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External Floating Roof Tanks (EFRTs) are prone to fire and explosion due to the convergence of human 
error, technical failure, and weak emergency response. Existing models often use ranking-based 
methods that fail to reflect systemic interdependencies. This study aimed to develop and validate 
a structural model that explains the latent constructs underlying EFRT hazards using a theory-
informed, data-driven approach. A structured checklist with 71 indicators across 11 domains was 
developed through expert input and literature review. Data from 285 professionals were analysed 
using Exploratory Factor Analysis (EFA) to identify key dimensions, followed by Confirmatory 
Factor Analysis (CFA) and path analysis for model validation. EFA extracted 11 factors explaining 
72% of the total variance. CFA showed strong fit indices (CFI = 0.915, RMSEA = 0.048). Path analysis 
confirmed significant causal relationships, including those from operational error to technical failure 
and fire suppression breakdown. A real-world case study involving 11 EFRTs demonstrated that 
model-predicted high-risk tanks aligned closely with expert evaluations. The final model provides a 
multidimensional and statistically validated framework for understanding EFRT risks, integrating 
human, technical, and organizational domains. This model offers practical guidance for safety 
engineers to identify high-leverage intervention points. It supports the development of predictive 
safety tools and can be adapted for integration into intelligent fire prevention systems across storage 
infrastructures.
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Petroleum storage facilities represent one of the most critical components of the global energy infrastructure, 
providing large-scale containment for highly flammable hydrocarbon products such as crude oil, gasoline, and 
liquefied petroleum gas1 (Fig. 1). Among various storage technologies, external floating roof tanks (EFRTs) 
(Fig. 2)2 are widely adopted for their ability to minimize vapor losses and reduce emissions. These tanks feature 
a floating roof that adjusts with liquid levels, thereby decreasing the space available for flammable vapours 
to accumulate3. However, despite these advantages, EFRTs are inherently prone to fire and explosion risks, 
particularly in the presence of operational malfunctions, environmental stimuli, and external triggers such as 
lightning4,5.

Statistical records and post-accident investigations confirm that EFRTs have been involved in numerous 
catastrophic incidents over the past decades6. The floating roof structure, although functionally efficient, 
introduces vulnerabilities such as seal failures, rainwater accumulation, static charge build-up, and vapor leakage 
that significantly contribute to ignition risks7. Boilover phenomena, vapor cloud formation, and structural 
collapse under pressure are some of the severe consequences observed in these tanks2.These events not only 
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lead to operational shutdowns and economic loss but also pose threats to nearby communities, ecosystems, and 
emergency responders8.

To mitigate these risks, engineers and safety professionals require accurate and validated tools for hazard 
identification, risk prioritization, and incident prediction. Traditional risk assessment approaches such as 

Fig. 2.  External floating roof tank structure.

 

Fig. 1.  Integrated structural modelling framework for fire and explosion risk assessment in external floating 
roof tanks.
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HAZOP (Hazard and Operability Studies)9, Fault Tree Analysis (FTA)10, and Fire and Explosion Index (F&EI)11 
have long served as foundational methods. However, as risk profiles in industrial contexts grow more complex, 
there is a need for advanced, data-driven, and statistically valid models that can reflect the interactions and 
weightings among diverse risk factors.

To systematically understand and manage these complex hazards, recent studies have increasingly adopted 
multivariate statistical methods12 to explore latent structures and confirm theoretical models. Exploratory Factor 
Analysis (EFA)13 is often used as a data-driven technique to identify the underlying dimensions of risk factors 
without prior assumptions. In contrast, Confirmatory Factor Analysis (CFA)14 tests whether a hypothesized 
factor structure fits observed data, providing statistical evidence of model validity and reliability. Together, 
these tools offer a rigorous pathway for developing and validating robust fire and explosion risk assessment 
frameworks.

Numerous studies have focused on modelling and quantifying the risks associated with fire and explosion 
in the oil and gas sector. For example, Zhang et al. (2016)10 utilized an improved AHP-FTA hybrid method to 
prioritize risk causes in steel oil tanks. Their model integrated fault tree logic with expert-based weighting to 
identify key accident paths. Similarly, Jia et al. (2024)15 modified the Analytic Hierarchy Process to suit EFRT 
scenarios, producing a refined model for evaluating fire and explosion events. These efforts marked significant 
progress in incorporating expert judgment and system logic into risk analysis.

Moshashaei et al. (2017, 2018)6,16 contributed a literature review and prioritization framework tailored to 
EFRTs, identifying both natural and human-induced ignition sources such as lightning, static electricity, and 
operational negligence. These studies emphasized the uniqueness of EFRT fire dynamics, reinforcing the need 
for risk models that account for tank-specific variables. Sarvestani et al. (2021)17 and Attia & Sinha (2021)18 
explored predictive models for LPG and propane tank hazards, while He et al. (2020)19 developed a detection 
response model for liquid leakage in flammable tanks.

The integration of fuzzy logic and Bayesian networks has also enriched risk modelling. For example, Li et al. 
(2019)20 applied fuzzy Bayesian methods to model mine ignition sources, and Cheng & Luo (2021)21 adopted 
Bayesian networks to quantify Natech risks (natural hazard-triggered technological accidents) in floating roof 
tanks. These approaches enable probabilistic reasoning but often lack interpretability and structural validation.

As complexity increases, some researchers have turned toward multivariate statistical modelling to uncover 
latent dimensions and causal links among risk variables. For instance, Soltanzadeh et al. (2022)22 and Upadhyaya 
& Malek (2024)23 used EFA to categorize safety indicators and extract underlying risk dimensions in chemical 
and construction industries. Mohammadfam et al. (2017)24 and Rahlina et al. (2019)25 employed CFA to validate 
their proposed models in occupational settings.

Beyond individual latent factors, researchers like Gerassis et al. (2019)26 and Jiang et al. (2025)27 used 
Path Analysis and Structural Equation Modelling (SEM) to visualize and test causal pathways in complex 
accident scenarios. These models allow for simultaneous testing of direct and indirect relationships among risk 
contributors, offering a more complete understanding of system behaviour. However, most of these applications 
are generic and not tailored to the specific structure and failure modes of EFRTs.

Although various methods have been proposed for fire and explosion risk assessment, most existing models 
fall short in capturing the complex interdependencies among risk factors, particularly in EFRTs. Techniques like 
AHP and FTA are largely linear, while studies using EFA, and CFA rarely apply them sequentially. Path analysis, 
which could reveal causal linkages between risk dimensions, is also underutilized, especially for EFRT-specific 
issues like seal failure or vapor leakage. Moreover, empirical validation through real-world case studies is often 
lacking, limiting practical relevance.

Given the limitations of prior research and the need for a comprehensive, theory-informed framework, this 
study aims to develop and validate an integrated structural model for fire and explosion risk assessment in 
EFRTs. To this end, a total of 89 risk factors were initially identified through expert consultation. The model 
employs EFA for dimensionality reduction, CFA for construct validation, and path analysis to reveal the causal 
relationships among latent variables. Grounded in Reason’s Swiss Cheese Model and tested on real-world data 
from petroleum storage facilities, the proposed framework offers both theoretical advancement and a practical 
decision-support tool for industrial safety management. Specifically, this study contributes to the research 
community by presenting an empirically validated, data-driven causal framework that unifies exploratory, 
confirmatory, and causal modelling approaches within a single analytical sequence. From an industrial 
perspective, the framework provides a systematic and evidence-based mechanism for identifying, prioritizing, 
and mitigating fire and explosion risks in EFRT operations, thereby bridging the gap between academic research 
and practical safety management.

Theoretical framework
Fire and explosion hazards in petroleum storage environments are rarely the result of a single, isolated failure. 
Rather, they emerge from the interdependent interplay of technical, operational, and environmental risk factors, 
many of which are latent, multifaceted, and difficult to observe directly. The conceptual framework of this study 
(Fig. 3) is grounded in Reason’s Swiss Cheese Model of accident causation28, which posits that major incidents 
often result from the alignment of multiple system-level deficiencies rather than a single point of failure. The 
model distinguishes between latent conditions29, such as inadequate maintenance protocols, flawed equipment 
design, or insufficient safety barriers, and active failures30, including human errors, procedural violations, or 
misjudgements at the operational level. These layers of vulnerability can align, like holes in slices of Swiss cheese, 
to breach defences and trigger catastrophic outcomes. This theoretical lens provides a strong foundation for the 
multifactorial structure investigated in the current study, wherein technical failures, operational errors, sabotage, 
emergency response limitations, and design inadequacies are conceptualized as interrelated contributors to fire 
and explosion risk in EFRTs. Incorporating this framework enhances the explanatory depth of the model and 
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lends theoretical legitimacy to the interconnected network of causality assessed through EFA, CFA, and path 
analysis. To rigorously examine such a system, this study adopts an integrated theoretical framework grounded 
in four core foundations: systems theory, latent variable modelling, multidimensional risk theory, and causal 
attribution.

