Logistic Regression), while more complex models may
require alternative dimensionality reduction approaches for optimal performance in clinical NLP tasks.

The application of dimensionality reduction to deep learning transformer models yielded clinically significant
and efliciency-boosting results. As illustrated in Fig. 11, the choice of projection method had a substantial
impact on both the final accuracy and the training convergence of ClinicalBERT. PCA emerged as the superior
approach for optimizing ClinicalBERT. The model fine-tuned on PCA-128 reduced embeddings achieved a peak
classification accuracy of 91.2% (95% CI 90.4-92.0%), significantly outperforming its performance with both
UMAP (88.2%, p < 0.01) and t-SNE (86.1%, p < 0.001) reductions. Beyond raw accuracy, PCA provided a
dramatic acceleration in training convergence. The PCA-enhanced model reached 90% accuracy by epoch 10
which is nearly 2.3 x faster post-hoc when PCA is applied to frozen Clinical BERT embeddings, compared with
nonlinear techniques, which required nearly the full training cycle to reach comparable performance.

This convergence advantage is attributable to PCA’s deterministic optimization of global feature variance,
which results in a stable and well-structured latent space that aligns with the transformer’s learning dynamics. The
stability of PCA’s validation loss curve (mean decrease of 0.12 = 0.03 per epoch) indicates robust generalization.
In contrast, UMAP’s intermediate performance was accompanied by greater training instability, evidenced by
loss fluctuations of £0.15 between epochs 5-10, reflecting the challenges of optimizing its graph-based objective
function. These findings have immediate practical implications: PCAs combination of high accuracy, training
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ClinicalBERT + Transformer Performance by Projection Method
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Fig. 11. Training curves for ClinicalBERT with post-hoc PCA on frozen [CLS] vectors, UMAP on frozen
[CLS] vectors, or no dimensionality reduction.

efficiency, and interpretability makes it the ideal pre-processing step for deploying transformer-based models in
real-time clinical decision support systems. The results strongly suggest that for clinical specialty classification,
the global semantic relationships preserved by PCA are more diagnostically critical than the local manifold
structures emphasized by nonlinear techniques.

The performance of all classifiers, measured by macro-F; score and training time, is summarized in Table 7.
All DR, sampler and classifier components were fitted only on training folds (seed = 42); results are mean + SD
over the five CV splits. The PCA+SMOTE combination consistently delivered top-tier performance, achieving
a mean macro-F; score of 0.87. PCA with SMOTE balancing achieved superior performance across all metrics,
attaining a macro-F1 score of 0.87 while reducing training time by 42% compared to the unreduced baseline.
Table 8 disaggregates the wall-clock cost into DR fitting, sampler fitting, and model fitting, and confirms that
both inference latency and peak memory are lower for the PCA+SMOTE pipeline, supporting its suitability for
real-time deployment.
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Method Macro-F1 Training Time (s) | AUC

PCA + SMOTE 0.87+0.02 |42+ 3 0.91 £0.01
UMAP + SMOTE | 0.81 +0.03 |97+ 7 0.85 +0.02
t-SNE + SMOTE | 0.79 £0.04 |114+9 0.82 4+ 0.03
No Reduction 0.824+0.02 |73+5 0.86 £+ 0.01

Table 7. Performance comparison (n=5046). All SMOTE augmentation was performed after projection to
128-D and inside the CV training folds. AUC and macro-F; ClIs are fold-wise bootstrap (2 000 resamples);
Hand-Till AUC is reported.

Pipeline stage PCA+SMOTE | UMAP+SMOTE | t-SNE+SMOTE | No reduction
(i) DR fit (s) 3+1 71+5 95+7 -

(ii) Sampler fit (s) 2+1 2+1 2+1 1+£0

(iii) Model fit (s) 372 37+2 37+2 72+4

Total training (s) 42+3 110+7 134+9 73+5

(iv) Inference (ms/note) | 0.9 + 0.1 09+0.1 09+0.1 1.8+0.2

(v) Peak memory (GB) | 4.1+0.2 45+03 46+03 7.2+0.4

Table 8. Disaggregated wall-clock timings (mean+SD over 5 runs) and peak memory. All numbers are per
5-fold CV on 5046 notes (= 4037 train + 1009 validation). Inference latency measured as mean time to predict
one held-out note.

Method Mean Macro-F; | p-value Significant
PCA + SMOTE (Baseline) | 0.87 - -

UMAP + SMOTE 0.81 p < 0.01 Yes

t-SNE + SMOTE 0.79 p < 0.005 | Yes

No Reduction 0.82 p < 0.05 | Yes

Table 9. Statistical comparison of macro-F; scores against the PCA+SMOTE baseline using a paired t-test on
5-fold cross-validation results.

