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The deployment of advanced artificial intelligence, specifically deep learning (DL) for perception and 
reinforcement learning (RL) for control, on ultra-low-power, microcontroller-based quadruped robots 
presents significant challenges. A system-level engineering approach is presented, integrating these 
computationally intensive methodologies. Central to this is an object detection module, powered by 
a lightweight Deep Neural Network (DNN), specifically a Tiny-YOLOv3 model, running on an AMB82-
Mini microcontroller. The robot’s perception capabilities are provided by the AMB82-Mini, while its 
real-time locomotion control system is implemented on a Teensy 4.0 microcontroller. This integration 
leverages meticulous optimization techniques, including INT8 quantization and efficient TFLite Micro 
deployment. The object detection module achieves approximately 7.8 frames per second (128.32 ms 
inference latency), enabling robust obstacle avoidance and stable locomotion. Experimental validation 
was primarily conducted using the custom-built TMUBot quadruped robot, demonstrating its 
capabilities across diverse terrains. The results underscore the potential of using machine learning with 
low-power microcontrollers to achieve complex control schemes for small-scale robotic applications.

Keywords  Embedded robotics, Tiny-YOLO v3, Dynamic stability analysis (ZMP), Energy-efficient robotics, 
AMB82-mini microcontroller

Autonomous quadruped robots hold immense promise for applications ranging from exploration and 
surveillance to disaster response, particularly in dynamic and unstructured environments. However, their 
effective deployment hinges on robust real-time perception and adaptive control, which often present significant 
engineering challenges. Integrating sophisticated deep learning models for real-time object detection and 
pose estimation typically demands substantial computational resources, making their direct deployment on 
low-power, embedded microcontrollers (without powerful dedicated GPUs) computationally prohibitive and 
impractical for energy-constrained applications. Furthermore, while both deep learning for perception and 
reinforcement learning for adaptive control have demonstrated individual successes, their seamless and efficient 
integration onto a single, resource-constrained embedded platform for a fully autonomous system remains a 
complex challenge. Many existing solutions, while theoretically sound or validated in simulation, frequently 
lack comprehensive quantitative validation of critical real-world performance metrics, such as dynamic stability 
and detailed energy consumption profiling, which are crucial for practical, long-duration field operations. 
These limitations highlight a critical gap in the development of truly autonomous, robust, and energy-efficient 
quadruped robots capable of operating independently in complex, real-world scenarios1–3.

Significant progress has been made in enhancing quadruped robot capabilities through advanced control 
strategies, particularly those leveraging deep learning and reinforcement learning. Researchers have explored 
DRL for efficient locomotion, combined Model Predictive Control (MPC) with reinforcement learning for 
improved stability, and developed sophisticated jump control algorithms for challenging environments like 
asteroids and uneven terrain4–7. Furthermore, AI-based approaches have been introduced for self-balancing 
and hierarchical locomotion control for modular systems8–10. While these studies demonstrate remarkable 
advancements in robust locomotion, complex maneuverability, and learning adaptive behaviors, many often rely 
on high-performance computing platforms, focus primarily on control policies without fully integrated real-
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time perception, or operate within controlled environments, leaving a gap for truly autonomous, energy-efficient 
operation on resource-constrained embedded systems. Similarly, while object detection models like YOLO have 
been successfully applied in drone-based surveillance for real-time operations, the challenge intensifies when 
integrating such models with complex locomotion control on the ultra-low-power microcontrollers typical of 
smaller quadruped robots.

Building upon these insights and addressing the aforementioned gaps, this study presents a novel, integrated 
machine learning framework designed for autonomous quadruped robots operating on ultra-low-power 
microcontrollers. Our approach combines a highly efficient deep learning model, Tiny-YOLOv3, for real-
time visual perception (object detection and pose estimation) with a robust Q-iteration algorithm for adaptive 
locomotion control. This framework is specifically engineered for deployment on resource-constrained platforms 
such as the AMB82-Mini and Teensy 4.0, primarily leveraging monocular vision for real-world perception, with 
LiDAR integration explored in simulation for enhanced environmental awareness. The primary contributions 
and innovations of this work are summarized as follows:

	1.	 Development of a novel, integrated machine learning framework combining real-time deep learning (Ti-
ny-YOLOv3) for perception and an efficient Q-iteration algorithm for adaptive locomotion control. This 
framework is specifically designed for and deployed directly onto ultra-low-power microcontrollers 
(AMB82-Mini and Teensy 4.0), enabling true on-board intelligence without reliance on external high-per-
formance computing.

	2.	 A direct comparative analysis of Q-iteration against state-of-the-art Deep Reinforcement Learning (DRL) 
algorithms (PPO and SAC), demonstrating that Q-iteration achieves comparable performance for complex 
locomotion tasks with significantly lower computational overhead, thereby justifying its selection for effi-
cient embedded control.

	3.	 Comprehensive quantitative validation of the system’s dynamic stability using Zero Moment Point (ZMP) 
metrics and detailed energy consumption profiling across diverse terrains. This validation demonstrates ro-
bust autonomy of a microcontroller-based quadruped robot, including a 70% reduction in navigation colli-
sions in dynamic environments and successful operation on high-slope (up to 35°) terrains.

The remainder of this paper is organized as follows: Section "Literature review" provides a detailed literature 
review. Section “Methodology” describes the proposed integrated architecture and methodology. Section 
“Results and discussion” presents the experimental setup and results, including performance metrics for 
perception, control, stability, and energy efficiency. Finally, Section “Conclusion” concludes the paper and 
outlines future work.

Literature review
In robotics, quadruped control using microcontroller systems does not require an operating system, but the 
designs are very complex, and the area of study is non-linear. Research and development into quadruped control 
systems are highly needed for exploratory functions, surveillance, and military applications. Many robotic 
companies and research institutions have developed various quadruped robots using different controllers 
available today. Some studies are using controllers like wearable microsystems and MEMS, but these controllers 
make the reference quadruped bots with 32-bit controllers. Further, some related literature will be introduced.

Ref11 introduces a pioneering 3D object detection method, "viewpoint feature histograms," for quadrupedal 
robots. It leverages 2D detection, translating bounding boxes into 3D object proposals, enabling reuse of 
2D detectors and increasing performance with less computation for real-time efficiency. Demonstrated 
with YOLO3D on KITTI, this versatile approach achieves up to 99.93% accuracy, significantly enhancing 
robot navigation precision and safety. Ref12 proposes a digital twin framework integrating robotic devices, 
transforming industrial sectors via AI and IoT. This virtual prototype system, created with debugging platforms, 
tracks robotic activity using real-time microcontroller designs and machine learning. It enables seamless control 
and monitoring of robotic actions, guaranteeing effectiveness and adaptability in changing contexts, offering 
improved performance and versatility across applications.

Ref13 presents an experimental study on real-time position control and obstacle avoidance for a 4WD mobile 
robot. It integrates PID, fuzzy logic, and deep learning (YOLO) for navigation. YOLO detects 80 object types, 
while a fuzzy controller guides the robot to specified positions. The system achieved accurate human detection 
and precise target reaching with minimal speed errors, demonstrating successful control and obstacle handling. 
Ref14 demonstrates the effective use of soft sensors for obstacle detection and distinction in soft robotics. Using 
a modular, untethered miniature C-legged robot (M-SQuad) with integrated coil-spring sensors, the study 
shows that good design enables accurate feedback. The robot successfully detected obstacles during locomotion 
and distinguished scalable ones, turning back from impassable barriers, advancing soft robot perception. 
Ref15 proposes ODSDP-ADLMSSO, a novel object detection system for visually impaired persons. It employs 
a Gaussian filter, YOLOv7 for object detection, MobileNetV3 for feature extraction, and a TCN model for 
classification. Sparrow Search Optimization fine-tunes TCN hyperparameters. Tested on an Indoor OD dataset, 
the system achieved a superior accuracy of 99.57%, significantly enhancing navigation safety and information 
for VIPs.

Ref16 proposes a modular ROS-based framework for characterizing and controlling polymer-based soft 
robots, addressing their non-linear nature. This framework enables model-less ‘DRL’ via hardware-in-the-loop 
training. Demonstrated with an actor-critic algorithm on a pneu-net soft robot, it showed an 89.5% increased 
likelihood of reaching the locomotion goal, simplifying complex control strategy development. Ref17 proposes a 
deep learning-based pavement inspection framework for the Panthera self-reconfigurable robot. It utilizes SegNet 
for semantic segmentation and DCNN for detecting pavement defects and garbage. A Mobile Mapping System 
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geotags defects. Implemented on Panthera, the system achieved high accuracy in real-time detection, proving 
suitable for deployment in sweeping and cleaning tasks. Ref18 presents an open-source single-leg controller for 
the hydraulic quadruped robot Spurlos, using a distributed control scheme. Addressing the lack of specialized 
control boards, this system integrates chips to manage encoders, sensors, and servo valves. Its software, developed 
with Model-Based Design, ensures stable operation, satisfying leg motion control requirements and facilitating 
future hydraulic quadruped robot research.

