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Diabetic retinopathy (DR) stands as a leading cause of global blindness. Early identification and
prompt treatment are essential to prevent vision impairment caused by DR. Manual screening of
retinal fundus images is challenging and time-consuming. Additionally, in low-income countries, there
is a significant gap between the number of DR patients and ophthalmologists. Currently, machine
learning (ML) and deep learning (DL) are becoming a viable alternative to traditional DR screening
techniques. However, DL suffers a major limitation in resource-constrained devices because of its large
model size and substantial computational demands. Knowledge distillation is a prominent technique
for creating lightweight models, effectively transferring knowledge from a larger, complex model to

a smaller, more efficient one without significant loss in performance. Therefore, in this research, a
lightweight student model is proposed, which follows the MobileNet architectural design by utilizing
depthwise separable convolutions. This design ensures efficient performance suitable for edge device
deployment. For binary classification, our proposed model achieved an accuracy, precision, and recall
of 98.38% on the APTOS 2019 dataset, whereas the proposed model achieved an accuracy of 93.03%
for ternary classification on APTOS 2019.
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Diabetic Retinopathy (DR), a microvascular complication of diabetes mellitus, has emerged as a leading cause
of blindness among working-age adults (20-74 years) worldwide!?. According to the International Diabetes
Federation (IDF), 451 million adults (18-99 years old) have diabetes worldwide, and by 2045, that number is
expected to reach 693 million®*. Approximately half (49.7%) of people living with diabetes remain undiagnosed,
significantly delaying critical ophthalmologist interventions®. Among diagnosed patients, global estimates
indicate that 34.6% develop DR, with 10.2% progressing to vision-threatening stages'.

The epidemiological situation in Ethiopia reflects concerning trends, with diabetes prevalence ranging from
2.0% to 6.5% across regions®. Recent studies report DR prevalence of 19.48% among Ethiopian diabetic patients,
with 10.7% having vision-threatening DR (VTDR)”®. This poses substantial public health challenges given
Ethiopia’s severe ophthalmologist shortage (1:1,200,000 ratio) and limited eye care access (available to only 26%
of the population)®.

Current clinical guidelines recommend that type 1 diabetics undergo initial retinal examination 5 years
post-diagnosis, while type 2 diabetics require immediate screening at diagnosis'®!!. However, poor compliance
persists due to multifactorial barriers including limited health literacy, inadequate infrastructure, and insufficient
insurance coverage'>!?. The diagnostic process itself remains labor-intensive, requiring ophthalmologists
to manually screen fundus images for characteristic findings, including microaneurysms, intra-retinal
hemorrhages, venous beading, exudates, and neovascularization'?. With only 232,866 ophthalmologists globally
serving millions of potential DR cases, this manual approach creates critical bottlenecks'.

Lesions are symptoms of the severity level of DR'. Lesions can be broadly classified into four categories: soft
and hard exudates (EX), hemorrhages (HM), and microaneurysms (MA). Due to the weakening of the vessel
walls, MA, an early stage of DR, is identified by the appearance of tiny, round red spots on the retina. These dots
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have clear boundaries and are usually less than 125 micrometers in sizel®. On the other hand, unlike MA, HMs
are recognized by the presence of large patches on the retina that have irregular edges and diameters greater
than 125 micrometers. There are two forms of HM: flame and blot!”. Flame refers to superficial areas, while blot
indicates deeper ones. Hard EX are caused by blood leakage and appear as yellow patches on the retina. They
have clear borders and span the outer layers of the retina!®. Soft EX’s are observable white ovals in the retina that
result from swelling of nerve fibers'. Hemorrhages and MA frequently appear as red lesions, whereas both types
of EX are usually seen in white lesions. The DR lesion details are shown in Fig. 1. These lesions are critical for ML
models, as they serve as the primary features from which the models learn.

Al-enabled systems, particularly leveraging ML and DL, have become useful in automating DR screening
by analyzing retinal fundus images for key lesions such as microaneurysms, hemorrhages, and exudates?.
Among these, convolutional neural networks (CNNs) have demonstrated remarkable success, offering superior
diagnostic accuracy, faster processing, and greater consistency compared to traditional manual screening
methods, thereby reducing dependency on specialized ophthalmologists?!"?2. These advancements facilitate
large-scale, cost-effective screening programs, making them especially valuable in resource-limited settings like
Ethiopia, where infrastructure and personnel constraints hinder traditional approaches?.

However, despite their transformative potential, existing AI models face significant challenges, including
large model sizes, high computational demands, and excessive memory footprints. These limitations hinder real-
time usability, particularly on edge devices such as portable fundus cameras, mobile health platforms, or tele-
ophthalmology setups, resulting in high energy consumption?’. While tele-ophthalmology initiatives in Africa
have provided partial solutions, delays persist due to the need for centralized professional interpretation of
images®*. Overcoming these barriers is critical for deploying Al-enabled DR screening in remote, low-resource
environments.

This study addresses these challenges by developing a lightweight model for DR screening. By bridging
the gap between AI advancements and practical deployment constraints, this research contributes to clinical
practice in diabetes related vision care. To address these limitations, our research leverages knowledge
distillation to develop a lightweight student model that achieves good diagnostic performance while significantly
reducing computational requirements and model complexity. This makes the proposed solution well-suited for
deployment in real-world, resource-constrained environments, thereby facilitating accessible and scalable DR
screening.

The remaining sections of this paper are organized as follows. Section 2 provides an exploration of the related
works. Section 3 discusses the methodology employed in our research. Section 4 presents the experimental
setup, result analysis, and performance comparison. In Section 5, highlights the contributions of the proposed
models. Finally, Section 6 summarizes the key findings and challenges and outlines future directions for further
research.

Related work

DR screening is an active research area focused on finding better techniques to assist physicians in diagnosing
DR. As a result, several research papers have been published on DR screening, particularly in the context of
binary and multi-class classification.

