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Manual preoperative image registration for central serous chorioretinopathy (CSCR) is labor-
intensive and irreproducible. While rigid registration robustly aligns images globally, it misses fine 
details. Non-rigid registration, though excellent for local refinement, performs poorly with large 
discrepancies. Therefore, this study presents a coarse-to-fine registration method for multimodal 
retinal images to address the aforementioned issues. First, a three-step coarse registration strategy 
is designed that integrates keypoint pair detection and matching via a YOLOv8-pose network, further 
optimizes keypoints through a post-processing technique, and achieves initial alignment via affine 
transformation. On this basis, a dual-component fine registration strategy is then implemented, 
where disentanglement learning eliminates modality-specific variations while preserving essential 
vessel structures required for registration, and deformable network generates optimized deformation 
field to refine the coarse alignment locally, ultimately enabling high-precision image registration. 
Comprehensive qualitative and quantitative experiments were conducted on the CSCR clinical 
dataset, which includes both color fundus (CF) and fundus fluorescence angiography (FFA) images, to 
evaluate the proposed method. With Dice and Dices scores of 0.6759 and 0.4977, the method performs 
comparably to existing approaches, suggesting its potential application value for CSCR preoperative 
planning.
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Ocular diseases represent one of the significant threats to human health. Ophthalmologists employ common 
treatment approaches including pharmacological interventions and surgical procedures, such as using 
medications to treat uveitis1,2 and applying laser therapy for CSCR. As widely recognized, retinal laser surgery is an 
effective intervention for CSCR, promoting the absorption of subretinal fluid through precise photocoagulation 
of leakage points. The technique, with its minimally invasive nature, ease of operation, and short recovery period, 
has become a routine clinical choice for treating CSCR. Retinal image registration in preoperative planning is 
crucial for ensuring the precision of laser surgery. Currently, in clinical ophthalmology, doctors mainly rely on 
manual alignment of multimodal retinal images, which is labor-intensive and has poor reproducibility, and the 
results are affected by subjective factors, making it difficult to control registration accuracy. Therefore, automatic 
registration of multimodal retinal images has become an important direction for exploration.

Rigid registration is a fundamental method in medical image registration and mainly includes intensity-based 
registration and feature-based registration. Legg3 employed mutual information as a similarity metric to achieve 
registration between retinal color photographs and scanning laser ophthalmoscope images. Reel4 investigated 
the application of the Expectation Maximization for Principal Component Analysis based Mutual Information 
algorithm in retinal image registration, which combines spatial information with mutual information to 
effectively boost registration performance. Additionally, Lange5 proposed a Normalized Gradient Fields distance 
measure to handle the registration of two-dimensional and three-dimensional CT images. Yang6 developed 
the GDB-ICP algorithm capable of processing image pairs exhibiting low overlap, significant scale variations, 
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and illumination discrepancies, successfully achieving cross-domain registration for both natural and medical 
images. Ghassabi7 introduced the UR-SIFT-PIIFD algorithm to address the standard SIFT’s limitation in feature 
point extraction for multimodal retinal images, significantly improving feature point distribution uniformity. 
Wang8 proposed a scheme called SURF-PIIFD-RPM that combines a SURF detector for PIIFD descriptor 
extraction with Robust Point Matching for outlier rejection, demonstrating particularly strong performance in 
low-overlap regions. Chen9 introduced a new registration method that captures the key geometric characteristics 
of vessel bifurcations and embeds this information into feature vectors to assess similarity between images and 
achieve registration. Wang10 designed a deep learning-based three-stage framework for multimodal retinal 
image registration, employing segmentation, feature detection and description, and outlier rejection networks 
to align color photographs with infrared images. Subsequent work11 enhanced this framework through phase 
map integration in the segmentation network, enabling registration of color photographs with both angiography 
and infrared images. The aforementioned approaches exhibit remarkable efficacy in rigid image registration, 
constituting pivotal research directions in medical image analysis.

In recent years, the rapid development of deep learning has demonstrated outstanding performance in 
industrial scenarios, such as cyber threat detection in maritime contexts12, as well as remarkable capabilities 
in various medical imaging tasks including disease diagnosis13–16, lesion segmentation17–21, and medical 
image super-resolution22. It is also increasingly showcasing its advantages in non-rigid registration. Non-rigid 
registration serves as another critical paradigm in medical image registration, addressing complex deformations 
(e.g., stretching, compression, and twisting). Lee23 utilized a CNN to detect vessel bifurcation points in retinal 
images, enabling geometric transformation-based registration between CF and OCT modalities. Zhang24 
raised a neural network-based retinal image registration pipeline that jointly performs vessel segmentation and 
deformable registration. This approach employs style loss to transform retinal images of different modalities 
into a consistent representation, achieving non-rigid registration through a deformable registration network. 
The research team25 also innovatively put forward a two-step registration approach, utilizing rigid registration 
for coarse alignment of multimodal images, followed by refinement of the registration results through a 
deformable network. Inspired by the VoxelMorph network, Martínez26 proposed a weakly supervised deep-
learning framework for deformable registration of FFA and OCTA images. Santarossa27 proposed MedRegNet, 
a lightweight descriptor module compatible with feature-based pipelines, which can improve the robustness and 
registration performance of classic detectors. The above non-rigid registration methods demonstrate respective 
advantages and collectively serve as a key driver for advancing the development of image registration.

However, it should be noted that rigid registration performs exceptionally well with multi-modal retinal 
images under large-discrepancy conditions, yet shows limitations in local alignment. In contrast, non-rigid 
registration excels at fine local registration but proves less effective with significant discrepancies. Thus, we 
cannot help but wonder whether these two image registration schemes could be integrated to capitalize on their 
respective strengths while mitigating their weaknesses, thereby better enabling automated registration for CSCR 
multimodal retinal images. This motivation has led us to propose a coarse-to-fine multimodal retinal image 
registration method, comprising a three-step coarse registration strategy and a dual-component fine registration 
strategy. The main contributions are as follows:

•	 First, this study establishes two datasets specifically for CSCR multimodal retinal image registration, provid-
ing a foundation for subsequent research.