Ref19 provides reliable predictive analytics and data transmission optimization for intelligent service care 
robots in "StreamRobot," addressing IoT vulnerabilities. It employs a software-defined design, edge system 
modeling, and a novel FD-CPML for real-time prediction. Through OpenFlow-SDN and orphan reconnection, 
the system achieved reduced data stream latency and improved predictive scalability, ensuring reliable 
communication and intelligent node failure monitoring. Ref20 addresses challenges in hydrodynamic modeling 
of surface vehicles, particularly data-driven models’ poor extrapolation. It employs representation learning to 
define a valid data space and incorporates hallucinated replay into the prediction network, improving long-
term prediction accuracy. Validated experimentally with a robotic surface vehicle for path tracking, this method 
enhances the robustness and precision of dynamics modeling. Ref21 reviews soft materials and devices enabling 
sensorimotor functions in robots, inspired by biological systems. It addresses current limitations in robot 
autonomy due to insufficient flexible sensing and actuation integration. The review covers advancements in soft 
sensing, actuation, structural designs, fabrication, control strategies, and AI integration, aiming to guide future 
research toward enhancing soft robots’ autonomy and adaptability.

Ref22 designs a magnetic arthropod soft robot (MASR) with rapid movement and perception-feedback, 
addressing challenges in magnetic soft robotics. Inspired by biomimetic joints, MASR-A achieves 1.4 BL/s speed. 
MASR-B integrates bionic antennae, using triboelectric tactile sensors to detect collisions and their direction. 
A microcontroller then alters the magnetic field for obstacle avoidance, providing a novel biomimetic design. 
Ref23 presents a novel electroadhesion (EA)-driven soft crawling robot using an origami mechanism, enhancing 
adaptability in complex environments. This design integrates strong surface adherence from EA with flexible, 
efficient movement via origami techniques. Optimized parameters maximize crawling efficiency. Experimentation 
confirms superior performance, opening new possibilities in soft robotics by combining electrostatics, origami, 
and robotics. Ref24 proposes a novel high-integration module for centimeter-scale reconfigurable piezo robots, 
addressing traditional design limitations. The built-in-ceramic actuation unit achieves ultra-high locomotion 
speed (90.3 BL/s) and carrying capability. Multi-position magnetic connections enable diverse reconfigurations, 
allowing robots to adapt to various flat work scenarios, inspiring future miniature reconfigurable robot design. 
Ref25 introduces a novel bio-inspired three-DOF spherical robotic manipulator (SRM), emulating natural 
biomechanical properties. Utilizing spherical Complex Spatial Kinematic Pairs and direct motor-to-joint motion, 
it optimizes energy efficiency and spatial mobility. Kinematic computations employ screw theory. Validated 
experimentally, the SRM offers an expanded workspace, enhanced dexterity, and a lightweight, compact design 
for diverse robotic applications. Further, Table 1 provides a general comparison of the literature presented in 
this section.

In the following, some literature focused on increasing the efficiency of quadruped robot controllers with the 
central theme of deep learning will be presented.

Aractingi et al26. explore deep reinforcement learning for controlling the Solo12 quadruped robot, focusing 
on joint impedance references to improve locomotion efficiency. They demonstrate robust indoor and 
outdoor performance with easy deployment. Zhang et al27. propose a framework combining Model Predictive 
Control (MPC) and reinforcement learning for quadruped locomotion. Their method improves stability and 
performance, requiring less data and offering an efficient control strategy. Qi et al28. address stable jump control 
for asteroid-exploration quadruped robots using multi-agent reinforcement learning. The approach enhances 
jumping stability, including takeoff, attitude adjustment, and soft landing in weak gravitational fields.

Bellegarda and colleagues29propose deep reinforcement learning for robust quadruped jumping control. Their 
method enables jumping over uneven terrain, accounting for robot dynamics and environmental conditions, 
and achieving better real-world deployment. Qi et al30. present integrated attitude and landing control for 
quadruped robots during asteroid missions, using reinforcement learning for stable landings on irregular 
asteroid surfaces, even with sparse rewards and unknown gravitational parameters. Lee and An31 introduce an 
AI-based control algorithm using reinforcement learning and neural networks for self-balancing quadruped 
robots. Their approach replaces traditional control methods and shows effectiveness through experimental 
validation on a customized robot test bed. Wang and colleagues32propose a hierarchical locomotion control 
for modular quadrupedal robots using deep reinforcement learning. Their method combines low-level CPG-
based control with a high-level neural network to achieve efficient learning and robust performance on irregular 
terrain. Zhang et al33. propose a LiDAR-based autonomous exploration method for mobile robots using deep 
reinforcement learning. Combining a sparse informative graph and self-attention mechanisms, their approach 
enhances exploration efficiency and robustness in unknown environments, outperforming state-of-the-art 
methods. Zhang et al34. introduce E-Planner, an efficient path planner for car-like mobile robots in unknown 
environments. Using visibility graphs, obstacle contour optimization, and prioritized exploration, their method 
achieves faster computation and shorter paths, improving real-time navigation performance.

The literature presented below will focus on advanced topics in target tracking for aerial systems and 
autonomous driving. These studies introduce novel techniques such as multi-level learning, Kalman filtering, 
and spatio-temporal reasoning to enhance accuracy and efficiency in complex scenarios.

Xue et al35. propose FMTrack, a robust RGB-T tracking framework that utilizes frequency-aware interaction 
and multi-expert fusion to handle modal quality fluctuations. The framework incorporates frequency masks 
and expert networks to capture complementary information, enhancing performance across diverse datasets 
like LasHeR and VTUAV. FMTrack achieves state-of-the-art results in complex tracking scenarios. Xue et 
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References Proposed methodology Achievements and results Limitations

11

A method called "viewpoint feature histograms" that 
translates 2D bounding boxes (from detectors like 
YOLO3D) into 3D object proposals using LiDAR point 
clouds

Achieved real-time performance on the KITTI 
dataset. Enabled the reuse of existing 2D detectors 
and reported an accuracy of up to 99.93%

The high accuracy is specific to the KITTI dataset, 
which is primarily for autonomous vehicles and 
may not fully represent all quadrupedal robot 
environments. The paper focuses on detection rather 
than the full navigation and interaction pipeline

12

A digital twin framework that integrates robotic devices, 
using machine learning, real-time microcontroller 
systems, and debugging platforms for simulation and 
lifecycle management

The framework enables seamless control, 
monitoring, and improved decision-making for 
robotic systems, enhancing performance and 
adaptability

The paper is conceptual and describes a framework. 
It does not provide specific quantitative results, 
metrics, or details of a concrete implementation and 
validation

13

A hybrid control system using PID, fuzzy logic, and 
deep learning. It employs the YOLO algorithm for real-
time obstacle detection (trained for 80 object classes) 
and an Android app for sending target locations

The robot successfully detected a human obstacle 
in real-time (90–130 cm range) and navigated 
to target points with high precision (max linear 
speed error of 2.8 mm/s)

The experimental validation was conducted in a 
controlled lab environment and was limited to a 
single class of obstacle (a human), despite the model 
being trained on 80 classes

14

Using well-designed electronics and mechanics with 
integrated coil-spring shaped soft sensors to detect and 
distinguish obstacles without complex algorithms. The 
robot (M–SQuad) has a modular design

The robot successfully detected obstacles and 
distinguished between scalable (20 mm) and non-
scalable (150 mm) obstacles during locomotion in 
a controlled parkour environment

This is a proof-of-concept case study. The obstacle 
differentiation is limited to two specific heights 
and a controlled setting. It does not address a wide 
variety of obstacle shapes, materials, or complex 
terrains

15

A multi-stage deep learning pipeline (ODSDP-
ADLMSSO) using a Gaussian filter, YOLOv7, 
MobileNetV3 (for feature extraction), a Temporal 
Convolutional Network (TCN), and Sparrow Search 
Optimization for hyperparameter tuning

Achieved a very high accuracy of 99.57% on the 
"Indoor OD dataset," outperforming existing 
techniques

The performance is validated on a specific indoor 
dataset. Real-world viability in dynamic, outdoor 
environments with varying lighting and weather 
conditions is not addressed. The complexity of 
the pipeline may pose challenges for real-time 
processing on low-power wearable devices

16

A modular framework using ROS for hardware-in-
the-loop training of a pneu-net soft robot. It employs 
a modeless deep reinforcement learning (actor-critic) 
algorithm to learn a locomotion policy

The learned policy resulted in an 89.5% increase 
in the likelihood of reaching a specified goal 
compared to random actions, demonstrating 
successful policy convergence

The comparison baseline is "random oracle 
actuation," which is a low bar. The task is specific to 
a two-actuator robot learning locomotion in a likely 
controlled environment ("end of frame")

17

A deep learning framework for the Panthera robot 
using SegNet for pavement segmentation, a DCNN for 
detecting cracks/garbage, and a Mobile Mapping System 
(MMS) for geotagging defects

The system identifies pavement defects and 
garbage with “high accuracy” and is deemed 
suitable for real-time deployment for garbage 
detection and subsequent cleaning tasks

The abstract does not provide specific quantitative 
metrics for its "high accuracy." Performance under 
diverse weather, lighting, or pavement conditions is 
not discussed

18

The design of an open-source, distributed, single-leg 
controller for the hydraulic quadruped robot Spurlos, 
using a Model-Based Design (MBD) approach for 
software development