Systems theory in safety engineering
This study adopts a systems theory perspective, which views accidents not as isolated failures but as outcomes of 
complex interactions among human, technical, and environmental components within a sociotechnical system. 
In the case of EFRTs, events such as seal failure, vapor accumulation, lightning strikes, and operational errors 
often act together, forming a dynamic network of interrelated risks15,16.

Traditional tools like HAZOP or FTA typically model risks linearly and struggle to capture feedback loops 
or multi-causal pathways10,31. However, as Feng et al. (2022)32 and Saloua et al. (2019)33 note, serious industrial 
accidents often arise from systemic weaknesses across organizational, procedural, and equipment levels.

Grounded in a systems-based perspective, the current study employs multivariate statistical models such as 
EFA, CFA, and path analysis to explore and validate the latent structures underlying fire and explosion risks. 
This analytical strategy allows for the identification of both individual hazard factors and the causal mechanisms 
through which these risks interact and intensify. The result is a more comprehensive and integrated foundation 
for modelling safety risks in external floating roof tanks.

Latent variable modelling paradigm
In the context of fire and explosion risk assessment, particularly within complex systems such as EFRTs, many 
of the most critical risk contributors are not directly observable. Factors like maintenance quality, organizational 
safety culture, emergency response readiness, and susceptibility to environmental hazards often operate as latent 
variables, that is, underlying constructs inferred from patterns among measurable indicators22,34. Relying solely 
on surface-level observations such as checklists or incident logs risks oversimplifying the multidimensional 
nature of risk. To address this challenge, the current study adopts a latent variable modelling paradigm, which 
treats observable variables as proxies for deeper constructs that must be statistically extracted and validated.

To operationalize this paradigm, the study employs a two-phase analytic process involving both EFA and 
CFA. EFA is first applied to uncover the underlying structure of the dataset without imposing any predefined 
theoretical model, allowing data-driven insights to emerge23,35. This is especially useful in domains like process 

Fig. 3.  Theoretical framework for fire and explosion risk analysis in EFRTs.
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safety, where interrelations between human, technical, and organizational risks are complex and context 
dependent. Following this, CFA is used to formally test the validity and reliability of the factor structure suggested 
by EFA, ensuring that the model is statistically sound and fits the observed data24,25. The combination of EFA 
and CFA strengthens the construct validity of the model and allows for more precise path analysis in subsequent 
modelling stages. This paradigm thus serves as a robust foundation for identifying high-risk dimensions, 
assessing their measurement properties, and ultimately enabling more effective risk prediction and intervention 
design in EFRT environments.

Multidimensional risk theory
This framework is further grounded in multidimensional risk theory, which views risk not as a single variable 
or linear outcome, but as the result of multiple, overlapping, and interacting dimensions. These include 
technical factors, operational factors, human factors, and environmental conditions17,36. In EFRT systems, these 
dimensions do not act independently; instead, they interact dynamically, often in nonlinear ways. For example, 
poor procedural compliance may not pose immediate danger, but when coupled with extreme weather or aging 
infrastructure, the risk of fire or explosion can escalate rapidly16,37.

Such a perspective aligns closely with the factor-analytic modelling approach used in this study. 
Multidimensional risk theory supports the identification of latent structures by grouping statistically correlated 
indicators into distinct yet interconnected constructs. These constructs represent higher-order dimensions of 
risk that can be analysed for both their individual contribution and cumulative influence on overall system 
safety10,38. This theoretical lens allows for more realistic modelling of EFRT risks by acknowledging that 
incidents rarely stem from a single point of failure, but instead emerge from the convergence and interaction of 
various contributing factors. It also enhances the interpretability of path analysis results by making explicit the 
interdependencies among different domains of risk, thereby improving the practical value of the model for safety 
engineering and operational decision-making.

Causal attribution and path modelling
In high-risk systems such as petroleum storage tanks, particularly EFRTs, understanding the presence of risk 
factors is not enough, what matters equally is how these factors interact and escalate into actual incidents. To 
address this dimension, the present framework draws on causal attribution theory, which posits that individuals 
and systems interpret hazardous events through identifiable cause-and-effect chains. In the field of industrial 
safety, this theory underpins analytical strategies that go beyond identifying isolated variables and instead focus 
on how those variables dynamically influence one another, often under specific operational or environmental 
conditions27,33.

To operationalize this perspective, the study utilizes path analysis, a statistical technique well-suited for 
modelling the directional relationships between latent constructs that have already been identified and validated 
via EFA and CFA. Path analysis enables the decomposition of total effects into direct and indirect influences, 
providing deeper insight into how factors such as “maintenance error,” “natural hazards,” or “fire suppression 
system reliability” contribute to risk escalation26,38. For example, Moshashaei et al. (2018)16 emphasized the 
indirect role of environmental conditions such as lightning, or heavy rainfall in worsening the outcomes of 
latent equipment failures in EFRTs. Additionally, Jiang et al. (2025)27 demonstrated how causal modelling can 
uncover critical propagation paths between design vulnerabilities and operational failure points in chemical 
storage tanks. Identifying statistically significant pathways allows the model developed in this study to reveal 
key leverage points within the system, critical nodes where targeted interventions are most likely to prevent the 
escalation of risk. This integration of theory-driven modelling and empirical causal mapping establishes a strong 
foundation for predictive safety analysis and informed decision-making in the petrochemical storage sector.

Synthesis of framework
To address these methodological gaps, the present study introduces a unified four-pronged analytical framework 
that sequentially integrates a structured checklist, Exploratory Factor Analysis EFA, CFA, and Path Analysis. 
This approach represents a methodological advancement over prior EFRT risk models, which typically relied on 
hierarchical or judgment-based techniques such as AHP or FTA without statistically validating latent structures. 
By combining exploratory and confirmatory analyses within a single causal modelling sequence, the framework 
enables both empirical dimensionality reduction and theory-driven causal inference. Moreover, the inclusion of 
a structured checklist at the data-collection stage ensures that the subsequent factor analyses are grounded in 
systematically defined and context-specific indicators, thereby enhancing the model’s validity and reproducibility. 
This framework conceptualizes fire and explosion risks in EFRTs as outcomes of a multidimensional and latent 
system of interrelated factors. It uses EFA to uncover hidden structures, CFA to validate their reliability, and 
path analysis to map causal relationships. The model’s real-world applicability is confirmed through case-based 
validation. Together, these components provide both a rigorous analytical foundation and a practical tool for 
risk assessment and mitigation in oil storage operations, supporting informed decision-making and proactive 
hazard management.

The integrated framework proposed in this study represents a unique synthesis of data-driven and theory-
based modelling approaches. By employing EFA and CFA, the model extracts and validates latent risk dimensions 
empirically from expert-assessed data, ensuring that the underlying constructs are statistically grounded rather 
than subjectively imposed. Subsequently, path analysis transforms these validated dimensions into a causal 
network that reveals both direct and indirect interrelations among risk factors. This sequential integration enables 
a rare balance between empirical dimensionality reduction and theoretical causal validation—a methodological 
combination seldom applied in EFRT safety research. As a result, the model not only quantifies relationships 
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among complex technical, human, and environmental factors but also provides an evidence-based mechanism 
for explaining how these factors collectively shape the likelihood and severity of fire and explosion incidents.

Methods
Structural modelling and algorithm development
To construct a robust structural model capturing the causal relationships among key risk factors associated with 
fire and explosion events in EFRTs, a detailed quantitative checklist was developed. This instrument was based 
on an empirically refined list of 80 risk indicators, classified under 11 primary constructs and 69 subdimensions 
derived from expert input and literature synthesis. These indicators represented multidimensional risk categories 
spanning technical, human, organizational, and environmental domains.

Each item was evaluated using a 10-point Likert scale, with 1 representing “very low impact” and 10 
representing “very high impact.” The decision to use a 10-point scale was made to allow for greater response 
sensitivity and discrimination among risk factors. A broader scale provides respondents with a more nuanced 
range of options to express their judgment, especially in a context where perceived risk intensity may vary subtly 
but significantly. This approach also enhances the robustness of statistical analysis by increasing score variance 
and improving factor extraction performance.

The checklist was disseminated among a purposive sample of domain experts, including process safety 
engineers, fire protection specialists, and HSE managers with at least ten years of experience in petroleum storage 
operations. Experts were selected from high-risk industrial environments such as oil terminals, refineries, and 
petrochemical depots. Participants were selected using purposive sampling, targeting professionals with direct 
experience in the operation, inspection, or maintenance of EFRTs. This approach ensured that respondents 
possessed relevant technical knowledge and practical insight required for evaluating fire and explosion risk 
indicators.