•	 Second, we propose a three-step coarse registration strategy that initially integrates keypoint detection and 
matching using the YOLOv8-pose network, subsequently optimizes keypoints through a post-processing 
technique, and ultimately achieves initial multimodal retinal alignment via affine transformation.

•	 Third, a dual-component fine registration strategy is developed, in which modality discrepancies are first 
suppressed while essential vessel structures are preserved through disentanglement learning, and deforma-
tion fields are subsequently generated through a deformable network to further refine the coarsely-registered 
images, yielding the optimally registered output.

•	 Finally, qualitative and quantitative experiments are conducted on the CSCR dataset to evaluate the efficacy 
of the proposed multimodal retinal image registration method.

The structure of the remaining part is as follows. Section "Related works" describes the related works. Section 
"Materials and proposed method" describes the materials and explains the implementation details of our 
proposed method. Section "Experiments and discussions" shows the experiments. Section "Limitations and 
future work" shows the limitations and future work. Section "Conclusions" concludes the research work.

Related works
Object detection
Object detection is a key research area in computer vision, entailing both object localization and classification28. 
The task involves detecting and classifying a varying number of objects in an image, such as the recognition 
of lesion29 and abnormality30. Meanwhile, it also demonstrates excellent applications in areas such as high-
quality detection of spike firings from hundreds of neurons31 and cyber attack detection in shipboard microgrids 
system32,33. It is worth mentioning that YOLO, a representative single-stage deep learning detection network, has 
been widely used in various practical applications. Jian34 proposed an improved YOLOv7-tiny algorithm, which 
is suitable for detecting occluded pedestrians in autonomous driving scenarios. Qian35 enhanced YOLOv5s to 
achieve object detection for lightweight ships. He36 applied the YOLO model to train and detect ground object 
targets in high-resolution remote sensing images. Hou37 developed a rapid detection method for counting 
wheat seedling leaves in complex field scenarios based on an improved YOLOv8. Mugahed38 applied YOLO to 
accurately detect the masses from the entire mammograms. These established applications substantiate YOLO’s 
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adaptability across multiple object detection domains. Nevertheless, its efficacy in detecting keypoint pairs 
within retinal images has yet to be investigated, providing the primary impetus for our current research.

Disentanglement learning
Disentanglement learning has demonstrated superior performance in image-to-image translation. Representative 
frameworks like MUNIT39 and DRIT40 employ disentanglement learning by factorizing images into two latent 
spaces: a domain-invariant content space and a domain-specific style space. This paradigm has not only advanced 
translation performance but has also been successfully applied in medical image processing. To address class 
imbalance in fatty liver disease classification, Huang41 proposed the ICFDNet network, significantly improving 
both overall accuracy and inter-class performance balance. Jin42 presented a CCNet, a decoupling network 
that decomposes low-light image enhancement into brightness enhancement and colorization subtasks for 
customized results. Qin43 proposed the UMDIR for unsupervised deformable registration of multimodal brain 
images via disentangled representations. Liao44 developed the ADN network, effectively addressing the issue of 
metal artifacts in medical imaging caused by implanted metal objects in patients. These studies highlight the 
effectiveness of disentanglement learning in medical image tasks.

Deformable registration
Deformable registration is an image processing technique primarily used to align two or more images. It 
establishes non-rigid transformation relationships between images, enabling them to match each other in terms 
of shape, size, and position. This technique is widely applied in medical image processing, remote sensing image 
analysis, and other fields, where it effectively handles complex deformations in images to achieve precise image 
fusion, comparison, or analysis. He45 proposed a 3D deformable registration algorithm for dose tracking and 
optimization in targeted radiotherapy for prostate cancer. Mohamed46 introduced a method to deformably 
register 3D brain tumor images to a normal brain atlas. Michael47 employed a deformable image registration 
based on a biomechanical model to warp expiratory CT images to inspiratory CT images, thereby calculating 
dose accumulation over the entire respiratory cycle. Perez-Rovira48 developed an inter-frame deformable 
registration algorithm for ultra-wide field view retinal fluorescein angiography sequences, addressing the critical 
challenge of aligning temporal FA frames with evolving retinal vessel structures.

It can be observed that object detection, disentanglement learning, and deformable registration are widely 
distributed across various visual tasks. Although these approaches differ in their specific application targets, the 
coupling idea of relevant skills and practical events have greatly inspired the construction of the solutions in this 
paper.

Materials and proposed method
Materials
The CF and FFA images of CSCR used in this study were provided by the Affiliated Eye Hospital of Nanjing 
Medical University, with approval from the hospital’s Medical Ethics Committee. The age of CSCR patients is 
predominantly distributed between 20 and 50 years, with a higher prevalence among young and middle-aged 
males. The images are captured using a fundus camera and include both acute and chronic types of CSCR. 
The study adhered to the principles of the Declaration of Helsinki. The CSCR dataset for this task consists of 
Dataset-1 and Dataset-2, with the original collection containing a total of 306 pairs of CF and FFA images.

•	 Dataset-1: Comprising 216 pairs of CF and FFA images. The dataset is divided into 138 pairs for training, 9 
pairs for validation, and 69 pairs for testing. As shown in Fig. 1, a data augmentation approach (including 
horizontal mirroring, clockwise rotation by 5°, and counterclockwise rotation by 5°) is first applied to expand 
the training set to 828 images and the validation set to 54 images. Subsequently, image stitching and key-
point annotation are performed. Image stitching refers to the process of horizontally connecting CF and FFA 
images without overlap to form a complete composite image. Keypoint annotation involves marking vessel 
bifurcation points following a dispersed distribution principle on both modality regions of the stitched image, 
drawing bounding boxes that encompass the bifurcation points, and assigning label categories to correspond-

Fig. 1.  Data augmentation.
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ing points. These operations are carried out jointly by ophthalmologists and researchers through annotation 
software, guided by the practical image registration expertise of the ophthalmologists. After image stitching 
and keypoint annotation, this dataset is used to train and validate the YOLOv8-pose network in the coarse 
registration stage. Besides, 147 pairs of CF and FFA images are adopted to train the deformable network in 
the fine registration stage.

