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Rayleigh-wave inversion is a reliable approach for obtaining subsurface shear-wave velocity structures 
and holds significant importance in seismic risk assessment, resource exploration, and geotechnical 
engineering. Numerous studies have demonstrated the great potential of deep learning (DL) in 
Rayleigh-wave inversion; however, existing DL methods still suffer from limited generalization, 
strong dependence on training data, and slow convergence. To address these issues, this study 
proposes a representative data selection and model optimization strategy. Specifically, we identify 
high-uncertainty samples based on the inconsistency of predictions from multiple pretrained models 
trained in parallel. An automatic differentiation-driven inversion method is then used to generate 
high-confidence pseudo-labels for the selected data, which are subsequently employed to fine-
tune the original model. This workflow requires no borehole information and significantly improves 
the prediction accuracy and robustness of the model in the target area. Both synthetic and field 
experiments validate the effectiveness of the proposed method, demonstrating enhanced adaptability 
and performance in complex geological environments with relatively small additional cost.
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Shear wave velocity of the subsurface directly reflects the stiffness of underground materials and plays a 
pivotal role in groundwater exploration, engineering geology, and environmental studies1. Based on the 
dispersive propagation characteristics of surface waves in heterogeneous media, Surface wave methods—
such as SASW(Spectral analysis of surface waves) and MASW(Multichannel analysis of surface waves)—can 
derive subsurface shear-wave velocity profiles by analyzing Rayleigh-wave dispersion curves. Owing to their 
high efficiency, low cost, and minimal environmental impact, these techniques have become the mainstream 
approach for obtaining shear wave velocity structures2–4. The complete surface wave analysis workflow comprises 
three core stages: field data acquisition, dispersion characteristic analysis, and dispersion-curve inversion. In 
particular, inverting the Rayleigh wave dispersion curve is a key step in surface wave analysis5, as the accuracy of 
this inversion directly determines the precision and reliability of the resulting Vs model.

Early Rayleigh wave dispersion curve inversion techniques relied predominantly on optimization algorithms, 
which can be classified into two broad categories: linear local methods and nonlinear global methods. Common 
linear approaches include Damped Least Squares6, Singular Value Decomposition, and Occam’s inversion. 
Linear local optimization methods iteratively approximate the optimal solution by linearizing the forward model 
in the vicinity of an initial guess, relying heavily on accurate parameter derivatives and well-chosen starting 
models. This dependence on initialization and precise gradient computation significantly limits their practicality 
Nonlinear global strategies—such as Genetic Algorithms7, Simulated Annealing8, Particle Swarm Optimization, 
and Sparrow Search9—offer broader search capabilities with reduced dependence on initialization. However, 
they suffer from excessive computational demands, low convergence efficiency, and a tendency to become 
trapped in locally optimal solutions, rendering them impractical for large scale dispersion curve inversion10. 
In summary, traditional optimization methods for Rayleigh wave inversion are generally constrained by low 
computational efficiency and strong non uniqueness.

To overcome the limitations of traditional optimization algorithms in Rayleigh wave dispersion curve 
inversion, more efficient and robust deep learning methods have garnered extensive attention in recent years. 
Once fully trained, a deep neural network can produce accurate predictions in a single forward pass, effectively 
balancing computational speed and inversion precision. Early efforts predominantly utilized fully connected 
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neural networks (FCNNs), with multiple successful applications demonstrating their substantial potential11,12. 
As the field has advanced, various enhancements have emerged. For example, Earp et al.13 and Yang et al.14 
employed mixture density networks (MDNs) to infer shear wave velocity structures, enhancing prediction 
reliability through probabilistic modeling; He et al.15 were the first to apply convolutional neural networks 
(CNNs) to field datasets, validating the suitability of CNNs for dispersion curve inversion; and Chen et al.16 
improved the loss function and incorporated geological priors into the synthetic data generation process, 
enabling CNNs to capture local geological variations in the target region, thereby mitigating inversion non 
uniqueness and improving predictive accuracy under complex geological settings.

Although deep learning method has demonstrated high computational efficiency and prediction accuracy in 
Rayleigh wave dispersion curve inversion, it still faces significant challenges in practical applications, particularly 
limited generalization ability and strong dependence on its training data. Specifically, as a data driven approach, 
its predictive performance closely depends on the training dataset and often fails to predict out of distribution 
samples accurately. Consequently, when the application context changes, prediction accuracy on target-region 
data typically degrades substantially10. The common remedy involves reconstructing a geological parameter 
search space based on prior knowledge of the target area, randomly generating numerous shear wave velocity 
(Vs) models within that space, computing the corresponding dispersion curves through forward modeling and 
then retraining the network using these synthetic datasets—a process that is both time consuming and labor 
intensive17. Moreover, accurate geological information for the target region is rarely available in practice, which 
forces the use of overly broad search spaces to ensure coverage of all plausible subsurface scenarios. However, 
such broad spaces dilute the proportion of field relevant samples, thereby degrading the model’s predictive 
accuracy on target data. Notably, Yang et al.18 showed that training a model with only a small number of high 
quality synthetic samples that closely resemble field measurements can significantly improve performance while 
dramatically reducing data requirements, emphasizing that sample quality is more important than quantity. 
Inspired by these findings and by concepts from uncertainty sampling, and active learning19,20, this paper 
proposes a method that selects representative field data via multi model prediction uncertainty and uses them 
for model fine tuning to enhance prediction accuracy in the target region.

Related work
Fig. 1 illustrates the overall workflow of our approach, which integrates multi-model fusion with uncertainty-
driven sample selection to enable targeted model fine-tuning. The method comprises three main stages. First, 
multiple models are pretrained in parallel on a large synthetic dataset. Second, these models are applied to 
field data and their prediction discrepancies are evaluated to identify high-uncertainty samples. Third, high-
confidence pseudo-labels are generated for the selected samples. The high-uncertainty samples and their 
pseudo-labels are aggregated into a fine-tuning subset, and only the last two linear layers of each model are 

Fig. 1.  Workflow of the proposed method. During pretraining, a large synthetic dataset—consisting of 
randomly generated subsurface shear‑wave velocity models and their corresponding dispersion curves 
computed via forward modeling—is used to train multiple model architectures. Next, samples exhibiting high 
predictive uncertainty are identified from field data based on discrepancies across the pretrained models, and 
corresponding pseudo‑labels are generated using the ADsurf inversion method to form a fine‑tuning subset. 
Finally, all models undergo targeted fine‑tuning to enhance prediction accuracy in the target region.
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fine-tuned. This targeted fine-tuning substantially improves prediction accuracy and stability on complex target-
region samples while preserving overall generalization capability.