The final sample encompassed a diverse range of participants from three primary sectors: petrochemical 
(34.3%), oil refining (33.8%), and storage operations (31.9%). Job roles included operations staff (36.2%), 
safety officers (32.9%), and maintenance engineers (30.9%), reflecting a balanced cross-section of professional 
responsibilities within EFRT environments. In terms of experience, 25.2% had less than five years of industry 
tenure, 40.0% had between five and ten years, and 34.8% had more than ten years of experience. Educational 
backgrounds varied, with 20.5% holding diplomas, 49.5% bachelor’s degrees, and 30.0% postgraduate 
qualifications (MSc or above). Additionally, 71.9% of participants were based in onshore terminals, while 28.1% 
worked in offshore settings. This distribution of professional and contextual characteristics strengthens the 
external validity of the findings and suggests that the data reflect a representative operational reality across 
different EFRT-related contexts.

In addition to quantitative ratings, participants were encouraged to provide brief qualitative comments to 
justify any items they rated particularly very high or very low. These written justifications were content analysed 
to extract recurring rationales and operational contexts. This qualitative layer served two purposes: (1) validating 
the relevance and clarity of questionnaire items, and (2) enriching the interpretation of outlier scores by 
contextualizing expert judgments. Where inconsistencies emerged across respondents, the qualitative feedback 
enabled the research team to distinguish between statistical anomalies and meaningful expert divergence. This 
integration of quantitative scoring with expert narrative insight added depth and credibility to the data used for 
the subsequent EFA–CFA modelling process.

Reliability analysis
To evaluate the internal consistency of the measurement model, Cronbach’s alpha coefficient was computed 
for each latent construct using IBM SPSS Statistics v24. Cronbach’s alpha39 is a widely recognized metric in 
psychometric analysis that reflects the degree of interrelatedness among a set of items intended to measure the 
same underlying factor. High internal consistency indicates that the items within a construct reliably assess the 
same conceptual domain40.

In this study, a threshold of α ≥ 0.70 was used to indicate acceptable reliability, in line with established 
recommendations in behavioural and safety sciences. However, constructs with alpha values between 0.60 and 
0.69 were also retained when supported by theoretical justification or domain-specific relevance. This flexibility 
allowed the inclusion of constructs that, despite marginal alpha values, were conceptually important in EFRT 
risk modelling and supported by expert judgment.

Conducting this reliability check was essential before proceeding to factor analyses, as it confirmed that the 
observed items within each proposed dimension formed a coherent and interpretable set, suitable for latent 
structure validation in the subsequent EFA and CFA procedures. Additionally, descriptive statistics including 
mean, standard deviation, skewness, and kurtosis were examined to assess the distributional characteristics of 
items before modelling.

Exploratory factor analysis (EFA)
To explore the underlying structure of the observed risk indicators without imposing any predefined theoretical 
framework, EFA was conducted. This statistical method is particularly useful in the early stages of model 
development where the dimensionality of the data is unknown or uncertain41. EFA allows for the empirical 
discovery of latent constructs by identifying patterns of correlations among measured variables and grouping 
them into factors that represent common underlying sources of variance42.

Prior to conducting EFA, the adequacy of the data was assessed using two diagnostic tests. The Kaiser-
Meyer-Olkin (KMO) measure of sampling adequacy was used to determine whether the partial correlations 
among items were sufficiently small, indicating that factor analysis would yield reliable dimensions. In this study, 
KMO values above 0.80 confirmed the suitability of the data for factor extraction. In addition, Bartlett’s Test 
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of Sphericity was performed to examine whether the correlation matrix significantly differed from an identity 
matrix. A significant result (p < 0.05) indicated that the variables were intercorrelated enough to justify factor 
analysis.

Factor extraction was carried out using the Principal Axis Factoring (PAF) method, which is preferred when 
the goal is to identify latent variables rather than maximize total variance explained (as in PCA). To improve 
the clarity and interpretability of the results, varimax orthogonal rotation was applied. This rotation technique 
simplifies factor loadings by maximizing the variance of squared loadings across factors, making it easier to 
identify which variables belong to which latent construct.

Items with factor loadings below 0.40 were removed to ensure strong associations between variables and their 
respective factors. Additionally, variables exhibiting cross-loadings above 0.30 on multiple factors were excluded 
to maintain discriminant validity between constructs.

The EFA served several critical purposes within the modelling framework. First, it allowed for dimensionality 
reduction, streamlining the 80 risk indicators into a more manageable and interpretable structure. Second, it 
revealed coherent clusters of related risk factors each potentially representing a distinct risk dimension. Third, 
the identified factors formed the initial basis for the measurement model used in CFA, supporting both the 
construct validity and parsimony of the final structural model.

Ultimately, EFA helped ensure that the structural model was not only statistically sound but also conceptually 
grounded in how experts perceive and prioritize risk in external floating roof tank (EFRT) operations.

Confirmatory factor analysis (CFA)
Following the exploratory phase, CFA was conducted to statistically test the validity of the latent structure 
derived from EFA and to determine whether the proposed measurement model provided an adequate fit to 
the observed data. Unlike EFA, which is exploratory in nature, CFA is a theory-driven approach that allows 
researchers to specify which variables are expected to load on which latent constructs43. This method helps verify 
how well the data conform to the theoretical expectations established during the conceptual modelling phase44.

CFA was performed using AMOS software45, employing the maximum likelihood (ML)46 estimation method, 
which is widely used due to its efficiency and robustness, especially when the data approximate a normal 
distribution and the sample size is adequate. The input for the model was the variance–covariance matrix of the 
observed variables, reflecting the degree of shared variance among indicators.

In addition to global fit indices, construct reliability and statistical significance of parameter estimates were 
examined. Each factor loading was tested using T-values (critical ratios), with thresholds of |t| > 1.96 (p < 0.05) 
and |t| > 2.58 (p < 0.01) used to establish statistical significance. This step was essential for confirming that the 
observed variables were meaningfully and significantly related to their respective latent constructs.

The application of CFA played a critical role in validating the measurement model, ensuring it was both 
theoretically justified and statistically sound. The validated model then provided a solid foundation for 
subsequent structural modelling and path analysis, enabling the investigation of causal relationships among risk 
dimensions in a reliable and interpretable manner.

Path analysis and conceptual model evaluation
To investigate the directional and causal relationships among the validated latent constructs derived from CFA47, 
a path analysis was performed. Path analysis serves as a specialized form of SEM that allows researchers to test 
the magnitude and direction of hypothesized causal effects between variables48. Unlike CFA, which focuses 
on the measurement model, path analysis evaluates the structural model, mapping how constructs interact to 
influence system behaviour49.

In this study, the input data for path analysis consisted of a correlation matrix based on the observed Likert-
scale responses. Given the ordinal nature of the data, the Weighted Least Squares (WLS) estimation method was 
used, which is well-suited for handling non-continuous variables and provides more robust parameter estimates 
than traditional maximum likelihood in such contexts.

The proposed path model included hypothesized relationships among several core constructs such as 
operational error, system reliability, external hazards, equipment vulnerability, and emergency response capacity. 
These pathways were informed by both empirical findings from EFA–CFA and conceptual insights grounded in 
safety engineering literature. The model sought to uncover direct and indirect influences, for example, how 
system reliability might moderate the impact of external hazards, or how structural design flaws could indirectly 
increase risk severity through their influence on emergency system performance.

Model adequacy was evaluated using the same set of fit indices applied during CFA, ensuring consistency 
in assessing both measurement and structural validity. Additionally, standardized regression weights (β 
coefficients) and T-values were examined to determine the strength and statistical significance of each path. 
Only paths with theoretical justification and statistically significant coefficients (typically p < 0.05) were retained 
in the final model.

Collectively, the validated model served both diagnostic and predictive purposes, providing safety 
professionals with a practical and evidence-based tool for prioritizing risk control strategies and mitigating 
cascading failures in complex industrial storage systems.

Severity index and risk classification
Following the completion of structural and path modelling, a Severity Index (S) was computed for each validated 
risk factor to quantify the potential magnitude of its consequences in the event of an incident. The severity 
scores were derived by integrating expert evaluations regarding the expected outcomes of each risk item using a 
consistent and structured scoring rubric.
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To classify the overall level of risk, the Severity Index (S) was combined with a Probability Score (P), which 
reflected the perceived likelihood of occurrence as judged by the same panel of domain experts. These two 
dimensions were plotted on a standard risk matrix, yielding a composite risk score for each item and enabling its 
categorization into four primary zones: low, moderate, high, and intolerable risk.

This classification framework served several important purposes. First, it allowed the prioritization of 
risk factors based on both their impact and likelihood, ensuring that decision-makers could focus attention 
and resources on high-severity, high-probability threats. Second, it facilitated the identification of intolerable 
risks and distinguished them from acceptable risks, which could be managed under existing controls. Finally, 
it provided a transparent and reproducible mechanism for aligning expert judgment with risk governance 
protocols commonly used in the oil and gas industry.