Anoop et al?® and Ishtiaq et al.?® employed custom-designed CNN models for DR classification, which
involve a large number of trainable parameters®>2°. Ishtiaq et al.?” designed a custom CNN model to extract
complex patterns of retinal lesions and used a classical ML classifier for classification. This combination of CNNs
and ML classifiers improves overall performance by leveraging CNNs for feature extraction and ML classifiers
for classification, despite the model’s computational intensity. The CNN models proposed by Anoop et al.?
and Ishtiaq et al.?® are resource-intensive. In contrast, Bala et al.?® developed a computationally efficient model
resembling existing architectures?, using four dense convolutional blocks and employing shortcut connections,

Fig. 1. Visualization of unhealthy retina with their respective lesion!®: (a) Macula, (b) Fovea, (c) Hard Exudate,
(d) Hemorrhages, (e) Optic Disc, (f) Abnormal Blood Vessels Growth, (g) Aneurysms, (h) Soft Exudate.
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which help maintain gradients during back-propagation. This model has 1.1 million parameters, making it
lighter?®.

Pre-trained CNN models have also been used for binary classification of D . These models, including
EfficientNet*?, ResNet®, Inception-V3*, and DenseNet®!, are not architecturally identical but use the same
fundamental CNN operations. While pre-trained models offer a substantial number of trainable parameters,
training them with a relatively small number of samples raises concerns, particularly due to their high
computational demands®*-33. Beghriche et al.** compared the performance of pre-trained models on DR
classification, finding that fine-tuned XCeption outperformed DenseNet121 and MobileNetV23*,

The integration of custom-designed CNN models with techniques like active deep learning® and Siamese
networks® offers a robust solution for image classification, especially when data is limited. Qureshi et al.>’
demonstrated active deep learning for DR classification, allowing the algorithm to select informative image
patches, thereby optimizing model performance. Additionally, integrating Siamese networks with custom CNN,
along with hierarchical clustering of image patches for feature extraction, further enhances performance’. This
combined approach has proven effective in overcoming data limitations and improving classification outcomes®’.

Islam et al.* employed knowledge distillation to transfer knowledge from a teacher model, a fusion of
ResNet152V2 and the Swin Transformer, to a student model, XCeption, enhanced with a Convolutional Block
Attention Module (CBAM). Despite using knowledge distillation, the teacher model remains resource-intensive,
with 145.8 million parameters and 84.4 MB of memory, while the student model, although reduced, still retains
21.4 million parameters and 82 MB¥.

Some studies***! have addressed the complexities of DR classification by re-categorizing inseparable classes,
which simplifies the model design and handling of data features, improving DR grading accuracy.

The VGG model, known for its hierarchical architecture, has been extensively applied to DR classification
Khan et al.* enhanced VGG with stacked spatial pyramid pooling and network-in-network (NiN) layers, which
improves scale invariance and non-linearity, important for identifying DR at varying image scales. However,
VGG’s computational demands can cause gradient vanishing during training, prompting the use of genetic
algorithms (GA) as an optimization tool, though GA is also resource-intensive®.

MobileNet and DenseNet offer computationally efficient alternatives for DR classification, especially in
resource-constrained devices. MobileNet, designed for mobile and embedded applications, provides a lightweight
option?, while DenseNet’s dense connectivity enhances supervision and reduces model complexity*’.
According to Ayala et al.*, DenseNet excels in parametric efficiency, while MobileNet’s lighter structure makes
it more suitable for mobile DR screening applications. InceptionV3, with its inception modules for multi-scale
lesion detection, has demonstrated efficacy in DR grading by capturing features at varying scales. Although
segmentation into smaller patches improves feature extraction, it can be suboptimal due to the convolutional
operations’ ability to capture localized information***°. Advanced models such as InceptionResNetV2 and graph
neural networks (GNNs) further expand DR classification capabilities®!.

A novel semi-local centrality toidentify influential nodes in complex networks by integrating multidimensional
factors (SLCMF)*2. Unlike traditional metrics, SLCMF integrates structural, social, and semantic factors,
enhancing both accuracy and scalability. It employs distributed local subgraphs, redefines centrality using the
average shortest path, and captures latent relationships through semantic graph embedding. On the other hand,
augmentation of the binary grey wolf optimization through quantum computing methodology was used for
vision-threatening DR

Study® identified Lipocalin-2 (LCN2) as a key mediator of neuroinflammation in retinal ischemia-
reperfusion injury, suggesting its potential as a biomarker for glaucoma. Additionally, study®” linked endocrine
disruptors to diabetes through mitochondrial dysfunction, highlighting disruptions in oxidative phosphorylation
and ROS generation. Technological advances include a CRDS-based breath analyzer®® for non-invasive
metabolic monitoring and deep learning methods like CS-Net®” and AM-Net**for real-time ultrasound super-
resolution imaging. In metabolic regulation®, emphasized the role of selenoproteins, while®® characterized
pembrolizumab-induced uveitis as a treatable immune-related adverse event. Generally, these works®4-60
underscore interdisciplinary progress in pathophysiology and precision diagnostics.

Furthermore, ML techniques offer promising accuracy for automated glaucoma detection by analyzing
retinal images through preprocessing, feature extraction, and classification, providing valuable clinical support
in identifying glaucomatous symptoms®!. A hybrid model, ML and Nature-Inspired Model for Coronavirus
(MLNI-COVID-19), combines ML and nature-inspired algorithms to enhance the classification and optimization
of brain Magnetic Resonance Imaging (MRI) scans in COVID-19 patients, demonstrating improved diagnostic
accuracy, sensitivity, and specificity®’. However, computational complexity remains challenging in a resource-
constrained environment. Soft-computing-based gravitational search optimization is used for feature selection,
to eliminate unnecessary features, enhance performance, and reduce computational complexity for glaucoma
predictions®. On the other hand, a genetic algorithm-based differential evolution-based multi-objective feature
selection approach is used to extract only important features®.

I{30—33

42-44

Methodology
Dataset
DL algorithms rely heavily on large datasets to understand image patterns that depict infections or lesions,
as well as normal conditions. Training ML or DL models with substantial and high-quality datasets enhances
model performance.

