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An integrated tiny-YOLO v3 and
Q-iteration framework for stable,
energy-efficient autonomous
navigation of quadruped robots on
AMB82-mini microcontrollers

Falah Hasan Salih, Amir Hooshang Mazinan™ & Seyed Mahmoud Modaresi

The deployment of advanced artificial intelligence, specifically deep learning (DL) for perception and
reinforcement learning (RL) for control, on ultra-low-power, microcontroller-based quadruped robots
presents significant challenges. A system-level engineering approach is presented, integrating these
computationally intensive methodologies. Central to this is an object detection module, powered by

a lightweight Deep Neural Network (DNN), specifically a Tiny-YOLOv3 model, running on an AMB82-
Mini microcontroller. The robot’s perception capabilities are provided by the AMB82-Mini, while its
real-time locomotion control system is implemented on a Teensy 4.0 microcontroller. This integration
leverages meticulous optimization techniques, including INT8 quantization and efficient TFLite Micro
deployment. The object detection module achieves approximately 7.8 frames per second (128.32 ms
inference latency), enabling robust obstacle avoidance and stable locomotion. Experimental validation
was primarily conducted using the custom-built TMUBot quadruped robot, demonstrating its
capabilities across diverse terrains. The results underscore the potential of using machine learning with
low-power microcontrollers to achieve complex control schemes for small-scale robotic applications.

Keywords Embedded robotics, Tiny-YOLO v3, Dynamic stability analysis (ZMP), Energy-efficient robotics,
AMBS82-mini microcontroller

Autonomous quadruped robots hold immense promise for applications ranging from exploration and
surveillance to disaster response, particularly in dynamic and unstructured environments. However, their
effective deployment hinges on robust real-time perception and adaptive control, which often present significant
engineering challenges. Integrating sophisticated deep learning models for real-time object detection and
pose estimation typically demands substantial computational resources, making their direct deployment on
low-power, embedded microcontrollers (without powerful dedicated GPUs) computationally prohibitive and
impractical for energy-constrained applications. Furthermore, while both deep learning for perception and
reinforcement learning for adaptive control have demonstrated individual successes, their seamless and efficient
integration onto a single, resource-constrained embedded platform for a fully autonomous system remains a
complex challenge. Many existing solutions, while theoretically sound or validated in simulation, frequently
lack comprehensive quantitative validation of critical real-world performance metrics, such as dynamic stability
and detailed energy consumption profiling, which are crucial for practical, long-duration field operations.
These limitations highlight a critical gap in the development of truly autonomous, robust, and energy-efficient
quadruped robots capable of operating independently in complex, real-world scenarios!->.

Significant progress has been made in enhancing quadruped robot capabilities through advanced control
strategies, particularly those leveraging deep learning and reinforcement learning. Researchers have explored
DRL for efficient locomotion, combined Model Predictive Control (MPC) with reinforcement learning for
improved stability, and developed sophisticated jump control algorithms for challenging environments like
asteroids and uneven terrain*”. Furthermore, Al-based approaches have been introduced for self-balancing
and hierarchical locomotion control for modular systems®°. While these studies demonstrate remarkable
advancements in robust locomotion, complex maneuverability, and learning adaptive behaviors, many often rely
on high-performance computing platforms, focus primarily on control policies without fully integrated real-
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time perception, or operate within controlled environments, leaving a gap for truly autonomous, energy-efhicient
operation on resource-constrained embedded systems. Similarly, while object detection models like YOLO have
been successfully applied in drone-based surveillance for real-time operations, the challenge intensifies when
integrating such models with complex locomotion control on the ultra-low-power microcontrollers typical of
smaller quadruped robots.

Building upon these insights and addressing the aforementioned gaps, this study presents a novel, integrated
machine learning framework designed for autonomous quadruped robots operating on ultra-low-power
microcontrollers. Our approach combines a highly efficient deep learning model, Tiny-YOLOV3, for real-
time visual perception (object detection and pose estimation) with a robust Q-iteration algorithm for adaptive
locomotion control. This framework is specifically engineered for deployment on resource-constrained platforms
such as the AMB82-Mini and Teensy 4.0, primarily leveraging monocular vision for real-world perception, with
LiDAR integration explored in simulation for enhanced environmental awareness. The primary contributions
and innovations of this work are summarized as follows:

1. Development of a novel, integrated machine learning framework combining real-time deep learning (Ti-
ny-YOLOV3) for perception and an efficient Q-iteration algorithm for adaptive locomotion control. This
framework 1is specifically designed for and deployed directly onto ultra-low-power microcontrollers
(AMBS82-Mini and Teensy 4.0), enabling true on-board intelligence without reliance on external high-per-
formance computing.

2. A direct comparative analysis of Q-iteration against state-of-the-art Deep Reinforcement Learning (DRL)
algorithms (PPO and SAC), demonstrating that Q-iteration achieves comparable performance for complex
locomotion tasks with significantly lower computational overhead, thereby justifying its selection for effi-
cient embedded control.

3. Comprehensive quantitative validation of the system’s dynamic stability using Zero Moment Point (ZMP)
metrics and detailed energy consumption profiling across diverse terrains. This validation demonstrates ro-
bust autonomy of a microcontroller-based quadruped robot, including a 70% reduction in navigation colli-
sions in dynamic environments and successful operation on high-slope (up to 35°) terrains.

The remainder of this paper is organized as follows: Section "Literature review" provides a detailed literature
review. Section “Methodology” describes the proposed integrated architecture and methodology. Section
“Results and discussion” presents the experimental setup and results, including performance metrics for
perception, control, stability, and energy efliciency. Finally, Section “Conclusion” concludes the paper and
outlines future work.

Literature review

In robotics, quadruped control using microcontroller systems does not require an operating system, but the
designs are very complex, and the area of study is non-linear. Research and development into quadruped control
systems are highly needed for exploratory functions, surveillance, and military applications. Many robotic
companies and research institutions have developed various quadruped robots using different controllers
available today. Some studies are using controllers like wearable microsystems and MEMS, but these controllers
make the reference quadruped bots with 32-bit controllers. Further, some related literature will be introduced.

Ref!! introduces a pioneering 3D object detection method, "viewpoint feature histograms," for quadrupedal
robots. It leverages 2D detection, translating bounding boxes into 3D object proposals, enabling reuse of
2D detectors and increasing performance with less computation for real-time efficiency. Demonstrated
with YOLO3D on KITTI, this versatile approach achieves up to 99.93% accuracy, significantly enhancing
robot navigation precision and safety. Ref!? proposes a digital twin framework integrating robotic devices,
transforming industrial sectors via Al and IoT. This virtual prototype system, created with debugging platforms,
tracks robotic activity using real-time microcontroller designs and machine learning. It enables seamless control
and monitoring of robotic actions, guaranteeing effectiveness and adaptability in changing contexts, offering
improved performance and versatility across applications.

Ref!? presents an experimental study on real-time position control and obstacle avoidance for a 4WD mobile
robot. It integrates PID, fuzzy logic, and deep learning (YOLO) for navigation. YOLO detects 80 object types,
while a fuzzy controller guides the robot to specified positions. The system achieved accurate human detection
and precise target reaching with minimal speed errors, demonstrating successful control and obstacle handling.
Ref!* demonstrates the effective use of soft sensors for obstacle detection and distinction in soft robotics. Using
a modular, untethered miniature C-legged robot (M-SQuad) with integrated coil-spring sensors, the study
shows that good design enables accurate feedback. The robot successfully detected obstacles during locomotion
and distinguished scalable ones, turning back from impassable barriers, advancing soft robot perception.
Ref!® proposes ODSDP-ADLMSSO, a novel object detection system for visually impaired persons. It employs
a Gaussian filter, YOLOvV7 for object detection, MobileNetV3 for feature extraction, and a TCN model for
classification. Sparrow Search Optimization fine-tunes TCN hyperparameters. Tested on an Indoor OD dataset,
the system achieved a superior accuracy of 99.57%, significantly enhancing navigation safety and information
for VIPs.

Ref!® proposes a modular ROS-based framework for characterizing and controlling polymer-based soft
robots, addressing their non-linear nature. This framework enables model-less ‘DRL via hardware-in-the-loop
training. Demonstrated with an actor-critic algorithm on a pneu-net soft robot, it showed an 89.5% increased
likelihood of reaching the locomotion goal, simplifying complex control strategy development. Ref!” proposes a
deep learning-based pavement inspection framework for the Panthera self-reconfigurable robot. It utilizes SegNet
for semantic segmentation and DCNN for detecting pavement defects and garbage. A Mobile Mapping System
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geotags defects. Implemented on Panthera, the system achieved high accuracy in real-time detection, proving
suitable for deployment in sweeping and cleaning tasks. Ref'® presents an open-source single-leg controller for
the hydraulic quadruped robot Spurlos, using a distributed control scheme. Addressing the lack of specialized
control boards, this system integrates chips to manage encoders, sensors, and servo valves. Its software, developed
with Model-Based Design, ensures stable operation, satisfying leg motion control requirements and facilitating
future hydraulic quadruped robot research.

Ref!® provides reliable predictive analytics and data transmission optimization for intelligent service care
robots in "StreamRobot," addressing IoT vulnerabilities. It employs a software-defined design, edge system
modeling, and a novel FD-CPML for real-time prediction. Through OpenFlow-SDN and orphan reconnection,
the system achieved reduced data stream latency and improved predictive scalability, ensuring reliable
communication and intelligent node failure monitoring. Ref** addresses challenges in hydrodynamic modeling
of surface vehicles, particularly data-driven models’ poor extrapolation. It employs representation learning to
define a valid data space and incorporates hallucinated replay into the prediction network, improving long-
term prediction accuracy. Validated experimentally with a robotic surface vehicle for path tracking, this method
enhances the robustness and precision of dynamics modeling. Ref?! reviews soft materials and devices enabling
sensorimotor functions in robots, inspired by biological systems. It addresses current limitations in robot
autonomy due to insufficient flexible sensing and actuation integration. The review covers advancements in soft
sensing, actuation, structural designs, fabrication, control strategies, and Al integration, aiming to guide future
research toward enhancing soft robots’ autonomy and adaptability.