The interaction between dimensionality reduction and model architecture revealed unexpected insights.
While ClinicalBERT achieved state-of-the-art accuracy (91.2%) with PCA embeddings, its performance
degraded with nonlinear techniques—contrary to trends observed in computer vision applications. This suggests
clinical narratives may rely more on global semantic relationships than local manifolds, supporting similar
findings by’ for radiology reports. The convergence time advantage (2.3 x faster than UMAP) further establishes
PCA as the preferred choice for transformer models in medical applications.

Class imbalance handling proved equally crucial as dimensionality selection. In our ablation study, applying
SMOTE to PCA-reduced features improved rare specialty recall by 23% compared to random oversampling,
while maintaining physician-verified clinical validity. The worst-case scenario emerged when combining UMAP
with imbalanced data—Naive Bayes performance collapsed to random guessing levels (AUC=0.50), emphasizing
that nonlinear reduction can amplify existing dataset biases. This finding has particular significance for safety-
critical applications like adverse drug reaction detection, where minority classes often carry the highest clinical
importance.

From an implementation perspective, three practical recommendations emerge: First, healthcare systems
with limited ML expertise should prioritize the PCA+SMOTE pipeline for its combination of performance (0.87
F1), speed (42s training), and interpretability. Second, applications requiring nuanced semantic understanding
(e.g., psychiatric notes) may warrant the computational overhead of ClinicalBERT with PCA-128. Finally,
real-time applications should avoid dimensionality below 32, while batch processing systems can leverage
higher dimensions for marginal accuracy gains. These guidelines balance the competing demands of accuracy,
efficiency, and clinical trust that characterize medical AI deployment.

Theresults presented in Table 9 provide a rigorous statistical validation of the performance superiority observed
for the PCA+SMOTE pipeline. This table summarizes the outcomes of paired t-tests, which were conducted
to determine whether the differences in macro-F; scores between our baseline method (PCA+SMOTE) and
each alternative approach were statistically significant, rather than attributable to random chance inherent
in the data partitioning. The key takeaway is that the performance advantage of the PCA+SMOTE method
is statistically significant at the p < 0.05 level when compared to all other evaluated techniques. The most
substantial difference is observed against the t-SNE+SMOTE method, with a highly significant p-value of less
than 0.005. This indicates an extremely low probability that the observed 0.08-point improvement in mean
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macro-F; (0.87 vs. 0.79). Furthermore, the significant difference (p < 0.05) between PCA+SMOTE and the
unreduced feature set is particularly noteworthy. It demonstrates that the PCA+SMOTE pipeline is not merely
a computational shortcut but actively enhances model performance by mitigating the curse of dimensionality
and class imbalance simultaneously, leading to a more generalizable and effective classifier. These statistically
validated results solidify our recommendation. They move beyond reporting simple performance averages and
provide confidence that the superiority of the PCA+SMOTE combination is a consistent and statistically reliable
effect across different data subsets.

Beyond quantitative metrics, we qualitatively analyzed the transformed semantic spaces. We projected a set
of anchor clinical terms (e.g., “myocardial infarction,” “pneumonia,” “fracture”) using each DRT and computed
their cosine similarities in the reduced space. PCA preserved global semantic relationships most effectively;
for instance, cardiac-related terms remained clustered distinctly from pulmonary-related terms. This structure
aligns with clinical ontologies and likely contributes to its superior classification performance.

This qualitative assessment was quantified by measuring the Silhouette coefficient S of clinical specialty clusters
before and after reduction. PCA retained the cluster structure effectively (Spca = 0.38) with minimal loss from
the original feature space (Sraw = 0.41). In contrast, t-SNE’s focus on local neighborhoods collapsed the global
structure necessary for distinguishing specialties, resulting in a significantly lower score (Si-sng = 0.27).

In contrast, while t-SNE and UMAP created visually distinct clusters, they sometimes grouped terms based
on lexical similarity or document co-occurrence rather than clinical semantics, which may have introduced
noise for the classification task. This analysis underscores that for specialty classification, preserving global
semantic hierarchies is more valuable than creating tightly separated local clusters.

Implications for real-world clinical deployment

The empirical findings of this study translate into several actionable recommendations for integrating
dimensionality reduction into clinical decision support systems (CDSS). The primary value of the PCA+SMOTE
pipeline lies in its ability to balance three critical constraints in healthcare settings: predictive accuracy,
computational efficiency, and model interpretability.

For real-time applications such as automated medical coding or preliminary diagnosis screening, the 42%
reduction in training time and accelerated convergence achieved by PCA are directly applicable. This efficiency
enables near-instantaneous processing of clinical notes upon entry into the EHR, facilitating immediate decision
support without impacting hospital system performance. The deterministic nature of PCA also simplifies
regulatory compliance and auditing, as the feature transformation process is transparent and reproducible.