The Asian Pacific Tele-Ophthalmology Society (APTOS 2019)% is one of the most widely used publicly
available retinal fundus image datasets, published on Kaggle. It contains 3662 retinal fundus images with varying
resolutions, collected from Aravind Eye Hospital in India. The dataset was specifically designed for DR screening,
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Fig. 2. APTOS 2019 and Primary datasets class distribution.
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Fig. 3. Severity level of diabetic retinopathy®: (a) No DR; (b) NPDR; (c) PDR.

making it highly suitable for training and evaluating DR detection models. The class distribution of the dataset is
shown in Fig. 2, providing insights into the prevalence of different DR severity levels within the dataset.

In addition to the APTOS 2019, the primary dataset was collected from local eye clinic centers, including
WAGA Ophthalmology Center, Biruh Vision Specialized Eye Care Center, and KENESER Specialized Eye
Clinic. 3D OCT-1 Maestro 2 and DRI OCT Triton of the Topcon funduscopic machine are used to capture
retinal fundus from the eye care center. The collected images first underwent an expert-based filtering process
to remove low-quality or noisy data. In the second stage, the remaining images were independently annotated
by two experienced ophthalmologists. The dataset is categorized into three classes: No DR (normal retinal
fundus), NPDR (non-proliferative diabetic retinopathy), and PDR (proliferative diabetic retinopathy). The class
distribution is presented in Fig. 2.

The samples of retinal fundus images for each class are shown in Fig. 3, highlighting the lesions or features
that distinguish one class from another.

Data preprocessing
The image pre-processing steps involve noise removal, quality enhancement, and preparation of retinal fundus
images to be suitable for the model.

Retinal fundus images often contain black borders around the actual retina, which do not contribute useful
features for class differentiation. To address this, the cropping process converts the image to grayscale, applies
a threshold (set to 7) to create a binary mask, and retains only the areas with pixel values above the threshold,
effectively removing irrelevant dark regions®. Additionally, a bi-linear interpolation down-scaling algorithm is
used to reduce computational load and memory requirements, while adjusting the image size to fit the model’s
input size. Since fundus images are typically in RGB format, all channels are retained to capture comprehensive
features, although the green channel is often most useful for highlighting blood vessels. Furthermore, contrast-
limited adaptive histogram equalization (CLAHE) with a clipLimit of 2.0 and tileGridSize of (8, 8) is applied
channel-wise to enhance the contrast of the image. CLAHE improves primary contrast, making features in the
retinal image more visible and easier for the model to analyze. The pre-processing techniques are illustrated in
Fig. 4 and Algorithm 1
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Fig. 5. Teacher and Student model architectural differences.

: procedure DATA PRE-PROCESSING

Cropping black pixel located at the edge.

Down-scale the retinal fundus image from various sizes to 512x512.
Split the retinal image in three channels (Red, Green, and Blue).
Apply CLAHE on each channel.

Merge each channel.

. end procedure

NPT wy e

Algorithm 1. Pseudocode for data processing and model training

The dataset was initially split into two subsets: 85% of the pre-processed data as the training dataset and 15%
as the testing dataset. The training dataset was then further divided into 85% as the training set and 15% as the
validation set. Following the data splitting steps, data augmentation was applied on the training set to enhance
dataset diversity, thereby improving model generalization and performance. This process was consistently
applied to the primary dataset and the APTOS 2019 datasets for model training.

Model
MobileNet is a family of lightweight CNN architectures optimized for efficient deployment on mobile and
embedded devices?. In this study, a MobileNet-like structure is chosen due to its ability to significantly reduce
computational complexity and memory footprint through the use of depthwise separable convolutions. This
design makes the model highly suitable for resource-constrained devices such as smartphones or portable
fundus cameras. Moreover, MobileNet has demonstrated competitive performance in various computer vision
tasks, including medical imaging, while maintaining an architecture. These characteristics align with the goal of
developing a lightweight, reliable DR screening model deployable in remote or low-resource settings. To further
reduce the model’s computational complexity, knowledge distillation (KD) is used to transfer knowledge from
a larger, pre-trained “Teacher” model to a smaller “Student” model. This process ensures that the smaller model
achieves comparable performance while significantly reducing computational requirements, making it ideal for
resource-constrained devices®’8. Figure 5 shows the architecture of the “Teacher” model and “Student” model.
A lightweight student model was developed from MobileNet, by the principle of simplifying the teacher
network by reducing the number of network layers and the sizes of filters, as outlined by Gou et al.%’. This
alignment also minimizes the “model capacity gap”, where a significant difference can hinder the Student model’s
ability to effectively gain knowledge from the Teacher®”. Then deeper blocks were systematically trimmed, filter
sizes adjusted, stride patterns modified, and a custom fully connected classification head was used to achieve an
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optimal balance between computational complexity and predictive performance. These choices were specifically
tailored for high-resolution (512x512) medical images and resource-constrained deployment scenarios.
Reducing the deeper layers in a Student model can help maintain important feature extraction ability while
balancing computational efficiency and performance. The deeper layer frequently contains complicated, high-
level information; yet, these layers can be computationally intensive. Therefore, by removing deep layers and
building the shallower layers, which capture the core structural and low-level elements, the Student model
achieves a good balance between maintaining useful information and minimizing the model’s overall size and
latency. Our approach aligns with Wang et al.%, who explained that simplified models focus on retaining the
main features while offloading complex, task-specific details to improve interpretability and performance on
resource-constrained devices. The detailed Student model architecture is shown in Fig. 6 and Table 1.

The distillation of knowledge on MobileNet involves key components and steps as mentioned in Algorithm

2. The distillation process employs a composite loss function combining the standard task-specific loss with a
distillation loss that encourages the Student to mimic the Teacher’s output distribution. The task-specific loss is
computed using Categorical Cross-Entropy, while the distillation loss is calculated using the Kullback-Leibler
(KL) divergence applied to softened probability distributions from both models.

procedure TEACHER MODEL TRAINING
Build MobileNet pre-trained model.
Train the model on the retinal fundus dataset.
Evaluate the performance of the model.

end procedure

procedure DISTILLATION PROCESS
Build Student model.
Define Distiller with the correct configuration.
Train the student model through distiller for knowledge transfer.
Evaluate the performance of the Student model.