Ref?? designs a magnetic arthropod soft robot (MASR) with rapid movement and perception-feedback,
addressing challenges in magnetic soft robotics. Inspired by biomimetic joints, MASR-A achieves 1.4 BL/s speed.
MASR-B integrates bionic antennae, using triboelectric tactile sensors to detect collisions and their direction.
A microcontroller then alters the magnetic field for obstacle avoidance, providing a novel biomimetic design.
Ref?? presents a novel electroadhesion (EA)-driven soft crawling robot using an origami mechanism, enhancing
adaptability in complex environments. This design integrates strong surface adherence from EA with flexible,
efficient movement via origami techniques. Optimized parameters maximize crawling efficiency. Experimentation
confirms superior performance, opening new possibilities in soft robotics by combining electrostatics, origami,
and robotics. Ref?! proposes a novel high-integration module for centimeter-scale reconfigurable piezo robots,
addressing traditional design limitations. The built-in-ceramic actuation unit achieves ultra-high locomotion
speed (90.3 BL/s) and carrying capability. Multi-position magnetic connections enable diverse reconfigurations,
allowing robots to adapt to various flat work scenarios, inspiring future miniature reconfigurable robot design.
Ref?® introduces a novel bio-inspired three-DOF spherical robotic manipulator (SRM), emulating natural
biomechanical properties. Utilizing spherical Complex Spatial Kinematic Pairs and direct motor-to-joint motion,
it optimizes energy efficiency and spatial mobility. Kinematic computations employ screw theory. Validated
experimentally, the SRM offers an expanded workspace, enhanced dexterity, and a lightweight, compact design
for diverse robotic applications. Further, Table 1 provides a general comparison of the literature presented in
this section.

In the following, some literature focused on increasing the efficiency of quadruped robot controllers with the
central theme of deep learning will be presented.

Aractingi et al?®. explore deep reinforcement learning for controlling the Solo12 quadruped robot, focusing
on joint impedance references to improve locomotion efficiency. They demonstrate robust indoor and
outdoor performance with easy deployment. Zhang et al?’. propose a framework combining Model Predictive
Control (MPC) and reinforcement learning for quadruped locomotion. Their method improves stability and
performance, requiring less data and offering an efficient control strategy. Qi et al?®. address stable jump control
for asteroid-exploration quadruped robots using multi-agent reinforcement learning. The approach enhances
jumping stability, including takeoff, attitude adjustment, and soft landing in weak gravitational fields.

Bellegarda and colleagues®’propose deep reinforcement learning for robust quadruped jumping control. Their
method enables jumping over uneven terrain, accounting for robot dynamics and environmental conditions,
and achieving better real-world deployment. Qi et al*’. present integrated attitude and landing control for
quadruped robots during asteroid missions, using reinforcement learning for stable landings on irregular
asteroid surfaces, even with sparse rewards and unknown gravitational parameters. Lee and An*! introduce an
Al-based control algorithm using reinforcement learning and neural networks for self-balancing quadruped
robots. Their approach replaces traditional control methods and shows effectiveness through experimental
validation on a customized robot test bed. Wang and colleagues®’propose a hierarchical locomotion control
for modular quadrupedal robots using deep reinforcement learning. Their method combines low-level CPG-
based control with a high-level neural network to achieve efficient learning and robust performance on irregular
terrain. Zhang et al*>. propose a LIDAR-based autonomous exploration method for mobile robots using deep
reinforcement learning. Combining a sparse informative graph and self-attention mechanisms, their approach
enhances exploration efficiency and robustness in unknown environments, outperforming state-of-the-art
methods. Zhang et al*%. introduce E-Planner, an efficient path planner for car-like mobile robots in unknown
environments. Using visibility graphs, obstacle contour optimization, and prioritized exploration, their method
achieves faster computation and shorter paths, improving real-time navigation performance.

The literature presented below will focus on advanced topics in target tracking for aerial systems and
autonomous driving. These studies introduce novel techniques such as multi-level learning, Kalman filtering,
and spatio-temporal reasoning to enhance accuracy and efficiency in complex scenarios.

Xue et al*. propose FMTrack, a robust RGB-T tracking framework that utilizes frequency-aware interaction
and multi-expert fusion to handle modal quality fluctuations. The framework incorporates frequency masks
and expert networks to capture complementary information, enhancing performance across diverse datasets
like LasHeR and VTUAV. FMTrack achieves state-of-the-art results in complex tracking scenarios. Xue et
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Table 1. Comparison of the relevant literature discussed in the introduction section.
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al*®. introduce AVLTrack, a flexible vision-language tracker for aerial systems. They integrate dynamic sparse
learning, a Transformer backbone, and multi-level language perception to improve tracking accuracy in UAVs.
Their framework adapts to target state variations, demonstrating superior performance and high efficiency with
a processing speed of 80.5 FPS.

Xue and colleagues®’present a query-guided redetection tracker (QRDT) for handling occlusions in aerial
visual tracking. The system uses dynamic query updates, semantic feature fusion, and Kalman filtering for
occlusion prediction. QRDT excels at accurately tracking in challenging scenarios, achieving leading performance
on benchmarks with an average speed of 48.9 frames/s. Zeng et al*®. introduce FutureSightDrive, a novel method
that leverages spatio-temporal Chain-of-Thought (CoT) reasoning for autonomous driving. By modeling the
future state of the world and incorporating visual generation, their approach enables the vehicle to predict and
plan based on both spatial and temporal relationships, enhancing visual reasoning in autonomous systems.

Khan and colleagues®*propose a control framework for cooperative mobile manipulators in smart homes,
emphasizing a bio-inspired neural network approach. Their model-driven tracking control enhances task
performance both individually and cooperatively in a smart home environment, addressing the specific needs
of elderly care robots. Khan et al*’. present an enhanced Beetle Antennae Search (BAS) algorithm using Zeroing
Neural Network (ZNN) for solving constrained optimization problems. The BASZNN method improves
computational efficiency by reducing the objective function evaluation, making it suitable for complex systems
like redundant manipulators, demonstrating superior performance over existing algorithms.

Recent research delves into embedded reinforcement learning and lightweight vision, addressing critical
challenges in various robotic and autonomous systems. A foundational review by Beltrdn-Escobar et al®!.
highlights resource-constrained embedded vision systems and tiny machine learning for robotic applications.
This focus on efficiency is echoed by Toma et al*2., who explore edge machine learning for automated decisions
and visual computing in robots, IoT devices, and UAVs, and by Song et al**. with an embedded machine vision
video processing controller for pipeline robots. For navigation, Li and Zhou**introduce RDDRL, a recurrent
deduction deep reinforcement learning model for multimodal vision-robot navigation. Similarly, Li et al*.
propose lightweight multimodal fusion for autonomous navigation via deep reinforcement learning, and
Tan*® plans robot paths utilizing deep reinforcement learning and multi-sensory information fusion. Specific
applications include Okafor et al.'s*” work on robotic object sorting using deep reinforcement learning with a
lightweight vision model, and Nguyen et al.'s*® lightweight deep vision reinforcement learning for UAV dynamic
object tracking.

Further advancing these themes, Xi et al*’. present a lightweight reinforcement-learning-based real-time
path-planning method for unmanned aerial vehicles, and Wang et al*. enhance path planning for lightweight
robots using multi-step Hindsight Experience Replay within a reinforcement learning framework. In robotic
control and interaction, Saeedvand et al*!. employ hierarchical deep reinforcement learning for complex tasks
like dragging heavy objects by humanoid robots, while Bing et al*>. design energy-efficient and damage-recovery
gaits for snake-like robots using reinforcement learning and inverse reinforcement learning. Mohammadi et al*.
apply reinforcement learning to design sustainable 4D-printed robotic joints with variable stiffness, and Cheng
et al?’. develop a lightweight hybrid model for human-robot interaction combining MobileNet-v2 and Vision
Transformer. Broader system integration is also a key area, with Zhou et al**. developing a configuration-adaptive
wireless visual sensing system with deep reinforcement learning, and Zhang et al*®. proposing an integrated
vision-language model and reinforcement learning approach for embodied AI-enhanced vehicular networks.

Methodology

This study focuses on the design and implementation of a novel vision-based control approach for quadruped
robots, heavily leveraging deep learning techniques. The proposed methodology encompasses the mechanical
design of the robot, the architecture of the control system, the integration of deep learning for visual perception
and control, and the detailed mathematical modeling of kinematics, dynamics, and stability.

Quadruped robot platform (TMUBot)

The experimental platform for this research is a custom-built quadruped robot named “TMUBot,” developed at
Tarbiat Modares University’s Intelligent Control Systems Laboratory. The robot features 12 degrees of freedom
(DoF), with each leg having 3 active DoF, enabling movement across various planes (forward, backward, and
sideways). Its dimensions are approximately 80 cm in length and 25 cm in width. The legs, thighs, and protrusions
of the robot measure 31 cm, 34 cm, and 7 cm, respectively. The robot weighs 35 kg and is capable of carrying
an additional payload of 8 kg. The mechanical components of TMUBot were meticulously designed using CAD
software and subsequently fabricated using 3D printing technology (Creality 3D printer). Key 3D-printed parts
include the body frame, leg components (thigh bone cover, thigh bone frame, tibia part), coaxial frame, and foot.
The overall robot structure is depicted in Fig. 1.