The combination of quantitative modelling and expert-driven classification ensured that the proposed 
EFRT risk framework was not only analytically robust but also practically actionable, bridging the gap between 
statistical outputs and real-world safety interventions.

Method validation through case studies
To verify the accuracy and practical utility of the proposed risk model, four case-based validation strategies were 
implemented. First, the model was applied to EFRTs with no recorded incidents, and the resulting risk scores 
were reviewed in expert panels to assess alignment with expected risk levels under normal operations. Second, 
model outputs were benchmarked against previous risk assessments to evaluate consistency and compatibility.

Third, a retrospective analysis was conducted on tanks that had experienced known fire or explosion 
incidents. The model’s ability to assign high-risk scores in these cases served as a test of its diagnostic validity. 
Finally, the inter-rater reliability of expert inputs was evaluated by comparing responses from 3 to 4 independent 
assessors using mean scores, standard deviations, and the Intraclass Correlation Coefficient (ICC). Together, 
these validation strategies confirmed the model’s credibility and applicability across different operational 
scenarios. A visual summary of the research methodology, from instrument design to case-based validation, is 
presented in Fig. 4.

Results
Internal consistency and reliability analysis
To evaluate the internal consistency of the measurement tool designed for identifying latent fire and explosion 
risk factors in EFRTs, Cronbach’s alpha coefficients were computed for all 11 primary risk dimensions. As shown 
in Table 1, the alpha values ranged from 0.60 to 0.82, indicating acceptable to high reliability across the constructs. 
The dimension “Uncontrolled Exothermic Reactions” exhibited the highest internal consistency (α = 0.82), while 
“Maintenance Errors” and “Faulty Fire Suppression Systems” presented the lowest reliability scores (α = 0.60). 

Fig. 4.  Flowchart of the research methodology outline.
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Despite the lower values, these two constructs were retained due to their theoretical and operational relevance 
in the context of process safety.

To improve overall model reliability, three items, ME6, FF4, and FF5, were excluded due to their weak inter-
item correlations and poor factor contributions, as identified in the exploratory factor analysis phase. These 
refinements helped ensure that the latent constructs used in subsequent CFA and path analysis possessed 
adequate scale coherence.

Sampling adequacy and EFA assumptions
To evaluate the suitability of the dataset for Exploratory Factor Analysis (EFA), two diagnostic tests were 
conducted: the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett’s Test of Sphericity. The 
KMO statistic, which assesses the proportion of variance among variables that might be common variance, 
was calculated to be 0.618. Although this value is considered moderate (typically values ≥ 0.6 are acceptable), it 
nonetheless indicates an adequate level of shared variance for factor extraction.

In addition, Bartlett’s Test of Sphericity yielded a highly significant result (χ² = 7238.63, df = 3321, p < 0.001), 
confirming that the observed correlation matrix was not an identity matrix and thus appropriate for structure 
detection via EFA (Table 2). Together, these metrics validated the assumption that the data matrix contained 
sufficient inter-item correlations to justify the use of factor analytic techniques.

Exploratory factor analysis (EFA)
To empirically uncover the latent dimensions of fire and explosion risk in EFRTs, an EFA was conducted using 
Principal Axis Factoring with Varimax Rotation. Prior to extraction, missing responses in the dataset were 
handled using the mean imputation method, ensuring a complete matrix for analysis.

The Scree Plot (Fig.  5) guided the initial determination of factor retention. A clear inflection point was 
observed after the 12th component, indicating that 12 factors could account for meaningful variance in the 
dataset. However, after evaluating theoretical coherence and statistical parsimony, an 11-factor model was 
selected. This solution aligned better with existing literature and provided more interpretable constructs related 
to operational, technical, environmental, and organizational risks.

Three items, ME6, FF4, and FF5, were excluded during the analysis due to low communalities (less than 0.20), 
weak factor loadings, and theoretical redundancy. This step ensured that only robust and meaningful indicators 
were retained for subsequent confirmatory analysis. In addition to ME6, FF4, and FF5, several theoretically 
important but statistically weak indicators, such as ‘lack of coordination with urban firefighting services’ and 
‘insufficient foam and powder agents’, were excluded due to low communalities (< 0.20) or unstable factor 
loadings. These decisions were based solely on quantitative criteria, though their practical relevance remains 
significant.

The communalities of retained items are shown in Table  3, confirming adequate shared variance across 
most items. All included indicators surpassed the minimum communality threshold of 0.25, indicating that the 
extracted factors successfully represented a substantial portion of item variances. The total variance explained 
by the final 11-factor model was 72% (see Table 4), which is considered satisfactory for behavioural and safety-
related studies involving complex, multidimensional constructs.

Measure Value

Kaiser-Meyer-Olkin (KMO) 0.618

Bartlett’s test of sphericity (χ²) 7238.630

Degrees of freedom (df) 3321

Significance level (p-value) < 0.001

Table 2.  Sampling adequacy and sphericity test results.

 

No. Primary risk dimension Cronbach’s alpha

1 Operational errors 0.67

2 Maintenance errors 0.60

3 Equipment failures 0.73

4 Tank cracks and tears 0.72

5 Leakage from damaged pipelines 0.70

6 Electrostatic discharge 0.67

7 Sabotage and deliberate damage 0.72

8 Proximity of flames to flammable materials 0.76

9 Natural hazards 0.70

10 Uncontrolled exothermic reactions 0.82

11 Faulty fire suppression systems 0.60

Table 1.  Cronbach’s alpha coefficients for the main risk dimensions.
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Confirmatory factor analysis (CFA)
To validate the factorial structure derived from the exploratory phase, a CFA was conducted using AMOS 
software. Both the 11-factor and 12-factor models were tested to determine which structure offered superior 
statistical and conceptual fit. Although the two models yielded comparable values across several fit indices, the 

Item Communality Item Communality Item Communality

OE1 0.494 TC3 0.403 OF1 0.617

OE2 0.486 TC4 0.435 OF2 0.565

OE3 0.437 TC5 0.406 OF3 0.564

OE4 0.39 TC6 0.438 OF4 0.48

OE5 0.217 TC7 0.317 ND1 0.427

OE6 0.351 PR1 0.477 ND2 0.427

OE7 0.29 PR2 0.506 ND3 0.541

OE8 0.409 PR3 0.582 ND4 0.462

OE9 0.403 PR4 0.508 ND5 0.501

OE10 0.317 PR5 0.385 RR1 0.501

OE11 0.442 SE1 0.324 RR2 0.664

OE12 0.286 SE2 0.475 RR3 0.625

OE13 0.302 SE3 0.416 RR4 0.569

ME1 0.354 SE4 0.313 FF1 0.318

ME2 0.399 SE5 0.334 FF2 0.389

ME3 0.451 SE6 0.226 FF3 0.22

ME4 0.34 SE7 0.452 FF4 0.101

ME5 0.313 SE8 0.435 FF5 0.06

ME6 0.066 SE9 0.416 FF6 0.412

TE1 0.387 SE10 0.374 FF7 0.44

TE2 0.493 SE11 0.376

TE3 0.584 SE12 0.237

TE4 0.477 S1 0.452

TE5 0.438 S2 0.585

TE6 0.402 S3 0.523

TE7 0.373 S4 0.384

TE8 0.476 S5 0.492

TE9 0.304 S6 0.415

TE10 0.352 S7 0.337

TC1 0.53 S8 0.393

TC2 0.456 S9 0.371

Table 3.  Communality scores of items.

 

Fig. 5.  Scree plot for factor retention.
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11-factor solution was ultimately retained due to its stronger alignment with theoretical constructs and better 
parsimony.

The model evaluation was based on multiple goodness-of-fit indices. As shown in Table 5, the chi-square 
p-values for both models were highly significant, which is expected given the large sample size. The RMSEA for 
the 11-factor model was 0.048, well below the acceptable threshold of 0.08, indicating a good fit. Similarly, the 
RMR (0.181) and GFI (0.693) supported the model’s adequacy. However, other indices such as CFI (0.552), NFI 
(0.341), and TLI (0.533) fell short of the conventional cut-off of 0.90, suggesting room for structural refinement.

The initial measurement model indicated potential misspecifications, including low-loading indicators, 
redundant error covariances, and several non-significant structural paths. In response, the model was iteratively 
refined based on modification indices and theoretical coherence. First, five weak or cross-loading indicators 
(ME6, FF4, FF5, OE5, and SE12) were removed to improve measurement clarity. Next, theoretically justifiable 
covariances were introduced between conceptually related constructs, such as Operational Error and Technical 
Failure, and Operational Error and Safety Response, to account for shared unexplained variance. Finally, 
structurally non-significant paths (p > 0.05) were trimmed to increase parsimony. After each adjustment, 
the model was re-estimated, and convergence was reached after three iterations. The final revised model 
demonstrated substantially improved fit indices (CFI = 0.915; TLI = 0.918; RMSEA = 0.036; χ²/df = 2.02), 
confirming the structural soundness and theoretical validity of the optimized 11-factor solution.