Dispersion-curve inversion model
In this study, we leverage a parallel training approach to develop multiple models that differ in architecture, 
neuron count, and parameter initialization. This approach is designed to improve overall predictive accuracy 
and to supply high-quality, diverse initial solutions for subsequent pseudo-label generation. Specifically, we 
incorporate three mainstream deep-learning architectures applied to Rayleigh wave dispersion curve inversion: 
fully connected neural networks (FCNNs), convolutional neural networks (CNNs), and mixture density 
networks (MDNs).

(1) FCNN
An FCNN consists of multiple dense (fully connected) layers, each followed by a nonlinear activation function. 
Due to its simplicity and ease of implementation, FCNN is commonly applied to regression problems. In this 
study, the FCNN takes a sequence of phase velocities (sampled from the dispersion curve) as input and predicts 
the subsurface shear wave velocity model (excluding thickness for the half space). During training, we used 
mean squared error (MSE) as the loss function. Compared to mean absolute error (MAE), MSE is more sensitive 
to outliers and has been widely applied and validated in regression problems10.

	
MSE = 1

n

n∑
i=1

∆vi

vi
+ 1

n − 1

n−1∑
i=1

∆hi

hi
� (1)

In the formula, n denotes the number of training samples, ∆vi and ∆hi represent the differences between the 
predicted and true shear wave velocity and layer thickness for the ith layer, respectively, while vi and hi are the 
true shear wave velocity and thickness of the ith layer. Since the bottommost layer is modeled as a half space with 
infinite thickness, its thickness term is excluded from the loss function.

(2) MDN
An MDN is a neural network model designed to capture complex conditional probability distributions. Compared 
to traditional deterministic models, it can represent underlying uncertainty and better reflect physical reality. 
In this study, the MDN takes the phase‑velocity sequence sampled from dispersion‑curve as input and outputs 
the Gaussian mixture model (GMM) parameters: mixture weights, means, and standard deviations(the network 
structure is shown in Fig. 2). 

	1.	 mixture weights(α) indicate the contribution of each Gaussian component and satisfy 
∑k

i=1 αi = 1, where 
k is the number of components.

	2.	 means (µ) represent the central values of the Gaussian components.
	3.	 standard deviations (σ) characterize the spread of each Gaussian and quantify uncertainty.

To obtain the most probable subsurface shear-wave velocity model, we employ a grid-search strategy within 
predefined physical constraints (for example, restricting the first layer’s shear-wave velocity to 10-3000m/s with 
a 1m/s sampling interval). For each candidate value, we compute its probability density under the MDN’s output 

Fig. 2.  Architecture of the MDN model. Arrows indicate the flow of data through the network. The final 
MDN layer consists of three dense sublayers that compute the mixture weights (α), means (µ), and standard 
deviations (σ), respectively; all other dense layers use the Tanh activation function.
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and select the value of highest likelihood as the optimal solution for that layer. This process is repeated iteratively 
for successive layers until the full velocity model is reconstructed.

The MDN is optimized during training using the negative log-likelihood (NLL) loss function (Eq. 2). Here, 
N denotes the number of training samples. P̂X|Y =yi

(xi) represents the posterior probability density of the 
true shear-wave velocity label xi given the input phase-velocity sequence yi, calculated as the weighted sum 
of Gaussian component densities. Specifically, p̂j (xi) is the probability density of under the jth Gaussian 
component, and αj  is its mixture weight. The parameter k indicates the number of Gaussian components in the 
mixture model14.

	
NLL = −

N−1∑
i=0

log
(
P̂X|Y =yi

(xi)
)

= −
N−1∑
i=0

log

(
k∑

j=1

αj p̂j (xi)

)
� (2)

(3) CNN
Chen et al. introduced a one dimensional convolutional layer (Conv1d) preceding a FCNN. This Conv1d layer 
fuses the sampled period sequence and phase velocity sequence of the dispersion curve into a single channel 1D 
feature vector, which is then fed into the following fully connected layers to emulate complex matrix operations16. 
Both the CNN and FCNN employ mean squared error (MSE) as the loss function (see Eq. 1). In contrast to an 
FCNN that takes only phase velocity values at fixed periods as inputs, this CNN architecture automatically 
integrates period and phase velocity information via the Conv1d layer. It thus eliminates the need for prior time 
alignment and provides richer time–frequency features, enhancing the network’s representational capability for 
complex dispersion data.(The detailed network architecture is depicted in Fig. 3)

(4) Model pretraining
During training, multiple models are pretrained in parallel on the synthetic dataset with a learning rate of 10−3 
and an L2 regularization coefficient of 10−4. Model hyperparameters were chosen according to the well-known 
validation-set approach (see Table 1). The weights of the FCNN and CNN models were initialized using the 
Kaiming scheme, while the weights of the MDN model, except for those in the output layer, were initialized 
using the Xavier method. To enhance model diversity and improve the robustness of subsequent ensemble 
predictions, each model was trained three times with different random initialization parameters. During 
the model inference stage, we select the prediction that yields the smallest loss as the final output from the 
ensemble of model predictions. Compared with schemes that merge predictions by weighted averaging, this 
“minimum-loss selection” strategy offers two practical advantages. First, it incurs lower computational overhead: 
there is no need to estimate or update ensemble weights during pretraining or the subsequent rounds of fine-

Hidden Layers and Nodes Activations Gaussian Components(K)

FCNN [150, 150, 100, 100, 50] ReLU -

MDN [200, 150, 100, 100, 50] Tanh 4

CNN [200, 150, 150, 100, 100, 50] ReLU -

Table 1.  Selected values for the hyperparameters and activations.