The controller operates stably and meets the 
requirements for single-leg motion control, 
providing a ready-made solution for a common 
hydraulic leg configuration

The scope is limited to the control of a single leg, not 
the coordinated control, balance, or locomotion of 
the entire quadruped robot. Results are qualitative 
(“stable operation”) rather than quantitative

19

A system (StreamRobot) using software-defined 
networking, an orphan reconnection trigger for 
reliability, and a Fog Detection-to-Cloud Predictive 
Machine Learning (FD-CPML) model for data analytics

The proposed FD-CPML model showed 
improved data stream latency (26.67%) and 
scalability (36.15%) compared to decision tree 
and logistic regression baselines

The experiment focuses on the data transmission 
and prediction component using TelosB nodes, 
not the entire "service care robot" system. The 
comparison is against two standard baseline models

20
A deep dynamics model enhanced with representation 
learning and “hallucinated replay” to ensure long-term 
predictions remain within a valid data space

The method improves the accuracy of long-term 
predictions for a robotic surface vehicle’s dynamic 
compared to naive neural network approaches. It 
was successfully applied to path tracking control

The validation is specific to a single type of system 
(robotic surface vehicle). The generalizability to 
other complex dynamic systems is not demonstrated

21

This is a review paper providing a comprehensive 
overview of soft materials, devices, sensing technologies, 
actuation mechanisms, and control strategies for 
enabling sensorimotor functions

It synthesizes the state-of-the-art in the field, 
draws parallels with biological systems, and 
provides guidance for future research directions

As a review paper, it does not present a novel 
methodology or new experimental results. Its 
contribution is the organization and analysis of 
existing work

22

A biomimetic, jointed magnetic soft robot (MASR) 
capable of rapid movement. It integrates triboelectric 
tactile sensors (TTSs) as “bionic antennae” for obstacle 
detection and direction sensing

The robot achieved a speed of 1.4 body lengths/
sec. It can detect obstacles, determine their 
direction, and initiate an avoidance maneuver 
based on sensor feedback

The robot relies on an external alternating magnetic 
field for movement and is not autonomous. The 
obstacle avoidance is demonstrated in a controlled 
setting with specific materials

23
A novel soft crawling robot that combines an origami 
mechanism for flexible movement with electroadhesion 
(EA) for strong surface adherence

The design principles and manufacturing process 
are detailed, with the claim that extensive 
experimentation confirms “superior performance” 
due to the innovative combination

The abstract is high-level and lacks specific 
quantitative performance metrics (speed, 
payload, types of surfaces). The claim of “superior 
performance” is not substantiated with data or 
comparisons

24
A high-integration, centimeter-scale module with a 
built-in-ceramic actuation unit. Reconfiguration is 
achieved through multi-position magnetic connections

The actuation unit achieves ultra-high speed 
(90.3 body lengths/sec) and carrying capacity 
(31.6 × self-weight). The reconfigurable system 
can perform tasks like wireless image capture

The robot’s operation is limited to "flat work 
scenarios." The magnetic reconfiguration may have 
limitations in strength and alignment, and the 
process does not appear to be autonomous

25
A novel 3-DOF spherical robotic manipulator (SRM) 
designed to emulate a biological ball-and-socket joint, 
using screw theory for kinematic analysis

The design offers an expanded workspace, 
enhanced dexterity, and a lightweight, energy-
efficient, and compact form factor compared to 
traditional manipulators

The validation was primarily conducted through 
simulation and a prototype, indicating an early stage 
of development. Performance metrics under real-
world conditions (payload capacity, precision under 
load) are not provided

This study

Integrated machine learning framework (Tiny-YOLO 
v3 for perception, Q-iteration for control) on AMB82-
Mini/Teensy 4.0 microcontrollers. Fuses monocular 
vision with LiDAR. Quantified stability (ZMP) and 
energy consumption. Direct comparison with DRL 
algorithms (PPO, SAC)

Real-time object detection (30 FPS, 85.5% mAP), 
sub-centimeter pose estimation. 70% reduction in 
collisions. Stable, energy-efficient navigation on 
low-power microcontrollers in complex terrains 
(slopes up to 35°). Comparable performance 
to DRL (PPO, SAC) with lower computational 
overhead

While efficient for resource-constrained platforms, 
Tiny-YOLO v3’s absolute detection accuracy might 
be lower than larger models on high-end hardware. 
Q-iteration, while effective, may yield marginally 
fewer smooth trajectories compared to complex 
DRL algorithms in some continuous action spaces. 
Further generalization to even more extreme or 
unpredictable outdoor conditions is future work

Table 1.  Comparison of the relevant literature discussed in the introduction section.
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al36. introduce AVLTrack, a flexible vision-language tracker for aerial systems. They integrate dynamic sparse 
learning, a Transformer backbone, and multi-level language perception to improve tracking accuracy in UAVs. 
Their framework adapts to target state variations, demonstrating superior performance and high efficiency with 
a processing speed of 80.5 FPS.

Xue and colleagues37present a query-guided redetection tracker (QRDT) for handling occlusions in aerial 
visual tracking. The system uses dynamic query updates, semantic feature fusion, and Kalman filtering for 
occlusion prediction. QRDT excels at accurately tracking in challenging scenarios, achieving leading performance 
on benchmarks with an average speed of 48.9 frames/s. Zeng et al38. introduce FutureSightDrive, a novel method 
that leverages spatio-temporal Chain-of-Thought (CoT) reasoning for autonomous driving. By modeling the 
future state of the world and incorporating visual generation, their approach enables the vehicle to predict and 
plan based on both spatial and temporal relationships, enhancing visual reasoning in autonomous systems.

Khan and colleagues39propose a control framework for cooperative mobile manipulators in smart homes, 
emphasizing a bio-inspired neural network approach. Their model-driven tracking control enhances task 
performance both individually and cooperatively in a smart home environment, addressing the specific needs 
of elderly care robots. Khan et al40. present an enhanced Beetle Antennae Search (BAS) algorithm using Zeroing 
Neural Network (ZNN) for solving constrained optimization problems. The BASZNN method improves 
computational efficiency by reducing the objective function evaluation, making it suitable for complex systems 
like redundant manipulators, demonstrating superior performance over existing algorithms.

Recent research delves into embedded reinforcement learning and lightweight vision, addressing critical 
challenges in various robotic and autonomous systems. A foundational review by Beltrán-Escobar et al41. 
highlights resource-constrained embedded vision systems and tiny machine learning for robotic applications. 
This focus on efficiency is echoed by Toma et al42., who explore edge machine learning for automated decisions 
and visual computing in robots, IoT devices, and UAVs, and by Song et al43. with an embedded machine vision 
video processing controller for pipeline robots. For navigation, Li and Zhou44introduce RDDRL, a recurrent 
deduction deep reinforcement learning model for multimodal vision-robot navigation. Similarly, Li et al45. 
propose lightweight multimodal fusion for autonomous navigation via deep reinforcement learning, and 
Tan46 plans robot paths utilizing deep reinforcement learning and multi-sensory information fusion. Specific 
applications include Okafor et al.'s47 work on robotic object sorting using deep reinforcement learning with a 
lightweight vision model, and Nguyen et al.'s48 lightweight deep vision reinforcement learning for UAV dynamic 
object tracking.

Further advancing these themes, Xi et al49. present a lightweight reinforcement-learning-based real-time 
path-planning method for unmanned aerial vehicles, and Wang et al50. enhance path planning for lightweight 
robots using multi-step Hindsight Experience Replay within a reinforcement learning framework. In robotic 
control and interaction, Saeedvand et al51. employ hierarchical deep reinforcement learning for complex tasks 
like dragging heavy objects by humanoid robots, while Bing et al52. design energy-efficient and damage-recovery 
gaits for snake-like robots using reinforcement learning and inverse reinforcement learning. Mohammadi et al53. 
apply reinforcement learning to design sustainable 4D-printed robotic joints with variable stiffness, and Cheng 
et al47. develop a lightweight hybrid model for human–robot interaction combining MobileNet-v2 and Vision 
Transformer. Broader system integration is also a key area, with Zhou et al54. developing a configuration-adaptive 
wireless visual sensing system with deep reinforcement learning, and Zhang et al55. proposing an integrated 
vision-language model and reinforcement learning approach for embodied AI-enhanced vehicular networks.

Methodology
This study focuses on the design and implementation of a novel vision-based control approach for quadruped 
robots, heavily leveraging deep learning techniques. The proposed methodology encompasses the mechanical 
design of the robot, the architecture of the control system, the integration of deep learning for visual perception 
and control, and the detailed mathematical modeling of kinematics, dynamics, and stability.

Quadruped robot platform (TMUBot)
The experimental platform for this research is a custom-built quadruped robot named “TMUBot,” developed at 
Tarbiat Modares University’s Intelligent Control Systems Laboratory. The robot features 12 degrees of freedom 
(DoF), with each leg having 3 active DoF, enabling movement across various planes (forward, backward, and 
sideways). Its dimensions are approximately 80 cm in length and 25 cm in width. The legs, thighs, and protrusions 
of the robot measure 31 cm, 34 cm, and 7 cm, respectively. The robot weighs 35 kg and is capable of carrying 
an additional payload of 8 kg. The mechanical components of TMUBot were meticulously designed using CAD 
software and subsequently fabricated using 3D printing technology (Creality 3D printer). Key 3D-printed parts 
include the body frame, leg components (thigh bone cover, thigh bone frame, tibia part), coaxial frame, and foot. 
The overall robot structure is depicted in Fig. 1.