Model refinement and path specification
Following the initial confirmatory analysis, model refinement procedures were employed to improve fit quality, 
reduce complexity, and ensure theoretical alignment. Structural adjustments were guided by empirical evidence 
derived from regression weights and covariance relationships among constructs. Non-significant paths that 
lacked statistical support were eliminated to enhance model parsimony. Simultaneously, new covariance 
relationships were introduced between conceptually related domains such as OE ↔ TE and OE ↔ S, based on 
modification indices and domain-specific logic. The final revised model retained all essential pathways linking 
primary latent constructs to their respective subdimensions. As shown in Table 6, all standardized regression 
weights were statistically significant (p < 0.05), confirming that the items were strong indicators of their respective 
latent factors. This step ensured content validity and supported the coherence of the factor structure.

In addition to direct paths, the final model incorporated inter-factor covariances to account for system-wide 
interdependencies, a critical consideration in complex risk environments such as EFRTs. Table 7 summarizes 
these statistically significant covariance relationships. Most covariances among primary factors were positive 
and significant (p < 0.05), supporting the systemic, interrelated nature of fire and explosion risks.

Fit index Original value Revised value Acceptable threshold

Chi-square (X2/df) 2.94 2.02 < 3.00

GFI (goodness of fit index) 0.693 0.83 > 0.90

AGFI (adjusted GFI) 0.672 0.8 > 0.90

RMR (root mean residual) 0.181 0.072 < 0.08

RMSEA (root mean square error of approximation) 0.048 0.036 < 0.08

CFI (comparative fit index) 0.552 0.915 > 0.90

NFI (normed fit index) 0.341 0.902 > 0.90

TLI (Tucker-Lewis index) 0.533 0.918 > 0.90

Table 5.  Model fit indices for CFA comparison.

 

Factor Total % of variance Cumulative %

OE 4.25 9.00 9.00

ME 3.95 8.37 17.37

TE 3.80 8.05 25.42

PR 3.50 7.41 32.83

TC 3.30 6.99 39.82

S 3.10 6.57 46.39

OF 2.90 6.14 52.53

RR 2.75 5.82 58.35

ND 2.60 5.51 63.86

FF 2.30 4.87 68.73

SE 1.60 3.27 72.00

Table 4.  Total variance explained by extracted factors.
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Final structural model
The finalized structural model, developed in AMOS, captures the intricate web of interrelations among 11 
validated latent constructs contributing to fire and explosion risk in EFRTs. As illustrated in Fig. 6, Operational 
Errors (OE) function as the central mediating construct, exhibiting strong direct effects on Maintenance Errors 
(β = 0.63), Tools Errors (β = 0.64), Static Electricity (β = 0.62), Open Flames (β = 0.66), Faulty Firefighting Systems 
(β = 0.53), and Sabotage (β = 0.66). This central positioning of OE suggests that breakdowns in procedural and 
human-system interfaces significantly propagate across both technical and emergency domains. In addition to 
these direct effects, OE mediates the influence of Natural Disasters (β = 0.54) and Runaway Reactions (β = 0.52), 
indicating that even externally triggered events often escalate through operational failures. These cascading 
pathways highlight the nonlinear propagation of risk, where single-point vulnerabilities, especially at the 
human interaction level, can activate multi-dimensional hazard chains. Covariance relationships, such as OE 
↔ Maintenance Errors, OE ↔ Natural Disasters, and Tools Errors ↔ Sabotage, represent statistically significant 
but non-directional associations that reflect conceptual overlap and latent risk interdependencies. While not 
causal, these relationships inform the need for holistic control strategies that address co-occurring weaknesses 
in design, behaviour, and emergency preparedness.

Case study validation
To verify the model’s practical applicability in real-world settings, a case study was conducted involving 11 
operational EFRTs at a major petroleum refinery in Bandar Abbas. These tanks had no recorded history of fire 
or explosion events, making them ideal candidates for predictive evaluation. Using the finalized risk checklist, 
risk scores were computed for each tank based on expert input. The results were independently reviewed and 
confirmed by a panel of refinery engineers. As presented in Table 8, risk scores ranged from 0.591 to 0.950, 
reflecting substantial variation in relative hazard levels across the tank fleet.

To facilitate interpretation and practical use, the scores were classified into three risk categories:

•	 High Risk (≥ 0.90): Immediate attention required.
•	 Medium Risk (0.70–0.89): Monitoring and preventive action advised.
•	 Low Risk (< 0.70): Acceptable under current controls.

Tanks #11 and #6 exhibited the highest risk levels, while tanks #3 and #8 demonstrated the lowest risk exposure.

Path Estimate S.E. C.R. p-value Path Estimate S.E. C.R. p-value

OE1 ←OE 1 TC1← TC 1.000

OE2 ←OE 1.1 0.176 6.256 *** TC2← TC 0.902 0.140 6.440 ***

OE3 ←OE 0.708 0.136 5.2 *** TC3← TC 0.806 0.143 5.621 ***

OE4 ←OE 0.995 0.166 6.011 *** TC4← TC 0.866 0.140 6.200 ***

OE5 ←OE 0.58 0.129 4.501 *** TC5← TC 0.748 0.122 6.135 ***

OE6 ←OE 0.297 0.15 1.986 0.047 TC6← TC 0.696 0.133 5.212 ***

OE7 ←OE 0.394 0.168 2.349 0.019 TC7← TC 0.504 0.106 4.751 ***

OE8 ←OE 0.536 0.131 4.077 *** PR1← PR 1.000

OE9 ←OE 0.619 0.154 4.005 *** PR2← PR 1.174 0.205 5.737 ***

OE10 ←OE 0.784 0.152 5.143 *** PR3← PR 1.448 0.229 6.327 ***

OE11 ←OE 0.933 0.179 5.22 *** PR4← PR 1.537 0.251 6.129 ***

OE12 ←OE 0.475 0.122 3.897 *** PR5← PR 0.581 0.170 3.423 ***

OE13 ←OE 0.936 0.161 5.812 *** SE1← SE 1.000

ME1 ←ME 1 SE2← SE 1.191 0.297 4.011 ***

ME2 ←ME 1.43 0.323 4.428 *** SE3← SE 1.015 0.236 4.304 ***

ME3 ←ME 0.949 0.252 3.763 *** SE4← SE 1.525 0.334 4.560 ***

ME4 ←ME 1.32 0.318 4.158 *** SE5← SE 1.038 0.263 3.947 ***

ME5 ←ME 0.72 0.251 2.872 0.004 SE6← SE 1.416 0.323 4.389 ***

TE1 ←TE 1 SE7← SE 1.097 0.250 4.386 ***

TE2 ←TE 1.101 0.229 4.802 *** SE8← SE 0.609 0.236 2.583 0.010

TE3 ←TE 1.576 0.278 5.667 *** SE9← SE 1.235 0.273 4.517 ***

TE4 ←TE 0.995 0.211 4.71 *** SE10← SE 1.379 0.337 4.093 ***

TE5 ←TE 1.023 0.202 5.052 *** SE11← SE 1.097 0.271 4.044 ***

TE6 ←TE 0.457 0.166 2.755 0.006 SE12← SE 0.640 0.240 2.663 0.008

TE7 ←TE 0.697 0.188 3.701 *** S1← S 1.000

TE8 ←TE 0.655 0.176 3.729 *** S2← S 1.281 0.161 7.957 ***

TE9 ←TE 1.027 0.217 4.733 *** S3← S 1.043 0.133 7.865 ***

TE10 ←TE 0.705 0.203 3.469 *** S4← S 0.502 0.106 4.743 ***

Table 6.  Standardized regression coefficients (partial). *** indicates p < 0.001.
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Discussion
Interpretation of key findings
The findings of this study offer a comprehensive empirical depiction of the multidimensional nature of fire and 
explosion risks in EFRTs. Through sequential application of EFA, CFA, and path analysis, the research identifies 
11 latent risk dimensions, each substantiated by multiple significant sub-factors. These dimensions span 
operational errors, maintenance failures, equipment degradation, structural vulnerabilities, and uncontrolled 
exothermic reactions, demonstrating the systemic character of EFRT safety hazards.

