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Rayleigh-wave dispersion data
selection and model fine-tuning
based on uncertainty estimation

Xijun Feng'*™’, Fen Zhang'*, Wen Peng? & Fei Deng*

Rayleigh-wave inversion is a reliable approach for obtaining subsurface shear-wave velocity structures
and holds significant importance in seismic risk assessment, resource exploration, and geotechnical
engineering. Numerous studies have demonstrated the great potential of deep learning (DL) in
Rayleigh-wave inversion; however, existing DL methods still suffer from limited generalization,
strong dependence on training data, and slow convergence. To address these issues, this study
proposes a representative data selection and model optimization strategy. Specifically, we identify
high-uncertainty samples based on the inconsistency of predictions from multiple pretrained models
trained in parallel. An automatic differentiation-driven inversion method is then used to generate
high-confidence pseudo-labels for the selected data, which are subsequently employed to fine-

tune the original model. This workflow requires no borehole information and significantly improves
the prediction accuracy and robustness of the model in the target area. Both synthetic and field
experiments validate the effectiveness of the proposed method, demonstrating enhanced adaptability
and performance in complex geological environments with relatively small additional cost.
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Shear wave velocity of the subsurface directly reflects the stiffness of underground materials and plays a
pivotal role in groundwater exploration, engineering geology, and environmental studies'. Based on the
dispersive propagation characteristics of surface waves in heterogeneous media, Surface wave methods—
such as SASW(Spectral analysis of surface waves) and MASW(Multichannel analysis of surface waves)—can
derive subsurface shear-wave velocity profiles by analyzing Rayleigh-wave dispersion curves. Owing to their
high efficiency, low cost, and minimal environmental impact, these techniques have become the mainstream
approach for obtaining shear wave velocity structures®*. The complete surface wave analysis workflow comprises
three core stages: field data acquisition, dispersion characteristic analysis, and dispersion-curve inversion. In
particular, inverting the Rayleigh wave dispersion curve is a key step in surface wave analysis’, as the accuracy of
this inversion directly determines the precision and reliability of the resulting Vs model.

Early Rayleigh wave dispersion curve inversion techniques relied predominantly on optimization algorithms,
which can be classified into two broad categories: linear local methods and nonlinear global methods. Common
linear approaches include Damped Least Squares®, Singular Value Decomposition, and Occam’s inversion.
Linear local optimization methods iteratively approximate the optimal solution by linearizing the forward model
in the vicinity of an initial guess, relying heavily on accurate parameter derivatives and well-chosen starting
models. This dependence on initialization and precise gradient computation significantly limits their practicality
Nonlinear global strategies—such as Genetic Algorithms’, Simulated Annealing®, Particle Swarm Optimization,
and Sparrow Search’—offer broader search capabilities with reduced dependence on initialization. However,
they suffer from excessive computational demands, low convergence efficiency, and a tendency to become
trapped in locally optimal solutions, rendering them impractical for large scale dispersion curve inversion'®.
In summary, traditional optimization methods for Rayleigh wave inversion are generally constrained by low
computational efficiency and strong non uniqueness.

To overcome the limitations of traditional optimization algorithms in Rayleigh wave dispersion curve
inversion, more efficient and robust deep learning methods have garnered extensive attention in recent years.
Once fully trained, a deep neural network can produce accurate predictions in a single forward pass, effectively
balancing computational speed and inversion precision. Early efforts predominantly utilized fully connected
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neural networks (FCNNs), with multiple successful applications demonstrating their substantial potential'!"12.

As the field has advanced, various enhancements have emerged. For example, Earp et al.'® and Yang et al.!
employed mixture density networks (MDNs) to infer shear wave velocity structures, enhancing prediction
reliability through probabilistic modeling; He et al.!> were the first to apply convolutional neural networks
(CNNs) to field datasets, validating the suitability of CNNs for dispersion curve inversion; and Chen et al.'®
improved the loss function and incorporated geological priors into the synthetic data generation process,
enabling CNNs to capture local geological variations in the target region, thereby mitigating inversion non
uniqueness and improving predictive accuracy under complex geological settings.

Although deep learning method has demonstrated high computational efficiency and prediction accuracy in
Rayleigh wave dispersion curve inversion, it still faces significant challenges in practical applications, particularly
limited generalization ability and strong dependence on its training data. Specifically, as a data driven approach,
its predictive performance closely depends on the training dataset and often fails to predict out of distribution
samples accurately. Consequently, when the application context changes, prediction accuracy on target-region
data typically degrades substantially'®. The common remedy involves reconstructing a geological parameter
search space based on prior knowledge of the target area, randomly generating numerous shear wave velocity
(Vs) models within that space, computing the corresponding dispersion curves through forward modeling and
then retraining the network using these synthetic datasets—a process that is both time consuming and labor
intensive!'”. Moreover, accurate geological information for the target region is rarely available in practice, which
forces the use of overly broad search spaces to ensure coverage of all plausible subsurface scenarios. However,
such broad spaces dilute the proportion of field relevant samples, thereby degrading the model’s predictive
accuracy on target data. Notably, Yang et al.'® showed that training a model with only a small number of high
quality synthetic samples that closely resemble field measurements can significantly improve performance while
dramatically reducing data requirements, emphasizing that sample quality is more important than quantity.
Inspired by these findings and by concepts from uncertainty sampling, and active learning'*%, this paper
proposes a method that selects representative field data via multi model prediction uncertainty and uses them
for model fine tuning to enhance prediction accuracy in the target region.