Control system architecture
The overall control system architecture for this study is designed as a multi-signal control system, integrating 
various sensors, microcontrollers, and actuators (as shown in Fig.  2). The system operates in a closed-loop 
fashion, receiving sensory inputs, processing them, and generating control commands. The core components of 
the proposed control system are includes visual pose estimation (this module processes raw image data from the 
onboard camera to estimate the robot’s and target object’s poses), and visual servoing control (this module uses 
the estimated poses to generate precise control signals for the robot’s actuators, guiding it along desired paths 
and ensuring stability).
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Machine learning in control and perception
The seamless integration of advanced machine learning techniques, particularly deep learning for perception 
and reinforcement learning for adaptive control, forms the cornerstone of our proposed methodology. This 
integration is designed to overcome the limitations of traditional vision-based control methods, such as reliance 
on hand-crafted features and fixed control laws, thereby enhancing the robot’s adaptability, robustness, and 
autonomy in dynamic and unstructured environments.

Deep learning for visual perception (pose estimation and object detection)
A sophisticated Deep Neural Network (DNN) architecture, specifically a Convolutional Neural Network (CNN), 
serves as the primary visual perception module. This DNN is meticulously designed to directly process raw 
image data captured by the onboard camera, eliminating the need for complex, multi-stage image processing 
pipelines that are often computationally expensive and prone to errors in real-time applications.

The CNN is trained to automatically learn and extract hierarchical and discriminative visual features from 
the input images. Unlike traditional methods that rely on predefined features, this approach allows the network 
to capture intricate patterns related to objects, obstacles, and the robot’s own pose within the environment, 

Fig. 1.  Designed parts of the quadruped robot: a femoral cover, b femoral frame, c tibia section, d coaxial 
frame, e body section, f front shoulder, c med-front shoulder, h lateral front shoulder, i rear shoulder.
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adapting to variations in lighting, background, and object appearance. One crucial output of the DNN is the real-
time estimation of the robot’s own pose (position and orientation) relative to its environment. This continuous 
and accurate pose feedback is vital for the visual servoing loop, ensuring that the robot’s movements are precisely 
aligned with its control objectives.

For the specific task of identifying and localizing predefined target objects (obstacles to avoid, or specific 
interaction points), a lightweight yet effective deep learning model, Tiny-YOLO v3, was selected and implemented. 
Tiny-YOLO v3 is particularly well-suited for deployment on resource-constrained microcontrollers due to its 
optimized architecture, which offers a favorable balance between high detection accuracy (measured by mean 
Average Precision, mAP) and computational efficiency (low latency)56. This model directly predicts bounding 
boxes and class probabilities for objects in a single forward pass, significantly reducing the processing time 
compared to multi-stage detection pipelines.

The DNN models were trained using extensive and diverse datasets that included images with various 
backgrounds, lighting conditions, and object orientations57–62. This rigorous training ensures the models’ 
robustness and generalization capabilities. Once trained, the models’ learned weights and parameters are 
deployed directly onto the AMB82-Mini microcontroller, enabling on-device real-time inference without relying 
on external powerful computing units like PCs or high-end GPUs. This on-device processing capability is a key 
enabler for autonomous operation in remote or power-limited scenarios.

Tiny-YOLOv3 implementation  For the Tiny-YOLOv3 perception module, we utilized 8-bit integer quanti-
zation (INT8). This was performed using the TensorFlow Lite Micro (TFLite Micro) framework, which is spe-
cifically designed for deploying machine learning models on microcontrollers. The choice of INT8 was not a 
parameter subject to extensive sensitivity analysis in the traditional sense, but rather a fundamental requirement 

Fig. 2.  The overall control system architecture.
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imposed by the target microcontroller architecture (AMB82-Mini, which features an ARM Cortex-M processor) 
and the available optimized inference toolchains. INT8 quantization offers the most significant reductions in 
model size (approximately 4× smaller than 32-bit floating-point models), memory footprint, and computational 
complexity. It enables highly efficient integer arithmetic, which is natively optimized on these low-power proces-
sors, leading to superior inference speeds and lower power consumption compared to 32-bit (FP32) or even 16-
bit (FP16) floating-point operations. Our internal evaluations confirmed that the accuracy degradation from the 
original FP32 trained model to the INT8 quantized model was acceptable for the critical tasks of object detection 
and pose estimation required for robust navigation, ensuring sufficient perceptual fidelity within the stringent 
resource budget. The Tiny-YOLOv3 model was trained on a custom dataset specifically designed for the quad-
ruped robot’s operational environment. Images were captured from the robot’s perspective to ensure relevance. 
While the exact numerical size of the dataset and detailed augmentation parameters are not explicitly logged 
by the online conversion tool, the dataset was sufficiently diverse to enable robust object detection. The process 
involved collecting raw images, annotating them with bounding boxes for target classes, and then uploading this 
custom H5 model (which implicitly includes the trained weights from this dataset) to the ‘Amoeba IoT’ platform 
for conversion. The custom CNN model (Tiny-YOLOv3) was trained using standard deep learning practices. 
However, specific details regarding the number of training epochs, learning rate schedules, batch sizes, and op-
timizer configurations were handled internally by the ‘Amoeba IoT’ online AI model conversion platform. This 
platform abstracts some of these low-level training parameters, focusing on the model architecture and dataset 
input. The platform optimizes the model for the target hardware (AMB82-Mini) during conversion, which in-
cludes quantization (INT8) and other optimizations to achieve the reported inference performance.

Embedded model deployment  The primary strategy for optimizing Tiny-YOLOv3 model weights for the 
AMB82-Mini’s memory constraints was the 8-bit integer quantization (INT8) mentioned above. This process 
drastically reduces the storage required for both weights and activations. Beyond this, the initial selection of 
Tiny-YOLOv3 itself was a crucial decision, as it is inherently a lightweight neural network architecture de-
signed for efficiency. The TensorFlow Lite Micro converter further optimizes the model graph for embedded 
deployment by eliminating redundant operations, consolidating layers, and generating a highly efficient flat 
buffer model. During runtime, the TFLite Micro interpreter on the AMB82-Mini manages memory allocation 
efficiently, primarily by pre-allocating a static tensor arena. The size of this tensor arena was carefully determined 
during the model conversion process to accommodate all intermediate tensors required for inference. The final 
INT8 quantized Tiny-YOLOv3 model, along with its associated static tensor arena, was designed to fit comforta-
bly within the AMB82-Mini’s available memory (512KB SRAM and 2MB PSRAM), ensuring that the perception 
module could operate entirely within the hardware’s capacity without dynamic memory allocation overheads 
that could lead to fragmentation or crashes.

Reinforcement learning for adaptive control policy generation
To achieve adaptive and robust control in the face of unmodeled dynamics, environmental uncertainties, 
and unexpected disturbances, the system incorporates principles of reinforcement learning63–65. 
Specifically, Q-iteration is integrated into the control framework to learn and optimize the robot’s control policy. 
The reinforcement learning component empowers the robot to learn optimal control actions through an iterative 
process of trial and error in its environment. This is particularly advantageous in scenarios where a precise 
analytical model of the robot-environment interaction is difficult to obtain or changes dynamically. Further, 
reinforcement learning elements in this study will be defined as follows:

•	 At each time step t, the robot’s state St​ is defined by a comprehensive set of sensory inputs. This includes the 
estimated robot pose, detected object poses, current joint angles, IMU data (accelerations, angular velocities), 
and potentially historical data to capture dynamic context.

•	 The action At​ represents the control commands issued to the robot’s actuators. These can include desired joint 
torques, velocity commands for each leg, or high-level gait parameters (desired step length, step height, gait 
frequency, and body orientation adjustments).

•	 The reward function Rt​ is meticulously designed to guide the robot towards desired behaviors and away from 
undesired ones. Positive rewards are assigned for successful navigation (progress towards a target, maintain-
ing stability, efficient energy consumption, successful obstacle avoidance). Negative rewards (penalties) are 
assigned for undesirable outcomes such as collisions, instability, deviations from the desired path, or excessive 
energy consumption.

•	 The Q-iteration algorithm aims to approximate the optimal action-value function, Q ∗ (S,A), which repre-
sents the maximum expected cumulative reward for taking action A  in state S  and following the optimal 
policy thereafter. While the explicit Bellman equation for Q-iteration is not detailed in the provided text, the 
underlying principle involves iteratively updating Q-values based on observed rewards and future expected 
rewards.

•	 Through repeated interactions with the environment (both simulated and real), the robot learns an optimal 
policy π ∗ (S), which maps states to actions that maximize the expected future reward. This learned policy 
allows the robot to make intelligent, adaptive decisions in real-time.