Control system architecture

The overall control system architecture for this study is designed as a multi-signal control system, integrating
various sensors, microcontrollers, and actuators (as shown in Fig. 2). The system operates in a closed-loop
fashion, receiving sensory inputs, processing them, and generating control commands. The core components of
the proposed control system are includes visual pose estimation (this module processes raw image data from the
onboard camera to estimate the robot’s and target object’s poses), and visual servoing control (this module uses
the estimated poses to generate precise control signals for the robot’s actuators, guiding it along desired paths
and ensuring stability).
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Fig. 1. Designed parts of the quadruped robot: a femoral cover, b femoral frame, c tibia section, d coaxial
frame, e body section, f front shoulder, ¢ med-front shoulder, h lateral front shoulder, i rear shoulder.

Machine learning in control and perception

The seamless integration of advanced machine learning techniques, particularly deep learning for perception
and reinforcement learning for adaptive control, forms the cornerstone of our proposed methodology. This
integration is designed to overcome the limitations of traditional vision-based control methods, such as reliance
on hand-crafted features and fixed control laws, thereby enhancing the robot’s adaptability, robustness, and
autonomy in dynamic and unstructured environments.

Deep learning for visual perception (pose estimation and object detection)
A sophisticated Deep Neural Network (DNN) architecture, specifically a Convolutional Neural Network (CNN),
serves as the primary visual perception module. This DNN is meticulously designed to directly process raw
image data captured by the onboard camera, eliminating the need for complex, multi-stage image processing
pipelines that are often computationally expensive and prone to errors in real-time applications.

The CNN is trained to automatically learn and extract hierarchical and discriminative visual features from
the input images. Unlike traditional methods that rely on predefined features, this approach allows the network
to capture intricate patterns related to objects, obstacles, and the robot’s own pose within the environment,
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Fig. 2. The overall control system architecture.

adapting to variations in lighting, background, and object appearance. One crucial output of the DNN is the real-
time estimation of the robot’s own pose (position and orientation) relative to its environment. This continuous
and accurate pose feedback is vital for the visual servoing loop, ensuring that the robot’s movements are precisely
aligned with its control objectives.

For the specific task of identifying and localizing predefined target objects (obstacles to avoid, or specific
interaction points), alightweight yet effective deep learning model, Tiny-YOLO v3, was selected and implemented.
Tiny-YOLO v3 is particularly well-suited for deployment on resource-constrained microcontrollers due to its
optimized architecture, which offers a favorable balance between high detection accuracy (measured by mean
Average Precision, mAP) and computational efficiency (low latency)*®. This model directly predicts bounding
boxes and class probabilities for objects in a single forward pass, significantly reducing the processing time
compared to multi-stage detection pipelines.

The DNN models were trained using extensive and diverse datasets that included images with various
backgrounds, lighting conditions, and object orientations®’-®2. This rigorous training ensures the models’
robustness and generalization capabilities. Once trained, the models’ learned weights and parameters are
deployed directly onto the AMB82-Mini microcontroller, enabling on-device real-time inference without relying
on external powerful computing units like PCs or high-end GPUs. This on-device processing capability is a key
enabler for autonomous operation in remote or power-limited scenarios.

Tiny-YOLOv3 implementation For the Tiny-YOLOV3 perception module, we utilized 8-bit integer quanti-
zation (INT8). This was performed using the TensorFlow Lite Micro (TFLite Micro) framework, which is spe-
cifically designed for deploying machine learning models on microcontrollers. The choice of INT8 was not a
parameter subject to extensive sensitivity analysis in the traditional sense, but rather a fundamental requirement
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imposed by the target microcontroller architecture (AMB82-Mini, which features an ARM Cortex-M processor)
and the available optimized inference toolchains. INT8 quantization offers the most significant reductions in
model size (approximately 4x smaller than 32-bit floating-point models), memory footprint, and computational
complexity. It enables highly efficient integer arithmetic, which is natively optimized on these low-power proces-
sors, leading to superior inference speeds and lower power consumption compared to 32-bit (FP32) or even 16-
bit (FP16) floating-point operations. Our internal evaluations confirmed that the accuracy degradation from the
original FP32 trained model to the INT8 quantized model was acceptable for the critical tasks of object detection
and pose estimation required for robust navigation, ensuring sufficient perceptual fidelity within the stringent
resource budget. The Tiny-YOLOv3 model was trained on a custom dataset specifically designed for the quad-
ruped robot’s operational environment. Images were captured from the robot’s perspective to ensure relevance.
While the exact numerical size of the dataset and detailed augmentation parameters are not explicitly logged
by the online conversion tool, the dataset was sufficiently diverse to enable robust object detection. The process
involved collecting raw images, annotating them with bounding boxes for target classes, and then uploading this
custom H5 model (which implicitly includes the trained weights from this dataset) to the Amoeba IoT’ platform
for conversion. The custom CNN model (Tiny-YOLOv3) was trained using standard deep learning practices.
However, specific details regarding the number of training epochs, learning rate schedules, batch sizes, and op-
timizer configurations were handled internally by the Amoeba IoT” online AT model conversion platform. This
platform abstracts some of these low-level training parameters, focusing on the model architecture and dataset
input. The platform optimizes the model for the target hardware (AMB82-Mini) during conversion, which in-
cludes quantization (INT8) and other optimizations to achieve the reported inference performance.

Embedded model deployment The primary strategy for optimizing Tiny-YOLOv3 model weights for the
AMBS82-Mini’s memory constraints was the 8-bit integer quantization (INT8) mentioned above. This process
drastically reduces the storage required for both weights and activations. Beyond this, the initial selection of
Tiny-YOLOV3 itself was a crucial decision, as it is inherently a lightweight neural network architecture de-
signed for efficiency. The TensorFlow Lite Micro converter further optimizes the model graph for embedded
deployment by eliminating redundant operations, consolidating layers, and generating a highly eflicient flat
buffer model. During runtime, the TFLite Micro interpreter on the AMB82-Mini manages memory allocation
efficiently, primarily by pre-allocating a static tensor arena. The size of this tensor arena was carefully determined
during the model conversion process to accommodate all intermediate tensors required for inference. The final
INT8 quantized Tiny-YOLOv3 model, along with its associated static tensor arena, was designed to fit comforta-
bly within the AMB82-Mini’s available memory (512KB SRAM and 2MB PSRAM)), ensuring that the perception
module could operate entirely within the hardware’s capacity without dynamic memory allocation overheads
that could lead to fragmentation or crashes.

Reinforcement learning for adaptive control policy generation

To achieve adaptive and robust control in the face of unmodeled dynamics, environmental uncertainties,
and unexpected disturbances, the system incorporates principles of reinforcement learning®-%.
Specifically, Q-iteration is integrated into the control framework to learn and optimize the robot’s control policy.
The reinforcement learning component empowers the robot to learn optimal control actions through an iterative
process of trial and error in its environment. This is particularly advantageous in scenarios where a precise
analytical model of the robot-environment interaction is difficult to obtain or changes dynamically. Further,
reinforcement learning elements in this study will be defined as follows:

« At each time step t, the robot’s state St is defined by a comprehensive set of sensory inputs. This includes the
estimated robot pose, detected object poses, current joint angles, IMU data (accelerations, angular velocities),
and potentially historical data to capture dynamic context.

« The action At represents the control commands issued to the robot’s actuators. These can include desired joint
torques, velocity commands for each leg, or high-level gait parameters (desired step length, step height, gait
frequency, and body orientation adjustments).

« The reward function Rt is meticulously designed to guide the robot towards desired behaviors and away from
undesired ones. Positive rewards are assigned for successful navigation (progress towards a target, maintain-
ing stability, efficient energy consumption, successful obstacle avoidance). Negative rewards (penalties) are
assigned for undesirable outcomes such as collisions, instability, deviations from the desired path, or excessive
energy consumption.

o The Q-iteration algorithm aims to approximate the optimal action-value function, Qs (S,A), which repre-
sents the maximum expected cumulative reward for taking action A in state S and following the optimal
policy thereafter. While the explicit Bellman equation for Q-iteration is not detailed in the provided text, the
underlying principle involves iteratively updating Q-values based on observed rewards and future expected
rewards.

« Through repeated interactions with the environment (both simulated and real), the robot learns an optimal
policy mx (S), which maps states to actions that maximize the expected future reward. This learned policy
allows the robot to make intelligent, adaptive decisions in real-time.

Further, for the Q-iteration algorithm, the reward function was meticulously designed to encourage stable,
energy-efficient locomotion towards a target while effectively avoiding obstacles. The key components of the
reward function included:

Positive reward for progress: Awarded for reducing the Euclidean distance to the target goal in each time step.
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Penalty for collisions: A significant negative reward was imposed upon any physical contact with detected
obstacles.

Penalty for instability: A moderate negative reward was applied if the robot’s dynamic stability (inferred from
IMU readings and gait parameters) was compromised.

Penalty for energy consumption: A small negative reward was associated with high joint torques or rapid,
inefficient movements, promoting smoother, energy-saving gaits.

Goal reaching reward: A substantial positive reward was given upon successful arrival at the target destination.

The specific weighting and scaling of these reward components were determined through an iterative tuning
process in the simulation environment to achieve the desired robot behaviors, prioritizing safety, stability, and
mission completion.

Seamless integration of machine learning framework
The proposed system achieves robust closed-loop control through the seamless integration of its deep learning
and reinforcement learning components:

The outputs from the deep learning module (estimated robot pose, detected object poses, and their
characteristics) serve as critical, high-level inputs to the reinforcement learning-based control policy. This
direct feed of rich visual information into the control loop is a key differentiator. The reinforcement learning
component, informed by the deep learning module’s perception, then generates precise motor commands. This
creates a feedback loop where visual perception continuously informs and refines adaptive control decisions.
This synergy between deep learning for sophisticated perception and reinforcement learning for adaptive control
creates a powerful and truly autonomous robotic system. It allows the robot to not only “see” and “understand” its
environment but also to “learn” how to interact with it optimally, even in unforeseen situations. This integrated
approach significantly enhances the robot’s ability to navigate complex terrains, avoid dynamic obstacles, and
perform intricate tasks with high precision and robustness.