•	 Dataset-2: Comprising 90 pairs of CF and FFA images. Through the same data augmentation operations 
(Fig. 1), the dataset is expanded to 540 image pairs. These augmented CF and FFA images are then com-
bined with pseudo labels (i.e., the binary vessel labels from the DRIVE49 dataset for training the disentangled 
network in the fine registration stage. It should be noted that the fine details at the vessel tips in the pseudo 
labels were erased, as preliminary experiments revealed that these delicate structures could introduce mi-
nor artifacts in the vessel maps produced by the disentangled network. Performance evaluation in this stage 
continues to employ the 69 pairs of CF and FFA images from Dataset-1, ensuring consistent benchmarking 
throughout the study.

The proposed method
This section describes the implementation details of the proposed coarse-to-fine registration method for CSCR 
multimodal retinal images. The method is decomposed into two subtasks with corresponding processing stages. 
As shown in Fig. 2, the coarse registration stage executes a three-step registration strategy involving keypoint 
pair detection and matching, keypoint optimization, and initial registration through affine transformation. 
The fine registration stage adopts a dual-component fine registration strategy, where a disentangled network 
first removes modality-specific characteristics from CF and FFA images while maintaining the essential vessel 
structures, after which a deformable network generates a deformation field to further adjust the coarsely-
registered images, yielding the final registration outcome.

Coarse registration stage
In the coarse registration stage, this study designed a three-step coarse registration strategy for the case of large 
discrepancies between CF and FFA images, which consists of keypoint pair detection and matching, keypoint 
optimization, and initial alignment based on affine transformation.

•	 Keypoint pair detection and matching
	 In traditional rigid registration schemes, keypoint detection and matching are independent processes, result-

ing in cumbersome procedures. Here, leveraging the previously created CSCR Dataset-1 with stitching attrib-
utes and keypoint correspondences, along with the Yolov8-pose network, we unify these two processes into a 
single task, thereby simplifying the registration pipeline. The implementation process is illustrated in Fig. 3. 
First, the training images are fed into the YOLOv8-pose network for end-to-end training. Subsequently, the 
trained model performs inference on the testing images. The model’s output includes two types of informa-
tion: (1) visual detection results, consisting of annotated testing images with keypoint pairs, bounding boxes, 
and their corresponding categories and confidence scores; and (2) textual detection data, which records the 
category and coordinate information of keypoint pairs, and bounding box coordinates in detail. For addition-
al details of the YOLOv8-pose network, please refer to Reference50. It is important to note that in Dataset-1, 
the same vessel bifurcation points in the CF and FFA images have been annotated with predefined category 
labels and bounding boxes. These pre-defined labels and images guide the YOLOv8-pose network to update 
its parameters, equipping it with the capability to automatically identify and match the homologous vessel 
bifurcation points across the two modalities. Obviously, the model’s training is not limited by the field-of-view 
differences between CF and FFA images. Consequently, the trained model can successfully detect and match 
these point pairs whenever the same vessel bifurcation points are present in both images, demonstrating ro-
bust performance even under significant disparity conditions.

 

•	 Keypoint optimization
	 The detection performance of the YOLOv8-pose network for vessel bifurcations is closely related to image 

characteristics. When bifurcations are distinct and clear, the model can predict more keypoints with smaller 
localization errors. However, when bifurcations are unclear or sparse, both the prediction accuracy and the 
number of detected keypoints decrease significantly, adversely affecting subsequent registration results. Since 
vessel bifurcations represent regional features rather than single pixels, inconsistencies in manual labeling 
may further compromise prediction reliability. Moreover, as the affine transformation model requires at least 
three non-collinear keypoint pairs to compute the transformation matrix, careful selection of appropriate 
keypoint pairs from the YOLOv8-pose network’s predictions warrants attention. To address these issues, we 
propose a simple post-processing technique for keypoint optimization, which consists of keypoint relocation 
and keypoint pair selection. The former involves grayscale conversion, B-COSFIRE filtering, skeletonization, 
and neighborhood search to facilitate the localization of bifurcations near the initial keypoints. Among these 
operations, the first few operations in keypoint relocation are common image processing techniques. Here, 
we elaborate on the implementation details of the neighborhood search. Specifically, for each initial keypoint 
predicted by YOLOv8-pose, a square region centered on it with a side length of 21 pixels is first delineated 
on the skeletonized vessel map. A 3-pixel square window then scans this region from the top-left to the bot-
tom-right corner with a step size of 1 pixel, while counting the number of vessel pixels within each scanning 
window. The central pixel of each scanning window containing more than 3 vessel pixels is designated as a 
candidate point. The distances between these candidate points and the initial keypoint are calculated, with the 
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candidate point corresponding to the smallest distance being selected as the relocated point (corresponding 
to each green point shown in the keypoint relocation section of Fig. 4). Following this operation, the keypoint 
pair selection step is subsequently executed. This step ensures better spatial dispersion of keypoint pairs in 
the image by maximizing (1) the distance between the first two keypoints and (2) the perpendicular distance 
from the third keypoint to the line connecting the first two points. Figure 4 illustrates the keypoint optimiza-
tion process.

•	 Coarse registration
	 After the keypoint optimization, an affine transformation is employed to achieve coarse registration of mul-

timodal retinal images. As a generalized linear transformation model, the affine transformation not only 
incorporates all the properties of rigid transformations (including translation and rotation) but also enables 
scaling and shearing. Its core advantage lies in maintaining the parallelism of lines before and after the trans-

Fig. 2.  The implementation details of the proposed coarse-to-fine registration method: (Upper) Coarse 
Registration for global alignment via keypoint pair detection and matching, followed by keypoint optimization 
and affine transformation; (Lower) Fine Registration using a disentangled network to preserve vessel 
structures, followed by a deformable network for local refinement.
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formation, as well as allowing anisotropic scaling of images. These characteristics make it particularly suitable 
for medical image registration tasks. For instance, in retinal image registration, it can effectively correct scale 
differences and geometric deformations caused by different imaging devices or shooting angles. Compared 
with simple rigid transformations, the affine transformation can better handle complex spatial correspond-
ences between multimodal images, thereby laying a solid foundation for subsequent fine registration. The 
mathematical formula for the affine transformation is as follows:

 

	


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where (xz, yz) and (x′
z, y′

z) denote the coordinates before and after transformation, respectively. The linear 
transformation parameters a, b, c, and d govern geometric deformations including rotation, scaling, and 
shearing, while tx and ty  represent the translation vector.