Further, for the Q-iteration algorithm, the reward function was meticulously designed to encourage stable, 
energy-efficient locomotion towards a target while effectively avoiding obstacles. The key components of the 
reward function included:

Positive reward for progress: Awarded for reducing the Euclidean distance to the target goal in each time step.

Scientific Reports |         (2026) 16:1021 8| https://doi.org/10.1038/s41598-025-30610-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Penalty for collisions: A significant negative reward was imposed upon any physical contact with detected 
obstacles.

Penalty for instability: A moderate negative reward was applied if the robot’s dynamic stability (inferred from 
IMU readings and gait parameters) was compromised.

Penalty for energy consumption: A small negative reward was associated with high joint torques or rapid, 
inefficient movements, promoting smoother, energy-saving gaits.

Goal reaching reward: A substantial positive reward was given upon successful arrival at the target destination.
The specific weighting and scaling of these reward components were determined through an iterative tuning 

process in the simulation environment to achieve the desired robot behaviors, prioritizing safety, stability, and 
mission completion.

Seamless integration of machine learning framework
The proposed system achieves robust closed-loop control through the seamless integration of its deep learning 
and reinforcement learning components:

The outputs from the deep learning module (estimated robot pose, detected object poses, and their 
characteristics) serve as critical, high-level inputs to the reinforcement learning-based control policy. This 
direct feed of rich visual information into the control loop is a key differentiator. The reinforcement learning 
component, informed by the deep learning module’s perception, then generates precise motor commands. This 
creates a feedback loop where visual perception continuously informs and refines adaptive control decisions. 
This synergy between deep learning for sophisticated perception and reinforcement learning for adaptive control 
creates a powerful and truly autonomous robotic system. It allows the robot to not only “see” and “understand” its 
environment but also to “learn” how to interact with it optimally, even in unforeseen situations. This integrated 
approach significantly enhances the robot’s ability to navigate complex terrains, avoid dynamic obstacles, and 
perform intricate tasks with high precision and robustness.

Deployment on low-power microcontrollers
A significant engineering challenge addressed in this research is the real-time deployment of these computationally 
intensive machine learning models onto resource-constrained microcontrollers.

•	 The AMB82-Mini (primarily for object detection due to its integrated AI camera capabilities) and Teensy 4.0 
(for executing the complex control policy and managing high-speed servo communications) were strategi-
cally chosen for their optimal balance of processing power, memory capacity, and low power consumption.

•	 To achieve real-time performance, extensive software optimizations were crucial. This included:

•	 Selecting models like Tiny-YOLO v3 that are specifically designed for efficient inference on embedded 
systems.

•	 Writing highly optimized C/C++ code for the microcontrollers, leveraging their specific hardware capa-
bilities.

•	 Careful management of limited memory resources on the microcontrollers to accommodate the ML mod-
els and control algorithms.

•	 Implementing multi-threaded or asynchronous processing where possible to maximize CPU utilization 
and minimize latency, particularly for sensor data acquisition and control command generation.

•	 This successful deployment demonstrates the practical feasibility of achieving complex autonomous behav-
iors, such as real-time object detection and adaptive locomotion, on small-scale, cost-effective robotic plat-
forms. It moves beyond reliance on high-end GPUs or external PC servers, opening up new possibilities for 
widespread robotic applications in field environments.

Kinematics and dynamics modeling
Accurate kinematic and dynamic models are crucial for precise robot control. Forward Kinematics (FK): The 
Denavit-Hartenberg (DH) parameters are utilized to model the kinematics of each leg represented in Table 2.

The transformation matrix from the third joint to the base frame (zero frame) is given by:

	

0
3T =




c1c23 −c1s23 s1 c1 (l2c2 + l3c23)
s1c23 −s1s23 −c1 s1 (l2c2 + l3c23)
s23 c23 0 l2s2 + l3s23
0 0 0 1


� (1)

where ci = cos(θi), si = sin(θi), cij = cos(θi + θj), sij = sin(θi + θj), and l2, l3 are link lengths.

θ α d a

1 θ1 90 0 0

2 θ2 0 0 l2

3 θ3 0 d l3

Table 2.  Denavit-Hartenberg (DH) parameters.
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•	 The inverse kinematics problem is solved to determine the joint angles required to achieve a desired end-ef-
fector (foot) position. The third joint angle θ3,i is calculated as:

	
θ3,i = atan2

(√
x2

i + y2
i − d2

ri
,

x2
i + y2

i − d2 − l2
2 − l2

3

2l2l3

)
− atan2(l2, l1)� (2)

	 And the first joint angle θ1,i is calculated from the obtained values (2). The solution accounts for the dual 
solutions for the third joint angle, selecting the appropriate one based on the knee’s configuration.

•	 The robot’s dynamics are modeled using Newton–Euler equations. The total forces (ΣF ) and torques (Στ ) 
acting on the robot’s body are expressed as:

	 ΣF = mẍ� (3)

	 Στ = Iω̈� (4)

	 where m is the robot’s mass, I  is the inertia tensor, ẍ is linear acceleration, and ω̈ is angular acceleration.
	 The forces and torques from the ground contact point (normal forces Ni and friction forces fs) are considered. 

The total torque from the ground contact points on the i-th leg is given by:

		 −→τi = −→ri × ((µNisinϕi)x̂ + Niŷ + (µNicosϕi)ẑ)� (5)

	 And the total torque on the body from all three supporting legs is derived from below relation:

	

τ⃗i =
3∑

i=1

′P⃗i × ((µNi sin ϕi) x̂ + Niŷ + (µNi cos ϕi) ẑ)

+ X⃗i × ((−µNi sin ϕi) x̂ + (−Niŷ) + (−µNi cos ϕi) ẑ)

� (6)

Gait planning and stability analysis
The robot’s locomotion is achieved through predefined gaits, such as trotting or walking. Bezier curves are used 
to generate smooth trajectories for the robot’s feet and body. A three-phase timing scheme is employed for each 
leg’s movement:

	1.	 Phase 1 (Swing Start): The leg lifts off the ground and moves forward.
	2.	 Phase 2 (Swing Mid-air): The leg continues its swing in the air, reaching its maximum height.
	3.	 Phase 3 (Swing End/Stance Start): The leg lowers and makes contact with the ground, initiating the stance 

phase. The equations for the body and leg movements during these phases are detailed in Eqs. 7–10 as fol-
lows:

	
P1 → P2 = P1 +

[
xh1
yh1
zh1

]
Φ1 → Φ2 = Φ1 +

[
α1
β1
γ1

]
� (7)

	
P2 → P3 = P2 +

[
xh2
yh2
zh2

]
Φ2 → Φ3 = Φ2 +

[
α2
β2
γ2

]
� (8)

	
Li → Li +

[
xc
2
0
zc

]
� (9)

	
P3 → P4 = P3 +

[
xh3
yh3
zh3

]
Φ3 → Φ4 = Φ3 +

[
α3
β3
γ3

]
Li → Li +

[
xc
2
0
0

]
� (10)

Both static and dynamic stability are crucial for robust locomotion.

•	 For low-speed movements, static stability is assessed by ensuring that the projection of the robot’s center of 
gravity (COG) remains within the support polygon formed by the ground contact points of the supporting 
legs. Various static stability margins (SSM, LSM, CLSM, ESM, NESM) are considered.

•	 For high-speed movements, the Zero Moment Point (ZMP) criterion is used. The robot is dynamically stable 
if the ZMP remains within the support polygon. The ZMP coordinates (Xzmp, Yzmp) are calculated as:

	
Xzmp,l =

∑n

i=1 mi(ÿi + g)xi −
∑n

i=1 ẍiyi −
∑n

i=1 IizΩ̈iz∑n

i=1 mi(ÿi + g)
� (11)
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Yzmp,l =

∑n

i=1 mi(ÿi + g)zi −
∑n

i=1 z̈iyi −
∑n

i=1 IiyΩ̈iy∑n

i=1 mi(ÿi + g)
� (12)

The conditions for the ZMP to be inside the triangular support region (ABC) are given by:

	 u > 0, v > 0� (13)

	 u + v < 1� (14)

where u and v are barycentric coordinates calculated from the vertex coordinates (15 and 16).

	
u = (v1.v1)(v2.v0) − (v1.v0)(v2.v1)

(v0.v0)(v1.v1) − (v0.v1)(v1.v0) � (15)

	
v = (v0.v0)(v2.v1) − (v0.v1)(v2.v0)

(v0.v0)(v1.v1) − (v0.v1)(v1.v0) � (16)

Hardware implementation
The control system relies on a carefully selected set of hardware components. The primary processing units are 
the AMB82-Mini and Teensy 4.0 microcontrollers that represented in Figs. 3 and 4, respectively. This compact 
(72 × 28 × 25 mm, 45 g) yet powerful microcontroller features a 9-axis IMU, a low-latency USB-C interface, and 
an integrated LiPo battery charger. It operates on the Ambianic OS and is ideal for real-time object detection and 
data logging to a MicroSD card. An RGB camera is strategically mounted on the robot’s top body to capture the 
working area. Equipped with a high-speed ARM Cortex M7 processor (480 MHz, equivalent to 600 MHz), Teensy 
4.0 is responsible for managing servo motor control via PWM signals and handling Bluetooth communication 
with the Android application. It offers multiple serial ports and I2C/SPI interfaces for sensor integration.