The findings of this study are strongly consistent with the core assumptions of Reason’s Swiss Cheese Model, 
which emphasizes that accidents often emerge from the alignment of multiple latent and active system-level 

Covariance path Estimate S.E. C.R. p-value Covariance path Estimate S.E. C.R. p-value

OE ↔ME 0.193 0.058 3.352 *** e43 ↔e44 0.534 0.118 4.532 ***

OE ↔ TE 0.251 0.066 3.791 *** e25 ↔e27 0.614 0.134 4.58 ***

OE ↔ TC 0.179 0.078 2.311 0.021 e60 ↔ e61 0.73 0.149 4.9 ***

OE ↔ PR 0.116 0.052 2.219 0.026 e58 ↔e59 0.651 0.161 4.052 ***

OE ↔ SE 0.218 0.055 3.938 *** e21 ↔e23 0.637 0.153 4.156 ***

OE ↔ S -0.093 0.074 -1.259 0.208

OE ↔ OF 0.116 0.07 1.658 0.097

OE ↔ ND 0.261 0.069 3.785 ***

OE ↔ RR -0.017 0.064 -0.272 0.786

OE ↔ FF 0.057 0.042 1.35 0.177

ME ↔ TE 0.095 0.041 2.325 0.02

ME ↔ TC 0.163 0.064 2.535 0.011

ME ↔ PR 0.029 0.037 0.784 0.433

ME ↔ SE 0.035 0.028 1.242 0.214

ME ↔ S 0.053 0.059 0.902 0.367

ME ↔ OF 0.024 0.054 0.446 0.656

ME ↔ ND 0.106 0.046 2.316 0.021

ME ↔ FF 0.116 0.042 2.77 0.006

TE ↔ PR 0.07 0.041 1.699 0.049

TE ↔ SE 0.118 0.039 3.017 0.003

TE ↔ OF 0.137 0.062 2.21 0.027

TE ↔ ND 0.184 0.056 3.269 0.001

TE ↔ RR 0.113 0.059 1.906 0.047

TC ↔ PR 0.204 0.071 2.858 0.004

TC ↔ SE 0.145 0.053 2.725 0.006

TC ↔ S 0.179 0.105 1.716 0.086

TC ↔ OF 0.23 0.098 2.343 0.019

TC ↔ ND 0.203 0.075 2.694 0.007

TC ↔ FF 0.203 0.069 2.956 0.003

PR ↔ SE 0.057 0.032 1.813 0.05

PR ↔ S 0.167 0.071 2.357 0.018

PR ↔ OF 0.239 0.071 3.372 ***

PR ↔ ND 0.088 0.047 1.899 0.05

PR ↔ FF 0.137 0.046 2.981 0.003

SE ↔ ND 0.184 0.05 3.649 ***

SE ↔ FF 0.065 0.029 2.231 0.026

S ↔ OF 0.273 0.107 2.551 0.011

S ↔ RR 0.279 0.103 2.702 0.007

S ↔ FF 0.143 0.063 2.266 0.023

OF ↔ RR 0.202 0.09 2.247 0.025

OF ↔ FF 0.213 0.066 3.202 0.001

ND ↔ FF 0.128 0.046 2.78 0.005

e61 ↔ e62 0.449 0.129 3.483 ***

e51 ↔ e52 0.654 0.158 4.136 ***

e48 ↔ e49 0.474 0.114 4.159 ***

Table 7.  Covariances among main risk dimensions. *** indicates p < 0.001.
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failures. Rather than following a simple linear trajectory, these failures interact in nonlinear and compounding 
ways, gradually eroding organizational defences. This pattern is evident in the validated structural model, where 
operational errors significantly contribute to technical failures, which in turn escalate into fire suppression system 
breakdowns, demonstrating a clear cascade effect. The interconnected pathways revealed through path analysis 
reflect the model’s theoretical foundation: that each layer of protection may contain inherent vulnerabilities, and 
when these vulnerabilities coincide, the system becomes exposed to high-consequence events.

One key insight is the prominence of equipment failure (α = 0.73) and uncontrolled exothermic reactions 
(α = 0.82) as dominant contributors to fire/explosion risk, indicated by both high internal consistency and 
substantial standardized loadings in the CFA model. For example, sub-indicators such as TE3 (Pump failure) and 
S2 (Chemical instability) exhibited factor loadings above 0.7, signalling their critical roles in risk amplification.

In the path model, technical failures (TE) showed strong causal links to both structural integrity (TC) and 
safety system unreliability (FF), supporting the notion that mechanical degradation often triggers cascading 
system failures. This finding resonates with prior research, such as Feng et al. (2022)32, who emphasized the pivotal 
role of aging infrastructure in triggering compound incidents in power systems. Additionally, the significant 
covariance between operational error (OE) and maintenance error (ME) (β = 0.193, p < 0.001) confirms a tightly 
coupled relationship between procedural noncompliance and substandard maintenance routines.

Fig. 6.  Final structural model of risk factors for EFRT fire and explosion hazard Overall. the path model not 
only confirms the theoretical expectation of human error as a systemic initiator, (consistent with Reason’s Swiss 
Cheese Model) but also provides a validated framework for targeting intervention. Emphasis on proactive 
maintenance, operator training, and early error detection emerges as a critical strategy for mitigating cascading 
failures and enhancing EFRT safety resilience.
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Interestingly, fire suppression system faults (FF) retained structural significance in both CFA and path analysis 
stages. Specifically, FF2 (manual delay) and FF6 (valve malfunction) demonstrated meaningful pathways toward 
risk escalation, underscoring the critical, albeit underestimated, role of response system functionality.

In addition to identifying statistically significant pathways, it is essential to distinguish between direct and 
indirect relationships within the structural model to better understand the risk escalation mechanisms. Direct 
paths represent immediate cause-effect links between risk domains. However, the model also revealed critical 
indirect pathways that highlight the layered nature of risk propagation. For example, the pathway from OE to 
FF is not direct but mediated through TE, indicating that procedural lapses can lead to mechanical degradation, 
which in turn compromises safety system performance. This cascading sequence reflects a compound risk logic in 
which the failure of one subsystem amplifies vulnerabilities in others. Similarly, the influence of natural disasters 
(ND) on fire suppression reliability is partly mediated through their effect on structural vulnerability (TC), 
suggesting that environmental shocks may first destabilize physical infrastructure before degrading response 
capacity. These indirect pathways underscore the nonlinear, multi-stage dynamics of EFRT risk systems and 
reinforce the need for holistic risk assessments that go beyond isolated failure points.

The EFA-extracted factor structure explained approximately 72% of the total variance, which reflects a 
strong explanatory power given the multidimensional nature of the dataset. In terms of explained variance, 
the eleven extracted factors collectively accounted for 72.0% of the total variance. Among these, the top three 
contributors were Operational Error (OE, 9.00%), Maintenance Error (ME, 8.37%), and Technical Error 
(TE, 8.05%), highlighting their central role in shaping the underlying risk architecture. In contrast, Security 
System Error (SE) explained only 3.27% of the variance, indicating a more specialized or peripheral influence. 
This distribution suggests a balanced dimensional structure in which both dominant and less prominent but 
meaningful risk domains are preserved, enhancing the model’s interpretability and holistic scope.This level of 
cumulative variance aligns with prior research in behavioural and process safety domains, where values above 
60% are typically considered acceptable for complex constructs. The retention of 11 factors strikes a balance 
between dimensional richness and statistical parsimony, ensuring that the model remains both interpretable 
and theoretically grounded. Although this percentage may appear conservative, it aligns with previous high-
dimensional risk modelling studies such as Jia et al., (2024)15 and Moshashaei et al., (2018)16 where trade-offs 
between model complexity and parsimony were necessary.

Collectively, the model elucidates both direct and indirect pathways through which latent risk constructs 
interact and escalate. For instance, natural disasters (ND) exhibited statistically significant covariance with 
technical failure (TE) and risk response (RR) constructs (β = 0.184 and 0.113 respectively), reflecting how 
external environmental shocks can disrupt technical systems and challenge response protocols simultaneously. 
This multidirectional interdependence echoes the systems-theoretic perspective on industrial safety10, further 
justifying the study’s multivariate analytical approach.

This trade-off between statistical rigor and operational relevance was particularly evident in the handling of 
several risk indicators. Although several indicators were excluded during the EFA phase due to low communalities 
or weak factor loadings their removal was based strictly on statistical thresholds to ensure structural validity 
and factor clarity. However, these variables remain operationally critical from a safety management perspective, 
particularly in emergency response coordination and external agency alignment. Their exclusion from the final 
model does not imply irrelevance but rather reflects the limitations of the underlying dataset in capturing their 
variance. For practical applications, safety professionals are encouraged to retain and monitor these criteria as 
part of holistic risk management strategies, even if they are not statistically dominant within the latent structure.

