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Optical neural networks (ONNs) offer significant advantages in speed and energy efficiency by 
exploiting the parallelism of light. A key challenge in their design is the implementation of nonlinear 
activation functions using physically realizable operations. In this work, we propose the use of optical 
intensity measurements—as projections from complex or quaternion-valued fields to real-valued 
magnitudes together with amplitude or phase encoding to next layer—as effective alternatives 
to traditional nonlinear activation functions in neural networks. Through systematic evaluations 
across image classification, image reconstruction, and physical parameter inference, we validate the 
effectiveness and robustness of projection layers as nonlinear activation mechanisms. The approach 
extends naturally to quaternion-valued representations, capturing multi-dimensional features 
such as amplitude, phase, and polarization. We further assess performance under noisy conditions 
and demonstrate its utility in a β-VAE framework for learning interpretable physical parameters. 
This projection-based approach not only leverages the advantages of optical computing but also 
establishes a scalable and hardware-efficient foundation for deep ONNs with broad applicability in 
image recognition, signal processing, and scientific inference.

Recent advancements in optical neural networks (ONNs) have opened new avenues for harnessing the inherent 
parallelism and high-speed processing capabilities of light-based computation, particularly in tasks such as 
image classification and computational imaging using the deep diffractive neural networks (D2NN)1–7. Unlike 
traditional neural networks, which rely on electronic circuits and are constrained by power consumption and 
processing bottlenecks, ONNs encode inputs as optical fields and perform computation using components such 
as spatial light modulators (SLMs), digital micromirror devices (DMDs) and linear diffraction layers8–14. The 
natural parallelism of light propagation and diffraction, combined with multiplexing techniques that exploit 
physical degrees of freedom—including wavelength, polarization, spatial mode, and time—enables ONNs to 
achieve efficient, low-latency operations with significant energy savings15–17.

Furthermore, the incorporation of nonlinear activation functions—a fundamental component of deep 
learning—has been reinterpreted in ONNs through various physical phenomena, including the Kerr effect, 
free-carrier dispersion, quantum interference, and multiple scattering18–26. These mechanisms offer natural 
pathways for introducing nonlinearity into optical systems, enabling the complex transformations required for 
effective data representation and decision-making. In addition, the measurement of light intensity, following 
the propagation of complex-valued optical fields, can serve as an implicit nonlinear activation function11,27,28. 
This process acts as a projection layer, mapping complex amplitudes to their intensity, thereby extracting 
modulus-based features from the underlying complex representation. Such a projection-based approach not 
only circumvents many of the practical challenges associated with realizing optical nonlinearity10,22,26, but 
also significantly simplifies the physical implementation of ONNs. While prior works have acknowledged 
this mechanism, a systematic investigation of its potential as a standalone method for feature extraction and 
nonlinear transformation remains lacking.

To address this gap, we propose a systematic approach that employs complex projection, together with 
an encoding scheme, as an effective and physically realizable nonlinear activation function within neural 
networks. By projecting complex-valued representations—corresponding to electric fields—onto their 
intensity measurements, the network achieves dimensionality reduction while preserving the capacity for 
complex feature transformations. We further extend this concept to higher-dimensional representations by 
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introducing quaternion-valued projections, which generalize the approach from two to four components prior 
to projection. The resulting projection layers are evaluated across a range of feature extraction tasks, including 
image classification, image reconstruction, and automatic feature learning. Comparative benchmarks against 
conventional neural networks demonstrate that our approach achieves comparable performance while offering 
significant implementation advantages. In addition, we systematically assess the robustness of the method under 
a variety of noisy conditions and device-level imperfections, confirming its resilience and adaptability. These 
qualities make projection-based activation particularly well suited for practical deployment in deep ONNs, with 
promising applications in areas such as image sensing and real-time optical information processing29–31.