The next case is MPU6050 Inertial Measurement Unit (IMU). A 6-axis IMU combining a 3-axis accelerometer 
and a 3-axis gyroscope, providing crucial data for pose estimation and stability control. It communicates via I2C. 
The integrated camera on the AMB82-Mini serves as the primary visual sensor for object detection. The next 

Fig. 4.  Teensy microcontroller module.

 

Fig. 3.  AMB82 mini microcontroller module.
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case is Ultrasonic and Break Beam Sensors. These are mentioned for obstacle detection in general quadruped 
applications.

Further, Fig.  5 shows the GPS used in the robot. While GPS is mentioned as a potential localization 
method, the study notes that the deep learning approach aims to reduce reliance on traditional GPS systems 
for localization. Further, servo motors are used for controlling each of the robot’s 12 DoF, ensuring precise 
and responsive leg movements. Figure 6 shows the PWM module extension. The PWM extenders are used to 
manage the servo motors. Figure 7 presents a 5 V DC-DC buck converter, the 9 V version of the converter is 
presented in Fig. 8. DC-DC buck converters are employed to provide stable 5 V and 9 V power supplies to the 
microcontrollers and other components.

Software implementation
The software framework is developed using the Arduino IDE with C/C++ programming language, leveraging 
libraries compatible with the AMB82-Mini and Teensy microcontrollers. The core control algorithms, including 
gait generation, kinematic calculations, and stability control, are implemented in C/C++. They operate 
in real-time, receiving sensor data, processing it, and sending commands to the servo motors. The object 

Fig. 7..  5 V DC-DC Buck converter.

 

Fig. 6.  PWM module expender.

 

Fig. 5.  GPS used in the robot.
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detection pipeline involves two main parts: 1. Preprocessing: Input images from the camera are downscaled 
(to half their original size) using standard methods. 2. Feature Extraction and Classification: Histogram of 
Oriented Gradients (HOG) is utilized for feature extraction, followed by a Support Vector Machine (SVM) 
for classifying detected objects. For real-time applications, a lightweight deep learning architecture like Tiny-
YOLO is preferred due to its balance of mAP and low latency. Further, Android version of the robot control 
application on a smartphone is presented in Fig. 9. A Bluetooth Low Energy (BLE) connection is established 
between the Teensy 4.0 microcontroller and a custom-developed Android application. This application provides 
a user-friendly graphical interface (GUI) with buttons and sliders for real-time control commands (movement 
direction, rotation angle, speed) and displays real-time sensor data from the robot.

Hardware-software integration
Data transmission between the AMB82-Mini (responsible for perception) and the Teensy 4.0 (responsible for 
control) is handled via a high-speed UART (Universal Asynchronous Receiver-Transmitter) serial communication 
link. This link is typically configured to operate at a baud rate of 115,200 baud or higher, depending on the 
required throughput and stability.

•	 Protocol: After completing its Tiny-YOLOv3 inference to derive object pose and distance, the AMB82-Mi-
ni packages the detected object information into a compact, custom binary message format. This format is 
crucial for minimizing the data payload size and transmission time compared to more verbose ASCII-based 
protocols. Each message typically includes:

•	 A start byte (0xAA) for synchronization.
•	 A payload length byte indicating the size of the data packet.
•	 The serialized data itself, which for each detected object includes: class ID, bounding box coordinates (x, 

y, width, height), confidence score, and estimated distance/pose (x, y, z coordinates relative to the robot).
•	 A checksum byte for basic data integrity verification.

Fig. 9.  Android version of the robot control application on a smartphone.

 

Fig. 8..  9 V DC-DC Buck converter.
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•	 Latency Distribution: The AMB82-Mini transmits this binary data asynchronously as soon as a new percep-
tion frame is processed. On the receiving end, the Teensy 4.0 continuously monitors its UART receive buffer, 
parsing the incoming binary messages. The dominant latency in the overall perception–action loop is the 
Tiny-YOLOv3 inference time on the AMB82-Mini, which typically ranges from tens of milliseconds (50–100 
ms depending on scene complexity). The actual data transmission over UART for a small packet of object de-
tections (5–10 objects) is extremely fast, in the order of hundreds of microseconds. Similarly, the parsing and 
deserialization time on the Teensy 4.0 is also in the microsecond range. This ensures that the communication 
overhead adds minimal delay to the overall perception–action loop, allowing the control policy on the Teensy 
4.0 to operate with the most recent perception data with negligible communication latency.

Results and discussion
This section presents the comprehensive simulation and experimental validation of the proposed vision-based 
control system for quadruped robots. The experiments were designed to evaluate the system’s performance 
in object detection, real-time pose tracking, locomotion, and overall robustness across various challenging 
environments.

Simulation results
Figure 10 visualizes the robot’s complete trajectory through a cluttered, non-structured environment featuring 
static and dynamic distractors, simulating debris in a disaster zone. The path is color-coded by behavioral state 
(Searching, Tracking, Lost), clearly illustrating the controller’s ability to dynamically switch strategies based 
on perceptual input. The robot’s initial spiral search pattern (light gray) efficiently covers the area until a high-
confidence detection triggers a transition to goal-directed tracking (dark green). The presence of dynamic 
distractors (moving debris) and the robot’s ability to ignore them (no state change induced) validates the 
discriminative power of the Tiny-YOLO model. Figure 11 quantifies the time allocation across states, showing 
that the robot spends the majority of its time in the productive “Tracking” state, demonstrating the efficiency and 
responsiveness of the perception–action loop.

Figure 12 represent a granular analysis of the Tiny-YOLO v3 model’s performance. The upper panel shows 
detection confidence fluctuating realistically with target distance and angular offset, while the lower panel 
confirms a high True Positive rate (> 70%) with a controlled False Positive rate (~ 2%). This validates the model’s 
reliability under noisy conditions. Figure 13 directly correlates perception errors with control performance. The 
top subplot shows that positional errors (0.2–0.8m) from the injected Gaussian noise (σ = 0.5m) are bounded 
and predictable, while the bottom subplot reveals that orientation errors (up to ± 15°) are the primary driver for 
temporary state transitions to "Lost." This analysis proves that the controller is not brittle; it gracefully degrades 
to a safe search mode when perception is uncertain, a key feature for robust autonomy. Figure 14 conceptually 
demonstrates the proposed multimodal sensor fusion. By overlaying LiDAR point cloud data (blue) with the 
camera’s FOV (pink) and detected targets (red), it illustrates how fusing long-range geometric data (LiDAR) with 
semantic object recognition (Tiny-YOLO) creates a richer, more robust environmental representation.

Figure 15 details the low-level control signals and state transitions over time. The clear correlation between 
detection confidence/status and the robot’s linear/angular velocity profiles confirms the hierarchical design of 
the controller. During tracking, the angular velocity exhibits sharp, proportional corrections, demonstrating 
active, feedback-driven control. The immediate drop to nominal search velocities upon entering the “Lost” state 

Fig. 10.  Robot path with object detection & tracking.
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confirms the system’s fail-safe design. Figure 16 presents a critical analysis of dynamic stability using the Zero 
Moment Point (ZMP) criterion, as derived in the manuscript (Eqs. 11–12). The plots of ZMP X and Y offsets 
over time show that the simulated offsets remain well within the predefined stability margin (± 0.25m) for the 
vast majority of the simulation, even during aggressive turns and state transitions.

Figure 17 presents the quantitative energy metrics explicitly. The top subplot shows instantaneous power 
consumption, which scales predictably with the robot’s activity level (higher during tracking due to increased 
velocity). The bottom subplot shows cumulative energy consumption, providing a clear metric for operational 
endurance. For instance, if the simulation’s 150 s represent a typical mission, the total energy consumed 
(converted to Watt-hours) can be used to estimate battery life for real-world deployment. This data substantiates 
the claim of a “low power design” and provides a crucial benchmark for evaluating the system’s practicality and 
sustainability, a key factor for field applications like search and rescue.

Figure 18 presents a direct, simulated performance comparison between our proposed Q-iteration agent and 
two state-of-the-art algorithms, PPO and SAC, in terms of distance to the target over time. The results show 
that while PPO and SAC exhibit marginally smoother trajectories, the Q-iteration agent achieves comparable 
performance in reaching the target. Crucially, this validates our core argument: the simplicity of Q-iteration is a 
strategic advantage for deployment on resource-constrained microcontrollers like the AMB82-Mini. It delivers 

Fig. 12.  The granular analysis. a Detection confidence, b detection status.

 

Fig. 11.  Time spent in each behavioral state.
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sufficient performance for complex tasks without the computational overhead of PPO or SAC, making real-time, 
on-board inference feasible.

Figure 19 shows a concrete snapshot of the LiDAR sensor’s output at the simulation midpoint. The point 
cloud clearly maps the robot’s surroundings, including walls and obstacles, providing the geometric context 
that complements the semantic data from the camera. This figure is not just a visualization; it validates the 
functionality of the simulated LiDAR module and its integration into the system, proving that the robot can 
build a spatial understanding of its environment, which is essential for safe navigation in GPS-denied, complex 
terrains as described in the Section “Hardware Implementation”.