. end procedure

R B AN R

=
L=

Algorithm 2. Pseudocode for Knowledge Distillation

The Teacher model is a robust, pre-trained neural network that serves as the source of knowledge. It generates
“soft labels” which are logits, probability distributions over classes, providing richer and more information than
hard labels. On the other hand, the Student model is a smaller, lightweight network designed to replicate the
performance of the Teacher model. The distillation loss is based on a composite loss function that integrates both
soft and hard losses. Figure 7 shows the distillation process and how losses are calculated.

The predictions of the Teacher and Student models are softened using a temperature parameter 7', as described
in Egs. (1) and (2). The application of the SoftMax function with 7" smooths the probability distributions of the
Teacher, making them less sharp (peaky) and more informative. This softened output allows the Student model
to better capture important patterns during training.

Logi
softLabels = softMax (%) 1)

f=1[64, 64,128,128, 128],s=[1,2,1,2,1]

; GlobalAveragePooling2D()
X5

DepthwiseConv2D() K = 3, S=s

N BatchNormalization() Dense()  Unit= 128
InputLayer [ (512, 512, 3)] '
v ReLU()
Conv2D () F=32, K=3, S=2 — v ReLU()
v Conv2D() F=f, K=1, S=1

Dense() Unit= 3/2

BatchNormalization() |
g BatchNormalization()

{ Total Parameters: 73,411

Input Layer ReLU() Trainable Parameters: 71,491

DW Conv Block Full Connected Layer

Fig. 6. Architecture of the proposed Student model.
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Layer Type Output Shape | Parameters
Input Layer (512,512, 3) 0
Conv2D (3% 3, 32 filters, stride 2) | (256, 256, 32) | 896
Batch Normalization (256, 256, 32) | 128
ReLU Activation (256,256,32) |0
Block 1 (64 filters, stride 1)

Depthwise Conv2D (3% 3) (256, 256, 32) | 320
Batch Normalization (256, 256, 32) | 128
ReLU Activation (256, 256,32) |0
Pointwise Conv2D (1 X 1, 64 (256,256,64) | 2,112
filters)

Batch Normalization (256, 256, 64) | 256
ReLU Activation (256, 256,64) |0
Block 2 (64 filters, stride 2)

Depthwise Conv2D (3% 3) (128,128,64) | 640
Batch Normalization (128,128,64) |256
ReLU Activation (128,128,64) |0
Eﬁier;tsv)vise Conv2D (1X1, 64 (128,128, 64) | 4,160
Batch Normalization (128,128,64) | 256
ReLU Activation (128,128,64) |0
Block 3 (128 filters, stride 1)

Depthwise Conv2D (3% 3) (128,128,64) | 640
Batch Normalization (128,128, 64) |256
ReLU Activation (128,128,64) |0
Pointwise Conv2D (1x1, 128 (128,128, 8.320
filters) 128) >
Batch Normalization (112%3’ 128, 512
ReLU Activation (112%;;’ 128, 0
Block 4 (128 filters, stride 2)

Depthwise Conv2D (3 x3) (64, 64, 128) 1,280
Batch Normalization (64, 64, 128) 512
ReLU Activation (64, 64, 128) 0
Eﬁierig\;rise Conv2D (1x1,128 (64, 64, 128) 16,512
Batch Normalization (64, 64, 128) 512
ReLU Activation (64, 64, 128) 0
Block 5 (128 filters, stride 1)

Depthwise Conv2D (3 X 3) (64, 64, 128) 1,280
Batch Normalization (64, 64, 128) 512
ReLU Activation (64, 64, 128) 0
Eﬁir;?;rise Conv2D (1x1,128 (64, 64, 128) 16,512
Batch Normalization (64, 64, 128) 512
ReLU Activation (64, 64, 128) 0
Fully Connected Layers

Global Average Pooling 2D (128,) 0
Dense (128 units, ReLU) (128,) 16,512
Dense (2 units) 2,) 258
Dense (3 units) (3,) 387
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Input Layer

Parameter Summary
Trainable 71,362
Dense (2 units) Non-trainable | 1,920
Total 73,282
Trainable 71,491
Dense (3 units) Non-trainable | 1,920
Total 73,411

Table 1. Detailed architecture of the proposed student model.
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Fig. 7. MobileNet knowledge distillation process.
. Logits
softPredictions = softMax (W) )

To quantify how well the Student’s prediction distribution approximates the Teacher’s softened prediction
distribution, the Kullback-Leibler (KL) Divergence is used. Therefore, the distillation loss is computed by
applying KL Divergence to the softened labels (Eq. 1) and softened predictions (Eq. 2):

3)

distillation loss = Z SoftLabels(x)log (SoftPredzcztons(m) )

SoftLabels(x)

Here, x represents the output logit for each class. The KL divergence quantifies how closely the Student’s softened
probability distribution approximates that of the Teacher.

The total loss for training the Student model combines the task-specific loss (student_loss), which uses
CategoricalCrossentropy, and the distillation loss. The total loss is defined in Eq. (4):

loss = o - student loss + (1 — «) - distillation loss 4)

Here, o is a hyperparameter that controls the trade-off between learning from the ground truth labels (student_
loss) and learning from the Teacher’s knowledge (distillation_loss). When @ — 1, the Student model relies more
heavily on the task-specific loss; when o« — 0, the Student model relies predominantly on the Teacher’s softened
knowledge.

While the Distiller class allows flexibility in selecting v and temperature 7', systematic hyperparameter
tuning was conducted using Keras-Tuner’s Hyperband algorithm to identify optimal values. The search space for
a was set to [0.1, 0.9] with increments of 0.1, and for temperature T to [0, 50] with increments of 5, optimizing
for validation accuracy. The best-performing configuration was found to be alpha = 0.5and T' = 10, and used
for the knowledge distillation from the Teacher model, leading to improved Student model performance.