In large-scale retrospective analytics, such as population health studies or clinical trial recruitment, the
pipeline’s ability to maintain high accuracy on rare conditions (evidenced by the improved macro-F1) ensures
that insights are not biased toward common diagnoses. By reducing the feature space to 128 dimensions, the
storage and computational overhead for analyzing millions of patient records are substantially decreased, making
hospital-wide analytics more feasible.

However, the choice of technique must be context-dependent. While PCA is optimal for classification
tasks, UMAP or t-SNE, despite their lower performance here, may provide superior value in exploratory data
analysis tools for researchers. Visualizing patient cohorts or disease progression in 2D/3D UMAP plots can
help clinicians identify novel patterns and hypotheses. Thus, the downstream value is not a one-size-fits-all
solution but a menu of options where PCA+SMOTE is the recommended default for automated classification
tasks within operational CDSS.

Limitations

While our framework offers practical solutions for clinical text processing in EHR systems, following important
methodological boundaries should be considered. First, all experiments were conducted on English-language
clinical notes, and the observed performance characteristics may not directly generalize to other languages or
non-clinical domains due to differences in linguistic structure and terminology. Second, our evaluation focused
exclusively on TF-IDF and ClinicalBERT feature representations; alternative embedding approaches such as
word2vec or FastText could potentially yield different dimensionality reduction outcomes, particularly for
capturing semantic relationships in specialized medical vocabulary.

Third, we intentionally restricted the transformer to Clinical BERT because (i) it is the smallest widely-available
domain-specific model, (ii) its pre-training on MIMIC-III clinical notes provides optimal domain alignment
with our corpus, and (iii) its computational profile satisfies the memory constraints of safety-critical bedside
systems. To verify that our PCA+SMOTE finding is not an artifact of this choice, we replicated the experiment
with BioBERT-large (v1.1). The results on identical data folds confirmed the robustness of our conclusion: the
absolute macro-F; difference was negligible (<0.005) and the relative performance ranking of dimensionality
reduction techniques remained unchanged (PCA+SMOTE > UMAP+SMOTE > t-SNE+SMOTE).

Furthermore, we excluded more resource-intensive techniques that might offer marginal performance
improvements, including a broader suite of transformer models (e.g., GPT-based architectures, Qwen) or
complex dimensionality reduction techniques like variational autoencoders (VAEs). While autoencoders
can capture nonlinear relationships effectively, their latent spaces often lack the intuitive interpretability of
PCASs eigenvector-based projections-a critical requirement for clinical validation and model explainability®.
Furthermore, the implementation complexity and extensive hyperparameter tuning required for these advanced
models?® place them beyond the resources of many healthcare organizations with limited machine learning
expertise. This work establishes a robust and interpretable baseline against which future studies incorporating
these more advanced, resource-intensive models can be compared. Fourth, our study employed a fixed target
dimensionality for comparative purposes. While we selected a commonly used value (128 dimensions) based
on preliminary experiments, the optimal dimensionality is likely task- and model-dependent. Future work

Scientific Reports |

(2026) 16:815 | https://doi.org/10.1038/s41598-025-30537-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

could explore dynamic dimensionality selection strategies. Furthermore, all experiments used the English
MTSamples corpus (5046 notes). Replication on the i2b2-2014 and n2c2-2018 datasets is underway to assess
cross-institutional generalizability.

Conclusion

This study demonstrates that dimensionality reduction and class balancing are not merely computational
shortcuts but essential components for building high-performance clinical text classification pipelines. The
empirical evaluation across 31 medical specialties yields yields one clear recommendation for datasets with
similar vocabulary sparsity and class imbalance to MTSamples. We attained 91.2% accuracy on MTSamples
when paired with ClinicalBERT and delivered a statistically significant 6.4% absolute improvement in macro-F;
for traditional classifiers over unreduced baselines, all while reducing training time by 42%. Our results clarify
critical trade-offs and interactions: while nonlinear DR techniques offer specialized value for visualization
(t-SNE) or rare condition detection with SMOTE (UMAP), their computational cost and instability often
outweigh these benefits for general classification. More importantly, we identified a dangerous interaction
where using UMAP without SMOTE degraded performance for rare conditions, highlighting that improper
dimensional reduction can amplify dataset biases with serious clinical implications. These findings are derived
from 5,046 English-language, spell-checked narrative samples and may not generalise to raw multi-institutional
EHRs with typographical noise, non-English text, or different specialty distributions. Future work should explore
dynamic and automated dimensionality reduction frameworks that can select the optimal technique (PCA,
UMAP, etc.) based on real-time dataset characteristics (e.g., sparsity, class balance). Furthermore, developing
hybrid techniques that combine the global variance preservation of linear methods with the local structure
preservation of manifold learning could offer the best of both paradigms. Reinforcement learning could be a
promising approach for this adaptive selection.

Data availability

The dataset analyzed during the current study is available in Kaggle repository.
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