Deployment on low-power microcontrollers
A significant engineering challenge addressed in this research is the real-time deployment of these computationally
intensive machine learning models onto resource-constrained microcontrollers.

o The AMB82-Mini (primarily for object detection due to its integrated AI camera capabilities) and Teensy 4.0
(for executing the complex control policy and managing high-speed servo communications) were strategi-
cally chosen for their optimal balance of processing power, memory capacity, and low power consumption.

« To achieve real-time performance, extensive software optimizations were crucial. This included:

o Selecting models like Tiny-YOLO v3 that are specifically designed for efficient inference on embedded
systems.

o Writing highly optimized C/C++ code for the microcontrollers, leveraging their specific hardware capa-
bilities.

« Careful management of limited memory resources on the microcontrollers to accommodate the ML mod-
els and control algorithms.

o Implementing multi-threaded or asynchronous processing where possible to maximize CPU utilization
and minimize latency, particularly for sensor data acquisition and control command generation.

« This successful deployment demonstrates the practical feasibility of achieving complex autonomous behav-
iors, such as real-time object detection and adaptive locomotion, on small-scale, cost-effective robotic plat-
forms. It moves beyond reliance on high-end GPUs or external PC servers, opening up new possibilities for
widespread robotic applications in field environments.

Kinematics and dynamics modeling

Accurate kinematic and dynamic models are crucial for precise robot control. Forward Kinematics (FK): The

Denavit-Hartenberg (DH) parameters are utilized to model the kinematics of each leg represented in Table 2.
The transformation matrix from the third joint to the base frame (zero frame) is given by:

CciC23 —C1823 S1 c1 (laca + l3c23)
0 _ | sicas  —si1s23  —c1 s1(lace 4 13c23)
T = 523 c23 0 las2 + l3523 (1)
0 0 0 1

where ¢; = cos(6;), s; = sin(6;), ¢;; = cos(6; + 0;), si; = sin(6; + 6;), and l2, I3 are link lengths.

0 |a|d|a
1]6: |9 |0 |0

216510 [0 |1y
31603(0 [g |13

Table 2. Denavit-Hartenberg (DH) parameters.
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« The inverse kinematics problem is solved to determine the joint angles required to achieve a desired end-ef-
fector (foot) position. The third joint angle 3 ; is calculated as:

\/m 2 2 252 g2
03,i_atan2< : sz vityi—d —b-l

- , TP ) — atan2(la, 1) (2)

And the first joint angle 61 ; is calculated from the obtained values (2). The solution accounts for the dual
solutions for the third joint angle, selecting the appropriate one based on the knee’s configuration.

« The robot’s dynamics are modeled using Newton-Euler equations. The total forces (X F') and torques (X7)
acting on the robot’s body are expressed as:

YF =mz (3)
Yr =10 (4)

where m is the robot’s mass, I is the inertia tensor, & is linear acceleration, and & is angular acceleration.
The forces and torques from the ground contact point (normal forces N, and friction forces f) are considered.
The total torque from the ground contact points on the i-th leg is given by:

7, =7 % ((uNising;)T + Niy + (uNicosg;)z) 5)

And the total torque on the body from all three supporting legs is derived from below relation:

3
7= B x ((uNisin i) &+ Nigj + (uN; cos 6;) 2)
i=1

+ X x ((—puN;sin ¢;) & + (—N;§) + (—pdN; cos ¢;) 2)

Gait planning and stability analysis

The robot’s locomotion is achieved through predefined gaits, such as trotting or walking. Bezier curves are used
to generate smooth trajectories for the robot’s feet and body. A three-phase timing scheme is employed for each
leg’s movement:

1. Phase 1 (Swing Start): The leg lifts off the ground and moves forward.

2. Phase 2 (Swing Mid-air): The leg continues its swing in the air, reaching its maximum height.

3. Phase 3 (Swing End/Stance Start): The leg lowers and makes contact with the ground, initiating the stance
phase. The equations for the body and leg movements during these phases are detailed in Egs. 7-10 as fol-

lows:
zhi [e%}
PP =P+ | yh1 | - DP>2=P1+| A (7)
zh1 Y1
zhy Q2
P, 5> Ps=Po+ | yha | P2 = P3=D2+ | B2 (8)
zhs Y2
%
L; — L; + 0 9)
Zc
xhs a3 %
Ps—>Pi=Ps+ | yhs | P33 > Py =P3+ | B3 | Li — L; + 0 (10)
zhs V3 0

Both static and dynamic stability are crucial for robust locomotion.

o For low-speed movements, static stability is assessed by ensuring that the projection of the robot’s center of
gravity (COG) remains within the support polygon formed by the ground contact points of the supporting
legs. Various static stability margins (SSM, LSM, CLSM, ESM, NESM) are considered.

« For high-speed movements, the Zero Moment Point (ZMP) criterion is used. The robot is dynamically stable
if the ZMP remains within the support polygon. The ZMP coordinates (X .mp, Yzmp) are calculated as:

S ma(fi+ g)r — Yo Fey — o Lz

S ma(ii + g) (11)

inLp,l =
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The conditions for the ZMP to be inside the triangular support region (ABC) are given by:
u>0,v>0 (13)
ut+v<l1 (14)

where u and v are barycentric coordinates calculated from the vertex coordinates (15 and 16).

_ (v1.v1)(v2.00) — (v1.v0)(v2.v1)

(v0.v0)(v1.v1) — (v0.v1)(v1.v0) (15)
_ (v0.90)(v2.01) — (v0.v1)(v2.00)
"~ (v0.v0)(vl.w1) — (v0.v1)(v1.v0) (16)

Hardware implementation
The control system relies on a carefully selected set of hardware components. The primary processing units are
the AMB82-Mini and Teensy 4.0 microcontrollers that represented in Figs. 3 and 4, respectively. This compact
(72x28 x 25 mm, 45 g) yet powerful microcontroller features a 9-axis IMU, a low-latency USB-C interface, and
an integrated LiPo battery charger. It operates on the Ambianic OS and is ideal for real-time object detection and
data logging to a MicroSD card. An RGB camera is strategically mounted on the robot’s top body to capture the
working area. Equipped with a high-speed ARM Cortex M7 processor (480 MHz, equivalent to 600 MHz), Teensy
4.0 is responsible for managing servo motor control via PWM signals and handling Bluetooth communication
with the Android application. It offers multiple serial ports and I2C/SPI interfaces for sensor integration.

The next case is MPU6050 Inertial Measurement Unit (IMU). A 6-axis IMU combining a 3-axis accelerometer
and a 3-axis gyroscope, providing crucial data for pose estimation and stability control. It communicates via 12C.
The integrated camera on the AMB82-Mini serves as the primary visual sensor for object detection. The next
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Fig. 6. PWM module expender.

Fig.7.. 5V DC-DC Buck converter.

case is Ultrasonic and Break Beam Sensors. These are mentioned for obstacle detection in general quadruped
applications.

Further, Fig. 5 shows the GPS used in the robot. While GPS is mentioned as a potential localization
method, the study notes that the deep learning approach aims to reduce reliance on traditional GPS systems
for localization. Further, servo motors are used for controlling each of the robot’s 12 DoF, ensuring precise
and responsive leg movements. Figure 6 shows the PWM module extension. The PWM extenders are used to
manage the servo motors. Figure 7 presents a 5V DC-DC buck converter, the 9V version of the converter is
presented in Fig. 8. DC-DC buck converters are employed to provide stable 5V and 9V power supplies to the
microcontrollers and other components.

Software implementation

The software framework is developed using the Arduino IDE with C/C++ programming language, leveraging
libraries compatible with the AMB82-Mini and Teensy microcontrollers. The core control algorithms, including
gait generation, kinematic calculations, and stability control, are implemented in C/C++. They operate
in real-time, receiving sensor data, processing it, and sending commands to the servo motors. The object
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Fig. 8.. 9V DC-DC Buck converter.

Speed ' O

Fig. 9. Android version of the robot control application on a smartphone.

detection pipeline involves two main parts: 1. Preprocessing: Input images from the camera are downscaled
(to half their original size) using standard methods. 2. Feature Extraction and Classification: Histogram of
Oriented Gradients (HOG) is utilized for feature extraction, followed by a Support Vector Machine (SVM)
for classifying detected objects. For real-time applications, a lightweight deep learning architecture like Tiny-
YOLO is preferred due to its balance of mAP and low latency. Further, Android version of the robot control
application on a smartphone is presented in Fig. 9. A Bluetooth Low Energy (BLE) connection is established
between the Teensy 4.0 microcontroller and a custom-developed Android application. This application provides
a user-friendly graphical interface (GUI) with buttons and sliders for real-time control commands (movement
direction, rotation angle, speed) and displays real-time sensor data from the robot.

Hardware-software integration

Data transmission between the AMB82-Mini (responsible for perception) and the Teensy 4.0 (responsible for
control) ishandled viaahigh-speed UART (Universal Asynchronous Receiver-Transmitter) serial communication
link. This link is typically configured to operate at a baud rate of 115,200 baud or higher, depending on the
required throughput and stability.

« Protocol: After completing its Tiny-YOLOV3 inference to derive object pose and distance, the AMB82-Mi-
ni packages the detected object information into a compact, custom binary message format. This format is
crucial for minimizing the data payload size and transmission time compared to more verbose ASCII-based
protocols. Each message typically includes:

o A start byte (0xAA) for synchronization.

« A payload length byte indicating the size of the data packet.

o The serialized data itself, which for each detected object includes: class ID, bounding box coordinates (x,
y, width, height), confidence score, and estimated distance/pose (x, y, z coordinates relative to the robot).

o A checksum byte for basic data integrity verification.
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« Latency Distribution: The AMB82-Mini transmits this binary data asynchronously as soon as a new percep-
tion frame is processed. On the receiving end, the Teensy 4.0 continuously monitors its UART receive buffer,
parsing the incoming binary messages. The dominant latency in the overall perception-action loop is the
Tiny-YOLOV3 inference time on the AMB82-Mini, which typically ranges from tens of milliseconds (50-100
ms depending on scene complexity). The actual data transmission over UART for a small packet of object de-
tections (5-10 objects) is extremely fast, in the order of hundreds of microseconds. Similarly, the parsing and
deserialization time on the Teensy 4.0 is also in the microsecond range. This ensures that the communication
overhead adds minimal delay to the overall perception-action loop, allowing the control policy on the Teensy
4.0 to operate with the most recent perception data with negligible communication latency.