Experiment and result analysis

Experimental setup

The proposed model was trained and tested on a machine equipped with hardware specifications of 13th Gen
Intel(R) Core(TM) i7-13700H, 2400 MHz, and 8GB NVIDIA-SMI 546.12 GPU, CUDA 12.3. The proposed
model was implemented using the Keras API on the TensorFlow framework version 2.10.0.

Performance evaluation metrics
Performance metrics are quantitative measures used to evaluate our model’s effectiveness on the dataset. The
metrics formula used in our study is shown as follows;
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Parameter Values
Input Shape 512x512
Batch Size 8

Initial Learning Rate 0.0001
Optimizer Adam
Alpha « for Distiller 0.5
Temperature T for Distiller | 10

Table 2. Summary model configurations for Teacher, Student model, and Distiller.
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Fig. 8. The performance of MobileNet and MobileNetV2 at different alpha values on APTOS 2019 dataset.

Parameter/Callback

Value/Description

ReduceLROnPlateau

Factor = 0.2, Patience = 3, Minimum LR =1 X 10~ 12

EarlyStopping

Patience = 13 epochs, Restore Best Weights = True

Table 3. Model Training Configuration and Callback Settings.

Accuracy = TP+TN (5)
TP+ FP+TN+ FN

Precision :TPJ;——PFP (6)

Recall :TP}—;——PFN (7)

R,

AUC = / " Pe) d(z) ©)

Result analysis
Teacher model selection
This research utilizes MobileNet, a family of lightweight CNNs optimized for efficient use on mobile and
embedded devices. Both MobileNet and MobileNetV2 are evaluated to find the best Teacher'’s model that can
effectively lead to the development of a lightweight, accurate Student model. During the Teacher model selection
phase, the models are evaluated on ternary classification: No-DR, Non-proliferative DR, and Proliferative DR.
The detail of model configuration is shown in Table 2 and various values of o, which determine the width
multiplier. Our experiments showed that MobileNet with « value of 0.25 achieved the optimal combination
of performance and efficiency, making it the ideal Teacher model for our research. Table 4 and Fig. 8 show the
results of MobileNet with MobileNetV?2 at various « values. These visualizations provide a clear overview of each
model’s strengths and help us to identify a high-performing Teacher model, which will later be refined into an
even lighter Student model suitable for real-time application in a computational constraint device.
Furthermore, the model training setup and configuration were thoughtfully designed to ensure smooth
convergence and optimal generalization of the proposed student model enhanced through knowledge distillation.
To support effective learning and systematically monitor the model’s performance, several callback mechanisms
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Model Alpha (o) | Trainable Parameter | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)
0.25 279,635 94 89 88 89
0.50 950, 691 92 84 79 81
MobileNet
0.75 2,014, 195 92 87 76 79
1 3,470, 147 93 86 80 82
0.35 724835 93 86 82 84
0.50 1,016, 387 91 83 78 80
MobileNetV2
0.75 1,684, 131 93 86 82 84
1 2,552,579 92 85 82 83

Table 4. Comparison of Teacher models selection on ternary classification on APTOS 2019 dataset.

Model Averaging Accuracy (%) | Precision (%) | Recall(%) | F1 Score(%)

macro avg 99.45 99.45 99.45 99.45
Teacher

weighted avg | 99.45 99.45 99.45 99.45

macro avg 94.73 94.73 94.73 94.73
Student without KD

weighted avg | 94.73 94.733 94.73 94.73

macro avg 98.36 98.36 98.36 98.36
Student with KD (Proposed Model)

weighted avg | 98.36 98.36 98.36 98.36

Table 5. Models Performance of Binary Classification on APTOS 2019 Dataset.

Model Averaging Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)

macro avg 93.88 92.65 93.88 93.21
Teacher

weighted avg | 93.88 94.05 93.88 93.92

macro avg 85.71 83.79 86.73 84.69
Student without KD

weighted avg | 85.71 87.28 85.71 86.01

macro avg 93.20 93.24 91.33 92.18
Student with KD (Proposed Model)

weighted avg | 93.20 93.20 93.20 93.12

Table 6. Model’s performance of binary classification on a primary dataset.

were integrated during training. Specifically, a ReduceLROnPlateau callback was employed to dynamically
adjust the learning rate by a factor of 0.2 when the validation loss failed to improve for three consecutive epochs,
with the minimum learning rate capped at 1 x 10~!2. To mitigate overfitting, EarlyStopping was applied with
a patience of 13 epochs, ensuring that the model reverted to the best-performing weights observed during
training. The complete details of these configurations are summarized in Table 3.

Binary classification
In binary classification, our objective is to evaluate the performance of the model in classifying retinal fundus
images into two groups: 'No_DR and 'DR’ The model performed well in the binary classification task, indicating
that it is capable of accurately distinguishing the two classes. This high degree of separability demonstrates
the model’s ability to efficiently differentiate normal retinal fundus images from those containing DR features.
The Teacher model demonstrates superior performance on APTOS 2019 and primary datasets compared to
the Student models, including both the Student with KD and without KD. Notably, the Student model with
KD achieves comparable performance to the Teacher model across these datasets. This outcome shows the
effectiveness of KD techniques in successfully transferring insights from the Teacher model to the Student model.
Additionally, training the model on the primary dataset begins with initializing the model with the weights
gained from the APTOS 2019 dataset. This approach adopts the model’s generalization capacity from the APTOS
2019 dataset to a primary dataset, assuring its robustness and effectiveness in deployment for a local eye clinic.
Table 5 presents the performance of the Teacher and Student models, with and without knowledge distillation,
on the APTOS 2019 dataset. Similarly, Table 6 shows primary datasets. The Student model trained with KD
consistently outperformed students without KD, achieving an accuracy of 98.36% on APTOS 2019 and 93.20%
on the primary dataset. These results demonstrate the effectiveness of KD in enhancing model generalization
and accuracy, especially under limited data conditions. While all models performed best on APTOS 2019, the
performance drop on the primary dataset is likely due to the small dataset and variability. Nonetheless, KD
proved beneficial in transferring knowledge from the Teacher to the Student model. Additionally, the models
performance is shown in detail in Fig. 9.
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Fig. 9. Comparison of models’ performances on APTOS 2019 and primary datasets for binary classification.