Results and discussions
Complex-valued neural network (CVNN) with projection layers
We begin by outlining the operational framework of the proposed ONNs incorporating projection layers. For 
clarity and comparison, we first introduce a conventional real-valued neural network (RVNN) with a single hidden 
layer, as illustrated in Fig. 1(a). This RVNN comprises fully connected layers (FCLs), with predefined activation 
functions applied after the hidden and output layers to introduce nonlinearity. The input is a real-valued vector 
XM = {x1, x2, . . . , xM }, which is transformed by the hidden layer and the first activation function f  (depicted 
as the gray box in Fig. 1(a)) into a real-valued output vector H2N = {h1, h2, . . . , h2N }, where M  and 2N  denote 
the lengths of the input and hidden layer output vectors, respectively. This transformation can be expressed as 
H2N = f(W2N×M XM + B2N ), where W2N×M  and B2N  are the trainable real-valued weight matrix and bias 
vector (indicated by red lines in Fig. 1(a)). We refer to this mapping from XM → H2N  as an iteration block (IB), 
which can be cascaded to construct deeper RVNNs. For example, as shown in Fig. 1(a), the output H2N  can 
serve as the input to a second IB, yielding a final real-valued output vector YK = {y1, y2, . . . , yK}, resulting in 
a two-layer RVNN.

Fig. 1.  Schematic of the complex-valued neural network (CVNN) with projection layers and the experimental 
implementation setup. (a) Schematic of a traditional RVNN utilizing predefined nonlinear activations, 
consisting of two iteration blocks (IBs). (b) Schematic of the CVNN with projection layers, also comprising 
two IBs. The input can be encoded as either amplitude or phase profile of the electric field. By applying the 
complex weight matrix, the complex-valued output is generated and subsequently projected onto the intensity. 
This projection functions, together with encoding, as a nonlinear activation mechanism analogous to that in 
traditional RVNNs. (c) Experimental setup for implementing the optical CVNN with projection layers. The 
input is generated using a digital micromirror device (DMD) or spatial light modulator (SLM) for amplitude 
or phase encoding, respectively. The second SLM implements the complex weight matrix. The intensity of the 
electric field is measured by a camera, which can be used as the input for the subsequent IB through cascading.
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We now present an equivalent implementation of the RVNN using a complex-valued neural network 
(CVNN) architecture composed of two iteration blocks, as illustrated in Fig. 1(b). In this CVNN framework, 
the initial input XM  remains the same as in the RVNN. However, the network operates in the optical domain 
by representing data as complex-valued electric fields. To facilitate this, the input is first encoded into a complex 
field profile via a designated encoding function E , such as amplitude or phase encoding (with later description), 
yielding UM = {u1, u2, . . . , uM } = E (XM ). Subsequently, a spatial modulation is applied to the encoded 
field profile to produce the transformed complex field HN = {h1, h2, . . . , hN }, via a complex-valued matrix–
vector multiplication: HN = WN×M UM , where WN×M  is a trainable complex-valued weight matrix. In 
our numerical implementation, the CVNN consists of fully connected layers without bias terms. To enable 
compatibility with real-valued computation frameworks and optical implementations, all complex variables 
are decomposed into their real and imaginary components, as shown in Fig. 1(b). The complex matrix–vector 
multiplication can then be expressed in real-valued block matrix form as:

	

(
ReHN

ImHN

)
=

(
ReWN×M −ImWN×M

ImWN×M ReWN×M

) (
ReUM

ImUM

)
.� (1)

This fully connected layer (FCL) has input and output dimensions of 2M  and 2N , respectively, but requires 
only 2NM  trainable parameters (indicated by the red lines in Fig. 1(b)). This parameter efficiency is achieved 
by enforcing the symmetry structure described in Eq.  (1), which arises naturally from the real-imaginary 
decomposition of the complex weight matrix.

After a layer of complex matrix–vector multiplication, we assume the complex-valued output HN  is captured 
by an optical detector such as a camera, which performs a projection from the complex electric field to a real-
valued intensity profile |HN |2. We refer to this intensity measurement stage as a projection layer. Analogous to 
the RVNN structure in Fig. 1(a), the complete sequence in Fig. 1(b)—comprising input encoding (XM → UM ), 
field transformation (UM → HN ), and projection (HN → |HN |2)—constitutes a single iteration block (IB). 
The resulting intensity vector |HN |2 can then serve as the input to the next IB, yielding a final output vector 
|YK |2 = {|y1|2, |y2|2, . . . , |yK |2}. Notably, both the input encoding and the projection processes introduce 
effective nonlinearity into the network, as indicated by the gray box in Fig. 1(b), playing a role analogous to the 
activation function in Fig. 1(a).