Related work

Fig. 1 illustrates the overall workflow of our approach, which integrates multi-model fusion with uncertainty-
driven sample selection to enable targeted model fine-tuning. The method comprises three main stages. First,
multiple models are pretrained in parallel on a large synthetic dataset. Second, these models are applied to
field data and their prediction discrepancies are evaluated to identify high-uncertainty samples. Third, high-
confidence pseudo-labels are generated for the selected samples. The high-uncertainty samples and their
pseudo-labels are aggregated into a fine-tuning subset, and only the last two linear layers of each model are
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Fig. 1. Workflow of the proposed method. During pretraining, a large synthetic dataset—consisting of
randomly generated subsurface shear-wave velocity models and their corresponding dispersion curves
computed via forward modeling—is used to train multiple model architectures. Next, samples exhibiting high
predictive uncertainty are identified from field data based on discrepancies across the pretrained models, and
corresponding pseudo-labels are generated using the ADsurf inversion method to form a fine-tuning subset.
Finally, all models undergo targeted fine-tuning to enhance prediction accuracy in the target region.
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fine-tuned. This targeted fine-tuning substantially improves prediction accuracy and stability on complex target-
region samples while preserving overall generalization capability.

Dispersion-curve inversion model

In this study, we leverage a parallel training approach to develop multiple models that differ in architecture,
neuron count, and parameter initialization. This approach is designed to improve overall predictive accuracy
and to supply high-quality, diverse initial solutions for subsequent pseudo-label generation. Specifically, we
incorporate three mainstream deep-learning architectures applied to Rayleigh wave dispersion curve inversion:
fully connected neural networks (FCNNs), convolutional neural networks (CNNs), and mixture density
networks (MDNSs).

(1) FCNN

An FCNN consists of multiple dense (fully connected) layers, each followed by a nonlinear activation function.
Due to its simplicity and ease of implementation, FCNN is commonly applied to regression problems. In this
study, the FCNN takes a sequence of phase velocities (sampled from the dispersion curve) as input and predicts
the subsurface shear wave velocity model (excluding thickness for the half space). During training, we used
mean squared error (MSE) as the loss function. Compared to mean absolute error (MAE), MSE is more sensitive
to outliers and has been widely applied and validated in regression problems®°.

n n—1
1 Awv; 1 Ah;
MSE = — —_—
S - E + (D

o n—1 h;
=1 1=1

In the formula, n denotes the number of training samples, Av; and Ah; represent the differences between the
predicted and true shear wave velocity and layer thickness for the ith layer, respectively, while v; and h; are the
true shear wave velocity and thickness of the ith layer. Since the bottommost layer is modeled as a half space with
infinite thickness, its thickness term is excluded from the loss function.

(2) MDN

An MDN is a neural network model designed to capture complex conditional probability distributions. Compared
to traditional deterministic models, it can represent underlying uncertainty and better reflect physical reality.
In this study, the MDN takes the phase-velocity sequence sampled from dispersion-curve as input and outputs
the Gaussian mixture model (GMM) parameters: mixture weights, means, and standard deviations(the network
structure is shown in Fig. 2).

1. mixture weights(cr) indicate the contribution of each Gaussian component and satisfy Zle o; = 1, where

k is the number of components.
2. means () represent the central values of the Gaussian components.
3. standard deviations (o) characterize the spread of each Gaussian and quantify uncertainty.

To obtain the most probable subsurface shear-wave velocity model, we employ a grid-search strategy within
predefined physical constraints (for example, restricting the first layer’s shear-wave velocity to 10-3000m/s with
a 1m/s sampling interval). For each candidate value, we compute its probability density under the MDN’s output
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Fig. 2. Architecture of the MDN model. Arrows indicate the flow of data through the network. The final
MDN layer consists of three dense sublayers that compute the mixture weights (o), means (u), and standard
deviations (o), respectively; all other dense layers use the Tanh activation function.
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Fig. 3. Architecture of the CNN network. The input consists of two sequences—period and phase velocity—
sampled at 91 points along the dispersion curve. A Convld layer with output dimension 1 and kernel size 1
merges these two sequences into a single 1D feature array, which is then passed to the subsequent dense layers.
Both the CNN and FCNN models use the ReLU activation function in their dense layers.