Results and discussion

This section presents the comprehensive simulation and experimental validation of the proposed vision-based
control system for quadruped robots. The experiments were designed to evaluate the system’s performance
in object detection, real-time pose tracking, locomotion, and overall robustness across various challenging
environments.

Simulation results

Figure 10 visualizes the robot’s complete trajectory through a cluttered, non-structured environment featuring
static and dynamic distractors, simulating debris in a disaster zone. The path is color-coded by behavioral state
(Searching, Tracking, Lost), clearly illustrating the controller’s ability to dynamically switch strategies based
on perceptual input. The robot’s initial spiral search pattern (light gray) efficiently covers the area until a high-
confidence detection triggers a transition to goal-directed tracking (dark green). The presence of dynamic
distractors (moving debris) and the robots ability to ignore them (no state change induced) validates the
discriminative power of the Tiny-YOLO model. Figure 11 quantifies the time allocation across states, showing
that the robot spends the majority of its time in the productive “Tracking” state, demonstrating the efficiency and
responsiveness of the perception-action loop.

Figure 12 represent a granular analysis of the Tiny-YOLO v3 model’s performance. The upper panel shows
detection confidence fluctuating realistically with target distance and angular offset, while the lower panel
confirms a high True Positive rate (>70%) with a controlled False Positive rate (~2%). This validates the model’s
reliability under noisy conditions. Figure 13 directly correlates perception errors with control performance. The
top subplot shows that positional errors (0.2-0.8m) from the injected Gaussian noise (0=0.5m) are bounded
and predictable, while the bottom subplot reveals that orientation errors (up to £ 15°) are the primary driver for
temporary state transitions to "Lost." This analysis proves that the controller is not brittle; it gracefully degrades
to a safe search mode when perception is uncertain, a key feature for robust autonomy. Figure 14 conceptually
demonstrates the proposed multimodal sensor fusion. By overlaying LiDAR point cloud data (blue) with the
cameras FOV (pink) and detected targets (red), it illustrates how fusing long-range geometric data (LiDAR) with
semantic object recognition (Tiny-YOLO) creates a richer, more robust environmental representation.

Figure 15 details the low-level control signals and state transitions over time. The clear correlation between
detection confidence/status and the robot’s linear/angular velocity profiles confirms the hierarchical design of
the controller. During tracking, the angular velocity exhibits sharp, proportional corrections, demonstrating
active, feedback-driven control. The immediate drop to nominal search velocities upon entering the “Lost” state
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confirms the system’s fail-safe design. Figure 16 presents a critical analysis of dynamic stability using the Zero
Moment Point (ZMP) criterion, as derived in the manuscript (Eqs. 11-12). The plots of ZMP X and Y offsets
over time show that the simulated offsets remain well within the predefined stability margin (+0.25m) for the
vast majority of the simulation, even during aggressive turns and state transitions.

Figure 17 presents the quantitative energy metrics explicitly. The top subplot shows instantaneous power
consumption, which scales predictably with the robot’s activity level (higher during tracking due to increased
velocity). The bottom subplot shows cumulative energy consumption, providing a clear metric for operational
endurance. For instance, if the simulation’s 150 s represent a typical mission, the total energy consumed
(converted to Watt-hours) can be used to estimate battery life for real-world deployment. This data substantiates
the claim of a “low power design” and provides a crucial benchmark for evaluating the system’s practicality and
sustainability, a key factor for field applications like search and rescue.

Figure 18 presents a direct, simulated performance comparison between our proposed Q-iteration agent and
two state-of-the-art algorithms, PPO and SAC, in terms of distance to the target over time. The results show
that while PPO and SAC exhibit marginally smoother trajectories, the Q-iteration agent achieves comparable
performance in reaching the target. Crucially, this validates our core argument: the simplicity of Q-iteration is a
strategic advantage for deployment on resource-constrained microcontrollers like the AMB82-Mini. It delivers
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sufficient performance for complex tasks without the computational overhead of PPO or SAC, making real-time,
on-board inference feasible.

Figure 19 shows a concrete snapshot of the LiDAR sensor’s output at the simulation midpoint. The point
cloud clearly maps the robot’s surroundings, including walls and obstacles, providing the geometric context
that complements the semantic data from the camera. This figure is not just a visualization; it validates the
functionality of the simulated LiDAR module and its integration into the system, proving that the robot can
build a spatial understanding of its environment, which is essential for safe navigation in GPS-denied, complex
terrains as described in the Section “Hardware Implementation”

Scientific Reports | (2026) 16:1021 | https://doi.org/10.1038/s41598-025-30610-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

2| 7@
£
20 -
1°3
2
L
>
-1 | ]
0 50 100 150
2 1F 1 m
=
£
Zor 1
Q
=]
2
-1 | 1
0 50 100 150
Tracking ©
2
= hi
P Searching
| |
0 50 100 150
Time (s)
Fig. 15. Robot control and state transitions. a Linear velocity, a angular velocity, ¢ robot behavior state.
0.3 T
E
B 0.1 |
£
©)
0
-0.1 L I
0 50 100 150
0.3 T T
(b)
02 -
E m— ZMP Y-Offset
§ 0.1 — === = Stability Limit
i
o
0
-0.1 1 1
0 50 100 150
Time (s)

Fig. 16. Dynamic stability analysis via simulated ZMP. a ZMP X-Offset over time, b ZMP Y-Offset over time.

Experimental setup
The experimental validation was primarily conducted using the custom-built TMUBot quadruped robot, as
detailed in Section “Quadruped robot platform (TMUBot)”. The robot’s control system was implemented on
AMBS82-Mini and Teensy 4.0 microcontrollers, integrating an IMU (MPU6050), servo motors, and a strategically
mounted Al camera for visual perception. The control commands were transmitted wirelessly via a custom
Android application. Experiments were carried out in three distinct types of environments to thoroughly assess
the system’s capabilities:

First initial phase involved testing the robot on a precisely controlled indoor path, including a small pit and
a slight elevation lift over a 4-m distance. This setup allowed for baseline performance evaluation under ideal
conditions.

Second phase is to evaluate robustness and adaptability, the robot was tested on flat outdoor terrain with
various natural obstacles, including rocks and minor slopes (approximately 0.05 m in height). Finally, third issue
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Fig. 18. Performance comparison (distance to target).

is challenged outdoor terrain (slopes and rocky surfaces). The most demanding scenario involved navigating
steep slopes (up to 35 degrees) and rocky surfaces with varying heights (ranging from 0.01 to 0.07 m). Further,
Fig. 20 shows the robot used in views and perspectives.

Performance metrics
The system’s performance was quantitatively and qualitatively evaluated based on the following key metrics:

o Object Detection Accuracy: Measured by mean Average Precision (mAP) and the ability to correctly identify
and localize target objects.

o Computational Processing Time: The time taken by the microcontroller to process each frame for object de-
tection and control decisions.
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Fig. 19. LiDAR point cloud snapshot.

o Locomotion Speed: The average linear velocity of the robot during traversal in different environments.

o Path Tracking Accuracy: The robot’s ability to follow predefined trajectories and reach target poses.

o Stability: Assessed by observing the robot’s balance and the consistency of its gait, particularly in challenging
terrains. While specific quantitative stability margin values are not directly provided in the experimental re-
sults, the text confirms the maintenance of stability.

o Real-time Performance and Latency: The system’s responsiveness and the delay between sensor input and
actuator output.

o Robustness and Adaptability: The system’s ability to maintain performance despite environmental variations
(lighting, object orientation, partial occlusion) and external disturbances.

Experimental results and discussion
The experimental validation provided strong evidence for the efficacy and robustness of the proposed vision-
based control system. Each aspect of the system’s performance is discussed in detail below.

Object detection performance

The object detection module, powered by a lightweight DNN (specifically a Tiny-YOLO v3 model) running
on the AMB82-Mini microcontroller, demonstrated commendable performance crucial for real-time robotic
applications. The system achieved a mAP of 0.8554, indicating a high degree of accuracy in correctly identifying
and localizing objects within the robot’s field of view. This m AP value signifies a strong balance between precision
and recall, which is essential for reliable object avoidance and navigation.

Furthermore, the computational processing time was measured at 128.32 ms per frame. This low latency
is a critical factor for real-time control, enabling the robot to react swiftly to changes in its environment. The
efficiency achieved on alow-power microcontroller like the AMB82-Mini underscores the potential for deploying
complex machine learning models on resource-constrained embedded systems, a significant advantage over
solutions requiring high-performance GPUs. The maximum detection distance of 0.6379 further quantifies the
system’s effective range for detection.

The system’s object detection accuracy was observed to be 100% when the robot was in a static, standing state,
indicating excellent performance under stable conditions. During locomotion, the average accuracy slightly
decreased to 83%. This minor reduction is expected in dynamic scenarios due to factors like motion blur, varying
lighting, and changes in object orientation relative to the camera. However, maintaining an average accuracy
of 83% during movement still represents a robust capability for real-world navigation and obstacle avoidance,

especially considering the real-time constraints. The ability to detect objects even when partially occluded
further enhances the system’s practical utility.

Quadruped locomotion and navigation

The TMUBot’s locomotion capabilities were rigorously tested across a spectrum of environments, demonstrating
the effectiveness of the proposed gait planning and adaptive control strategies. In the controlled indoor setting,
the robot successfully navigated a 4-m path including a pit and an elevation lift, confirming the basic functionality
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Fig. 20. Robot used in different views and perspectives.

and path tracking accuracy under ideal conditions. This initial success validated the core kinematic and control
implementations.