Fine registration stage
While coarse registration achieves initial alignment of multimodal retinal images, further refinement remains 
essential. To address this, we propose a dual-component fine registration strategy comprising: (1) a disentangled 

Fig. 4.  The keypoint optimization process : (1) Keypoint relocation refines initial positions through a sequence 
of grayscale conversion, B-COSFIRE filtering, skeletonization, and neighborhood search to accurately locate 
bifurcations; (2) Keypoint pair selection optimizes the spatial configuration by maximizing both the distance 
between the first two keypoints and the perpendicular distance from the third keypoint to the line connecting 
them.

 

Fig. 3.  Keypoint pair detection and matching based on YOLOv8-pose Network. The process yields two 
distinct outputs: (1) Visual detection results, displaying annotated images with keypoint pairs, bounding boxes, 
categories, and confidence scores; (2) Textual detection data, containing detailed records of keypoint pair 
coordinates and bounding box information.
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network that eliminates modality-specific characteristics while preserving the necessary vessel structures crucial 
for registration in both CF and FFA images, followed by (2) a deformable network that generates a deformation 
field to refine the coarse registration results.

•	 Modality information removal

As an outstanding work in disentanglement learning paradigms, ADN44 has demonstrated promising 
performance in metal artifact removal. Therefore, we investigate its applicability to fine registration stage in our 
study. This paper decomposes multimodal retinal images into two complementary feature spaces based on a 
disentangled network: a content space shared across modalities and an attribute space specific to each modality. 
The content space focuses on extracting vessel structural features that are independent of the imaging modality, 
while the attribute space retains the unique imaging characteristics of each modality. This approach transforms 
the complex multimodal registration problem into a single-modality registration problem, significantly reducing 
the difficulty of registration. By separating modality-specific and shared features, it provides a more robust 
feature basis for subsequent deformable registration.

The structure of the disentangled network is shown in Fig.  5. It takes retinal images carrying modality 
information and retinal vessel images not carrying modality information as inputs, and outputs retinal images 
with modality information removed. The network comprises three encoders EI : I → C , Ec

Im : Im → C , and 
Em

Im : Im → M , as well as two decoders GI : C → I  and GIm : C × M → Im. The encoders are responsible 
for mapping images to the content space and modality space, while the decoders map the content space and 
modality space back to images. Specifically, given any two unpaired images xm ∈ Im and y ∈ I , EI  and EC

Im  
map xm and y to the content spaces (cx and cy) respectively, while Em

Im  maps xm to the modality space m. This 
process can be denoted as:

	 cx = EC
Im (xm)� (2)

	 m = Em
Im (xm)� (3)

	 cy = EI (y)� (4)

where the decoder GIm  maps the content spaces cx and cy  along with the modality space m back to the images 
x′m and y′m, which can be denoted as:

	 x′m = GIm (cx, m)� (5)

	 y′m = GIm (cy, m)� (6)

where the decoder GI  maps the content spaces cx and cy  back to the images x′ and y′ which can be denoted as:

	 x′ = GI (cx)� (7)

	 y′ = GI (cy)� (8)

where y′′ is the result of encoding and then decoding the synthetic image y′m, which should be able to reconstruct 
the original image, denoted as:

	 y′′ = GI

(
EC

Im

(
y′m))

� (9)

The loss function of the disentangled network consists of five parts: two adversarial losses LI
adv  and LIm

adv , 
modality consistency loss Lmod, reconstruction loss Lrec and self-reduction loss Lself . These loss functions 

Fig. 5.  The process of modality information removal.
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collectively drive the disentangled network to remove modality-specific information from multimodal retinal 
images. LI

adv  and LIm

adv  are used to distinguish between generated and real images, thereby enhancing the 
quality of the generated images. Lrec ensures that the encoding and decoding processes can accurately restore 
the original images, preserving the detailed information of the images. Lmod minimizes the differences between 
different modalities to ensure that images of different modalities remain consistent in the feature space. Lself  
removes modality-specific information, enabling the model to focus on learning universal features of images 
rather than being influenced by specific modalities, thereby improving the model’s generalization ability. For the 
specific details of each loss function, please refer to Reference44. The total loss LDN  is the weighted sum of the 
five loss functions:

	
LDN = λadv

(
LI

adv + LIm

adv

)
+ λmodLmod + λrecLrec + λself Lself � (10)

where λadv , λmod, λrec, and λself  are weighting parameters for different loss terms.
After training with the aforementioned loss function and images, the parameters of the encoder and decoder 

in the disentanglement network are effectively optimized, enabling the network to extract vessel information 
from CF and FFA images for use by the deformable network. It should be noted that to address the modality 
differences between CF and FFA images, this study adopted an independent training approach by training two 
separate disentanglement networks. Although the two networks share an identical architecture, their optimized 
parameters differ due to the distinct image modalities, allowing them to effectively adapt to the disentanglement 
requirements of both types of images.

•	 Deformation field generation
	  The structure of deformable network is shown in Fig. 6, and its shape is very similar to that of Unet51. This 

paper adopts the registration field estimation network from24 as the deformable network. The network takes 
the modality-free multimodal retinal images obtained from the disentangled network as input and outputs a 
deformation field. The network consists of five downsampling operations and three upsampling operations, 
resulting in a deformation field F ′ with the shape 2 × (w/4) × (h/4), where h and w are the height and 
width of the image, respectively. Bilinear interpolation is then used to upsample the deformation field back to 
the original image size F .