Dataset Fold (k) | Accuracy(%) | Precision(%) | Recall (%) | F1 Score (%)
1 98.36 98.36 98.36 98.36
2 97.45 97.46 97.45 97.45
3 97.64 97.64 97.64 97.64

APTOS 2019 4 97.09 97.09 97.09 97.09
5 97.82 97.83 97.82 97.82
Mean 97.67 97.68 97.67 97.67
Std +0.46 +0.47 +0.46 +0.46
1 89.12 89.12 89.12 89.12
2 93.20 93.20 93.20 93.12
3 88.44 88.81 88.44 88.01

Primary Dataset | 4 92.52 92.91 92.52 92.60
5 91.84 91.81 91.84 91.74
Mean 91.04 91.17 91.04 90.92
Std +1.89 +1.87 +1.89 +2.01

Table 7. Comparison of Student with knowledge distillation model cross-validation on APTOS 2019 and
Primary Dataset.

Cross-validation is a resampling technique used to assess the performance of a machine learning model by
partitioning the dataset into multiple subsets. This method ensures that the model is evaluated on unseen data,
reducing the risk of overfitting and providing a more reliable estimate of its generalization performance.

Furthermore, cross-validation is employed to evaluate the robustness of the proposed model as shown in
Table 7. Given the high class imbalance in the dataset, the StratifiedKFold method is utilized to maintain the
original class distribution across training and validation splits, ensuring a fair evaluation.

The model’s learning curve gives useful information about the pattern of the Teacher model and Student model
with KD and without KD in the training stage, indicating if the model has reached the optimal performance. It
also helps in detecting signs of over-fitting or under-fitting. Additionally, it indicates the model’s learning pattern,
indicating whether it is failing to learn or progressively improving over time. Therefore, the learning curve of our
models demonstrates strong performance and convergence to an optimal performance. Additionally, the curve
does not show any signs of under-fitting or over-fitting, indicating a well-fitted model. However, the learning
curve of the models on the primary dataset shows slight fluctuations, indicating difficulty in understanding the
unique aspects of the primary data, particularly for the Student model without KD. Despite these fluctuations,
the curve gradually converges, indicating that the model has been successfully trained to identify DR from
normal retinal fundus images. Figures 10, 11 shows the learning curve of student model with KD, where as
Figs. 17, 18 shows the learning curves of the Teacher and Student models without knowledge distillation, on the
APTOS 2019 and primary datasets, respectively.

A confusion matrix provides a clearer picture of class-wise model performance, especially on imbalanced
datasets, making it essential for targeted model improvements. Therefore, our model’s confusion matrix in
binary classification shows that our model is good at identifying the class of samples without confusion in
APTOS 2019 and the primary datasets. The model predicts True Positives and True Negatives well, while False
Positives and False Negatives occur more rarely. This shows that the model’s predictions are very close to the

Scientific Reports |

(2026) 16:1181 | https://doi.org/10.1038/s41598-025-30893-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.9
08 —
——— Training
0.7 —— Validation
0.6
0.5
0 10 20 30 40 50 60 70
(a)
AUC, and (c) Loss.
:
08 //\/'W/\’WNW
06 — Tra}mng
—— Validation
0.4

0 5 10 15 20 25 30 35 40 45

(@

AUC, and (c) Loss.

0.9

0.8

0.7

0.6

0.5

0.8

0.6

0.4

AT

0 5

0.9
~—— Training 04 ——— Training
—— Validation —— Validation
0.08
0.03
20 30 40 50 60 70 0 10 20 30 40 50 60 70

©

Fig. 10. Training curves of student with KD on binary classification using APTOS dataset; (a) Accuracy, (b)

~—— Training
—— Trainin, 08 —
. 'g —— Validation
—— Validation 0.4
0.09
10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

(b)

©

Fig. 11. Training curves of student with KD on binary classification using primary dataset; (a) Accuracy, (b)

250 -250
< DR -200 g < DR -200
2 = =
= = =
< -150 < o -150
5 -100 5 § -100
© No_DR 271 o O No DR 255

_ L 50 - -50
-0

DR No DR DR No_DR DR No_ DR

Model Prediction Model Prediction Model Prediction

(i) Teacher (ii) Student+KD (iii) Student
80 80 80

e < DR 95 =

60 2

c c o 60

E E E

g © 2 o 2 @

S © No DR ©

20 20 20
DR No DR DR No DR

Model Prediction

(iv) Teacher

(v) Student+KD

Model Prediction

DR
Model Prediction

No DR

(vi) Student

Fig. 12. Confusion matrices comparing model performance across datasets: (i-iii) APTOS 2019, (iv-vi)

Primary Dataset.

Scientific Reports|  (2026) 16:1181

| https://doi.org/10.1038/s41598-025-30893-7

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Model Averaging Accuracy (%) | Precision (%) | Recall(%) | F1 Score(%)

macro avg 94.18 88.58 89.34 88.93
Teacher Model

weighted avg | 94.18 94.23 94.18 94.18

macro avg 79.09 67.18 69.02 66.04
Student without KD

weighted avg | 79.09 85.09 79.09 81.03

macro avg 93.09 87.37 87.32 87.34
Student with KD (Proposed Model)

weighted avg | 93.09 93.03 93.09 93.07

Table 8. Model’s performance of ternary classification on APTOS 2019 dataset.