To evaluate the effectiveness of the nonlinearity introduced by our optical CVNN framework, we benchmark 
its performance against that of a conventional RVNN. Based on the input and output dimensions of each iteration 
block, the CVNN architecture shown in Fig. 1(b) can be characterized by the structure M − N − K . The total 
number of trainable parameters in this network corresponds to the two complex-valued weight matrices WN×M  
and WK×N , each contributing real and imaginary components. As a result, the total number of trainable real-
valued parameters in the CVNN is  2(N × M) + 2(K × N). For a fair comparison, the RVNN in Fig. 1(a) is 
configured to have the same input and output dimensions as the CVNN. To match the parameter count, the width 
of the first hidden layer in the RVNN is set to 2N , leading to a total of (2N × M + 2N) + (K × 2N + K) 
trainable parameters, including both weights and biases for the two fully connected layers. This setup ensures 
that the comparison reflects architectural differences—particularly the role of the projection as effective 
nonlinearity—rather than discrepancies in model capacity (number of weights and biases to train).

Optical implementation of CVNN
Figure  1(c) shows a schematic representation of an optical implementation of CVNN. This setup employs a 
DMD or a SLM to encode the input vector XM  as either an amplitude or phase profile, denoted as UM . In 
the proposed scheme, the encoded field profile UM  is spatially distributed as an irregular grating along the 
horizontal axis. This input field UM , encoded by the DMD or SLM, is then modulated by a second SLM capable 
of both amplitude and phase modulation. This SLM implements the complex weight matrix WN×M  within a 4f. 
optical system. Specifically, each row of WN×M  is spatially laid out along the horizontal direction of the SLM, 
enabling elementwise multiplication in accordance with Eq. (1). Each input component ul is modulated into 
wnlul, where l and n index the input and output neurons, respectively. To perform the summation following 
this elementwise multiplication, a cylindrical lens is used. At its focal plane, the lens performs a one-dimensional 
Fourier transform along the horizontal axis, such that the central vertical line of the output field is proportional 
to the sum hn =

∑M

l=1 wnlul, as demonstrated in previous works27,28. This combination of spatial modulation 
and Fourier-domain summation effectively realizes the linear electric field transformation UM → HN . 
Following this transformation, a camera captures the complex field HN  and projects it into an intensity profile 
|HN |2, which serves as the real-valued output of the projection layer. The complete sequence of encoding, field 
transformation, and projection thus constitutes a single IB. For amplitude encoding, |H_N| is used as the real 
part of complex value input of next layer. For phase encoding, |HN | is used to set linearly the argument of the 
complex value input (with unit magnitude) of next layer. We note that the effective nonlinearity comes from 
both the projection and the encoding scheme (see Supplementary Information for more details). Subsequent IBs 
can be implemented using the same optical hardware, with scalability achieved through temporal multiplexing, 
allowing deeper ONNs to be constructed within a limited set of optical components11,12. This experimental setup 
leverages intensity measurement with encoding as a nonlinear activation mechanism, thereby eliminating the 
need for more complex or inefficient methods for achieving optical nonlinearity10,22,26. We note that instead of 
using a DMD with an SLM for amplitude and phase control of the input field, it is also possible to use two SLMs 
together32 or a single SLM with a macro-pixel approach by grouping pixels33. In all these cases, however, there is 
a compromise, either in the form of reduced resolution or in the requirement for precise alignment.
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CVNN for image classification and reconstruction
To validate the efficacy of the proposed complex-valued neural network (CVNN) integrated with projection 
layers, we evaluated its performance across three hierarchical feature extraction tasks: image classification, image 
reconstruction, and specific image feature extraction, as illustrated in Fig. 2. In all cases, grayscale images were 
encoded as amplitude profiles of light, serving as input to the network. For the image classification task, the 
network is designed to extract class-representative features from input images, with output categories encoded 
as discrete one-hot vectors. As shown in Fig. 2(a), the CVNN was trained independently on two benchmark 
datasets—MNIST and Fashion-MNIST—to assess its versatility and robustness across different data distributions. 
Each input image {xi} was resized to 32 × 32, flattened, and mapped to a class label represented by a one-hot 