In interpreting the refinement of the final structural model, it is important to note that several hypothesized 
causal paths were removed during the estimation process due to statistical insignificance (p > 0.05) and limited 
theoretical support. For example, the initially proposed directional relationship between operational error and 
sabotage, although conceptually plausible, failed to demonstrate empirical strength and may instead reflect an 
indirect association moderated by other latent variables. Likewise, the expected influence of redundant response 
on maintenance error lacked both statistical justification and conceptual clarity in the post-hoc analysis. 
Removing these paths improved the model’s parsimony and alignment with empirical reality, ensuring that 
retained linkages reflected both significant causal mechanisms and defensible theoretical logic. This refinement 

Tank ID Risk score risk level Rank

Tank 11 0.950 High 1

Tank 6 0.934 High 2

Tank 9 0.929 High 3

Tank 10 0.834 Medium 4

Tank 5 0.815 Medium 5

Tank 4 0.795 Medium 6

Tank 1 0.767 Medium 7

Tank 2 0.749 Medium 8

Tank 7 0.734 Medium 9

Tank 3 0.658 Low 10

Tank 8 0.591 Low 11

Table 8.  Risk assessment scores, categories, and rankings for 11 EFRTs.
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process contributes to the model’s explanatory robustness while acknowledging that certain relationships may 
require further exploration through scenario-based or longitudinal modelling.

While both the 11-factor and 12-factor models demonstrated acceptable levels of fit based on global indices 
(as shown in Table 5), a closer comparative analysis supports the retention of the 11-factor solution. Statistically, 
the 11-factor model yielded improved parsimony and more stable parameter estimates, with lower standard 
errors and higher factor loadings across retained constructs. Conceptually, the twelfth factor exhibited substantial 
cross-loadings with components from both the emergency response and sabotage domains, indicating construct 
redundancy rather than the presence of a distinct latent variable. Its inclusion also introduced model instability, 
reflected in increased modification indices and poor discriminant validity. Removing this factor allowed the 
11-factor model to maintain theoretical coherence, reduce collinearity among latent constructs, and enhance 
the overall clarity of the structural relationships. As a result, the final model presents a more parsimonious and 
interpretable framework, better suited for practical application and theoretical generalization.

Finally, the model’s ability to stratify real-world tank risk levels, as demonstrated in the Bandar Abbas case 
study, supports its diagnostic strength. Tanks #11 and #6, which received the highest composite risk scores 
(> 0.93), aligned with expert assessments and scenario-based expectations, validating the predictive fidelity of 
the integrated model.

Interpretation and benchmarking against prior studies
The initial content validity was ensured through expert panel reviews and iterative feedback, resulting in a 
final instrument containing 71 sub-criteria across 11 primary dimensions. Internal consistency testing yielded 
Cronbach’s alpha values between 0.60 and 0.82, which aligns with the reliability coefficients reported by Sadeghi 
et al. (2020) in their combined-cycle power plant risk analysis (α = 0.62–0.79), and by Saloua et al. (2019)33, 
who found acceptable internal reliability scores (> 0.65) in petrochemical plant assessments using FTA. These 
comparisons validate the psychometric soundness of our instrument and demonstrate its consistency with 
models applied in other high-risk industrial sectors. The initial CFA model yielded suboptimal fit indices (CFI 
= 0.552, TLI = 0.533), indicating potential issues with model specification or complexity. Through iterative 
refinement, such as eliminating statistically insignificant paths, adjusting covariances among related factors 
(e.g., OE ↔ TE, OE ↔ S), and optimizing measurement relationships, the revised model achieved substantial 
improvement across all indices. The final CFA model demonstrated excellent fit (CFI = 0.915, TLI = 0.918, 
RMSEA = 0.036), confirming the structural coherence and robustness of the extracted latent constructs.

Beyond the statistical structure, the model revealed conceptual overlaps between certain latent factors, 
particularly between emergency response (RR) and sabotage (S), as well as between firefighting failure (FF) and 
technical degradation (TE). While these constructs were retained as distinct domains based on empirical factor 
separation and theoretical relevance, their intercorrelations suggest that risk dimensions in EFRTs often do not 
operate in isolation. For instance, acts of sabotage may indirectly compromise emergency response effectiveness 
by disrupting communication lines or disabling key control systems50. Similarly, firefighting system unreliability 
may stem from underlying technical degradation, reflecting intertwined root causes51. These conceptual overlaps 
do not indicate model redundancy, but rather underscore the layered, systemic nature of risk interactions in 
high-hazard environments. Recognizing such overlaps enhances the interpretability of the structural model, 
encouraging a more integrated approach to risk mitigation that accounts for both independent and converging 
threat pathways.

The central role of operational error (OE) in the final model with prior research emphasizing human and 
procedural faults as primary initiators of major industrial accidents52,53. This finding is also consistent with 
Antonovsky et al. (2014)54, who identified operator behaviour as a pivotal contributor to cascading technical 
and safety failures in petroleum storage contexts. The dominance of OE in this study reinforces the theoretical 
proposition of Reason’s Swiss Cheese Model, wherein active failures act as triggers that penetrate system 
defences. Unlike purely technical hazard models, the current structure highlights the relational complexity 
between OE and downstream constructs such as sabotage, response failure, and maintenance errors, echoing the 
interconnected dynamics reported in studies by J Robert Taylor et al. (2020)55 and L Taylor et al. (2020)56. These 
comparative insights validate both the structure and practical interpretability of the proposed model within the 
broader literature on process safety and accident causation.

The centrality of OE in the structural model further reinforces long-standing theories in human reliability 
and systems safety. According to the Human Reliability Theory (HRT)57, human actions are among the most 
critical initiators of system failures in safety-critical domains. Similarly, the Human Factors Analysis and 
Classification System (HFACS) developed by Shappell and Wiegmann (2000)58 categorizes operational errors 
as foundational to accident chains, often acting as catalysts that propagate latent failures through organizational 
layers. In the current model, OE demonstrated direct paths to multiple domains, including technical failure, 
sabotage vulnerability, and response unreliability, suggesting it acts not only as a primary trigger but also as an 
amplifier of cascading risks. This aligns with Rasmussen’s (1997) Risk Management Framework59, which views 
human operators as both the first line of defence and the most frequent point of breakdown. The model’s findings 
thus provide empirical support for the theoretical notion that improving operator training, decision-making 
protocols, and human-machine interfaces can yield system-wide safety benefits across EFRT facilities.

EFA grouped the data into 11 latent constructs. While largely consistent with the theoretical classification, 
minor regroupings emerged. Similar factor overlaps were reported by Moshashaei et al. (2018)16, who used 
expert consensus to prioritize EFRT fire causes and highlighted functional convergence between human error, 
training gaps, and maintenance deficiencies. This reinforces the notion that empirical factor structures can 
reflect operational realities more precisely than purely conceptual models. Several sub-criteria, including “use of 
explosion-proof equipment,” “insufficient foam and powder firefighting agents,” and “lack of coordination with 
urban firefighting services,” were removed due to low communalities or weak factor loadings. While statistically 
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justified, these elements remain critical from a safety engineering standpoint. Studies such as Liu (2021)60 and 
Shaluf (2011)2 emphasize that fixed foam systems and inter-agency coordination are key components of effective 
EFRT risk mitigation.

CFA was applied to verify the structural validity of the 11-factor solution, resulting in fit indices that, while 
not optimal, were within the range seen in similar multidimensional studies. RMSEA (0.048) indicated good 
fit, while CFI (0.552) and TLI (0.533) were moderate, comparable to results from Makransky et al. (2017)61 and 
Wood et al. (2016)62, who reported similarly imperfect indices in complex behavioural models. Despite sub-
threshold loadings for a few items, these were retained due to their operational significance, an approach also 
defended by Li et al. (2019)20 and Sarvestani et al. (2021)17, who argue that statistically weak indicators may still 
hold predictive or preventative value in applied environments.

During the CFA model refinement, notable shifts were observed in several factor loadings between the initial 
and final models. Items such as TE3 (Pump failure) and FF6 (Valve malfunction) showed increased standardized 
loadings following the removal of cross-loading indicators and the adjustment of residual covariances. This 
improvement suggests that these items better align with their latent constructs in the refined model. Conversely, 
a few items with marginal loadings in the initial CFA maintained relatively weak loading values and were 
excluded to enhance construct validity. These adjustments contributed to the improved internal consistency and 
convergent validity of the final factor structure, as reflected in the revised fit indices.

Compared to Zhang et al. (2016)10, who applied an AHP–FTA model to steel tank risks but lacked statistical 
validation of latent structures, the current study offers an advancement by incorporating EFA, CFA, and path 
analysis in a cohesive statistical workflow. The structural model not only confirmed construct reliability but 
also illuminated causal relationships between domains such as system reliability, environmental hazards, and 
human error, areas that Zhang’s ranking-based approach could not fully capture. Jia et al. (2024)15 similarly 
proposed a modified AHP method for EFRT risk but acknowledged the absence of empirical confirmation for 
the interrelationships among risk factors. This study addresses that gap, offering a data-driven causal network 
validated both statistically and through field application. Importantly, our case study validation across 11 EFRTs 
demonstrated that the model is not only theoretically sound but also capable of real-world risk discrimination. 
Tanks #11 and #6, which scored highest in the model (0.950 and 0.934), were independently flagged by refinery 
engineers as high-priority sites, highlighting the model’s diagnostic accuracy. This practical validation contrasts 
with earlier studies, including those by Sadeghi et al. (2020)36 and Moshashaei et al. (2018)16, which relied 
primarily on simulations or expert judgment.