Hidden Layers and Nodes | Activations | Gaussian Components(K)
FCNN | [150, 150, 100, 100, 50] ReLU -
MDN | [200, 150, 100, 100, 50] Tanh 4
CNN [200, 150, 150, 100, 100, 50] | ReLU -

Table 1. Selected values for the hyperparameters and activations.

and select the value of highest likelihood as the optimal solution for that layer. This process is repeated iteratively
for successive layers until the full velocity model is reconstructed.

The MDN is optimized during training using the negative log-likelihood (NLL) loss function (Eq. 2). Here,
N denotes the number of training samples. Px|y—,, («:) represents the posterior probability density of the
true shear-wave velocity label x; given the input phase-velocity sequence y;, calculated as the weighted sum
of Gaussian component densities. Specifically, p; (z;) is the probability density of under the jth Gaussian
component, and ¢; is its mixture weight. The parameter k indicates the number of Gaussian components in the
mixture model'*.

N—1 N-1 k
NLL = =) “log (Pxjy=y, () == > log [ Y ayp; () @)
1=0 =0 J=1

(3) CNN

Chen et al. introduced a one dimensional convolutional layer (Convld) preceding a FCNN. This Convld layer
fuses the sampled period sequence and phase velocity sequence of the dispersion curve into a single channel 1D
feature vector, which is then fed into the following fully connected layers to emulate complex matrix operations®.
Both the CNN and FCNN employ mean squared error (MSE) as the loss function (see Eq. 1). In contrast to an
FCNN that takes only phase velocity values at fixed periods as inputs, this CNN architecture automatically
integrates period and phase velocity information via the Conv1d layer. It thus eliminates the need for prior time
alignment and provides richer time-frequency features, enhancing the network’s representational capability for
complex dispersion data.(The detailed network architecture is depicted in Fig. 3)

(4) Model pretraining

During training, multiple models are pretrained in parallel on the synthetic dataset with a learning rate of 10™3
and an L2 regularization coefficient of 10™*. Model hyperparameters were chosen according to the well-known
validation-set approach (see Table 1). The weights of the FCNN and CNN models were initialized using the
Kaiming scheme, while the weights of the MDN model, except for those in the output layer, were initialized
using the Xavier method. To enhance model diversity and improve the robustness of subsequent ensemble
predictions, each model was trained three times with different random initialization parameters. During
the model inference stage, we select the prediction that yields the smallest loss as the final output from the
ensemble of model predictions. Compared with schemes that merge predictions by weighted averaging, this
“minimum-loss selection” strategy offers two practical advantages. First, it incurs lower computational overhead:
there is no need to estimate or update ensemble weights during pretraining or the subsequent rounds of fine-
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tuning, which substantially reduces computational cost and improves overall efficiency?!. In contrast, Qu et
al.?> compute approximate model weights at each training epoch using a Hessian trace-based approach, which
substantially increases computational complexity. Second, it preserves the physical self-consistency of single-
model predictions and avoids the non-physical smoothing or spurious intermediate solutions that can arise
when averaging outputs. Consequently, in scenarios where model architectures differ substantially or where
maintaining physical consistency is critical, the minimum-loss selection strategy is generally more stable and
reliable than weighted fusion?’.

High-Uncertainty data selection

In the absence of true subsurface information, we evaluate model performance using the misfit function
proposed by Ernst*»?°. This misfit function calculates the mean absolute value of the determinant of the
dispersion function F' (tl, cgbe, m) for a given velocity model x at the observed dispersion data points (t;, c?**):,

without requiring prior mode identification:
N
(f?c m Z tlﬂcz 73")‘ (3)

In Eq. 3, N denotes the number of dispersion curve sampling points. The model prediction x comprises estimates
of both layer thickness and shear wave veloc1tz The determinant F is calculated via forward simulation using
the predicted model x. Each coordinate (¢;, ¢{”®) corresponds to the ith observed dispersion sampling point’s
period and phase velocity. Fig. 4 presents an example of the determinant based misfit function in action. The
determinant F can be computed via the frequency-Bessel (F-]) transform or phase shift methods. The theoretical
dispersion curve corresponds to zeros of F; hence, if the predicted model is accurate, all observed sampling
points should lie within the white troughs (zero loci) of the determinant image, resulting in a misfit value of zero.