 
The loss function of the deformable network consists of two parts: content loss and smoothness loss. The 

content loss uses the mean squared error between the fixed image and the warped moving image, which enables 
the content information of the disentangled modality-free retinal images to form good correspondences. 
Specifically, it is defined as:

	 Lcontent = MSE
(
ST N

(
Iadn

mov, F
)

, Iadn
fix

)
� (11)

where MSE is the mean squared error function, and STN 52 is the spatial transformation network that 
warps Iadn

mov  according to the deformation field F . The smoothness loss calculates the absolute difference in 
displacement between adjacent pixels in the horizontal and vertical directions, and then takes the average of 
these differences over all pixels. This loss penalizes the discontinuity of the deformation field F  and encourages 

Fig. 6.  The process of deformation field generation.
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smaller displacement changes between adjacent pixels, making the deformation field smoother. The smoothness 
loss is defined as:

	 Lsmooth = meank,i,j (|Fk,i,j − Fk,i+1,j | + |Fk,i,j − Fk,i,j+1|)� (12)

where k is the channel index of the deformation field, and i and j are the pixel indices of the image.
In addition to the aforementioned conventional smoothness constraint, we further introduce a second-

order Laplacian regularization term into the loss function of the deformable network to further refine its output 
deformation field. The Laplacian operator is used to calculate the second-order derivative of an image or field 
and can capture higher-order changes.

The Laplacian penalty for the horizontal direction and the vertical direction is defined as:

	 ∇2
u = −4ui,j + ui,j+1 + ui,j−1 + ui+1,j + ui−1,j � (13)

	 ∇2
v = −4vi,j + vi,j+1 + vi,j−1 + vi+1,j + vi−1,j � (14)

where u and v represent the displacement in the horizontal and vertical directions, respectively. The Laplacian 
operator calculates the second-order derivative differences at each pixel location, penalizing larger changes.

The Laplacian penalty loss is:

	
Llap = 1

H × W

∑
i,j

(
∇2

u + ∇2
v

)
� (15)

where H  and W  are the height and width of the image, respectively.
Therefore, the total loss of the deformable network in this study is:

	 LDF = λcontentLcontent + λsmoothLsmooth + λlapLlap� (16)

where λcontent, λsmooth, and λlap are weighting parameters for different loss terms.

•	 Fine registration
	  In the fine registration stage, the testing images from Dataset-1 images are processed through a trained dis-

entangled network to extract vessel structures, which are subsequently subjected to an affine transformation 
obtained in the coarse registration stage and then fed into a trained deformable network to generate the final 
deformation fields. Fine registration is accomplished by applying the resulting deformation fields to the ini-
tially aligned images (i.e., the coarsely-registered images). This workflow is illustrated in Fig. 7.

 

The algorithm implementation details
This section introduces the implementation process of the proposed coarse-to-fine registration method in the 
form of pseudocode. The pseudocode of the method is shown in Table 1, and the specific steps are as follows:

Experiments and discussions
Experimental settings
Parameter settings
This section presents the experimental parameters for both registration stages. The coarse registration employed 
an SGD optimizer with 300 training epochs, using a batch size of 16, learning rate of 0.01, momentum of 0.937, 
and weight decay of 0.0005. For fine registration, the disentangled network was trained for 120 epochs with a 
batch size of 4, a learning rate of 1 × 10−4, and a weight decay coefficient of 1 × 10−4. The loss function employed 
weighting parameters λadv , λrec, λmod, and λself , set to 1, 20, 20, and 20, respectively. The deformable network 
was trained for 50 epochs with a batch size of 1 and a learning rate of 2 × 10−5, using loss function weighting 

Fig. 7.  The main process of fine registration: (1) Vessel structure extraction from the input images using a 
trained disentangled network; (2) Deformation field generation by processing the extracted structures through 
a trained deformable network; (3) Image warping by applying the computed deformation fields to achieve the 
finely-registered results.
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Table 1.  The Pseudocode for the proposed coarse-to-fine registration method.
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parameters λcontent, λsmooth, and λlap set to 2 × 10−3, 2 × 10−5, and 1 × 10−5, respectively. Both networks were 
implemented in the PyTorch framework and optimized using the Adam optimizer.

Evaluation metric
In this study, the performance of the proposed registration method is evaluated using Dice coefficient, Dices 
coefficient, and the percentage of non-positive values in the determinant of the Jacobian matrix of deformation 
fields. Dice coefficient and Dices coefficient are used to indicate the accuracy of registration, while the percentage 
of non-positive values in the determinant of the Jacobian matrix of deformation fields is used to characterize the 
smoothness of the deformation field.

The Dice coefficient measures the overlap between two sets and has increasingly been used in recent years to 
evaluate the accuracy of image registration, indicating the overlap between the target and reference regions after 
registration. The formula for calculating the Dice coefficient is as follows:

	
Dice (S1, S2) =

2 ×
∑

(S1 ⊙ S2)∑
S1 +

∑
S2

� (17)

where S1 and S2 are the binary segmentation results of the two images, and ⊙ denotes the element-wise product. 
The Dice coefficient ranges from 0 to 1, with higher values indicating greater overlap.

The Dices coefficient is a differentiable version of the Dice coefficient, suitable for evaluating probabilistic 
segmentation maps. The formula for calculating the soft Dice coefficient is as follows:

	
Dices (P1, P2) =

2 ×
∑

ele_ min (P1, P2)∑
P1 +

∑
P2

� (18)

where P1 and P2 are the probabilistic segmentation maps of the two images, and ele_ min (P1, P2) represents 
the element-wise minimum. The soft Dice coefficient also ranges from 0 to 1, with higher values indicating 
greater overlap.

Percentage of non-positive values in determinant of Jacobian matrix of deformation fields (%of |JF | ≤ 0) is 
added to assess the smoothing effect of the deformation field after introducing the Laplacian penalty loss, which 
is defined as:

	
%of |JF | ≤ 0 = 1

|Ω|
∑

Ω

1 (det (F ) ≤ 0)� (19)

where F is the deformation field, det (F ) is the determinant of the Jacobian matrix of the deformation field, and 
Ω is the entire image domain. 1 (det (F ) ≤ 0) is an indicator function that takes the value 1 when det (F ) ≤ 0 
and 0 otherwise. 