Fig. 2.  Implementations of CVNN with complex projection layers on feature extraction tasks across three 
different levels. (a) Schematic of the network for image classification. (b)-(c) Testing results for classification 
on (b) MNIST dataset and (c) Fashion MNIST dataset, with the averaged accuracy of 97.49% and 89.11%, 
respectively. (d) Schematic of the network for image reconstruction. (e)-(f) Testing results for image 
reconstruction on (e) MNIST dataset and (f) Fashion MNIST dataset. (g) Schematic of the network for the 
specific image feature extraction. The input image is a white circle in a square box. The radius r and position 
(x, y) of the circle can be varied. By incorporating a digital linear layer (denoted as “L”) into the CVNN, the 
trained network is capable of extracting the three features embedded in the input image. (h) Testing results for 
image feature extraction.
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vector {cj}. The network architecture consisted of four IBs with a layer structure of 1024–64–64–64–10. Further 
details of the network design and training procedures are provided in Table S1. The performance of the trained 
CVNN was assessed using confusion matrices computed on the test sets of both datasets, with results shown in 
Figs. 2(b) and (c). The network achieved average classification accuracies of 97.49% on MNIST and 89.11% on 
Fashion-MNIST, demonstrating the network’s capability to discern and classify diverse datasets with notable 
precision.

In the image reconstruction task, the network is trained to map each input image {xi} to a set of ten latent 
variables {zj}, which encode continuous-valued features for reconstructing the input, as illustrated in Fig. 2(d). 
In contrast to the classification task, where the outputs {cj} represent discrete category labels (Fig. 2(a)), the 
latent variables {zj} capture more subtle and continuous characteristics such as writing style, stroke thickness, 
and image clarity. Using the same training datasets—MNIST and Fashion-MNIST—the CVNN is constructed 
with four iteration blocks and a symmetric layer structure of 1024–64–10–64–1024. The network is trained under 
the same optimization settings as in the classification task, but now using an unsupervised learning approach. 
Figures  2(e) and (f) display representative testing examples and their reconstructions from the MNIST and 
Fashion-MNIST datasets, respectively. To quantify the reconstruction quality, we compute the average Pearson 
correlation coefficient (PCC) between the original images {xi} and the reconstructed outputs {xr

i }, obtaining 
scores of 0.905 and 0.915 for MNIST and Fashion-MNIST, respectively. These results demonstrate the capability 
of the proposed CVNN to effectively encode and reconstruct input images with high fidelity.

CVNN for supervised feature extraction
To further demonstrate the versatility of the proposed approach, we apply it to a specific image feature extraction 
task by introducing an additional digital output layer. As illustrated in Fig. 2(g), the network is trained to extract 
three continuous parameters: the coordinates (x, y) and the radius r of a circle inscribed within a square of 10 cm 
width. Similar to the reconstruction task in Fig. 2(d), the extracted features are continuous; however, this task is 
performed using supervised learning, since the ground truth feature values are known. Each input image is of 
dimension 1024 (flattened from 32 by 32) and represents a square containing a circle with randomly generated 
parameters. Specifically, the coordinates x and y are sampled from a uniform distribution U[− 5,5] cm, and the 
radius r is sampled from U[1.5,5] cm. Then, a total of 10,000 images of 32-by-32 pixels are generated with a white 
circular disk of a specific radius and location within a black background, with 81% used for training, 9% for 
validation, and the remaining 10% of these images for testing. This corresponds to an average nearest neighbor 
distance, interpreted as a resolution, for the training data around 0.194  cm, according to the Poisson point 
process. The network architecture consists of four iteration blocks followed by a digital output layer (denoted as 
“L” in Fig. 2(g)), yielding a layer structure of 1024–64–64–64–64–3. Additional design and training details are 
provided in Table S1. As shown in Fig. 2(h), the predicted parameters {x′, y′, r′} align closely with the ground 
truth, achieving an average PCC of 0.999. This result highlights the model’s ability to perform high-precision 
regression tasks using the proposed CVNN framework. Notably, to show the trained network has the ability of 
generalizing, we construct an out-of-distribution test dataset with x=y=0 cm and r sampled from U[5, 10] cm. 
The model achieves a PCC of 0.994 between predicted and ground-truth radius, demonstrating generalization.

To assess the noise robustness of the proposed optical CVNN in realistic settings, we introduce controlled 
imperfections into the trained networks from Fig. 2, simulating various noisy environments. In particular, we 
apply additive noise to the complex-valued weight matrices by perturbing each element wnl with a complex-
valued bias εnl, such that wnl → wnl + εnl, where the real and imaginary components of εnl are independently 
drawn from a normal distribution N(0, σ2

noise). In practical optical implementations, such additive noise may 
arise from sources such as ambient light interference or inaccuracies in device calibration27. Moreover, we evaluate 
the effects of network depth and the slope of activation function (projection layer) on noise robustness34,35. 
We conduct tests by injecting additive noise selectively into individual layers and uniformly across all layers 
for varying values of σnoise, with the resulting performance summarized in Figures S2–S5. The results show 
that while performance naturally degrades with increasing noise levels, deeper networks tend to exhibit greater 
robustness. Moreover, the noise tolerance is influenced by the slope of the activation function, highlighting the 
interplay between projection characteristics and network stability. Further details and expanded discussion are 
provided in the Supplementary Information.