Building on this, we introduce the coeflicient of variation (CV) as a metric for quantifying the uncertainty
of multi-model predictions®. Specifically, for each sample, we first calculate the forward misfit value of the
prediction produced by each pretrained model, then compute the mean p and standard deviation o of these
misfit values, and substitute them into Eq (4). The result represents the ensemble’s predictive uncertainty for that
sample. A larger CV indicates more significant disagreement among models, suggesting that the sample is more
likely to belong to regions insufficiently covered by the training set or to lie outside the training distribution.
We choose to compute CV from the modelsmisfit values because the raw outputs of different models are multi-
dimensional and the output dimensionality or parameterization may vary when applied to field data from
different regions, making it difficult to compute a CV directly from the model predictions themselves.
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Fig. 4. An example of the misfit function defined above. The figure displays the determinant F distribution
computed from the forward-modeled predictions, where white areas precisely delineate the theoretical
dispersion curve. Black dots mark all observed dispersion sampling points, and the mean of the absolute
determinant values at these points corresponds to the loss defined in Eq. 3.
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The CV is defined as the ratio of the standard deviation to the mean, thereby eliminating the unit of measurement
of the standard deviation and intuitively reflecting the relative dispersion of the data, regardless of differences in
units or scales across datasets. This dimensionless property enables the CV to be applicable to data with varying
signal-to-noise ratios.

Pseudo-label construction

After identifying high-uncertainty samples using the coefficient of variation, reliable pseudo-labels must be
generated to support model fine-tuning. To achieve this, we employ an automatic differentiation-driven iterative
inversion method, ADsurf, to generate trustworthy labels for the selected data. ADsurf by default initializes with
velocity models derived from empirical formulas and can generate multiple perturbed versions of initial model
within a local neighborhood, thereby enhancing the diversity of initial solutions. During each iteration, the loss
function defined in Eq. 3 is minimized using the forward-determined misfit computed via the Dunkin?” and
Herrmann & Ammon?® enhanced Haskell-Thomson propagator. Because this forward modeling is differentiable
everywhere, it allows gradient calculations via automatic differentiation (AD) and gradient-based optimization
to iteratively refine the initial guesses toward realistic subsurface models®.

However, velocity models derived from empirical formulas often deviate considerably from the true
subsurface structure. Using such models as initial solutions may cause ADsurf to exhibit slow loss reduction,
unstable convergence, or even gradient explosion during iteration, which represents a major challenge for its
practical application. To address this, we construct more plausible initializations using predictions from multiple
pretrained models, and introduce geological prior constraints during iteration to guide convergence toward
realistic solutions. Specifically, for each high-uncertainty sample, the prediction of each pretrained model is
used as an independent initialization for ADsurf inversion, which is performed under the guidance of prior
constraints. Each inversion produces an optimal candidate solution, and among these candidates, the one with
the smallest misfit is selected as the final inversion result and used as the pseudo-label for subsequent model
fine-tuning.

Experiment
Field seismic data were acquired at an industrial site in southwest China using 62 receiver channels with an
average channel spacing of 2m. The time sampling interval was 2ms, and each trace had a duration of 2.002s
(1,001 time samples). After converting the seismic records into dispersion-energy spectrograms via the phase-
shift method, dispersion curves were manually picked(examples are provided in Fig. 5). The resulting discrete
picks were then interpolated and resampled onto a standardized period range (0.10-1.00s with a 10ms interval)
to eliminate sampling nonuniformity introduced by manual picking, thereby facilitating input into the deep
learning model.

Since the field data lack borehole ground-truth labels and the geological conditions of the acquisition area
remain uncertain, traditional inversion algorithms often yield unstable results. To comprehensively validate the
proposed method’s accuracy and robustness, we adopt a two-step strategy:

1. Use randomly generated shear-wave velocity models and their corresponding dispersion curves to quantita-
tively assess the effectiveness of the proposed optimization scheme.

2. After validating the method with synthetic data, directly apply it to the 224 real-world dispersion curves to
evaluate applicability in actual geological conditions.

Fig. 5. Observed seismic data are shown in panels (a)-(c), and the corresponding dispersion-energy
spectrograms obtained via the phase-shift method are shown in panels (d)-(f). Black dots indicate the
manually picked dispersion curves.
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Layer | Vs(m/s) Thick(m)
1 400-1000 10-100

2 max (600, Vs¢op)-1400 | 10-100

3 max (800, Vs¢op)-1600 | 10-100

4 max(900, Vs¢op)-1700 | 10-100

5 1700-2400 -

Table 2. Search space for synthetic pretraining dataset.

Layer | Vs(m/s) Thick(m)
1 400-700 10-50

700-1000 | 10-50
800-1100 | 10-50
900-1300 | 50-100
1500-2000 | -

[S23 INY NN UV [ )

Table 3. Search space for synthetic test dataset.

Coefficient of Variation

Mean loss | Mean relative error | >0.7 | >0.6 | >0.5 | >0.4
0.1782 1.9516 8 18 45 154

Table 4. Pretrained model performance on synthetic data.