∑
Ω

1 (det (F ) ≤ 0) calculates the number of pixels in the entire image domain where 

det (F ) ≤ 0. det (F ) provides information about the deformation at each pixel location: when det (F ) > 1, 
it indicates expansion at that pixel location; when det (F ) = 1, it indicates no change; when 0 < det (F ) < 1, 
it indicates contraction; and when det (F ) ≤ 0, it indicates folding, which violates diffeomorphic properties.

Discussion
This section will evaluate the performance of the proposed multimodal retinal image registration method for 
CSCR, covering both coarse and fine registration stages.

Discussion on the coarse registration stage

	1.	 Qualitative Analysis

To evaluate the effectiveness of our proposed three-step coarse registration strategy, we conducted comparative 
experiments with two representative registration methods (B-COSFIRE53 + SIFT54 and SURF-PIIFD-RPM8). 
The key differences between these methods lie primarily in their feature extraction algorithms, matching 
strategies, and mismatch elimination techniques.

•	 B-COSFIRE53 + SIFT54: This method integrates multiple techniques for multimodal retinal image registra-
tion. Initially, B-COSFIRE filters preprocess the retinal vessels, followed by refinement through threshold 
segmentation and skeletonization. Subsequently, the SIFT algorithm detects salient feature points, while 
brute-force matching establishes correspondences. The RANSAC algorithm then automatically removes 
mismatches, with final alignment achieved through affine transformation.

•	 SURF-PIIFD-RPM8: This method employs SURF for local feature point detection, extracts feature de-
scriptors using PIIFD (Partial Intensity Invariant Feature Descriptor), eliminates mismatches via the RPM 
(Robust Point Matching) algorithm, and ultimately computes affine transformation parameters through 
weighted least squares to achieve final registration.

Figure 8 visually compares the registration results of different methods for CSCR multimodal retinal images. 
The first row shows the CF and FFA images to be registered, as well as the checkerboard overlay and local 
magnified views in their unregistered state. The second and third rows show the registration effects of the 
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methods B-COSFIRE + SIFT and SURF-PIIFD-RPM, including the detected feature points and the registered 
checkerboard images. From the results in the first column of Fig. 8, B-COSFIRE + SIFT detects more keypoints 
in CF and FFA images. However, it fails to establish matches for many point pairs, and some of the established 
matches are incorrect. These issues place B-COSFIRE + SIFT at a certain disadvantage compared to both the 
SURF-PIIFD-RPM and the proposed three-step coarse registration strategy. Although the SURF-PIIFD-RPM 
method demonstrates better outlier rejection than B-COSFIRE + SIFT, its matched keypoints are excessively 
clustered. This prevents the computation of a suitable affine transformation matrix, resulting in only partial 
vessel alignment and ultimately leading to registration failure. The fourth row presents the registration results 
of our proposed three-step coarse registration strategy, with its first column showing the keypoint pairs 
predicted by YOLOv8 and the three pairs selected for the affine matrix computation. Visibly, the keypoints are 
accurately predicted, well-distributed, and all are correctly matched, which provides a reliable reference for the 
subsequent registration. Besides, a comparison of the locally magnified regions marked by red and blue boxes 
in the third column of Fig. 8 clearly shows that both the B-COSFIRE + SIFT and SURF-PIIFD-RPM methods 
perform poorly in local registration. In contrast, the proposed strategy achieves significantly better registration 
performance. In conclusion, the visualization registration results clearly indicate that our method successfully 
achieves comprehensive global alignment, with retinal vessels exhibiting precise spatial correspondence.

	2.	 Quantitative Analysis

	Figure 8 intuitively demonstrates the effectiveness of the proposed three-step coarse registration strategy in the 
coarse registration stage of multimodal retinal images for CSCR. To further verify its advantages, we conduct 
a quantitative performance analysis. As shown in Table 2, using the pre-registration Dice and Dices scores 
as baselines, the B-COSFIRE + SIFT and SURF-PIIFD-RPM methods achieve scores of 0.3908 and 0.2976, 
and 0.4301 and 0.3509, respectively. These represent improvements of 0.2239 and 0.0614, and 0.2632 and 
0.1147 over the baseline values, demonstrating that both methods possess a partial ability to align multimodal 
fundus images. Meanwhile, compared with B-COSFIRE + SIFT, SURF-PIIFD-RPM demonstrates superior 
performance, as reflected in its leads of 0.0393 and 0.0533 in the two aforementioned metrics. Notably, our 
proposed CRS strategy yields Dice and Dices scores of 0.5023 and 0.3940, respectively, representing improve-

Fig. 8.  Qualitative results of different registration methods: (a) Before registration, (b) B-COSFIRE + SIFT, 
(c) SURF-PIIFD-RPM, and (d) The proposed three-step coarse registration strategy. Note: The three columns 
show the images to be registered, checkerboard overlays, and local magnified views, with row 1 showing the 
pre-registration state and rows 2–4 showing the post-registration results.
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ments of 0.3354 and 0.1578 over the baseline values, thus confirming its effectiveness. Furthermore, com-
pared with typical rigid registration methods, CRS shows significantly better performance, outperforming 
the SURF-PIIFD-RPM and B-COSFIRE + SIFT methods by 0.0722 and 0.0431, and 0.1115 and 0.0964 in the 
two metrics respectively. These observations are consistent with the visual registration results in Fig. 8, further 
confirming the superiority of our proposed strategy for CSCR multimodal retinal image registration.

 

Discussion on the fine registration stage

	1.	 Ablation Study

This section presents ablation studies to evaluate the necessity of both the Laplacian penalty loss and the coarse 
registration stage, and then provides comprehensive qualitative and quantitative validation of the proposed 
dual-component fine registration strategy for CSCR multimodal retinal images.

•	 The necessity of Laplacian penalty loss
	 Figure 9 presents a visual comparison between the deformation fields before and after applying the Lap-

lacian penalty loss, using four samples as examples. The first row displays the deformation fields without 
the Laplacian penalty loss, while the second row shows the results after its application. It can be visually 
observed that when the Laplacian penalty is not applied, the deformation fields in the first row exhibit 
significant folding issues. However, after introducing the penalty, the second row results show a notable 
reduction in folding regions, with the deformation fields demonstrating improved continuity and smooth-
ness overall. This demonstrates that the Laplacian penalty loss effectively suppresses unnecessary local 
distortions, improves the quality of the deformation field, and consequently enhances the accuracy and 
reliability of the registration.