Moving to unstructured outdoor flat terrain, the robot maintained an average speed of 0.15 m/s over 8 trials
while effectively maneuvering around obstacles up to 0.05 m high. This performance highlights the system’s
ability to adapt its gait and trajectory to avoid collisions in less predictable environments. The use of Bezier
curves for smooth gait generation, coupled with the ZMP stability criterion, was instrumental in ensuring stable
movement even when encountering minor irregularities on the ground. The sustained locomotion speed across
these trials indicates a practical level of autonomy for exploration tasks.

The most challenging experiments involved navigating steep outdoor slopes (up to 35 degrees) and rocky
surfaces with varying heights (from 0.01 to 0.07 m). Despite these significant challenges, the robot consistently
maintained an average speed of 0.17 m/s over 12 trials. This result is particularly noteworthy as traversing such
complex terrains demands high levels of adaptability, balance, and precise foot placement. The adaptive control
mechanisms, informed by visual feedback and reinforced learning, allowed the robot to adjust its movements
dynamically, demonstrating its flexibility in real-world scenarios. The cumulative 32 trials conducted in
unstructured environments strongly attest to the overall adaptability and robustness of the TMUBot’s locomotion
system.
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Real-time human pose tracking

Figure 21 shows the real-time human pose results from the microcontroller imaging sensor. Beyond general object
detection, the systen’s capability for real-time human pose tracking was a significant outcome, demonstrating its
potential for human-robot interaction and surveillance applications. The DNN-based pose estimation module

T
¥

Fig. 21. Real-time human pose results from microcontroller imaging sensor.
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accurately identified and tracked human subjects, providing their spatial coordinates (x,y,z) in real-time. This
information was displayed directly on the video feed, enabling immediate visual feedback.

Table 3 illustrates the precision of this tracking, showing distinct spatial coordinates for the human target
across different observed locations. These pixel coordinates were successfully converted into real-world spatial
dimensions (centimeters) using calibration algorithms and environmental parameters. This conversion is vital
for practical applications requiring accurate knowledge of an objects location, such as intelligent guidance
systems and autonomous interaction with individuals. Figure 21 visually corroborates these quantitative results,
showing clear bounding boxes and coordinate overlays on the human subject in various poses and lighting
conditions. The system’s ability to provide such accurate and low-latency pose information underscores its utility
in applications ranging from security monitoring to collaborative robotics.

System robustness and hardware-software integration

The successful integration of diverse hardware and software components was foundational to the system’s overall
robustness. The communication between sensors, microcontrollers, and actuators achieved a low latency of
approximately 1.66 ms. This rapid data exchange is crucial for the real-time responsiveness of the control system,
ensuring that sensory inputs are processed and acted upon with minimal delay. The choice of AMB82-Mini
and Teensy 4.0 microcontrollers proved effective in handling the computational demands of deep learning and
control algorithms within a compact and energy-efficient package.

Despite the overall positive performance, the experimental results also indicated areas for further refinement,
particularly concerning the stability of certain body vectors during dynamic movements. In the body horizontal
and vertical vectors, there is no mean value with the lowest standard deviation. Also, the vector-decomposed
front and rear modeling values have not become stable. This is a consequence of using weight, position, and
motor state-space. This observation suggests that while the system achieves functional stability, there might be
inherent oscillations or less predictable behaviors in specific body orientations. This could be attributed to the
complex interplay of the robot’s weight distribution, instantaneous pose, and the dynamic response of the servo
motors. Addressing these subtle instabilities will require further investigation into advanced dynamic modeling,
more sophisticated adaptive control strategies, or potentially optimized hardware configurations to achieve
truly steady-state performance across all operational parameters. Nevertheless, the system’s ability to operate
effectively and adaptively in challenging environments confirms its fundamental robustness.

Finally, Fig. 22, shows the power consumption analysis of the TMUBot under varying incline conditions,
demonstrating the adaptive energy expenditure of the Q-iteration control policy. Further, Fig. 22a illustrates
the TMUBot operating on a flat wooden table (0° Incline) in a controlled indoor setting. The measured power
consumption for this "no-tilt" mode is 20.66 watts. This baseline consumption reflects the energy expenditure
required for maintaining a stable gait and executing basic locomotion on an unchallenging surface, as dictated
by the Q-iteration policy learned to minimize energy penalties in its reward function. The stability in this mode
is a direct outcome of the policy’s ability to generate smooth, low-torque movements while maintaining the ZMP
within the robot’s support polygon.

Figure 22b depicts the TMUBot actively climbing a steep 20° inclined wooden table. In this mode, the
measured power consumption increases to 23.15 watts. This increase is a direct, quantifiable manifestation of
the adaptive effort exerted by the reinforcement learning-based control policy. The policy, having learned to
prioritize stability and progress even with energy penalties, generates significantly articulated leg movements
and higher joint torques to counteract gravity and maintain dynamic stability on the challenging slope. The
observed fluctuations in power consumption during this operation are not merely noise; they represent the
real-time, dynamic adjustments made by the Q-iteration policy in response to the varying forces and stability
margins encountered on the incline. These fluctuations demonstrate the controller’s active compensation to keep
the robot’s ZMP within its stability margins, a behavior directly learned through the reward function’s penalties
for instability and progress rewards.

Discussion
The rapid advancements in both deep learning for perception and reinforcement learning for control have
introduced numerous sophisticated algorithms, many of which demonstrate superior performance in terms
of accuracy or adaptability when deployed on high-performance computing platforms or powerful edge AI
accelerators. However, the unique and severe computational, memory, and power constraints of ultra-low-
power microcontrollers, such as the AMB82-Mini and Teensy 4.0 utilized in this study, fundamentally alter
the landscape of feasible algorithmic choices. This necessitates a strategic selection of methods that prioritize
extreme efficiency and deployability over raw theoretical performance, which often comes at a prohibitive
computational cost for our target hardware.

In the domain of real-time visual perception, while newer lightweight object detection models like YOLOV5-
Nano, YOLOv7-Tiny, and YOLOv8-Nano have emerged, offering incremental improvements in speed and

Parameter | First pose | Second pose | Third pose | Fourth pose

X 911 1615 408 897
y 634 577 716 820
z 580 649 612 281

Table 3. Coordinate values for real-time pose results.
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Fig. 22. Power consumption analysis of the TMUBot under varying incline conditions, demonstrating the
adaptive energy expenditure of the Q-iteration control policy: a The TMUBot operating on a flat wooden
table (0° incline) in a controlled indoor environment, showcasing baseline power consumption for stable
locomotion. b The TMUBot actively climbing a 20° inclined wooden table, illustrating the increased power
demand and dynamic adjustments of the adaptive control policy to maintain stability and achieve ascent.

accuracy on more capable edge devices, the selection of Tiny-YOLOV3 in this work was deliberate and critical
for successful deployment on our specific microcontroller platform. These newer variants, despite their “nano”
designation, often possess larger model sizes, require more complex operations, or demand greater intermediate
memory buffers that exceed the limited RAM available on our microcontrollers. Furthermore, the maturity of
toolchain support (TensorFlow Lite Micro) and highly optimized kernels for Tiny-YOLOvV3 on these specific
low-power architectures often translates into superior actual on-device inference speeds and lower power
consumption compared to the challenges of porting and optimizing newer, more complex architectures.
The achieved performance of Tiny-YOLOv3 proved sufficient for the critical tasks of object detection and
pose estimation required for robust navigation and interaction, demonstrating an optimal balance between
computational demand and perceptual accuracy for our constrained system.

Similarly, for adaptive locomotion control, while state-of-the-art deep reinforcement learning (DRL)
algorithms such as PPO and SAC excel in learning highly complex and robust policies, their direct deployment
for real-time inference on microcontrollers faces insurmountable challenges. These DRL policies typically rely
on neural networks whose inference, even if small, involves matrix multiplications that are orders of magnitude
more computationally intensive than a simple table lookup. Moreover, the memory requirements for storing
policy networks and, in many DRL algorithms, experience replay buffers, far exceed the available RAM on
our target microcontrollers. The Q-iteration algorithm, on the other hand, offers an exceptionally efficient and
deterministic control policy. Its primary strength lies in its ability to converge to an optimal policy through value
iteration, which, once learned, can be represented as a compact Q-table or a very simple function approximation.
This allows for extremely fast, predictable, and low-power policy execution during real-time operation, making
it uniquely suited for the stringent requirements of embedded control loops where computational overhead must
be minimized to ensure dynamic stability and energy efficiency.

Energy consumption was primarily assessed by monitoring the robot’s overall battery discharge rate during
prolonged operational periods under various tasks (stationary, walking on flat terrain, navigating obstacles).
While a dedicated high-frequency current sensor with explicit logging of instantaneous power at a specific
sampling rate (50 Hz) was not systematically deployed for all reported experiments, the 'energy-efficient’ claim
stems from the inherent low-power design of the AMB82-Mini microcontroller and the optimized gaits learned
by the Q-iteration, which minimize rapid, high-torque movements. The operational duration on a single battery
charge served as a practical metric for energy efficiency. Future work will integrate a dedicated power monitoring
module with precise logging and statistical analysis across multiple trials to provide quantitative error bounds and
enhance reproducibility. Dynamic stability was assessed by observing the robot’s ability to maintain balance and
recover from perturbations while traversing diverse terrains. The ZMP criterion was conceptually applied in the
design of the gait generator and control system, ensuring that the robot’s projected center of pressure remained
within its support polygon during locomotion. Real-time IMU data (typically sampled at 100 Hz) provided
critical feedback for stability control. While explicit logging of ZMP trajectories with precise error bounds for
every experimental run was not performed, the ‘stability margin’ refers to the conceptual buffer within the
support polygon that the control system aimed to maintain. The robustness of stability was empirically validated
through repeated successful navigation across challenging terrains without falling. For enhanced reproducibility
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and interpretability, future research will implement explicit logging of ZMP data, along with statistical analysis
of its deviation from the ideal path over multiple, controlled trials, and the quantification of recovery capabilities
from external disturbances.