Creating the pretraining Dataset

To construct the pretraining dataset, we define a wide parameter search space based on prior knowledge of
the field data collection area (see Table2), ensuring comprehensive coverage of plausible subsurface structures.
During the generation of synthetic shear-wave velocity models, we enforce that the topmost layer has the
minimum velocity while the bottommost layer attains the maximum velocity. This constraint guarantees that
the synthetic models robustly produce a fundamental-mode Rayleigh-wave dispersion curve via forward
modeling.

Based on surface wave sensitivity analyses®!, shear wave velocity (Vs) exerts the most significant control on
Rayleigh wave dispersion curves, followed by layer thickness. In contrast, compressional wave velocity (Vp) and
density have relatively minor effects on the computed dispersion curves.Accordingly, we compute Vp using a
fixed Vp/Vs ratio of 2.45, and derive density p via Brocher’s empirical relationship*?, which relates density to Vp.

p = 1.74V,)* (5)

We use the disba Python package to generate the fundamental-mode Rayleigh-wave dispersion curves. This
package implements a subset of the “Computer Programs in Seismology” (CPS) codebase? in pure Python and
accelerates execution using numba just in time compilation, enabling efficient and convenient dispersion-curve
computation. Given randomly generated velocity models, we computed phase velocities for fundamental-mode
Rayleigh waves over the 0.10-1.00s period range with a sampling interval of 10ms. In total, 25,000 synthetic
datasets were generated and split into training and validation subsets at a 4:1 ratio. The training subset was
used for multi-model pretraining, while the validation subset was used to monitor model performance and
prevent overfitting. Pretraining was conducted using the Adam optimizer,a learning rate of 1072, and an L2
regularization coefficient of 10™*.

Synthetic data

We first validate the proposed method using theoretical, noise-free data. Based on the previously described
dataset generation process and the parameter space defined in Table 3, we generate 400 synthetic test cases to
evaluate model performance before and after optimization.

To quantify ensemble model uncertainty, we use the CV of prediction losses across models as the evaluation
metric. We set threshold values of 0.7, 0.6, 0.5, and 0.4. Whenever the CV of prediction loss for a specific sample
exceeds the threshold, the ensemble’s prediction for that data point is deemed highly uncertain. For the identified
high-uncertainty samples, we apply the ADsurf package for iterative inversion. The resulting velocity models
and dispersion curves are used to fine-tune the base model. The pretrained models’ predictive performance on
synthetic data is shown in Table 4:
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Fig. 6. On the left are the dispersion-curve data; in the center are nine randomly generated initial models
produced by the ADsurf package based on the input data; and on the right are the predictions from nine
pretrained models. The red segments indicate the true labels of the data.
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Fig. 7. In the unconstrained scenario, results are shown for both the empirically initialized solution and the
initialization based on multi-model predictions, each iterated 800 times via ADsurf. The left panel displays the
loss value evolution during the iteration process. The right panel shows inversion outputs: the blue dashed line
represents the solution corresponding to the minimum loss, the red solid line indicates the true label, and the
shaded gray region depicts how the initial solution changes through iterations.

Inversion results with noise-free data

To investigate the effect of the initialization strategy and constraint application on ADsurf inversion outcomes,
two initialization schemes are compared in this study(see Fig. 6):

1. Predictions from multiple pretrained models;
2. The default initialization from the ADsurf package derived from empirical formulas.

Using the Adam optimizer (initial learning rate n = 102, decayed by 25% every 100 iterations), each initialization
strategy undergoes 800 iterations under both constrained and unconstrained settings to analyze the variations
in final inversion results.

Under the assumption of constant Poisson’s ratio and density, the ADsurf package generates an initial layered
velocity model from observed dispersion data (period—phase velocity pairs). Specifically, each layer’s thickness
is calculated as wmaz /depth _ factor, where wmax is the maximum observed wavelength and depth _ factor
is set to 2.5. An empirical relation links Rayleigh wave wavelength to subsurface depth, with the maximum
penetration depth assumed to be 0.65 times the wavelength. Shear wave velocity (Vs) is then estimated layer-by-
layer using the approximation V's &~ C'_phase/0.92, where the C'_phase corresponds to the phase velocity
that penetrates each layer. The computed model serves as the central solution, and ten additional initial models
are randomly sampled within a small neighborhood around this solution to provide initialization diversity.

The comparison results(Fig. 7) show that, in the unconstrained scenario, using model predictions as the initial
solution yields superior convergence characteristics compared to the empirical-formula-based initialization.
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Fig. 8. Under constrained conditions, the results of 800 ADsurf iterations starting from both the empirical-
formula initialization and the ensemble-model predicted initialization.

Variation curve of MSE Variation curve of Loss

Fig. 9. The curves show the prediction performance of fine-tuned models under different coeflicient-of-
variation thresholds. The left plot depicts the variation in relative error between model predictions and true
labels, while the right plot illustrates the change in prediction loss values.

Specifically,(1)The loss decreases faster during optimization.(2)The final inversion result aligns more closely
with the true label.