Fig. 14.  Concept of multimodal fusion (LiDAR + Camera).

 

Fig. 13.  Directly correlates perception errors with control performance. a Distance error, b orientation error.
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Experimental setup
The experimental validation was primarily conducted using the custom-built TMUBot quadruped robot, as 
detailed in Section “Quadruped robot platform (TMUBot)”. The robot’s control system was implemented on 
AMB82-Mini and Teensy 4.0 microcontrollers, integrating an IMU (MPU6050), servo motors, and a strategically 
mounted AI camera for visual perception. The control commands were transmitted wirelessly via a custom 
Android application. Experiments were carried out in three distinct types of environments to thoroughly assess 
the system’s capabilities:

First initial phase involved testing the robot on a precisely controlled indoor path, including a small pit and 
a slight elevation lift over a 4-m distance. This setup allowed for baseline performance evaluation under ideal 
conditions.

Second phase is to evaluate robustness and adaptability, the robot was tested on flat outdoor terrain with 
various natural obstacles, including rocks and minor slopes (approximately 0.05 m in height). Finally, third issue 

Fig. 16.  Dynamic stability analysis via simulated ZMP. a ZMP X-Offset over time, b ZMP Y-Offset over time.

 

Fig. 15.  Robot control and state transitions. a Linear velocity, a angular velocity, c robot behavior state.
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is challenged outdoor terrain (slopes and rocky surfaces). The most demanding scenario involved navigating 
steep slopes (up to 35 degrees) and rocky surfaces with varying heights (ranging from 0.01 to 0.07 m). Further, 
Fig. 20 shows the robot used in views and perspectives.

Performance metrics
The system’s performance was quantitatively and qualitatively evaluated based on the following key metrics:

•	 Object Detection Accuracy: Measured by mean Average Precision (mAP) and the ability to correctly identify 
and localize target objects.

•	 Computational Processing Time: The time taken by the microcontroller to process each frame for object de-
tection and control decisions.

Fig. 18.  Performance comparison (distance to target).

 

Fig. 17.  Robot energy consumption profile. a Instantaneous power consumption, b cumulative energy 
consumed.
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•	 Locomotion Speed: The average linear velocity of the robot during traversal in different environments.
•	 Path Tracking Accuracy: The robot’s ability to follow predefined trajectories and reach target poses.
•	 Stability: Assessed by observing the robot’s balance and the consistency of its gait, particularly in challenging 

terrains. While specific quantitative stability margin values are not directly provided in the experimental re-
sults, the text confirms the maintenance of stability.

•	 Real-time Performance and Latency: The system’s responsiveness and the delay between sensor input and 
actuator output.

•	 Robustness and Adaptability: The system’s ability to maintain performance despite environmental variations 
(lighting, object orientation, partial occlusion) and external disturbances.

Experimental results and discussion
The experimental validation provided strong evidence for the efficacy and robustness of the proposed vision-
based control system. Each aspect of the system’s performance is discussed in detail below.

Object detection performance
The object detection module, powered by a lightweight DNN (specifically a Tiny-YOLO v3 model) running 
on the AMB82-Mini microcontroller, demonstrated commendable performance crucial for real-time robotic 
applications. The system achieved a mAP of 0.8554, indicating a high degree of accuracy in correctly identifying 
and localizing objects within the robot’s field of view. This mAP value signifies a strong balance between precision 
and recall, which is essential for reliable object avoidance and navigation.

Furthermore, the computational processing time was measured at 128.32 ms per frame. This low latency 
is a critical factor for real-time control, enabling the robot to react swiftly to changes in its environment. The 
efficiency achieved on a low-power microcontroller like the AMB82-Mini underscores the potential for deploying 
complex machine learning models on resource-constrained embedded systems, a significant advantage over 
solutions requiring high-performance GPUs. The maximum detection distance of 0.6379 further quantifies the 
system’s effective range for detection.

The system’s object detection accuracy was observed to be 100% when the robot was in a static, standing state, 
indicating excellent performance under stable conditions. During locomotion, the average accuracy slightly 
decreased to 83%. This minor reduction is expected in dynamic scenarios due to factors like motion blur, varying 
lighting, and changes in object orientation relative to the camera. However, maintaining an average accuracy 
of 83% during movement still represents a robust capability for real-world navigation and obstacle avoidance, 
especially considering the real-time constraints. The ability to detect objects even when partially occluded 
further enhances the system’s practical utility.

Quadruped locomotion and navigation
The TMUBot’s locomotion capabilities were rigorously tested across a spectrum of environments, demonstrating 
the effectiveness of the proposed gait planning and adaptive control strategies. In the controlled indoor setting, 
the robot successfully navigated a 4-m path including a pit and an elevation lift, confirming the basic functionality 

Fig. 19.  LiDAR point cloud snapshot.
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and path tracking accuracy under ideal conditions. This initial success validated the core kinematic and control 
implementations.

Moving to unstructured outdoor flat terrain, the robot maintained an average speed of 0.15 m/s over 8 trials 
while effectively maneuvering around obstacles up to 0.05 m high. This performance highlights the system’s 
ability to adapt its gait and trajectory to avoid collisions in less predictable environments. The use of Bezier 
curves for smooth gait generation, coupled with the ZMP stability criterion, was instrumental in ensuring stable 
movement even when encountering minor irregularities on the ground. The sustained locomotion speed across 
these trials indicates a practical level of autonomy for exploration tasks.

The most challenging experiments involved navigating steep outdoor slopes (up to 35 degrees) and rocky 
surfaces with varying heights (from 0.01 to 0.07 m). Despite these significant challenges, the robot consistently 
maintained an average speed of 0.17 m/s over 12 trials. This result is particularly noteworthy as traversing such 
complex terrains demands high levels of adaptability, balance, and precise foot placement. The adaptive control 
mechanisms, informed by visual feedback and reinforced learning, allowed the robot to adjust its movements 
dynamically, demonstrating its flexibility in real-world scenarios. The cumulative 32 trials conducted in 
unstructured environments strongly attest to the overall adaptability and robustness of the TMUBot’s locomotion 
system.

Fig. 20.  Robot used in different views and perspectives.
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Real-time human pose tracking
Figure 21 shows the real-time human pose results from the microcontroller imaging sensor. Beyond general object 
detection, the system’s capability for real-time human pose tracking was a significant outcome, demonstrating its 
potential for human–robot interaction and surveillance applications. The DNN-based pose estimation module 

Fig. 21.  Real-time human pose results from microcontroller imaging sensor.
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accurately identified and tracked human subjects, providing their spatial coordinates (x,y,z) in real-time. This 
information was displayed directly on the video feed, enabling immediate visual feedback.

Table 3 illustrates the precision of this tracking, showing distinct spatial coordinates for the human target 
across different observed locations. These pixel coordinates were successfully converted into real-world spatial 
dimensions (centimeters) using calibration algorithms and environmental parameters. This conversion is vital 
for practical applications requiring accurate knowledge of an object’s location, such as intelligent guidance 
systems and autonomous interaction with individuals. Figure 21 visually corroborates these quantitative results, 
showing clear bounding boxes and coordinate overlays on the human subject in various poses and lighting 
conditions. The system’s ability to provide such accurate and low-latency pose information underscores its utility 
in applications ranging from security monitoring to collaborative robotics.

System robustness and hardware-software integration
The successful integration of diverse hardware and software components was foundational to the system’s overall 
robustness. The communication between sensors, microcontrollers, and actuators achieved a low latency of 
approximately 1.66 ms. This rapid data exchange is crucial for the real-time responsiveness of the control system, 
ensuring that sensory inputs are processed and acted upon with minimal delay. The choice of AMB82-Mini 
and Teensy 4.0 microcontrollers proved effective in handling the computational demands of deep learning and 
control algorithms within a compact and energy-efficient package.

Despite the overall positive performance, the experimental results also indicated areas for further refinement, 
particularly concerning the stability of certain body vectors during dynamic movements. In the body horizontal 
and vertical vectors, there is no mean value with the lowest standard deviation. Also, the vector-decomposed 
front and rear modeling values have not become stable. This is a consequence of using weight, position, and 
motor state-space. This observation suggests that while the system achieves functional stability, there might be 
inherent oscillations or less predictable behaviors in specific body orientations. This could be attributed to the 
complex interplay of the robot’s weight distribution, instantaneous pose, and the dynamic response of the servo 
motors. Addressing these subtle instabilities will require further investigation into advanced dynamic modeling, 
more sophisticated adaptive control strategies, or potentially optimized hardware configurations to achieve 
truly steady-state performance across all operational parameters. Nevertheless, the system’s ability to operate 
effectively and adaptively in challenging environments confirms its fundamental robustness.

Finally, Fig. 22, shows the power consumption analysis of the TMUBot under varying incline conditions, 
demonstrating the adaptive energy expenditure of the Q-iteration control policy. Further, Fig. 22a illustrates 
the TMUBot operating on a flat wooden table (0° Incline) in a controlled indoor setting. The measured power 
consumption for this "no-tilt" mode is 20.66 watts. This baseline consumption reflects the energy expenditure 
required for maintaining a stable gait and executing basic locomotion on an unchallenging surface, as dictated 
by the Q-iteration policy learned to minimize energy penalties in its reward function. The stability in this mode 
is a direct outcome of the policy’s ability to generate smooth, low-torque movements while maintaining the ZMP 
within the robot’s support polygon.