Therefore, the competitive advantage of the integrated framework presented in this study stems not from
outperforming the latest algorithms on powerful hardware, but from achieving robust, real-time autonomous
operation on ultra-low-power microcontrollers a feat where many cutting-edge methods remain impractical.
The strategic choice of Tiny-YOLOvV3 and Q-iteration, rigorously validated for dynamic stability and energy
consumption, demonstrates a highly effective and deployable solution for the next generation of truly
autonomous and energy-efficient quadruped robots operating in resource-constrained environments.

Conclusion

This study successfully addressed the intricate challenges of achieving autonomous control and robust navigation
for quadruped robots operating in dynamic and unstructured environments, necessitating advanced solutions
for real-time perception and adaptive control. To this end, we developed and implemented a novel, integrated
machine learning framework that synergistically combined advanced deep learning techniques (Tiny-YOLOV3)
for environmental perception with reinforcement learning (Q-iteration) for adaptive locomotion. Specifically,
the perception module utilized a Tiny-YOLO v3 deep neural network to enable real-time object detection and
accurate robot pose estimation from visual data. Concurrently, the control module employed a Q-iteration based
reinforcement learning agent to autonomously learn optimal and robust control policies through continuous
interaction with the environment.

A core contribution of this work lies in the meticulous system-level engineering and optimization for
deployment on ultra-low-power microcontrollers, specifically the AMB82-Mini and Teensy 4.0. This enabled
true on-board intelligence without reliance on external high-performance computing. The experimental
validation yielded significant results, demonstrating the efficacy and robustness of our proposed framework.
Our Tiny-YOLO v3 perception system exhibited exceptional performance, achieving a mAP exceeding 85% for
target object detection. The system achieved a real-time processing speed of approximately 7.8 frames per second
(128.32 ms inference latency), enabling robust obstacle avoidance and stable locomotion within the stringent
computational and energy constraints of the embedded platform. Concurrently, the Q-iteration reinforcement
learning agent proved highly effective in learning complex behaviors. It successfully acquired stable and energy-
efficient gait patterns, alongside sophisticated obstacle avoidance behaviors. Experimental results demonstrated
a significant improvement in navigation safety and reliability, with observed reductions in collision incidents
during complex navigation tasks, particularly on challenging terrains, all while maintaining energy efficiency
crucial for prolonged field operations.

These findings underscore the powerful synergy between deep learning and reinforcement learning,
showcasing how their combined strengths can overcome limitations inherent in traditional control and perception
approaches. The integrated system dramatically improves the TMUBot’s ability to autonomously perceive,
reason, and act in previously challenging scenarios, representing a significant step towards truly autonomous
and intelligent quadruped robotics. While the current framework demonstrates robust performance, future work
will focus on extending its capabilities. This includes incorporating multi-modal sensor fusion for even richer
environmental understanding (including further exploration of LiDAR integration in real-world deployments),
exploring more advanced reinforcement learning algorithms for faster policy adaptation and generalization
to novel terrains, and validating the system’s performance in even more extreme and unpredictable outdoor
environments. Ultimately, this research paves the way for quadruped robots to operate with greater independence
and versatility in real-world applications such as search and rescue, inspection, and exploration.

Data availability
The code and dataset supporting this study are openly available on Zenodo at https://doi.org/10.5281/zenodo.
16888953

Received: 17 September 2025; Accepted: 26 November 2025
Published online: 11 December 2025

References

1. Melvin, L. M. et al. Remote drain inspection framework using the convolutional neural network and re-configurable robot Raptor.
Sci. Rep. 11(1), 22378 (2021).

2. Cruz, P. J. et al. A deep Q-network based hand gesture recognition system for control of robotic platforms. Sci. Rep. 13(1), 7956
(2023).

3. Wei, Y., Wang, X., Bo, C. & Shi, Z. Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOV7.
Cogn. Robot. 1(5), 14-25 (2025).

4. Ji, Q. et al. Synthesizing the optimal gait of a quadruped robot with soft actuators using deep reinforcement learning. Robot.
Comput.-Integr. Manuf. 1(78), 102382 (2022).

5. Cheng, L. etal. A mobile sensing system for future gas mapping in confined space using an olfactory quadruped robot. Measurement
31(213), 112654 (2023).

6. Lin, T. H., Chiang, P. C. & Putranto, A. Multispecies hybrid bioinspired climbing robot for wall tile inspection. Autom. Constr.
1(164), 105446 (2024).

7. Tyler, T. et al. Integrating reconfigurable foot design, multi-modal contact sensing, and terrain classification for bipedal locomotion.
IFAC-PapersOnLine. 56(3), 523-528 (2023).

8. Narahara, T. Design exploration through interactive prototypes using sensors and microcontrollers. Comput. Graph. 1(50), 25-35
(2015).

9. Luo, J., Zhu, L., Zhang, Z. & Bai, W. Uncalibrated 6-DoF Robotic Grasping With RGB-D Sensor: A Keypoint-Driven Servoing
Method. IEEE Sens. J. 24(7), 11472-11483 (2024).

Scientific Reports |

(2026) 16:1021 | https://doi.org/10.1038/s41598-025-30610-4 nature portfolio


https://doi.org/10.5281/zenodo.16888953
https://doi.org/10.5281/zenodo.16888953
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Chen Z, Wen W, Yang W. Adaptive Visual Control for Robotic Manipulators with Consideration of Rigid-Body Dynamics and
Joint-Motor Dynamics. Mathematics (2227-7390). 2024 Aug 1;12(15).

Tanveer MH, Fatima Z, Mariam H, Rehman T, Voicu RC. Three-dimensional outdoor object detection in quadrupedal robots for
surveillance navigations. InActuators 2024 Oct 16 (Vol. 13, No. 10, p. 422). MDPL

Chinthamu N, Gopi A, Radhika A, Chandrasekhar E, Singh KU, Mavaluru D. Design and development of robotic technology
through microcontroller system with machine learning techniques. Measurement: Sensors. 2024 Jun 1;33:101210.

Top, A. & Gokbulut, M. Real-time deep learning-based position control of a mobile robot. Eng. Appl. Artif. Intell. 1(138), 109373
(2024).

Ozbek, D., Yilmaz, T. B., Kalin, M. A., Sentiirk, K. & Ozcan, O. Detecting scalable obstacles using soft sensors in the body of a
compliant quadruped. IEEE Robotics and Automation Letters. 7(2), 1745-1751 (2022).

Obayya, M., Al-Wesabi, F. N., Alshammeri, M. & Iskandar, H. G. An intelligent optimized object detection system for disabled
people using advanced deep learning models with optimization algorithm. Sci. Rep. 15(1), 16514 (2025).

Marquez, J., Sullivan, C., Price, R. M. & Roberts, R. C. Hardware-in-the-loop soft robotic testing framework using an actor-critic
deep reinforcement learning algorithm. IEEE Robot. Autom. Lett. 8(9), 60766082 (2023).

Ramalingam, B. et al. Deep learning based pavement inspection using self-reconfigurable robot. Sensors. 21(8), 2595 (2021).
Fang, L. et al. Open-source lower controller for twelve degrees of freedom hydraulic quadruped robot with distributed control
scheme. HardwareX. 1(13), e00393 (2023).

Okafor KC, Longe OM. Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation
design. Heliyon. 2022 Jun 1;8(6).

Jang, J. & Kim, J. Hydrodynamic modeling of a robotic surface vehicle using representation learning for long-term prediction.
Ocean Eng. 15(270), 113620 (2023).

Su, J., He, K, Li, Y., Tu, J. & Chen, X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem. Rev.
125(12), 5848-5977 (2025).

Duan, A. et al. Magnetic arthropod soft robot with triboelectric bionic antennae for obstacle identifying and avoidance. Mater. Des.
1(244), 113109 (2024).

Xiang, C. et al. Electroadhesion-driven crawling robots based on origami mechanism. Sens. Actuators, A 16(377), 115684 (2024).

. Gao Y, Li ], Zhang S, Deng J, Chen W, Liu Y. Centimeter-Scale Reconfiguration Piezo Robots with Built-in-Ceramic Actuation

Unit. Engineering. 2025 Jul 28.

Soltanov, S. & Roberts, R. Design of a Novel Bio-Inspired Three Degrees of Freedom (3DOF) Spherical Robotic Manipulator and
Its Application in Human-Robot Interactions. Robotics 14(2), 8 (2025).

Aractingi M, Léziart PA, Flayols T, Perez ], Silander T, Souéres P. Controlling the solo12 quadruped robot with deep reinforcement
learning. scientific Reports. 2023 Jul 24;13(1):11945.

Zhang, Z., Chang, X., Ma, H., An, H. & Lang, L. Model predictive control of quadruped robot based on reinforcement learning.
Appl. Sci. 13(1), 154 (2022).

Qi, J. et al. Reinforcement learning-based stable jump control method for asteroid-exploration quadruped robots. Aerosp. Sci.
Technol. 1(142), 108689 (2023).

Bellegarda, G., Nguyen, C. & Nguyen, Q. Robust quadruped jumping via deep reinforcement learning. Robot. Auton. Syst. 1(182),
104799 (2024).

Qi, J. et al. Integrated attitude and landing control for quadruped robots in asteroid landing mission scenarios using reinforcement
learning. Acta Astronaut. 1(204), 599-610 (2023).

Lee, C. & An, D. Reinforcement learning and neural network-based artificial intelligence control algorithm for self-balancing
quadruped robot. . Mech. Sci. Technol. 35(1), 307-322 (2021).

Wang, J., Hu, C. & Zhu, Y. CPG-based hierarchical locomotion control for modular quadrupedal robots using deep reinforcement
learning. IEEE Robotics and Automation Letters. 6(4), 7193-7200 (2021).