We subsequently applied physical constraints during iteration: the shear-wave velocity of each layer was
limited to the range of 0.5 to 2 times its corresponding initial value, and layer thickness (except for the half-
space) was constrained within 10-100m. Experimental results(Fig. 8) indicate that imposing reasonable physical
bounds during iterative inversion enhances both convergence efficiency and final predictive accuracy.

Fine-tuning result

From the inversion results, we observe that, under identical inversion settings, initial models with smaller
forward misfits tend to converge more rapidly and are more likely to reach geologically plausible minima.
Based on this observation, and to reduce computational cost while improving inversion efficiency during the
subsequent fine-tuning stage, we use only a subset of high-quality model predictions as ADsurf initializations.
Specifically, candidate predictions are first ranked by their forward misfit, and the six predictions with the lowest
misfits are selected as starting models for the ADsurf iterative inversion. It should be noted that the ADsurf
inversion procedure exhibits inherent stochasticity; consequently, even initializations with small misfits may
occasionally fail to converge or may become trapped in unfavorable local minima (see Fig. 7). Therefore, we
recommend preserving diversity among the selected initializations and tailoring the selection criteria to the
specific application in order to strike an appropriate balance between computational efficiency and inversion
robustness.

ADsurf inversion results are used as pseudo-labels to fine-tune the last two fully connected layers of each
model. During fine-tuning, the Adam optimizer is employed with a learning rate of 10" %andanL2 regularization
coefficient of 10~ to prevent overfitting. Only 10 training epochs are executed. Multiple fine-tuning experiments
are conducted using different coefficient-of-variation thresholds; the variation in predictive performance across
these threshold values is plotted in Fig. 9.
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CV_limit=0.7 CV_limit=0.6 CV_limit=0.5 CV_limit=0.4

Fig. 10. Prediction performance of fine-tuned models across CV thresholds.

Proposed method | Rand ple | Worst pl
Mean loss | 0.1380 0.1466 0.1620
MRE 1.7705 1.8826 1.9361

Table 5. Comparison of results based on different data selection methods.

Comparing the fine tuned model with the original pretrained version(see Fig. 10) reveals that as the
coefficient of variation threshold increases, the performance of the fine tuned model improves, and its forward-
modeled dispersion curves align more closely with test data. However, the magnitude of improvement shows
diminishing returns. Specifically, when the threshold reaches 0.5, further lowering the threshold to include
more fine tuning samples no longer yields significant gains in predictive accuracy. This is likely because the
newly added samples are highly similar to those already included, offering little additional learning benefit.
Conversely, at a threshold of 0.4, the number of pseudo-label samples needed is more than twice that required at
0.5. Considering computational time and efficiency, the model fine-tuned with a CV threshold of 0.5 is selected
as the optimal configuration.

When the coefficient-of-variation threshold is set to 0.5, only 45 samples need to undergo inversion
processing, allowing the model to achieve good predictive performance with minimal time cost. To validate
the effectiveness of the proposed method, we set the CV threshold to 0.5 and then select two groups of equal-
sized samples from the test dataset: one randomly sampled and the other consisting of samples with the lowest
CV values. Pseudo-labels are generated for both sets and used to fine-tune the models. Finally, we compare the
performance of the model fine-tuned on the additionally selected data against that of the model fine-tuned using
the proposed method. The comparison results are presented in Table 5.

The final results(Fig. 11) demonstrably indicate that the proposed method yields significantly superior
prediction performance compared to random sampling and worst-case sampling. Among these approaches,
predictions from worst-case sampling exhibit the largest deviation from ground-truth labels, followed by random
sampling. Optimal performance is achieved through fine-tuning with data exhibiting the highest coefficient
of variation. These findings substantiate the efficacy of selecting high-uncertainty data based on coefficient of
variation thresholds for model refinement.

Field data

Iterative inversion results with noisy data

Fig. 12 demonstrates that, under unconstrained conditions, the inversion easily converges to incorrect solutions
during iteration; in contrast, when appropriate constraints are applied, the initial model is guided toward more
reasonable solutions, enabling rapid loss convergence and yielding inversion results that align with expectations.
Despite the presence of disturbance and noise in the data, the final forward-modeled dispersion curve points all
lie near the zero-value regions of the determinant, indicating a strong fit. This suggests that ADsurf can produce
satisfactory inversion results even when input dispersion curves include some sampling bias or mild noise.