 

Fig. 3.  Architecture of the CNN network. The input consists of two sequences—period and phase velocity—
sampled at 91 points along the dispersion curve. A Conv1d layer with output dimension 1 and kernel size 1 
merges these two sequences into a single 1D feature array, which is then passed to the subsequent dense layers. 
Both the CNN and FCNN models use the ReLU activation function in their dense layers.
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tuning, which substantially reduces computational cost and improves overall efficiency21. In contrast, Qu et 
al.22 compute approximate model weights at each training epoch using a Hessian trace–based approach, which 
substantially increases computational complexity. Second, it preserves the physical self-consistency of single-
model predictions and avoids the non-physical smoothing or spurious intermediate solutions that can arise 
when averaging outputs. Consequently, in scenarios where model architectures differ substantially or where 
maintaining physical consistency is critical, the minimum-loss selection strategy is generally more stable and 
reliable than weighted fusion23.

High-Uncertainty data selection
In the absence of true subsurface information, we evaluate model performance using the misfit function 
proposed by Ernst24,25. This misfit function calculates the mean absolute value of the determinant of the 
dispersion function F

(
ti, cobs

i , x
)

 for a given velocity model x at the observed dispersion data points (ti, cobs
i ):, 

without requiring prior mode identification:

	
L(f, c, m) = 1

N

N∑
i=1

∣∣F (
ti, cobs

i , x
)∣∣� (3)

In Eq. 3, N denotes the number of dispersion curve sampling points. The model prediction x comprises estimates 
of both layer thickness and shear wave velocity. The determinant F is calculated via forward simulation using 
the predicted model x. Each coordinate (ti, cobs

i ) corresponds to the ith observed dispersion sampling point’s 
period and phase velocity. Fig. 4 presents an example of the determinant based misfit function in action. The 
determinant F can be computed via the frequency–Bessel (F–J) transform or phase shift methods. The theoretical 
dispersion curve corresponds to zeros of F; hence, if the predicted model is accurate, all observed sampling 
points should lie within the white troughs (zero loci) of the determinant image, resulting in a misfit value of zero.

Building on this, we introduce the coefficient of variation (CV) as a metric for quantifying the uncertainty 
of multi-model predictions26. Specifically, for each sample, we first calculate the forward misfit value of the 
prediction produced by each pretrained model, then compute the mean µ and standard deviation σ of these 
misfit values, and substitute them into Eq (4). The result represents the ensemble’s predictive uncertainty for that 
sample. A larger CV indicates more significant disagreement among models, suggesting that the sample is more 
likely to belong to regions insufficiently covered by the training set or to lie outside the training distribution. 
We choose to compute CV from the models’misfit values because the raw outputs of different models are multi-
dimensional and the output dimensionality or parameterization may vary when applied to field data from 
different regions, making it difficult to compute a CV directly from the model predictions themselves.

	
CV =

(
σ

µ

)
× 100%� (4)

Fig. 4.  An example of the misfit function defined above. The figure displays the determinant F distribution 
computed from the forward-modeled predictions, where white areas precisely delineate the theoretical 
dispersion curve. Black dots mark all observed dispersion sampling points, and the mean of the absolute 
determinant values at these points corresponds to the loss defined in Eq. 3.
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The CV is defined as the ratio of the standard deviation to the mean, thereby eliminating the unit of measurement 
of the standard deviation and intuitively reflecting the relative dispersion of the data, regardless of differences in 
units or scales across datasets. This dimensionless property enables the CV to be applicable to data with varying 
signal-to-noise ratios.

Pseudo-label construction
After identifying high-uncertainty samples using the coefficient of variation, reliable pseudo-labels must be 
generated to support model fine-tuning. To achieve this, we employ an automatic differentiation-driven iterative 
inversion method, ADsurf, to generate trustworthy labels for the selected data. ADsurf by default initializes with 
velocity models derived from empirical formulas and can generate multiple perturbed versions of initial model 
within a local neighborhood, thereby enhancing the diversity of initial solutions. During each iteration, the loss 
function defined in Eq. 3 is minimized using the forward-determined misfit computed via the Dunkin27 and 
Herrmann & Ammon28 enhanced Haskell–Thomson propagator. Because this forward modeling is differentiable 
everywhere, it allows gradient calculations via automatic differentiation (AD) and gradient-based optimization 
to iteratively refine the initial guesses toward realistic subsurface models29.

However, velocity models derived from empirical formulas often deviate considerably from the true 
subsurface structure. Using such models as initial solutions may cause ADsurf to exhibit slow loss reduction, 
unstable convergence, or even gradient explosion during iteration, which represents a major challenge for its 
practical application. To address this, we construct more plausible initializations using predictions from multiple 
pretrained models, and introduce geological prior constraints during iteration to guide convergence toward 
realistic solutions. Specifically, for each high-uncertainty sample, the prediction of each pretrained model is 
used as an independent initialization for ADsurf inversion, which is performed under the guidance of prior 
constraints. Each inversion produces an optimal candidate solution, and among these candidates, the one with 
the smallest misfit is selected as the final inversion result and used as the pseudo-label for subsequent model 
fine-tuning.

Experiment
Field seismic data were acquired at an industrial site in southwest China using 62 receiver channels with an 
average channel spacing of 2m. The time sampling interval was 2ms, and each trace had a duration of 2.002s 
(1,001 time samples). After converting the seismic records into dispersion-energy spectrograms via the phase-
shift method, dispersion curves were manually picked(examples​ are provided in Fig. 5). The resulting discrete 
picks were then interpolated and resampled onto a standardized period range (0.10–1.00s with a 10ms interval) 
to eliminate sampling nonuniformity introduced by manual picking, thereby facilitating input into the deep 
learning model.