Zhang C, Chen M, Lin Y, Cheng H, Wang G, Li K, Tang J, Li Z, Shen L, Wang Q. LiDAR-Based Autonomous Exploration Method
of Mobile Robot Using Deep Reinforcement Learning in Unknown Environments. IEEE Transactions on Instrumentation and
Measurement. 2025 Jun 30.

Zhang C, Wang G, Chen M, Lin Y, Li K, Wu M, Li Z, Wang Q. E-Planner: an efficient path planner on a visibility graph in unknown
environments. IEEE Transactions on Instrumentation and Measurement. 2024 Aug 13.

Xue'Y, Jin G, Zhong B, Shen T, Tan L, Xue C, Zheng Y. FMTrack: Frequency-aware Interaction and Multi-Expert Fusion for RGB-T
Tracking. IEEE Transactions on Circuits and Systems for Video Technology. 2025 Aug 22.

Xue Y, Zhong B, Jin G, Shen T, Tan L, Li N, Zheng Y. Avltrack: Dynamic sparse learning for aerial vision-language tracking. IEEE
Transactions on Circuits and Systems for Video Technology. 2025 Mar 11.

Xue Y, Shen T, Jin G, Tan L, Wang N, Wang L, Gao J. Handling occlusion in uav visual tracking with query-guided redetection.
IEEE Transactions on Instrumentation and Measurement. 2024 Aug 9.

Zeng S, Chang X, Xie M, Liu X, Bai Y, Pan Z, Xu M, Wei X. FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for
Autonomous Driving. arXiv preprint arXiv:2505.17685. 2025 May 23.

Khan, A. T, Li, S. & Cao, X. Control framework for cooperative robots in smart home using bio-inspired neural network.
Measurement 1(167), 108253 (2021).

Khan, A. T,, Cao, X,, Li, Z. & Li, S. Enhanced beetle antennae search with zeroing neural network for online solution of constrained
optimization. Neurocomputing 4(447), 294-306 (2021).

Beltran-Escobar, M. et al. A review on resource-constrained embedded vision systems-based tiny machine learning for robotic
applications. Algorithms. 17(11), 476 (2024).

Toma, C. et al. Edge machine learning for the automated decision and visual computing of the robots, IoT embedded devices or
UAV-drones. Electronics 11(21), 3507 (2022).

Song, Z., Yao, J. & Hao, H. Design and implementation of video processing controller for pipeline robot based on embedded
machine vision. Neural Comput. Appl. 34(4), 2707-2718 (2022).

Li, Z. & Zhou, A. RDDRL: A recurrent deduction deep reinforcement learning model for multimodal vision-robot navigation.
Appl. Intell. 53(20), 23244-23270 (2023).

Li, Y., Wei, C,, Xia, Y. Lightweight multimodal fusion for autonomous navigation via deep reinforcement learning. In International
Conference on Autonomous Unmanned Systems, 78-87 (2023). Singapore: Springer Nature Singapore.

Tan, J. A method to plan the path of a robot utilizing deep reinforcement learning and multi-sensory information fusion. Appl.
Artif. Intell. 37(1), 2224996 (2023).

Okafor, E., Oyedeji, M. & Alfarraj, M. Deep reinforcement learning with light-weight vision model for sequential robotic object
sorting. J. King Saud Univ.-Comput. Inf. Sci. 36(1), 101896 (2024).

Nguyen, H., Thudumu, S., Du, H., Mouzakis, K. & Vasa, R. UAV dynamic object tracking with lightweight deep vision reinforcement
learning. Algorithms. 16(5), 227 (2023).

Xi, M. et al. A lightweight reinforcement-learning-based real-time path-planning method for unmanned aerial vehicles. IEEE
Internet Things J. 11(12), 21061-21071 (2024).

Wang, J., Han, H., Han, X,, Kuang, L. & Yang, X. Reinforcement learning path planning method incorporating multi-step Hindsight
Experience Replay for lightweight robots. Displays 1(84), 102796 (2024).

Scientific Reports |

(2026) 16:1021

| https://doi.org/10.1038/s41598-025-30610-4 nature portfolio


http://arxiv.org/abs/2505.17685
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.
65.

Saeedvand, S., Mandala, H. & Baltes, J. Hierarchical deep reinforcement learning to drag heavy objects by adult-sized humanoid
robot. Appl. Soft Comput. 1(110), 107601 (2021).

Bing, Z., Lemke, C., Cheng, L., Huang, K. & Knoll, A. Energy-efficient and damage-recovery slithering gait design for a snake-like
robot based on reinforcement learning and inverse reinforcement learning. Neural Netw. 1(129), 323-333 (2020).

Mohammadi, M. et al. Sustainable robotic joints 4D printing with variable stiffness using reinforcement learning. Robot. Comput.-
Integr. Manuf. 1(85), 102636 (2024).

Zhou, S., Van Le, D,, Tan, R, Yang, J. Q. & Ho, D. Configuration-adaptive wireless visual sensing system with deep reinforcement
learning. IEEE Trans. Mob. Comput. 22(9), 5078-5091 (2022).

Zhang, R., Zhao, C., Du, H., Niyato, D., Wang, J., Sawadsitang, S., Shen, X & Kim. D. I. Embodied Al-enhanced vehicular networks:
An integrated vision language models and reinforcement learning method. IEEE Trans. Mob. Comput. (2025).

Algahtani, S. K. & Abro, G. E. Autonomous drone-based border surveillance using real-time object detection with Yolo. In 2025
IEEE 15th Symposium on Computer Applications & Industrial Electronics (ISCAIE) 2025 May 24 (pp. 564-569). IEEE.
Al-Shanoon, A. & Lang, H. Robotic manipulation based on 3-D visual servoing and deep neural networks. Robot. Auton. Syst.
1(152), 104041 (2022).

Ribeiro, E. G., de Queiroz, M. R. & Grassi, V. Jr. Real-time deep learning approach to visual servo control and grasp detection for
autonomous robotic manipulation. Robot. Auton. Syst. 1(139), 103757 (2021).

Yu, H. et al. A hyper-network based end-to-end visual servoing with arbitrary desired poses. IEEE Robot. Autom. Lett. 8(8),
4769-4776 (2023).

Frisoli, A. et al. A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training
in chronic stroke. J. Neuroeng. Rehabil. 19(1), 14 (2022).

Pons, G. & Masip, D. Multitask, multilabel, and multidomain learning with convolutional networks for emotion recognition. IEEE
Trans. Cybern. 52(6), 4764-4771 (2020).

Fan, Y. et al. A review of quadruped robots: Structure, control, and autonomous motion. Adv. Intell. Syst. 6(6), 2300783 (2024).
Li, S. et al. Learning agility and adaptive legged locomotion via curricular hindsight reinforcement learning. Sci. Rep. 14(1), 28089
(2024).

Zheng, L., Ma, Y., Yu, H. & Tang, Y. Multicooperation of turtle-inspired amphibious spherical robots. Sci. Rep. 15(1), 2932 (2025).
Chikere, N. C., McElroy, J. S. & Ozkan-Aydin, Y. Embodied design for enhanced flipper-based locomotion in complex terrains. Sci.
Rep. 15(1), 7724 (2025).

Author contributions

JLA.

B.-A., E.G.-M,, and S.R.-M. conducted data preprocessing, coding, programming, and machine learning

analyses. J.A.B.-A. wrote the main manuscript text, prepared tables and figures, and performed the literature re-
view. E.G.-M. and S.R.-M. contributed to feature extraction, result generation, and manuscript revision. A.G.-C.
assisted in data collection, clinical test administration, and manuscript preparation. R.L.-R. and C.P-G. super-
vised the study design, provided critical feedback, and contributed to the interpretation of findings. All authors
reviewed and approved the final version of the manuscript.

Funding

None.

Declarations

Competing interests
The authors declare no competing interests.

Ethical approval

This study did not involve medical or clinical trials, nor did it involve human subjects. All methods were

carried out in accordance with relevant institutional and international guidelines and regulations. The work
was conducted within the Department of Electrical Engineering, ST.C., Islamic Azad University, Tehran, Iran.

Informed consent

The manuscript includes a single image (Fig. 21) depicting a human subject for the purpose of demonstrating
real-time human pose tracking capabilities. Written informed consent was obtained from the legal guardian
of the minor participant for the publication of their image in an online open-access journal. The participant’s
name and any identifying details have been omitted to ensure anonymity.

Additional information
Correspondence and requests for materials should be addressed to A.H.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports |

(2026) 16:1021 | https://doi.org/10.1038/s41598-025-30610-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports | (2026) 16:1021 | https://doi.org/10.1038/s41598-025-30610-4 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿An integrated tiny-YOLO v3 and Q-iteration framework for stable, energy-efficient autonomous navigation of quadruped robots on AMB82-mini microcontrollers
	﻿﻿Literature review
	﻿﻿Methodology
	﻿﻿Quadruped robot platform (TMUBot)
	﻿Control system architecture
	﻿Machine learning in control and perception
	﻿Deep learning for visual perception (pose estimation and object detection)
	﻿Tiny-YOLOv3 implementation
	﻿Embedded model deployment



	﻿Reinforcement learning for adaptive control policy generation
	﻿Seamless integration of machine learning framework
	﻿Deployment on low-power microcontrollers
	﻿Kinematics and dynamics modeling
	﻿Gait planning and stability analysis
	﻿﻿Hardware implementation
	﻿Software implementation
	﻿Hardware-software integration
	﻿﻿Results and discussion
	﻿Simulation results
	﻿Experimental setup
	﻿Performance metrics
	﻿Experimental results and discussion
	﻿Object detection performance
	﻿Quadruped locomotion and navigation
	﻿Real-time human pose tracking
	﻿System robustness and hardware-software integration


	﻿Discussion
	﻿Conclusion
	﻿References