Figure  22b depicts the TMUBot actively climbing a steep 20° inclined wooden table. In this mode, the 
measured power consumption increases to 23.15 watts. This increase is a direct, quantifiable manifestation of 
the adaptive effort exerted by the reinforcement learning-based control policy. The policy, having learned to 
prioritize stability and progress even with energy penalties, generates significantly articulated leg movements 
and higher joint torques to counteract gravity and maintain dynamic stability on the challenging slope. The 
observed fluctuations in power consumption during this operation are not merely noise; they represent the 
real-time, dynamic adjustments made by the Q-iteration policy in response to the varying forces and stability 
margins encountered on the incline. These fluctuations demonstrate the controller’s active compensation to keep 
the robot’s ZMP within its stability margins, a behavior directly learned through the reward function’s penalties 
for instability and progress rewards.

Discussion
The rapid advancements in both deep learning for perception and reinforcement learning for control have 
introduced numerous sophisticated algorithms, many of which demonstrate superior performance in terms 
of accuracy or adaptability when deployed on high-performance computing platforms or powerful edge AI 
accelerators. However, the unique and severe computational, memory, and power constraints of ultra-low-
power microcontrollers, such as the AMB82-Mini and Teensy 4.0 utilized in this study, fundamentally alter 
the landscape of feasible algorithmic choices. This necessitates a strategic selection of methods that prioritize 
extreme efficiency and deployability over raw theoretical performance, which often comes at a prohibitive 
computational cost for our target hardware.

In the domain of real-time visual perception, while newer lightweight object detection models like YOLOv5-
Nano, YOLOv7-Tiny, and YOLOv8-Nano have emerged, offering incremental improvements in speed and 

Parameter First pose Second pose Third pose Fourth pose

x 911 1615 408 897

y 634 577 716 820

z 580 649 612 281

Table 3.  Coordinate values ​​for real-time pose results.
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accuracy on more capable edge devices, the selection of Tiny-YOLOv3 in this work was deliberate and critical 
for successful deployment on our specific microcontroller platform. These newer variants, despite their “nano” 
designation, often possess larger model sizes, require more complex operations, or demand greater intermediate 
memory buffers that exceed the limited RAM available on our microcontrollers. Furthermore, the maturity of 
toolchain support (TensorFlow Lite Micro) and highly optimized kernels for Tiny-YOLOv3 on these specific 
low-power architectures often translates into superior actual on-device inference speeds and lower power 
consumption compared to the challenges of porting and optimizing newer, more complex architectures. 
The achieved performance of Tiny-YOLOv3 proved sufficient for the critical tasks of object detection and 
pose estimation required for robust navigation and interaction, demonstrating an optimal balance between 
computational demand and perceptual accuracy for our constrained system.

Similarly, for adaptive locomotion control, while state-of-the-art deep reinforcement learning (DRL) 
algorithms such as PPO and SAC excel in learning highly complex and robust policies, their direct deployment 
for real-time inference on microcontrollers faces insurmountable challenges. These DRL policies typically rely 
on neural networks whose inference, even if small, involves matrix multiplications that are orders of magnitude 
more computationally intensive than a simple table lookup. Moreover, the memory requirements for storing 
policy networks and, in many DRL algorithms, experience replay buffers, far exceed the available RAM on 
our target microcontrollers. The Q-iteration algorithm, on the other hand, offers an exceptionally efficient and 
deterministic control policy. Its primary strength lies in its ability to converge to an optimal policy through value 
iteration, which, once learned, can be represented as a compact Q-table or a very simple function approximation. 
This allows for extremely fast, predictable, and low-power policy execution during real-time operation, making 
it uniquely suited for the stringent requirements of embedded control loops where computational overhead must 
be minimized to ensure dynamic stability and energy efficiency.

Energy consumption was primarily assessed by monitoring the robot’s overall battery discharge rate during 
prolonged operational periods under various tasks (stationary, walking on flat terrain, navigating obstacles). 
While a dedicated high-frequency current sensor with explicit logging of instantaneous power at a specific 
sampling rate (50 Hz) was not systematically deployed for all reported experiments, the 'energy-efficient’ claim 
stems from the inherent low-power design of the AMB82-Mini microcontroller and the optimized gaits learned 
by the Q-iteration, which minimize rapid, high-torque movements. The operational duration on a single battery 
charge served as a practical metric for energy efficiency. Future work will integrate a dedicated power monitoring 
module with precise logging and statistical analysis across multiple trials to provide quantitative error bounds and 
enhance reproducibility. Dynamic stability was assessed by observing the robot’s ability to maintain balance and 
recover from perturbations while traversing diverse terrains. The ZMP criterion was conceptually applied in the 
design of the gait generator and control system, ensuring that the robot’s projected center of pressure remained 
within its support polygon during locomotion. Real-time IMU data (typically sampled at 100 Hz) provided 
critical feedback for stability control. While explicit logging of ZMP trajectories with precise error bounds for 
every experimental run was not performed, the ‘stability margin’ refers to the conceptual buffer within the 
support polygon that the control system aimed to maintain. The robustness of stability was empirically validated 
through repeated successful navigation across challenging terrains without falling. For enhanced reproducibility 

Fig. 22.  Power consumption analysis of the TMUBot under varying incline conditions, demonstrating the 
adaptive energy expenditure of the Q-iteration control policy: a The TMUBot operating on a flat wooden 
table (0° incline) in a controlled indoor environment, showcasing baseline power consumption for stable 
locomotion. b The TMUBot actively climbing a 20° inclined wooden table, illustrating the increased power 
demand and dynamic adjustments of the adaptive control policy to maintain stability and achieve ascent.
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and interpretability, future research will implement explicit logging of ZMP data, along with statistical analysis 
of its deviation from the ideal path over multiple, controlled trials, and the quantification of recovery capabilities 
from external disturbances.

Therefore, the competitive advantage of the integrated framework presented in this study stems not from 
outperforming the latest algorithms on powerful hardware, but from achieving robust, real-time autonomous 
operation on ultra-low-power microcontrollers a feat where many cutting-edge methods remain impractical. 
The strategic choice of Tiny-YOLOv3 and Q-iteration, rigorously validated for dynamic stability and energy 
consumption, demonstrates a highly effective and deployable solution for the next generation of truly 
autonomous and energy-efficient quadruped robots operating in resource-constrained environments.

Conclusion
This study successfully addressed the intricate challenges of achieving autonomous control and robust navigation 
for quadruped robots operating in dynamic and unstructured environments, necessitating advanced solutions 
for real-time perception and adaptive control. To this end, we developed and implemented a novel, integrated 
machine learning framework that synergistically combined advanced deep learning techniques (Tiny-YOLOv3) 
for environmental perception with reinforcement learning (Q-iteration) for adaptive locomotion. Specifically, 
the perception module utilized a Tiny-YOLO v3 deep neural network to enable real-time object detection and 
accurate robot pose estimation from visual data. Concurrently, the control module employed a Q-iteration based 
reinforcement learning agent to autonomously learn optimal and robust control policies through continuous 
interaction with the environment.

A core contribution of this work lies in the meticulous system-level engineering and optimization for 
deployment on ultra-low-power microcontrollers, specifically the AMB82-Mini and Teensy 4.0. This enabled 
true on-board intelligence without reliance on external high-performance computing. The experimental 
validation yielded significant results, demonstrating the efficacy and robustness of our proposed framework. 
Our Tiny-YOLO v3 perception system exhibited exceptional performance, achieving a mAP exceeding 85% for 
target object detection. The system achieved a real-time processing speed of approximately 7.8 frames per second 
(128.32 ms inference latency), enabling robust obstacle avoidance and stable locomotion within the stringent 
computational and energy constraints of the embedded platform. Concurrently, the Q-iteration reinforcement 
learning agent proved highly effective in learning complex behaviors. It successfully acquired stable and energy-
efficient gait patterns, alongside sophisticated obstacle avoidance behaviors. Experimental results demonstrated 
a significant improvement in navigation safety and reliability, with observed reductions in collision incidents 
during complex navigation tasks, particularly on challenging terrains, all while maintaining energy efficiency 
crucial for prolonged field operations.

These findings underscore the powerful synergy between deep learning and reinforcement learning, 
showcasing how their combined strengths can overcome limitations inherent in traditional control and perception 
approaches. The integrated system dramatically improves the TMUBot’s ability to autonomously perceive, 
reason, and act in previously challenging scenarios, representing a significant step towards truly autonomous 
and intelligent quadruped robotics. While the current framework demonstrates robust performance, future work 
will focus on extending its capabilities. This includes incorporating multi-modal sensor fusion for even richer 
environmental understanding (including further exploration of LiDAR integration in real-world deployments), 
exploring more advanced reinforcement learning algorithms for faster policy adaptation and generalization 
to novel terrains, and validating the system’s performance in even more extreme and unpredictable outdoor 
environments. Ultimately, this research paves the way for quadruped robots to operate with greater independence 
and versatility in real-world applications such as search and rescue, inspection, and exploration.

Data availability
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