Since the field data lack borehole ground-truth labels and the geological conditions of the acquisition area 
remain uncertain, traditional inversion algorithms often yield unstable results. To comprehensively validate the 
proposed method’s accuracy and robustness, we adopt a two-step strategy: 

	1.	 Use randomly generated shear-wave velocity models and their corresponding dispersion curves to quantita-
tively assess the effectiveness of the proposed optimization scheme.

	2.	 After validating the method with synthetic data, directly apply it to the 224 real-world dispersion curves to 
evaluate applicability in actual geological conditions.

Fig. 5.  Observed seismic data are shown in panels (a)–(c), and the corresponding dispersion-energy 
spectrograms obtained via the phase-shift method are shown in panels (d)–(f). Black dots indicate the 
manually picked dispersion curves.

 

Scientific Reports |         (2026) 16:1108 6| https://doi.org/10.1038/s41598-025-30603-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Creating the pretraining Dataset
To construct the pretraining dataset, we define a wide parameter search space based on prior knowledge of 
the field data collection area (see Table2), ensuring comprehensive coverage of plausible subsurface structures. 
During the generation of synthetic shear-wave velocity models, we enforce that the topmost layer has the 
minimum velocity while the bottommost layer attains the maximum velocity. This constraint guarantees that 
the synthetic models robustly produce a fundamental-mode Rayleigh-wave dispersion curve via forward 
modeling30.

Based on surface wave sensitivity analyses31, shear wave velocity (Vs) exerts the most significant control on 
Rayleigh wave dispersion curves, followed by layer thickness. In contrast, compressional wave velocity (Vp) and 
density have relatively minor effects on the computed dispersion curves.Accordingly, we compute Vp using a 
fixed Vp/Vs ratio of 2.45, and derive density ρ via Brocher’s empirical relationship32, which relates density to Vp.

	 ρ = 1.74V 0.25
p � (5)

We use the disba Python package to generate the fundamental-mode Rayleigh-wave dispersion curves. This 
package implements a subset of the “Computer Programs in Seismology” (CPS) codebase28 in pure Python and 
accelerates execution using numba just in time compilation, enabling efficient and convenient dispersion-curve 
computation. Given randomly generated velocity models, we computed phase velocities for fundamental-mode 
Rayleigh waves over the 0.10–1.00s period range with a sampling interval of 10ms. In total, 25,000 synthetic 
datasets were generated and split into training and validation subsets at a 4:1 ratio. The training subset was 
used for multi-model pretraining, while the validation subset was used to monitor model performance and 
prevent overfitting. Pretraining was conducted using the Adam optimizer,a learning rate of 10−3, and an L2 
regularization coefficient of 10−4.

Synthetic data
We first validate the proposed method using theoretical, noise-free data. Based on the previously described 
dataset generation process and the parameter space defined in Table 3, we generate 400 synthetic test cases to 
evaluate model performance before and after optimization.

To quantify ensemble model uncertainty, we use the CV of prediction losses across models as the evaluation 
metric. We set threshold values of 0.7, 0.6, 0.5, and 0.4. Whenever the CV of prediction loss for a specific sample 
exceeds the threshold, the ensemble’s prediction for that data point is deemed highly uncertain. For the identified 
high-uncertainty samples, we apply the ADsurf package for iterative inversion. The resulting velocity models 
and dispersion curves are used to fine-tune the base model. The pretrained models’ predictive performance on 
synthetic data is shown in Table 4:

Mean loss Mean relative error

Coefficient of Variation

> 0.7 > 0.6 > 0.5 > 0.4

0.1782 1.9516 8 18 45 154

Table 4.  Pretrained model performance on synthetic data.

 

Layer Vs(m/s) Thick(m)

1 400-700 10-50

2 700-1000 10-50

3 800-1100 10-50

4 900-1300 50-100

5 1500-2000 -

Table 3.  Search space for synthetic test dataset.

 

Layer Vs(m/s) Thick(m)

1 400-1000 10-100

2 max(600, V stop)-1400 10-100

3 max(800, V stop)-1600 10-100

4 max(900, V stop)-1700 10-100

5 1700-2400 -

Table 2.  Search space for synthetic pretraining dataset.
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Inversion results with noise-free data
To investigate the effect of the initialization strategy and constraint application on ADsurf inversion outcomes, 
two initialization schemes are compared in this study(see Fig. 6): 

	1.	 Predictions from multiple pretrained models;
	2.	 The default initialization from the ADsurf package derived from empirical formulas.

Using the Adam optimizer (initial learning rate η = 10−3, decayed by 25% every 100 iterations), each initialization 
strategy undergoes 800 iterations under both constrained and unconstrained settings to analyze the variations 
in final inversion results.

Under the assumption of constant Poisson’s ratio and density, the ADsurf package generates an initial layered 
velocity model from observed dispersion data (period–phase velocity pairs). Specifically, each layer’s thickness 
is calculated as wmax/depth_factor, where wmax is the maximum observed wavelength and depth_factor 
is set to 2.5. An empirical relation links Rayleigh wave wavelength to subsurface depth, with the maximum 
penetration depth assumed to be 0.65 times the wavelength. Shear wave velocity (Vs) is then estimated layer-by-
layer using the approximation V s ≈ C_phase/0.92, where the C_phase corresponds to the phase velocity 
that penetrates each layer. The computed model serves as the central solution, and ten additional initial models 
are randomly sampled within a small neighborhood around this solution to provide initialization diversity.

The comparison results(Fig. 7) show that, in the unconstrained scenario, using model predictions as the initial 
solution yields superior convergence characteristics compared to the empirical-formula-based initialization. 

Default

initial solution

Model 

output

best loss: 0.0006956

best loss: 0.0096285

Fig. 7.  In the unconstrained scenario, results are shown for both the empirically initialized solution and the 
initialization based on multi-model predictions, each iterated 800 times via ADsurf. The left panel displays the 
loss value evolution during the iteration process. The right panel shows inversion outputs: the blue dashed line 
represents the solution corresponding to the minimum loss, the red solid line indicates the true label, and the 
shaded gray region depicts how the initial solution changes through iterations.