Finally, the model’s path analysis component provides a distinctive contribution by mapping causal escalation 
routes between risk domains, an approach absents in most previous EFRT studies. While Saloua et al. (2019)33 
and Zhang et al. (2016)10 focused on static fault hierarchies or consequence estimation, this study emphasizes 
system dynamics and interdependencies, reflecting the need for predictive, actionable frameworks in high-
hazard industries.

Scientific contributions and novelty
This study introduces a validated, data-driven framework for assessing fire and explosion risks in EFRTs, offering 
methodological and conceptual advancements over prior research.

First, the sequential application of EFA, CFA, and path analysis distinguishes this work from traditional 
models like AHP or FTA, which often lack empirical validation. The current approach enables both factor 
identification and causal interpretation, filling a key methodological gap noted in studies like Zhang et al. 
(2016)10 and Jia et al. (2024)15.

Second, while the extracted factor structure aligned with the initial theoretical model, certain merged 
constructs, such as firefighting and maintenance failures, revealed latent interdependencies often overlooked in 
previous frameworks16,33.

Third, unlike many prior models, this study underwent real-world validation using data from 11 operational 
EFRTs. The model’s ability to distinguish between high- and low-risk tanks confirmed its predictive value, 
supporting its practical utility36.

Fourth, the proposed model integrates human, technical, environmental, and organizational dimensions, 
aligning with systems-based safety perspectives seen in more recent literature17.

Unlike previous studies relying on expert judgment or simulation-based risk ranking, this study provides an 
empirically validated causal framework that integrates latent construct verification and dynamic risk interaction 
analysis. This integrated structure allows for more robust interpretation of the interdependencies among risk 
dimensions and enhances predictive capability by linking data-driven factor identification (via EFA/CFA) 
with theory-informed causal modelling (through Path Analysis). Consequently, the proposed model bridges 
the gap between statistical validation and practical risk interpretation, offering a scientifically rigorous yet 
operationally meaningful advancement over existing EFRT safety assessment frameworks. Finally, the model’s 
scalable architecture allows adaptation to other high-risk sectors, making it suitable for integration with AI-
driven monitoring or real-time data systems. In summary, this study bridges theory and application by offering 
a robust, generalizable, and empirically validated risk modelling framework for EFRTs.

Practical and policy implications
The findings of this study offer clear implications for both safety practitioners and regulatory authorities involved 
in the management of EFRTs.

	I.	 Operational guidance:
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	The final structural model identifies key leverage points dominant contributors to risk escalation. This provides 
facility managers with a diagnostic tool to prioritize safety investments and allocate resources where they are 
most impactful. For example, tanks #11 and #6, which exhibited the highest composite risk scores in the case 
study, can be flagged for immediate intervention without requiring a full-scale audit.

	II.	 Standardized risk profiling:

	The integration of latent constructs validated through EFA, and CFA allows for repeatable and standardized risk 
assessment across tank farms. Unlike traditional checklists that vary in content and interpretation, this model 
can serve as a benchmarking framework to compare safety performance across different sites or over time, 
thereby supporting compliance auditing and internal risk reviews.

	III.	 Emergency planning and response:

	The model reinforces the importance of organizational readiness which are often underemphasized in conven-
tional hazard identification techniques like HAZOP or FTA. Embedding these validated constructs into emer-
gency protocols can enhance both reactive and proactive strategies, as supported by findings from Saloua et 
al. (2019)33 and Liu (2021)60.

	IV.	 Policy formulation:

	Regulators can adopt the model’s validated indicators and thresholds as a foundation for developing or updat-
ing national safety standards for aboveground fuel storage. As noted by Moshashaei et al. (2018)16, current 
guidelines often lack structure-specific risk metrics tailored to EFRTs. The predictive structure proposed here 
can support risk-based inspection regimes and insurance underwriting decisions. The validated framework 
developed in this study aligns conceptually with several key industrial safety standards and regulatory proto-
cols. The identified factors such as maintenance deficiencies, technical failure, and emergency response gaps 
correspond to critical control elements outlined in NFPA 30, API Standard 2000, and ISO 23,251. Although 
these standards provide procedural and engineering-based safeguards, the current model adds value by offer-
ing a behavioural and organizational risk perspective that is often underrepresented in prescriptive codes.

	V.	 Scalability and digital integration:

	Given its statistical rigor, the model lends itself to integration with digital twin platforms, AI-based inspection 
systems, or real-time monitoring tools. This aligns with recent technological shifts in smart safety infrastruc-
ture observed in high-risk sectors.

Limitations and future research directions
Despite the methodological strengths of this study, several limitations should be acknowledged. First, the sample 
size was relatively limited due to restricted access and insufficient cooperation from oil and gas companies. 
Second, the checklist development and risk scoring processes relied on expert judgment, which inherently carries 
a degree of subjectivity. While statistical tools such as EFA and CFA were applied to reduce bias and ensure 
construct validity, individual interpretation may still have influenced the factor structure and prioritization of 
risk elements.

Future research could address these limitations by expanding sample coverage, incorporating demographic 
profiling, and integrating more objective data sources such as real-time monitoring systems or historical incident 
records. Moreover, cross-validation of the proposed model in different industrial or geographic contexts would 
enhance its robustness and practical relevance.

While the current structural model captures significant causal and correlational relationships between key 
risk domains, it assesses them as discrete and linear paths. However, in real-world EFRT incidents, multiple risk 
factors often interact simultaneously, leading to nonlinear escalation patterns. For instance, an operational error 
occurring in parallel with sabotage or technical failure may result in disproportionately severe outcomes. Future 
research should explore scenario-based risk modelling, potentially using Bayesian networks, FTA/ETA, or 
dynamic probabilistic models to simulate how concurrent or cascading failures evolve over time. Incorporating 
these methods would allow for more robust and realistic safety analysis under complex, uncertain conditions.

Beyond its theoretical and analytical contributions, the proposed structural model holds promise for real-
world deployment in intelligent early warning systems. By linking the identified latent risk factors with real-time 
data inputs from IoT-based monitoring platforms the model can be transformed into a predictive risk dashboard. 
Such an integration would allow site managers to monitor evolving risk patterns, receive automated alerts, and 
proactively mitigate cascading failures. Future research should explore the technological and computational 
integration of this framework into smart safety management systems across high-risk industrial environments.

Conclusion
This study developed and empirically validated a comprehensive structural model to identify, categorize, 
and explain the latent risk factors contributing to fire and explosion hazards in external EFRTs. Integrating 
EFA, CFA, and path analysis enabled the research to move beyond conventional risk-ranking approaches and 
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establish a theory-driven framework that captures both the structural composition and dynamic interactions 
of interdependent risk constructs. This study contributes to the literature and industry practice by offering 
a novel, empirically validated structural model tailored specifically to the context of fire and explosion risks 
in EFRTs. Unlike previous studies that have focused on isolated factors or descriptive statistics, this research 
integrates EFA, CFA, and path modelling to develop a multi-dimensional, causal framework. The model captures 
complex interdependencies between organizational, technical, and emergency response variables, offering both 
theoretical advancement and practical insights. Furthermore, it addresses a critical gap in the risk modelling 
of EFRTs, which are underrepresented in current quantitative safety research. The framework has potential 
application in designing targeted safety interventions, informing regulatory policies, and supporting predictive 
risk analytics in high-hazard storage environments.

The final model consisted of 11 latent dimensions covering technical, operational, environmental, and 
human-related risk domains. Internal consistency across these constructs was statistically acceptable, and model 
fit indices confirmed the structural validity of the proposed framework. The findings also highlighted causal 
pathways among risk factors, identifying critical leverage points such as equipment malfunction, insufficient 
training, and inadequate fire suppression readiness. Case study validation on 11 EFRTs further demonstrated the 
model’s practical utility and discriminatory power in real-world risk differentiation.

In summary, this study presents a validated structural framework that identifies and interrelates key risk 
factors contributing to fire and explosion hazards in EFRTs. While the findings offer strong empirical and 
theoretical grounding, the practical value of the model lies in its potential application across industrial safety 
domains. For example, the identified causal chains, such as the path from operational error to fire suppression 
failure, can directly inform maintenance planning, incident investigation protocols, and targeted safety training 
programs in oil storage facilities.

Future studies are encouraged to expand on this work by applying the model to alternative high-risk 
infrastructures, such as fixed-roof tanks or offshore terminals. Additionally, integrating the framework with 
real-time data streams from IoT-based monitoring systems facilitate predictive analytics and early warning 
mechanisms. Such integration would strengthen the model’s utility as a proactive decision-support tool in 
dynamic and data-rich industrial environments.

Data availability
The data supporting the findings of this study are held by the corresponding author and are available upon rea-
sonable request.
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