 
In addition to the intuitive visualization of the deformation fields shown in Fig. 9, we also computed the 

percentage of non-positive Jacobian determinant values across the deformation field for each testing image pair, 
aiming to quantitatively evaluate the effect of the Laplacian penalty loss. As shown in Fig. 10, the introduction 
of Laplacian penalty loss leads to a significant reduction in the percentage of non-positive values in the Jacobian 
determinant of deformation fields across all 69 testing samples. The majority of samples reach 0% for this metric, 
while the remaining cases show values below 0.25%, representing a substantial improvement compared to the 

Fig. 9.  Visual comparison between the deformation fields: (a) LDF  without the Laplacian penalty loss, and (b) 
LDF  with the Laplacian penalty loss. Note: the figure only shows the deformation fields of four samples, with 
each column representing one sample.

 

Methods Dice↑(± std) Dices↑(± std)

Before registration 0.1669 (± 0.0238) 0.2362 (± 0.0096)

B-COSFIRE53 + SIFT54 0.3908 (± 0.2571) 0.2976 (± 0.1847)

SURF-PIIFD-RPM8 0.4301 (± 0.1931) 0.3509 (± 0.0978)

CRS 0.5023 (± 0.1262) 0.3940 (± 0.0571)

Table 2.  Quantitative results of different registration methods. CRS is the abbreviation for the proposed three-
step coarse registration strategy.
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results without Laplacian penalty loss. These findings clearly demonstrate the effectiveness of introducing 
Laplacian penalty loss in this work.

•	 The necessity of the coarse registration stage
	 Figure 11 shows the registration effects under four different configurations: (a) fine registration directly with-

out coarse registration and without Laplacian penalty loss; (b) adding Laplacian penalty loss to configuration 
(a); (c) fine registration after coarse registration but without Laplacian penalty loss; (d) adding Laplacian pen-
alty loss to configuration (c). The images shown from left to right are the deformation field, the transformed 
FFA image, the checkerboard image, and the locally magnified image. Quantitative results indicate that reg-
istration performance is noticeably inferior without the coarse registration stage, while substantial improve-
ments are observed when it is applied. Additionally, we explored the joint effect of the Laplacian penalty loss 
and coarse registration, which significantly improves vessel spatial alignment in multimodal retinal images.

In terms of quantitative evaluation, the data in Table 3 further corroborate the above conclusions. The 
experimental group without coarse registration and without the introduction of Laplacian penalty loss performs 
the worst, with Dice and Dices coefficients of only 0.4580 and 0.3792, respectively, and a high %of |JF | of 
1.2345, indicating severe deformation field distortion. It is worth noting that although introducing Laplacian 
penalty loss alone in the fine registration stage can significantly reduce %of |JF | to 0.0186, the Dice and Dices 
coefficients actually decrease, still failing to achieve the desired registration outcome. In contrast, the strategy of 
using coarse registration followed by fine registration significantly improves registration accuracy, with Dice and 
Dices coefficients far superior to those without coarse registration. On this basis, the introduction of Laplacian 
penalty loss resulting in a slight decrease in Dice coefficient by 0.0248, but an increase in Dices coefficient by 
0.0042, while %of |JF | is reduced by 0.3007, effectively reducing deformation field distortion and ultimately 
achieving more accurate registration results.

These experimental results fully demonstrate the significant value of coarse registration as a preprocessing 
stage from both qualitative and quantitative perspectives. It not only provides a good initial alignment for 
subsequent fine registration but also effectively constrains the rationality of the deformation field, thereby 
ensuring the accuracy and reliability of the final registration results.

	2.	 Qualitative Analysis

Based on the above discussion, this section compares the proposed coarse-to-fine registration method with 
other multimodal retinal image deformable registration approaches from both qualitative and quantitative 
perspectives. The two comparison methods are Phase55 + MIND56, a non-deep learning-based approach, and 
RetinaSegReg24, a deep learning-based method that utilizes style transfer.

•	 Phase55 + MIND56: The method begins by extracting phase maps from multimodal images, followed by 
the computation of MIND based on the extracted phase information. Specifically, the Fourier transform is 
applied to capture phase features, which are known to be highly sensitive to structural variations within the 
images. The phase differences within local neighborhoods are then encoded to construct MIND descrip-
tors that effectively characterize local structural properties. Finally, non-rigid registration is accomplished 
by minimizing the difference between the MIND descriptors of the image pair.

•	 RetinaSegReg 24: This method represents an innovative deep learning-based approach to multimodal ret-
inal image registration. Inspired by the concept of style transfer, it aims to improve vessel structure align-
ment by simulating style transformations between different modalities. The method first employs a style 
transfer network to segment blood vessels in multimodal retinal images. These segmentation results are 

Fig. 10.  Quantitative comparison based on the %of |JF |
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then used as guidance for precise image registration. The strength of this approach lies in its ability to effec-
tively reduce inherent cross-modality differences, thereby enhancing registration accuracy.

Fig. 11.  The registration effects under four different configurations: (a) fine registration directly without coarse 
registration and without Laplacian penalty loss, (b) adding Laplacian penalty loss to configuration (a), (c) fine 
registration after coarse registration but without Laplacian penalty loss, and (d) adding Laplacian penalty loss 
to configuration (c). Note: The images shown from left to right are the deformation fields, the transformed FFA 
images, the checkerboard images, and the locally magnified views.

 

Scientific Reports |         2026 16:1208 15| https://doi.org/10.1038/s41598-025-30830-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 12 illustrates the visual registration results of different methods based on two representative examples. 
Figure 12a shows the result of the coarse registration stage proposed in this study, where the images include the 
CF image, the registered FFA image, the checkerboard image, and a locally magnified view. Figures 12b, c, and 
d present the results of Phase + MIND, RetinaSegReg, and our proposed coarse-to-fine registration method, 
respectively, each showing the deformation field, the registered FFA image, the checkerboard image, and a 
magnified view.