 

Default Initial solution Multi-Model outputDispersion curves

Fig. 6.  On the left are the dispersion-curve data; in the center are nine randomly generated initial models 
produced by the ADsurf package based on the input data; and on the right are the predictions from nine 
pretrained models. The red segments indicate the true labels of the data.

 

Scientific Reports |         (2026) 16:1108 8| https://doi.org/10.1038/s41598-025-30603-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Specifically,(1)The loss decreases faster during optimization.(2)The final inversion result aligns more closely 
with the true label.

We subsequently applied physical constraints during iteration: the shear-wave velocity of each layer was 
limited to the range of 0.5 to 2 times its corresponding initial value, and layer thickness (except for the half-
space) was constrained within 10–100m. Experimental results(Fig. 8) indicate that imposing reasonable physical 
bounds during iterative inversion enhances both convergence efficiency and final predictive accuracy.

Fine-tuning result
From the inversion results, we observe that, under identical inversion settings, initial models with smaller 
forward misfits tend to converge more rapidly and are more likely to reach geologically plausible minima. 
Based on this observation, and to reduce computational cost while improving inversion efficiency during the 
subsequent fine-tuning stage, we use only a subset of high-quality model predictions as ADsurf initializations.
Specifically, candidate predictions are first ranked by their forward misfit, and the six predictions with the lowest 
misfits are selected as starting models for the ADsurf iterative inversion. It should be noted that the ADsurf 
inversion procedure exhibits inherent stochasticity; consequently, even initializations with small misfits may 
occasionally fail to converge or may become trapped in unfavorable local minima (see Fig. 7). Therefore, we 
recommend preserving diversity among the selected initializations and tailoring the selection criteria to the 
specific application in order to strike an appropriate balance between computational efficiency and inversion 
robustness.

ADsurf inversion results are used as pseudo-labels to fine‑tune the last two fully connected layers of each 
model. During fine‑tuning, the Adam optimizer is employed with a learning rate of 10−4 and an L2 regularization 
coefficient of 10−3 to prevent overfitting. Only 10 training epochs are executed. Multiple fine‑tuning experiments 
are conducted using different coefficient‑of‑variation thresholds; the variation in predictive performance across 
these threshold values is plotted in Fig. 9.

Fig. 9.  The curves show the prediction performance of fine-tuned models under different coefficient-of-
variation thresholds. The left plot depicts the variation in relative error between model predictions and true 
labels, while the right plot illustrates the change in prediction loss values.

 

Default

initial solution

Model 

output

best loss: 0.0002171

best loss: 0.0072701

Fig. 8.  Under constrained conditions, the results of 800 ADsurf iterations starting from both the empirical-
formula initialization and the ensemble-model predicted initialization.
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Comparing the fine tuned model with the original pretrained version(see Fig. 10) reveals that as the 
coefficient of variation threshold increases, the performance of the fine tuned model improves, and its forward-
modeled dispersion curves align more closely with test data. However, the magnitude of improvement shows 
diminishing returns. Specifically, when the threshold reaches 0.5, further lowering the threshold to include 
more fine tuning samples no longer yields significant gains in predictive accuracy. This is likely because the 
newly added samples are highly similar to those already included, offering little additional learning benefit. 
Conversely, at a threshold of 0.4, the number of pseudo-label samples needed is more than twice that required at 
0.5. Considering computational time and efficiency, the model fine-tuned with a CV threshold of 0.5 is selected 
as the optimal configuration.

When the coefficient-of-variation threshold is set to 0.5, only 45 samples need to undergo inversion 
processing, allowing the model to achieve good predictive performance with minimal time cost. To validate 
the effectiveness of the proposed method, we set the CV threshold to 0.5 and then select two groups of equal-
sized samples from the test dataset: one randomly sampled and the other consisting of samples with the lowest 
CV values. Pseudo-labels are generated for both sets and used to fine-tune the models. Finally, we compare the 
performance of the model fine-tuned on the additionally selected data against that of the model fine-tuned using 
the proposed method. The comparison results are presented in Table 5.

The final results(Fig. 11) demonstrably indicate that the proposed method yields significantly superior 
prediction performance compared to random sampling and worst-case sampling. Among these approaches, 
predictions from worst-case sampling exhibit the largest deviation from ground-truth labels, followed by random 
sampling. Optimal performance is achieved through fine-tuning with data exhibiting the highest coefficient 
of variation. These findings substantiate the efficacy of selecting high-uncertainty data based on coefficient of 
variation thresholds for model refinement.

Field data
Iterative inversion results with noisy data
Fig. 12 demonstrates that, under unconstrained conditions, the inversion easily converges to incorrect solutions 
during iteration; in contrast, when appropriate constraints are applied, the initial model is guided toward more 
reasonable solutions, enabling rapid loss convergence and yielding inversion results that align with expectations. 
Despite the presence of disturbance and noise in the data, the final forward-modeled dispersion curve points all 
lie near the zero-value regions of the determinant, indicating a strong fit. This suggests that ADsurf can produce 
satisfactory inversion results even when input dispersion curves include some sampling bias or mild noise.

Fine-tuning result
When tuning the pretrained models using the same method, and in the absence of detailed geological knowledge 
about the acquisition area, we evaluate model performance using the mean loss value as the criterion. The 
pretrained models’ predictive performance on field data is shown in Table 6. The fine-tuning results are shown 
in Fig. 13 and Fig. 14. From Fig. 13, it can be observed that at CV thresholds of 0.7 and 0.6, the relatively few 
selected fine-tuning samples contain limited information, which is insufficient for the model to learn useful 
features—consequently, model performance after fine-tuning shows no significant improvement. In contrast, 

Proposed method Random sample Worst sample

Mean loss 0.1380 0.1466 0.1620

MRE 1.7705 1.8826 1.9361

Table 5.  Comparison of results based on different data selection methods.

 

original CV_limit = 0.7 CV_limit = 0.6 CV_limit = 0.5 CV_limit = 0.4

Fig. 10.  Prediction performance of fine-tuned models across CV thresholds.
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Mean loss Mean relative error

Coefficient of Variation

> 0.7 > 0.6 > 0.5 > 0.4

0.1715 - 3 10 36 64

Table 6.  Pretrained model performance on field data.