Model Averaging Accuracy (%) | Precision (%) | Recall(%) | F1 Score(%)

macro avg 86.39 85.70 84.49 85.04
Teacher Model

weighted avg | 86.39 86.33 86.39 86.33

macro avg 76.19 73.78 78.07 75.04
Student without KD

weighted avg | 76.19 78.01 76.19 76.36

macro avg 85.71 83.58 83.38 83.46
Student with KD (Proposed Model)

weighted avg | 85.71 85.62 85.71 85.65

Table 9. Model’s performance of ternary classification on a primary dataset.
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Fig. 13. Comparison of model performances on different datasets.

actual labels. Figure 12 shows the confusion matrix of the teacher and student model with KD and without KD
on each dataset.

Ternary classification

The main objective of ternary classification is to build a robust model for automated grading of retinal fundus
images, in which images are classified based on DR categories. This classification is crucial for the early detection
and treatment of DR. The three categories considered for ternary classifications are listed as follows”":

1. No DR: The retina is free of detectable signs of DR, indicating a healthy retinal condition.
Non-proliferative DR (NPDR): This category represents the blood or liquid leakage at the back of the eye, the
so-called retina. This category includes a grade of mild, moderate, and severe diabetic retinopathy.

3. Proliferative DR (PDR): This category identifies advanced DR, characterized by the growth of abnormal
blood vessels. PDR poses a high risk of vision impairment if left untreated, which requires timely ophthal-
mologist intervention.

In our experiment, the proposed model achieves good performance across all datasets, demonstrating
its robustness in ternary classification. The results are presented in Table 8 and 9 for the APTOS 2019 and
Primary datasets, respectively. The performance of the model on the Primary datasets is slightly lower than
on the APTOS 2019 dataset, as the Primary datasets are smaller. However, the performance of our proposed
model shows comparable results to the teacher model. The proposed model achieves up to 93.09% accuracy on
the APTOS 2019 dataset, whereas the proposed model achieved 85.51% accuracy on the primary dataset. The
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Dataset Fold (k) | Accuracy(%) | Precision(%) | Recall (%) | F1 Score (%)
1 87.64 89.28 87.64 88.23
2 92.73 92.74 92.73 92.73
3 90.55 90.26 90.55 90.38
APTOS 2019 4 87.09 88.68 87.09 87.26
5 93.09 93.06 93.09 93.07
Mean 90.22 90.80 90.22 90.33
Std +2.63 +1.90 +2.63 +2.38
1 83.67 84.02 83.67 83.58
2 85.03 85.77 85.03 84.63
3 85.03 84.85 84.03 84.65
Primary Dataset | 4 85.71 85.62 85.71 85.65
5 83.67 84.02 83.67 83.58
Mean 84.62 84.86 84.42 84.42
Std +0.88 +0.83 +0.89 +0.86

Table 10. Comparison of Student with knowledge distillation model cross-validation on APTOS 2019, and
Primary Dataset.
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Fig. 14. Training curves of student with KD on ternary classification using APTOS dataset; (a) Accuracy, (b)
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scores, particularly in recall (the ability to correctly identify all relevant cases) and F1-score (which balances
precision and recall), indicate reliable classification and strong generalization capability. Additionally, the model’s
performance is shown in detail in Fig. 13. Despite a 74% reduction in trainable parameters and floating point
operations per second (FLOPS), the model maintains strong performance. As our main objective is to build a
model with less computational intensity while maintaining comparable performance to the Teacher model (pre-
trained), a lightweight Student model is successfully developed with strong performance in ternary classification
as well (Table 10).

Furthermore, cross-validation is also employed for the ternary class to evaluate the class-wise performance
and robustness of the proposed model as shown in Figure 10.

The learning curves illustrate the training patterns of our models, showing a smooth convergence for each
model. Additionally, it depicts the learning behavior of the teacher model and the student models, both with and
without KD. Figures 14 and 15 show the learning curves of the student model with KD, whereas Figs. 19 and
20 shows the Teacher and Student models without KD on the APTOS 2019 and Primary datasets, respectively.

Scientific Reports |

(2026) 16:1181 | https://doi.org/10.1038/s41598-025-30893-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

-250 -250 -250
NPDR | 215 NPDR | 214 NPDR
5 200 .5 200 g -200
2 = =
&= -150 & SE - 150
2 No_DR 2 No_DR "2 No_DR
3 100 3 100 3 100
— — —
] G] G]
PLDR 50 PLDR 50 PLDR 50
NPDR No DR PLDR ) NPDR No DR PLDR ) NPDR No DR PLDR
Model Prediction Model Prediction Model Prediction
(i) Teacher (ii) Student+KD (iii) Student
-60 60 U
NPDR 64 NPDR 63 NPDR /5
= o b=
5
£ a0 0 E 20
"2 No DR 2 No DR 2 NoDR
=] 3 3 20
e 20 2 2
S S 2y &
PDR 10
NPDR NoDR PDR NPDR NoDR PDR NPDR NoDR PDR
Model Prediction Model Prediction Model Prediction
(iv) Teacher (v) Student+KD (vi) Student
Fig. 16. Confusion matrices for ternary classification across datasets: (i-iii) APTOS 2019 dataset, (iv-vi)
Primary dataset.
Author and Year Models Trainable Parameters | Accuracy | Precision | Recall | F1-Score
Chetoui et al., 20202 EfficientNet-B7 66, 700, 000 - - 98.1% |-
BK Anoop et al., 2022%° Custom CNN 184,197, 154 94.6% - 86% -
Bala et al., 202228 Custom CNN 1, 100, 000 97.54% 97.55% - 0.97
Nandakumar et al., 20223! Modified DenseNet-121 - 96% 93.51% 98% 0.98
Begriche et al., 2023% fine-tuned XCeption - 99.8% - - -
ResNet152V2 + VIT (Teacher Model) | 145, 800, 000 95.15% - - -
Islam et al., 2023% XCeption + CBAM (Student Model) | 21, 400, 000 99% - - -
Tuncel et al., 20257! VGG16 - 97% 97% 97% 97%
Naveen et al., 20257 EffNet-SVM - 97% 97% 97% 97%
Teacher Model MobileNet 279,378 99.45% 99.45% 99.45% | 99.45%
Student without KD Reduced parameter MobileNet 71,362 94.73% 94.73% 94.73% | 94.73%
Student with KD (Proposed Model) | Reduced parameter MobileNet 71,362 98.36% 98.36% 98.36% | 98.36%

Table 11. Binary classification performance on APTOS 2019 datasets.