From the checkerboard image in Fig. 12a, it can be clearly seen that, the multimodal retinal images are well 
aligned in terms of blood vessels after coarse registration. However, as indicated by the red arrows in the local 
magnified image, there are still minor deviations. This indicates that while rigid registration can handle global 
deformation, it remains insufficient for addressing local registration issues, necessitating non-rigid registration 
to resolve local deformation problems. In addition, from the perspective of deformation field smoothness, the 
deformation field in Fig. 12b is the smoothest, and the non-rigidly transformed FFA image also exhibits the 
most natural gradual transition. This result demonstrates the advantage of traditional method in maintaining 
deformation field smoothness, although the issue of low computational efficiency of this method remains non-
negligible. In Fig. 12c, the edges of the FFA image are noticeably folded inward, indicating that the style transfer 
algorithm has introduced unreasonable distortions in local areas of the deformation field, compromising the 
anatomical plausibility of the registration result. In Fig. 12d, the local magnified image, as indicated by the red 
arrow, shows well-aligned retinal vessels, demonstrating the effectiveness of the proposed method in local fine 
registration. It is particularly noteworthy that while the deformation field generated by RetinalSegReg exhibits 
some folding, the deformation field produced by our method is comparatively smoother. This smoothness avoids 
unnecessary local distortions, thereby ensuring the anatomical credibility of the registration results. Overall, the 
proposed coarse-to-fine registration method shows certain advantages and competitive performance, both when 
compared to the three-step coarse registration strategy and to the Phase + MIND and RetinalSegReg methods.

	3.	 Quantitative Analysis

	Table 2 and Fig. 8 validate the effectiveness of the proposed coarse registration strategy. Building on these find-
ings and the visual registration results shown in Fig. 12, this section further quantitatively investigates the 
impact of introducing a dual-component fine registration strategy on the registration results. As shown in 
Table 4, the proposed coarse-to-fine (C2F) method achieves final Dice and Dices coefficients of 0.6759 and 
0.4977, representing improvements of 0.1736 and 0.1037 over the previous coarse registration strategy (i.e., 
CRS), respectively, thereby further confirming the effectiveness and necessity of the fine registration strategy. 
Compared to the Phase + MIND, the proposed coarse-to-fine (C2F) method shows comparable performance 
in the Dices coefficient but has a higher Dice coefficient by 0.0244. In comparison with the RetinalRegSeg 
method, although C2F has a slightly lower Dices coefficient by 0.01023, it has a higher Dice coefficient by 
0.0274 and a lower %of |JF | by 0.1258, indicating less distortion in the images registered by the C2F method. 
The comprehensive comparison indicates that the proposed method achieves superior registration accuracy. 
Overall, the quantitative results combined with the visual registration results in Fig. 12 demonstrate that the 
proposed coarse-to-fine registration method achieves promising registration performance and possesses sig-
nificant competitive potential.

Limitations and future work
The experimental analysis and discussion of the aforementioned coarse and fine registration demonstrate that the 
proposed method achieves promising registration results for clinical multimodal fundus images of CSCR. This 
provides a potential solution for laser preoperative auxiliary registration in CSCR treatment. While substantial 
progress has been made in current research, several challenges require further attention. First, the present fine 
registration approach adopts a non-end-to-end architecture, maintaining relative independence between the 
disentanglement and registration processes. Future work should focus on developing an end-to-end unified 
framework that integrates both components. Second, when processing CF images, suboptimal imaging quality 
of certain major vessels results in punctate or linear discontinuities within the vessels following disentanglement, 
severely compromising registration accuracy. Consequently, developing CF-specific vessel enhancement 
algorithms emerges as a crucial research priority. These advancements promise to substantially improve both 
the robustness and clinical utility of the CSCR multimodal retinal image registration method.

Configurations Dice↑(± std) Dices↑(± std) %of |JF |↓(± std)

w/o C and L 0.4580(± 0.0478) 0.3792(± 0.0161) 1.2345(± 0.1097)

w/o C 0.3592(± 0.0519) 0.3257(± 0.0200) 0.0186(± 0.0007)

w/o L 0.7007(± 0.0924) 0.4935(± 0.0309) 0.3216(± 0.3291)

w/ L 0.6759(± 0.1089) 0.4977(± 0.0393) 0.0209(± 0.0426)

Table 3.  The quantitative assessment of the impact of coarse registration on fine registration performance. The 
abbreviations “w/” and “w/o” represent “with” and “without”, respectively, while “C” and “L” denote “coarse 
registration” and “Laplacian penalty loss”, respectively.
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Fig. 12.  Qualitative results of different registration methods: (a) The proposed three-step coarse registration 
strategy, (b) Phase + MIND, (c) RetinalSegReg, and (d) The proposed coarse-to-fine registration. Note: The 
first column shows the original CF images or deformation fields, with columns 2 to 4 displaying the registered 
images, checkerboard images, and local magnified views, respectively.
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Conclusions
To address the challenges in preoperative CSCR registration arising from ophthalmologists’ manual operations 
and the limitations of existing rigid and non-rigid registration methods, this study proposes a coarse-to-fine 
registration method for multimodal retinal images. The methodology comprises two key parts: (1) a three-step 
coarse registration strategy employing the YOLOv8-pose network to unify keypoint detection and matching, 
with keypoints further optimized through a post-processing technique, followed by affine transformation for 
preliminary multimodal image alignment; and (2) a dual-component fine registration strategy that implements 
a disentanglement learning approach to preserve vessel structures while eliminating modality-specific 
discrepancies, ultimately achieving refinement of the coarsely-registered images through a deformable network. 
Both extensive qualitative and quantitative experiments have validated the effectiveness of our proposed 
method, demonstrating its potential to provide technical support for multimodal retinal image registration in 
CSCR preoperative procedures. Future research will be conducted to further enhance the performance of this 
methodology.

Data availability
The datasets used during the current study are available from the corresponding authors upon reasonable re-
quest.
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