 

Initial 

solution

best loss: 0.015456

best loss: 0.014745

Without

constraints

With 

constraints

Fig. 12.  The iterative inversion results using model predictions as initial solutions under both unconstrained 
and constrained conditions.

 

CV_limit = 0.5 Worst sampleRandom sample

Fig. 11.  Comparative results of three fine-tuning data selection methods: (a) the proposed method, (b) 
random sample selection, (c) minimum voting consensus sampling.
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when CV thresholds are set at 0.5 and 0.4, the number of fine-tuning samples increases, and the fine-tuned 
model performance improves substantially—the forward-modeled dispersion curves from predictions align 
more closely with actual data. However, at a CV threshold of 0.4, despite using more samples for fine-tuning 
than at threshold 0.5, the model’s performance actually degrades—likely due to an improperly set learning rate 
or insufficient number of fine-tuning epochs.

We selected the model fine‑tuned with a CV threshold of 0.5 as optimal. When its predictions are interpolated 
into a subsurface profile, the resulting stratification is markedly clearer, revealing distinct layered structures, 
whereas the profile from the original model’s outputs shows no meaningful layering above the half‑space. In 
contrast, the PSO method produces the poorest stratification among the three approaches on real data, offering 
little useful information for subsurface interpretation. These comparisons indicate that, in the presence of 
noise or disturbances, our proposed fine‑tuning strategy delivers more stable and reliable geological layering 
information.These comparative profiles are shown in Fig. 15.

We selected the fine tuned model obtained with a CV threshold of 0.5 as the reference model, as it yielded the 
best predictive performance. To further validate the effectiveness of our approach, we extracted two equal-sized 
sets of samples from the real test dataset: one chosen randomly and the other consisting of samples with the 
lowest coefficient of variation. Pseudo-labels were generated for both sets and used to fine-tune models using the 
same workflow. The performance of these models was then compared to that of the reference model. As shown 
in Fig.16, the model fine-tuned using our proposed method achieved the highest prediction accuracy, and its 
forward-modeled dispersion curves matched the field data most closely. The comparison results are presented 
in Table 7.

Discussion
The proposed method is based on an uncertainty sampling strategy. It identifies samples with low prediction 
confidence and generates high-confidence pseudo-labels for these data, which are then used to fine-tune 

original CV_limit = 0.7 CV_limit = 0.6 CV_limit = 0.5 CV_limit = 0.4

Fig. 14.  Comparison of model prediction performance on dispersion curves extracted from field seismic data 
after applying the proposed method.

 

Fig. 13.  Prediction loss curves before and after fine-tuning on the manually picked dispersion-curve data.
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pretrained models. This enables the models to learn more informative features and improve overall prediction 
accuracy. The effectiveness and feasibility of the proposed approach have been validated through both synthetic 
and real data experiments.

Limitations of synthetic data training
When deep learning models trained on large-scale synthetic datasets perform poorly on target data, a common 
strategy is to further expand the size of the training set. However, simply increasing the quantity of synthetic 
data does not significantly improve the model’s predictive accuracy on real-world data (Fig. 17). Possible reasons 
include: 

	1.	 An excessive number of synthetic samples may “dilute” the model’s focus on the specific characteristics of 
the target data. To minimize overall loss, the model may ignore the minority patterns, leading to insufficient 
learning of key features.

	2.	 Regardless of how the synthetic rules are adjusted, synthetic data cannot fully replicate the curve deviations 
present in real data due to manual picking errors and environmental noise. This results in an inherent gap 
between synthetic and real samples, which prevents deep models that heavily rely on training data from 
making accurate predictions on field data.

Proposed method Random sample Worst sample

Mean loss 0.1663 0.1725 0.1780

Table 7.  Comparison of results based on different data selection methods.

 

CV_limit = 0.5 Worst sampleRandom sample

Fig. 16.  Comparison of real data results from three methods: the proposed method, random sample selection, 
and lowest variation sample selection.

 

Original Fine_tune PSO

Fig. 15.  Pseudo-2D Vs profiles obtained by interpolating inversion results on picked data: original model, 
fine-tuned model, and PSO optimization.
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Therefore, this study adopts a targeted retraining approach using a small number of real samples and their 
corresponding pseudo-labels. This allows the model to better capture the distribution characteristics of the 
target data and significantly enhance its prediction accuracy on real dispersion curves at a relatively low cost.

Stability and consistency comparison between PSO and ADsurf
Experimental results also show that velocity profiles obtained through Particle Swarm Optimization (PSO) 
often exhibit indistinct stratification and discontinuous interfaces. This is primarily due to PSO being a highly 
stochastic global optimization algorithm, which is prone to local minima. As a result, it may produce vastly 
different subsurface velocity structures even when inverting highly similar dispersion curves collected from the 
same region. In contrast, ADsurf, which is based on gradient computation, achieves highly consistent inversion 
results under identical initializations and optimizer settings. To quantitatively evaluate the stability difference 
between the two methods, we performed 50 independent inversions on the dispersion curve shown in Fig. 12 
using both PSO and ADsurf. The comparison results (Fig. 18) indicate that the inversion outcomes of PSO show 
high variability and lack reliability, while those of ADsurf demonstrate much greater consistency and robustness.

PSO

ADsurf

Fig. 18.  Comparison of optimization results between the traditional PSO algorithm and the ADsurf method. 
Both PSO and ADsurf were applied to the same data with 50 independent inversions. The left panel shows the 
inversion results from multiple runs, while the right panel presents the standard deviation of S-wave velocity 
predictions for each layer, indicating the variability in the results.