Possible extension to quaternion-valued neural network for projection layer
We highlight that the proposed projection layer is not restricted to the two-dimensional complex domain, 
consisting of real and imaginary components as shown in Fig. 1(b). It can be naturally extended to the quaternion 
domain, a four-dimensional hypercomplex space. In this case, quaternion is a hyper complex number with 
four real numbers as the components of a quaternion, instead of two real numbers in the case of conventional 
complex numbers. In this case, being written in analogous to the complex-valued formulation in Eq.  (1), a 
quaternion matrix–vector multiplication can be expressed using a block matrix representation as follows:
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Here, the superscript r denotes the real part of the quaternion, while i, j, and k correspond to its three 
imaginary components. The projection layer performs an effective nonlinear operation by computing the 
squared amplitudes of these components and summing them. Specifically, the quaternion projection is defined 
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as 
{

Y r
N , Y i

N , Y j
N , Y k

N

}
→ |Y r

N |2 + |Y i
N |2 + |Y j

N |2 + |Y k
N |2. This summation yields a real-valued intensity 

profile, generalizing the projection mechanism from complex to quaternion-valued domains (see Fig. S1 
for more details). Notably, quaternion-based approaches in optical signal processing allow the simultaneous 
encoding of amplitude, phase, and polarization of light within a unified quaternion-valued representation36, 
enabling more accurate modeling of polarization characteristics in optical signals. In contrast to conventional 
real-valued convolutional neural networks, which often compress multi-channel inputs and overlook inter-
channel dependencies, quaternion convolutional neural networks preserve these relationships by treating 
inputs as structured quaternion matrices37. This formulation not only enhances the network’s expressiveness in 
capturing polarization dynamics but also offers computational efficiencies by reducing parameter redundancy 
and improving training convergence38.

Benchmarking CVNNs with projection layers against conventional RVNNs
Having validated the nonlinearity and effectiveness of the projection layer, we now compare the performance of 
the proposed CVNN with that of a traditional RVNN across the three previously described tasks. For each task, 
we employ the same training datasets as those used in Fig. 2, but adapt the network architectures with varying 
numbers of iteration blocks and structural configurations appropriate for complex and quaternion-valued 
networks. To ensure a fair comparison, both the CVNN and RVNN are designed to have a comparable number 
of trainable parameters, as detailed in Table S2. For clarity, we note that all RVNN and CVNN results reported 
in this study are obtained from numerical simulations. In the CVNN models, inputs are numerically encoded as 
either amplitude or phase profiles and processed using either complex or quaternion projections. For each task, 
both RVNN and CVNN are trained with identical datasets and hyperparameters and evaluated numerically on 
the same testing data. The corresponding testing results are summarized in Fig. 3. Across all tasks, the CVNN 
with projection layers achieves classification accuracies and PCCs comparable with, and in some cases superior 
to, those of the RVNN using an exponential linear unit (ELU) as its nonlinear activation function. Notably, in 
the image classification task, the CVNN with both complex and quaternion projections outperforms the RVNN 
in testing accuracy.

CVNN for unsupervised feature extraction using variational autoencoder
To further demonstrate the effectiveness and scalability of the projection layer, we extend its application to a 
more advanced level of feature extraction by integrating it into an unsupervised learning framework based on 
the β-Variational Autoencoder (β-VAE). To maintain generality and highlight the broader applicability of the 
method, we apply the β-VAE architecture to a scalar-wave propagation model in a lossy medium, aiming to infer 
system parameters directly from the observed wave responses. As a representative example, we adopt a spring–
mass lattice model, which is sufficiently simple to allow clear interpretation and has been extensively studied in 
a previous work using traditional RVNNs39. This model serves as a benchmark to evaluate the capability of the 

Fig. 3.  Performance comparison between the CVNN and traditional RVNN using different numbers of 
IBs across different applications. (a)-(b) Testing accuracies of different approaches in classification tasks on 
(a) MNIST dataset and (b) Fashion MNIST dataset. (c)-(d) Testing PCCs of different approaches in image 
reconstruction tasks on (c) MNIST dataset and (d) Fashion MNIST dataset. (e) Testing PCCs for image feature 
extraction tasks using different approaches.
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CVNN with projection layers in capturing latent physical parameters in a completely unsupervised manner. 
The incorporation of the projection mechanism within the β-VAE demonstrates its suitability for parameter 
inference tasks in complex physical systems, further supporting its potential in broader applications beyond 
standard image-based datasets.