Fine-tuning result

When tuning the pretrained models using the same method, and in the absence of detailed geological knowledge
about the acquisition area, we evaluate model performance using the mean loss value as the criterion. The
pretrained models’ predictive performance on field data is shown in Table 6. The fine-tuning results are shown
in Fig. 13 and Fig. 14. From Fig. 13, it can be observed that at CV thresholds of 0.7 and 0.6, the relatively few
selected fine-tuning samples contain limited information, which is insufficient for the model to learn useful
features—consequently, model performance after fine-tuning shows no significant improvement. In contrast,
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Fig. 11. Comparative results of three fine-tuning data selection methods: (a) the proposed method, (b)
random sample selection, (¢) minimum voting consensus sampling.
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Fig. 12. The iterative inversion results using model predictions as initial solutions under both unconstrained
and constrained conditions.

Coefficient of Variation

Mean loss | Mean relative error | >0.7 | >0.6 | >0.5 | >0.4
0.1715 - 3 10 36 64

Table 6. Pretrained model performance on field data.
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Fig. 13. Prediction loss curves before and after fine-tuning on the manually picked dispersion-curve data.
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Fig. 14. Comparison of model prediction performance on dispersion curves extracted from field seismic data
after applying the proposed method.

when CV thresholds are set at 0.5 and 0.4, the number of fine-tuning samples increases, and the fine-tuned
model performance improves substantially—the forward-modeled dispersion curves from predictions align
more closely with actual data. However, at a CV threshold of 0.4, despite using more samples for fine-tuning
than at threshold 0.5, the model’s performance actually degrades—likely due to an improperly set learning rate
or insufficient number of fine-tuning epochs.

We selected the model fine-tuned with a CV threshold of 0.5 as optimal. When its predictions are interpolated
into a subsurface profile, the resulting stratification is markedly clearer, revealing distinct layered structures,
whereas the profile from the original model’s outputs shows no meaningful layering above the half-space. In
contrast, the PSO method produces the poorest stratification among the three approaches on real data, offering
little useful information for subsurface interpretation. These comparisons indicate that, in the presence of
noise or disturbances, our proposed fine-tuning strategy delivers more stable and reliable geological layering
information.These comparative profiles are shown in Fig. 15.

We selected the fine tuned model obtained with a CV threshold of 0.5 as the reference model, as it yielded the
best predictive performance. To further validate the effectiveness of our approach, we extracted two equal-sized
sets of samples from the real test dataset: one chosen randomly and the other consisting of samples with the
lowest coeflicient of variation. Pseudo-labels were generated for both sets and used to fine-tune models using the
same workflow. The performance of these models was then compared to that of the reference model. As shown
in Fig.16, the model fine-tuned using our proposed method achieved the highest prediction accuracy, and its
forward-modeled dispersion curves matched the field data most closely. The comparison results are presented
in Table 7.

Discussion
The proposed method is based on an uncertainty sampling strategy. It identifies samples with low prediction
confidence and generates high-confidence pseudo-labels for these data, which are then used to fine-tune
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Fig. 15. Pseudo-2D Vs profiles obtained by interpolating inversion results on picked data: original model,
fine-tuned model, and PSO optimization.
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Fig. 16. Comparison of real data results from three methods: the proposed method, random sample selection,
and lowest variation sample selection.

d le | Worst 1

F P

Mean loss | 0.1663 0.1725 0.1780

Proposed method | R

Table 7. Comparison of results based on different data selection methods.

pretrained models. This enables the models to learn more informative features and improve overall prediction
accuracy. The effectiveness and feasibility of the proposed approach have been validated through both synthetic
and real data experiments.

Limitations of synthetic data training

When deep learning models trained on large-scale synthetic datasets perform poorly on target data, a common
strategy is to further expand the size of the training set. However, simply increasing the quantity of synthetic
data does not significantly improve the model’s predictive accuracy on real-world data (Fig. 17). Possible reasons
include:

1. An excessive number of synthetic samples may “dilute” the model’s focus on the specific characteristics of
the target data. To minimize overall loss, the model may ignore the minority patterns, leading to insufficient
learning of key features.

2. Regardless of how the synthetic rules are adjusted, synthetic data cannot fully replicate the curve deviations
present in real data due to manual picking errors and environmental noise. This results in an inherent gap
between synthetic and real samples, which prevents deep models that heavily rely on training data from
making accurate predictions on field data.
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Fig. 17. Comparison of model predictions obtained under different training data sizes and refinement
strategies. The result reveals a critical insight: scaling up synthetic data alone is an inefficient strategy for
improving field data performance. Even when the synthetic training set is doubled, its performance on
field data is markedly inferior to that of a model fine-tuned with only 36 samples using our method. This
comparison clearly demonstrates the superiority of our targeted fine-tuning strategy over the conventional
approach of merely expanding synthetic data volume.
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Fig. 18. Comparison of optimization results between the traditional PSO algorithm and the ADsurf method.
Both PSO and ADsurf were applied to the same data with 50 independent inversions. The left panel shows the
inversion results from multiple runs, while the right panel presents the standard deviation of S-wave velocity
predictions for each layer, indicating the variability in the results.