 

25000 data 37500 data 50000 data Proposed method

Fig. 17.  Comparison of model predictions obtained under different training data sizes and refinement 
strategies. The result reveals a critical insight: scaling up synthetic data alone is an inefficient strategy for 
improving field data performance. Even when the synthetic training set is doubled, its performance on 
field data is markedly inferior to that of a model fine-tuned with only 36 samples using our method. This 
comparison clearly demonstrates the superiority of our targeted fine-tuning strategy over the conventional 
approach of merely expanding synthetic data volume.
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CV threshold selection
In this study, we set the CV threshold to 0.5 based on a practical trade-off between inversion cost and the 
improvement in model accuracy after fine-tuning. For our datasets and computational budget, CV = 0.5 
selects an adequate number of informative ‘hard’ samples and yields substantial fine-tuning gains at modest 
cost. It should be noted that the CV threshold is not universal: its optimal value depends on the application 
scenario, data distribution, and model architecture. For high-SNR data, the threshold may be raised to reduce 
inversion workload; for geologically complex or highly heterogeneous datasets, it may be lowered to retain more 
potentially informative samples. We therefore recommend a progressive, data-driven procedure: first analyze 
the CV distribution of multi-model prediction results for the target dataset; then start from a larger CV value 
(selecting only a few highly uncertain samples) and gradually lower the threshold to include more samples. 
At each step, generate pseudo-labels, fine-tune the models, and evaluate performance against the additional 
inversion cost; stop once the post-fine-tuning performance meets a predefined target (or when further lowering 
the threshold would exceed available computational resources). This iterative strategy controls computational 
expense while ensuring that the selected pseudo-labels materially improve model performance.

Limitation
In Fig. 12, the determinant computed during the forward modeling process exhibits large regions with values 
close to zero, resulting in poor localization of the theoretical dispersion curve and consequently leading to 
inversion errors with ADsurf. This issue may stem from an overly large phase velocity search interval (dc), 
which prevents the forward modeling from accurately locating the dispersion curve. Theoretically, reducing the 
interval dc can alleviate this problem, but it would significantly increase the computational cost. Therefore, the 
phase velocity search interval must be carefully selected based on practical considerations. In current practice, 
if abnormally low loss values occur alongside poor curve fitting—such as those shown in Fig. 12—manual 
screening is still required, as there is no reliable automatic method to identify and eliminate such erroneous 
iterations based on the output alone.

Future
In the proposed method, dispersion-curve locations are determined from the zero-crossings of the determinant 
obtained by forward modeling. This approach can concurrently localize both fundamental and higher-order 
dispersion modes without multiple forward simulations or prior mode classification, offering good scalability. 
Future work will pursue two complementary directions to enhance the method. First, incorporate higher-
mode Rayleigh-wave dispersion curves into the training process to leverage their richer information on deeper 
velocity structure, thereby improving predictive reliability and accuracy31,34. Second, the current workflow relies 
on manually picked dispersion curves, which is time-consuming and may introduce subjective bias; therefore, 
we plan to integrate automated dispersion-curve extraction techniques to replace manual picking, such as the 
method proposed by Hu et al. which implements automated picking with a U-net++ architecture combined with 
clustering algorithms33.

Conclusion
This paper presents a model optimization method based on the concept of uncertainty sampling. By evaluating 
prediction uncertainty using the coefficient of variation across multiple models, the method identifies highly 
uncertain samples and generates high-confidence pseudo-labels for fine-tuning, without requiring any borehole 
data. Experimental results demonstrate that generating pseudo-labels for only a small portion of the data can 
significantly improve model performance in the target region. This approach effectively addresses the reduced 
prediction accuracy often encountered when data-driven deep learning models are applied to new areas, thereby 
enhancing model generalization and adaptability. Moreover, by employing more reasonable initial models and 
incorporating prior knowledge as physical constraints during inversion, the method substantially improves 
the robustness of the ADsurf algorithm under complex geological conditions. Both synthetic and field data 
experiments confirm that the proposed approach enhances the cross-regional generalization and adaptability 
of deep-learning-based inversion models, offering an efficient, low-cost, and reliable solution for Rayleigh wave 
dispersion curve inversion.

Data availability
Due to confidentiality agreements with China National Petroleum Corporation (CNPC), the seismic data used 
in this study are not publicly available. For requests to access the dataset, please contact the corresponding au-
thor at FXJ_cdut@outlook.com.

Received: 29 July 2025; Accepted: 26 November 2025

References
	 1.	 Xia, J. et al. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil 

Dyn. Earthq. Eng. 22, 181–190 (2002).
	 2.	 Olafsdottir, E. A., Erlingsson, S. & Bessason, B. Tool for analysis of multichannel analysis of surface waves (masw) field data and 

evaluation of shear wave velocity profiles of soils. Can. Geotech. J. 55, 217–233 (2018).
	 3.	 Park, C. B., Miller, R. D. & Xia, J. Multichannel analysis of surface waves. Geophysics 64, 800–808 (1999).
	 4.	 Xia, J. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods. 

J. Appl. Geophys. 103, 140–151 (2014).

Scientific Reports |         (2026) 16:1108 15| https://doi.org/10.1038/s41598-025-30603-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 5.	 Socco, L. V., Foti, S. & Boiero, D. Surface-wave analysis for building near-surface velocity models—established approaches and new 
perspectives. Geophysics 75, 75A83–75A102 (2010).

	 6.	 Cercato, M. Addressing non-uniqueness in linearized multichannel surface wave inversion. Geophys. Prospect. 57, 27–47 (2009).
	 7.	 Lei, Y., Shen, H., Li, X., Wang, X. & Li, Q. Inversion of rayleigh wave dispersion curves via adaptive ga and nested dls. Geophys. J. 

Int. 218, 547–559 (2019).
	 8.	 Calderón-Macías, C. & Luke, B. Improved parameterization to invert rayleigh-wave data for shallow profiles containing stiff 

inclusions. Geophysics 72, U1–U10 (2007).
	 9.	 Sun, X., Ji, Z., Yang, Q. & Liu, B. Inversion of rayleigh wave dispersion curves based on an improved sparrow search algorithm. 