As shown in Fig. 4(b), the model consists of six springs with spring constants ki and five oscillators with 
masses mi, arranged in a one-dimensional chain and connected to their nearest neighbors. Boundary springs 
are attached to rigid walls. A unit impulse excitation F1 is applied to the first oscillator, and the resulting 
displacements X = {xi(t)} are obtained by numerically solving the governing equation of motion:

	 M∂2
t X + b∂tX + KX = F ,� (3)

where b = 0.5 kg/s is the damping factor, identical for all oscillators. Here, M , K , and F denote the mass matrix, 
stiffness (spring constant) matrix, and external force vector, respectively, with their full expressions given in 
Eq. S1 of the Supplementary Information. In this task, the mass of each oscillator is fixed at 1 kg, while the spring 
constants {ki} are treated as the system parameters to be inferred or imaged from the observed displacement 
responses X . To generate the dataset, each spring constant is sampled independently from a uniform distribution 
U[0.5,1.0] kg/s2, with mass fixed at 1 kg and displacement data for the first 10 s from an impulse excitation at 
the first node are generated from Eq. (3), resulting in a total of 50,000 simulated displacement profiles. Of these, 
81% are used for training, 9% for validation, and the remaining 10% for testing. The displacements {xi(t)} are 
multivariate time-series inputs, with each of the nodes providing a 101-dimensional sequence (time step = 0.1 s 
over 10 s) and a total length of 505 data points for the time sequence of each sample.

As shown in Fig. 4(a), the β-VAE architecture consists of an encoder and a decoder, each comprising four 
IBs followed by a digital output layer. The encoder is designed to extract a low-dimensional, compressed 
representation of the input displacement data {xi(t)}, storing the features in a latent space represented by 
variables {zj}, with each latent variable zj  assumed to satisfy distribution generated by µj + ϵσj  where ϵ is the 
standard normal distribution. The decoder then reconstructs the displacement profile {xr

i (t)} from the sampled 
latent variables, aiming to approximate the original input data as closely as possible while the loss function of β
-VAE is given by:

	
||x − xr||22 + β

∑
n

DKL[N (µn, σ2
n)||N (0,12)].� (4)

The first term is the mean squared error (MSE) between the input and reconstructed displacements, and the 
second term is the Kullback–Leibler (KL) divergence, which enforces each latent variable zj  to follow preferably 
a standard normal distribution N (0,12) in addition to minimizing reconstruction error. Additional details 
about the network structure and training parameters are provided in Table S1. Notably, the β-VAE framework is 

Fig. 4.  The implementation of CVNN with projection layers on β-VAE. (a) The architecture of β-VAE 
using CVNN with projection layers and digital layers. (b) The schematic of the spring-mass system. (c) The 
performance of the extracted latent variables with 6 meaningful variables. (d) Extracted spring constants km

i  
versus true spring constants ki for the testing data. The corresponding PCCs are labeled in red.
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capable of learning a compact and interpretable representation of the displacement data. It also provides a means 
to evaluate the uniqueness and sufficiency of the inverse mapping from displacement responses to physical 
parameters—in this case, the spring constants. This makes it a valuable tool for assessing the feasibility of inverse 
imaging in complex physical systems.

Figure  4(c) presents the statistical parameters of the latent variables obtained after training the β-VAE. 
The latent dimension was manually set to seven. Among the latent variables, it is observed that z5 carries no 
meaningful information, as evidenced by its negligible variance in µ5 and an average σ5 close to one across 
the entire dataset, i.e. being random without definite value inferred from the displacement data40. In contrast, 
the remaining six latent variables encode essential information, corresponding precisely to the six degrees of 
freedom to be imaged in the system—i.e., the six independently varied spring constants in the spring–mass 
model. Each of these informative latent variables can be interpreted as a linear combination of the six spring 
constants, consistent with findings reported in previous studies37. When the trained network is applied to test 
data, the resulting latent variables are linearly transformed into predicted spring constants {km