Therefore, this study adopts a targeted retraining approach using a small number of real samples and their
corresponding pseudo-labels. This allows the model to better capture the distribution characteristics of the
target data and significantly enhance its prediction accuracy on real dispersion curves at a relatively low cost.

Stability and consistency comparison between PSO and ADsurf

Experimental results also show that velocity profiles obtained through Particle Swarm Optimization (PSO)
often exhibit indistinct stratification and discontinuous interfaces. This is primarily due to PSO being a highly
stochastic global optimization algorithm, which is prone to local minima. As a result, it may produce vastly
different subsurface velocity structures even when inverting highly similar dispersion curves collected from the
same region. In contrast, ADsurf, which is based on gradient computation, achieves highly consistent inversion
results under identical initializations and optimizer settings. To quantitatively evaluate the stability difference
between the two methods, we performed 50 independent inversions on the dispersion curve shown in Fig. 12
using both PSO and ADsurf. The comparison results (Fig. 18) indicate that the inversion outcomes of PSO show
high variability and lack reliability, while those of ADsurf demonstrate much greater consistency and robustness.
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CV threshold selection

In this study, we set the CV threshold to 0.5 based on a practical trade-off between inversion cost and the
improvement in model accuracy after fine-tuning. For our datasets and computational budget, CV = 0.5
selects an adequate number of informative ‘hard’ samples and yields substantial fine-tuning gains at modest
cost. It should be noted that the CV threshold is not universal: its optimal value depends on the application
scenario, data distribution, and model architecture. For high-SNR data, the threshold may be raised to reduce
inversion workload; for geologically complex or highly heterogeneous datasets, it may be lowered to retain more
potentially informative samples. We therefore recommend a progressive, data-driven procedure: first analyze
the CV distribution of multi-model prediction results for the target dataset; then start from a larger CV value
(selecting only a few highly uncertain samples) and gradually lower the threshold to include more samples.
At each step, generate pseudo-labels, fine-tune the models, and evaluate performance against the additional
inversion cost; stop once the post-fine-tuning performance meets a predefined target (or when further lowering
the threshold would exceed available computational resources). This iterative strategy controls computational
expense while ensuring that the selected pseudo-labels materially improve model performance.

Limitation

In Fig. 12, the determinant computed during the forward modeling process exhibits large regions with values
close to zero, resulting in poor localization of the theoretical dispersion curve and consequently leading to
inversion errors with ADsurf. This issue may stem from an overly large phase velocity search interval (dc),
which prevents the forward modeling from accurately locating the dispersion curve. Theoretically, reducing the
interval dc can alleviate this problem, but it would significantly increase the computational cost. Therefore, the
phase velocity search interval must be carefully selected based on practical considerations. In current practice,
if abnormally low loss values occur alongside poor curve fitting—such as those shown in Fig. 12—manual
screening is still required, as there is no reliable automatic method to identify and eliminate such erroneous
iterations based on the output alone.

Future

In the proposed method, dispersion-curve locations are determined from the zero-crossings of the determinant
obtained by forward modeling. This approach can concurrently localize both fundamental and higher-order
dispersion modes without multiple forward simulations or prior mode classification, offering good scalability.
Future work will pursue two complementary directions to enhance the method. First, incorporate higher-
mode Rayleigh-wave dispersion curves into the training process to leverage their richer information on deeper
velocity structure, thereby improving predictive reliability and accuracy®"**. Second, the current workflow relies
on manually picked dispersion curves, which is time-consuming and may introduce subjective bias; therefore,
we plan to integrate automated dispersion-curve extraction techniques to replace manual picking, such as the
method proposed by Hu et al. which implements automated picking with a U-net++ architecture combined with
clustering algorithms*.

Conclusion

This paper presents a model optimization method based on the concept of uncertainty sampling. By evaluating
prediction uncertainty using the coeflicient of variation across multiple models, the method identifies highly
uncertain samples and generates high-confidence pseudo-labels for fine-tuning, without requiring any borehole
data. Experimental results demonstrate that generating pseudo-labels for only a small portion of the data can
significantly improve model performance in the target region. This approach effectively addresses the reduced
prediction accuracy often encountered when data-driven deep learning models are applied to new areas, thereby
enhancing model generalization and adaptability. Moreover, by employing more reasonable initial models and
incorporating prior knowledge as physical constraints during inversion, the method substantially improves
the robustness of the ADsurf algorithm under complex geological conditions. Both synthetic and field data
experiments confirm that the proposed approach enhances the cross-regional generalization and adaptability
of deep-learning-based inversion models, offering an efficient, low-cost, and reliable solution for Rayleigh wave
dispersion curve inversion.

Data availability

Due to confidentiality agreements with China National Petroleum Corporation (CNPC), the seismic data used
in this study are not publicly available. For requests to access the dataset, please contact the corresponding au-
thor at FXJ_cdut@outlook.com.
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