Geophys Geochem Explor 46, 1267–1275 (2022).
	10.	 Meng, Q., Chen, Y., Sha, F. & Liu, T. Inversion of rayleigh wave dispersion curve extracting from ambient noise based on dnn 

architecture. Appl. Sci. 13, 10194 (2023).
	11.	 Devilee, R., Curtis, A. & Roy-Chowdhury, K. An efficient, probabilistic neural network approach to solving inverse problems: 

Inverting surface wave velocities for eurasian crustal thickness. J. Geophys. Res.: Solid Earth 104, 28841–28857 (1999).
	12.	 Meier, U., Curtis, A. & Trampert, J. Global crustal thickness from neural network inversion of surface wave data. Geophys. J. Int. 

169, 706–722 (2007).
	13.	 Earp, S., Curtis, A., Zhang, X. & Hansteen, F. Probabilistic neural network tomography across grane field (north sea) from surface 

wave dispersion data. Geophys. J. Int. 223, 1741–1757 (2020).
	14.	 Yang, J., Xu, C. & Zhang, Y. Reconstruction of the s-wave velocity via mixture density networks with a new rayleigh wave dispersion 

function. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022).
	15.	 Hefei, A. C. et al. Using deep learning to derive shear wave velocity models from surface wave dispersion data. Network 17, 18 

(2020).
	16.	 Chen, X., Xia, J., Pang, J., Zhou, C. & Mi, B. Deep learning inversion of rayleigh-wave dispersion curves with geological constraints 

for near-surface investigations. Geophys. J. Int. 231, 1–14 (2022).
	17.	 Yang, X.-H., Han, P., Yang, Z. & Chen, X. Two-stage broad learning inversion framework for shear-wave velocity estimation. 

Geophysics 88, WA219–WA237 (2023).
	18.	 Yang, X.-H., Zu, Q., Zhou, Y., Han, P. & Chen, X. A sample selection method for neural-network-based rayleigh wave inversion. 

IEEE Trans. Geosci. Remote Sens. 62, 1–17 (2023).
	19.	 Zhu, J., Wang, H., Tsou, B. K. & Ma, M. Active learning with sampling by uncertainty and density for data annotations. IEEE Trans. 

Audio Speech Lang. Process. 18, 1323–1331 (2009).
	20.	 Yang, Y., Ma, Z., Nie, F., Chang, X. & Hauptmann, A. G. Multi-class active learning by uncertainty sampling with diversity 

maximization. Int. J. Comput. Vis. 113, 113–127 (2015).
	21.	 Mu, S. & Lin, S. A comprehensive survey of mixture-of-experts: Algorithms, theory, and applications. arXiv preprint 

arXiv:2503.07137 (2025).
	22.	 Qu, L., Araya-Polo, M. & Demanet, L. Uncertainty quantification in seismic inversion through integrated importance sampling 

and ensemble methods. arXiv preprint arXiv:2409.06840 (2024).
	23.	 Caruana, R., Niculescu-Mizil, A., Crew, G. & Ksikes, A. Ensemble selection from libraries of models. In Proceedings of the twenty-

first international conference on Machine learning, 18 (2004).
	24.	 Ernst, F. Long-wavelength statics estimation from guided waves. In 69th EAGE Conference and Exhibition incorporating SPE 

EUROPEC 2007, cp–27 (European Association of Geoscientists & Engineers, 2007).
	25.	 Ernst, F. Multi-mode inversion for p-wave velocity and thick near-surface layers. In Near surface 2008-14th EAGE European 

Meeting of Environmental and Engineering Geophysics, cp–64 (European Association of Geoscientists & Engineers, 2008).
	26.	 Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. 

Neural Inf. Process. Syst. 30 (2017).
	27.	 Dunkin, J. W. Computation of modal solutions in layered, elastic media at high frequencies. Bull. Seismol. Soc. Am. 55, 335–358 

(1965).
	28.	 Herrmann, R. B. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–

1088 (2013).
	29.	 Liu, F., Li, J., Fu, L. & Lu, L. Multimodal surface wave inversion with automatic differentiation. Geophys. J. Int. 238, 290–312 (2024).
	30.	 Keil, S. & Wassermann, J. Surface wave dispersion curve inversion using mixture density networks. Geophys. J. Int. 235, 401–415 

(2023).
	31.	 Xia, J., Miller, R. D., Park, C. B. & Tian, G. Inversion of high frequency surface waves with fundamental and higher modes. J. Appl. 

Geophys. 52, 45–57 (2003).
	32.	 Brocher, T. M. Empirical relations between elastic wavespeeds and density in the earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–

2092 (2005).
	33.	 Hu, W. et al. Surface-wave dispersion curves extraction method from ambient noise based on u-net++ and density clustering 

algorithm. J. Appl. Geophys. 213, 105040 (2023).
	34.	 Pan, L., Chen, X., Wang, J., Yang, Z. & Zhang, D. Sensitivity analysis of dispersion curves of rayleigh waves with fundamental and 

higher modes. Geophys. J. Int. 216, 1276–1303 (2019).

Author contributions
FZ suggested the original study idea and design the method, XJF designed and completed the experiment, WP 
provide the data used in the experiments in this paper. FD analysed the results and written the original draft.

Funding
This research was funded by Sichuan Province General Program Fund (2024NSFSC0514) and the Bureau of 
Geophysical Prospecting (BGP Inc., CNPC) under grant No. 03-02-2025

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.F. or F.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Scientific Reports |         (2026) 16:1108 16| https://doi.org/10.1038/s41598-025-30603-3

www.nature.com/scientificreports/

http://arxiv.org/abs/2503.07137
http://arxiv.org/abs/2409.06840
http://www.nature.com/scientificreports


Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |         (2026) 16:1108 17| https://doi.org/10.1038/s41598-025-30603-3

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Rayleigh-wave dispersion data selection and model fine-tuning based on uncertainty estimation
	﻿Related work
	﻿Dispersion-curve inversion model
	﻿(1) FCNN
	﻿(2) MDN
	﻿(3) CNN
	﻿(4) Model pretraining


	﻿High-Uncertainty data selection
	﻿Pseudo-label construction
	﻿Experiment
	﻿Creating the pretraining Dataset
	﻿Synthetic data
	﻿Inversion results with noise-free data
	﻿Fine-tuning result


	﻿Field data
	﻿Iterative inversion results with noisy data