i }, as shown in 
Fig. 4(d). The PCCs between the predicted values {km

i } and the ground truth {ki} all exceed 0.980, confirming 
the model’s ability to accurately infer the physical parameters from input displacement data. Compared with a 
β-VAE implemented using RVNN and trained on the same datasets, CVNN achieves comparable average PCCs 
across the six spring constants (CVNN:0.991, RVNN: 0.995), confirming that it provides faithful performance 
for β-VAE implementation. To examine the effect of lower data resolution, we train the CVNN on only 18% 
of the samples (9,000). The mean PCC across the six spring constants decreases slightly from 0.991 to 0.974, 
while all values remain above 0.905, indicating that the model captures certain interpolation and generalization 
capability out of the training data set.

Notably, both the encoder and decoder in Fig. 4(a) consist of four IBs followed by a digital output layer (“L”). 
The key difference is that IBs contain no bias weights and include a projection layer, whereas the digital layer is 
required to produce the final outputs µj  and logσj  in the β-VAE. While the optical implementation substantially 
reduces the computational cost of the IBs, the digital layer remains necessary for stochastic operations such as 
random sampling in the latent space in this application. To evaluate how closely the digital layer can be aligned 
with IB functionality, we retrained the network with bias weights disabled in the digital layer “L”. The performance 
remained nearly unchanged, with only a slight drop in average PCC (from 0.991 to 0.989 across the six spring 
constants). This result suggests that CVNN can be pushed further toward a fully optical implementation without 
appreciable performance degradation.

Conclusions
In conclusion, we have systematically investigated the use of projection layers, together with amplitude or phase 
encoding, as alternatives to conventional nonlinear activation functions for constructing ONNs, extending the 
concept to include quaternion projections. Through numerical experiments and comparative evaluations, we have 
validated the effectiveness and robustness of this approach across a range of feature extraction tasks, including 
image classification, image reconstruction, and physical parameter inference. The proposed method achieves 
performance comparable to traditional networks with standard activation functions, while offering advantages 
in scalability and physical realizability. Unlike previous intensity-based ONNs, which employed photodetection 
only at the final output layer, our framework promotes the projection operation itself to a differentiable, layer-
wise activation compatible with back-propagation and scalable optical implementation. In addition to leveraging 
the benefits of optical computing, this work highlights the potential of exploiting the multi-component nature 
of quaternions and projection layers as a foundation for non-linear operations in deep learning models. The 
integration of optical signal processing with deep neural networks presents a promising framework for next-
generation computing systems, enabling improvements in energy efficiency, speed, and representational capacity. 
This approach opens the door to more efficient and powerful optical-based learning systems with wide-ranging 
applications in image recognition, signal processing, and beyond19,41,42, and provides a systematic benchmark 
for projection-based nonlinearities in every intermediate layer. By exploring both amplitude and phase encoding 
pathways—necessary for cascading multiple layers—we demonstrate that projection-based nonlinearities can be 
effectively used as activations without significantly degrading network performance. This establishes a pathway 
toward deeper optical network architectures and highlights future opportunities for optoelectronic adaptation 
that leverage the inherent parallelism of photonic systems. Furthermore, compared with material-based optical 
nonlinearities (e.g., the Kerr effect18,19,21), which offer fast response but require resonant enhancement, thermal 
stabilization, and high optical intensity, our projection-based approach achieves nonlinearity through linear 
optics and detection. This preserves the low-power advantage of optical computing and complements diffractive 
systems such as D2NNs in extending network complexity.

It is worth mentioning that while optical implementation offers huge parallelism for data processing, our 
approach—although repeatedly using the same setup offers scalability to multiple layers—also introduces latency 
during the conversion between analog and digital signals. Our approach is currently limited by modulator 
refresh rates—about 1 kHz for advanced SLMs and up to 20 kHz for high-speed DMDs27—corresponding to 
sub-millisecond latency per layer. Digital data-acquisition and processing electronics (such as FPGAs) already 
operate at MHz sampling rates, and high-speed cameras reach around 100 kHz, so the bottleneck mainly lies on 
the modulator side. This latency is expected to decrease as optoelectronic interfaces (e.g., high-speed cameras, 
modulators, and ADC/DACs) continue to improve, narrowing the gap observed in other temporally multiplexed 
optical-computing frameworks.
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