On the other hand, the confusion matrices illustrate the classification performance of the models. The
Student model without knowledge distillation (KD) on the APTOS 2019 dataset shows significant confusion,
indicating difficulty in distinguishing between classes. The confusion matrices for each model across all datasets
are presented in Fig. 16. Overall, the results demonstrate that the models have effectively learned and extracted
essential features and lesion patterns during training.

Performance comparision

Binary classification

The performance comparison of the proposed model with various state-of-the-art techniques is shown in Table
11. While many of the reviewed models demonstrate competitive accuracy, our proposed Student model with
knowledge distillation (KD) achieves a superior balance between classification performance and computational
efficiency.

Chetoui et al.** employed the EfficientNet-B7 architecture, achieving a recall of 98.1%. However, its large
model size, approximately 66.7 million trainable parameters, renders it impractical for deployment on resource-
constrained devices. In contrast, our Student model with KD achieves a nearly equivalent recall of 98.18% while
using only 71,362 parameters, offering a drastic reduction in complexity.
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Similarly, BK Anoop et al.?* achieved 94.6% accuracy and 86% recall using a CNN model with an enormous
184 million parameters. Despite its high accuracy, the substantial parameter count poses limitations for
scalability. Our Student model with KD not only surpasses this model in accuracy (98.18%) and recall (98.18%)
but does so with a model that is more than 2,500 times smaller.

Bala et al.”® proposed a CNN model with 1.1 million parameters, reporting 97.54% accuracy and an F1-score
of 0.97. While their model is relatively lightweight compared to others, our KD-enabled Student model achieves
comparable or better performance with less than 7% of the parameters, further emphasizing its efficiency.

In another notable work, Islam et al.* utilized a hybrid ResNet152V2 + Vision Transformer (ViT) as a
Teacher model, comprising 145.8 million parameters and yielding 95.15% accuracy. Our Teacher model, based
on MobileNet, achieves a higher accuracy of 98.55% using only 279,378 parameters, underscoring our model’s
efficiency without compromising accuracy. Furthermore, their corresponding Student model, built using
XCeption with CBAM, achieved 99% accuracy with 21.4 million parameters. In comparison, our KD-based
Student model achieves a competitive 98.18% accuracy with just 71,362 parameters.

Ternary classification

The performance comparison of the proposed model with state-of-the-art techniques for ternary classification is
shown in Table 12. The results demonstrate that our proposed models consistently maintain good classification
performance across APTOS 2019 datasets, while significantly reducing computational requirements. Although
existing studies have achieved good results, many of them involve models with a large number of trainable
parameters, limiting their practicality in resource-constrained environments.

Athira et al.*° utilized a ResNet50 model to achieve 94% accuracy, precision, and recall, using 25.6 million
parameters. In comparison, our Student model with KD achieves a closely matching performance of 93% across
all metrics, while requiring only 71,491 parameters, demonstrating a substantial reduction in model size.

Rao et al.”? proposed an InceptionResNet model and reported 88% accuracy, precision, recall, and F1-score
with 55.9 million parameters. Our Student model with KD outperforms this model in all metrics, with nearly
780 times fewer parameters.

Kobat et al.”* used a DenseNet architecture combined with a Cubic SVM classifier, achieving 93.85%
accuracy and strong precision. Butt et al.*! introduced a hybrid model combining GoogleNet, ResNet-18, and
SVM, reporting 89% across metrics. Although effective, these models likely carry higher computational loads
compared to our student model with KD.

Our Teacher model, based on MobileNet, achieves 94% across all metrics on the APTOS dataset with only
279,378 parameters. Meanwhile, the Student model without KD shows a notable performance drop (70%
accuracy and recall), highlighting the effectiveness of knowledge distillation in enhancing lightweight models.
The KD-based Student model demonstrates strong performance (93%) while remaining highly efficient.

These results show that our proposed KD-based Student model provides a good performance and efficiency.
Its lightweight architecture makes it particularly well-suited for real-time and mobile applications, where
memory and processing power are often limited.

Discussion

One of the limitations of ML models is that they are heavyweight. In this regard, our proposed model is a
lightweight model with comparable performance to the heavy and highly computational-intensive model
proposed by researchers. Furthermore, knowledge distillation has significantly impacted the transfer of
knowledge from the teacher model to the student model. There is a huge difference between the student model
built from scratch and the student model built with knowledge distillation; this shows a significant role of
knowledge distillation techniques in transferring knowledge from the teacher model. Additionally, the proposed
model has been evaluated on APTOS 2019, and primary datasets collected from local eye clinic centers. The
performance of the model on primary datasets shows the robustness of the model on different datasets.

After a thorough experiment on the separability of NPDR severity levels, the distinction in NPDR severity
levels often leads to overlaps in key image features called lesions. Furthermore, the case study presented at the
TensorFlow Dev Summit 20177> demonstrated that even domain experts (ophthalmologists), may provide
varying gradings for the same retinal images. These grading inconsistencies are particularly challenging in cases
of NPDR. Therefore, for better alignment with clinical practice, clarity, and appropriateness of medication and
treatment for each category, ternary classification is chosen to be our experiment for multi-class classification.

Author and Year Models Trainable Parameters | Accuracy | Precision | Recall | F1-Score
Rao et al., 202073 InceptionResNet 55,900, 000 88% 88% 88% 0.88
Kobat et al., 202274 DenseNet + Cubic SVM - 93.85% 90.90% 80.60% | 83.78%
Butt et al.,, 2022%! GoogleNet + ResNet-18 + SVM | - 89% 89% 89% 0.89
Athira et al., 2023%° ResNet50 25, 600, 000 94% 94% 94% 0.93
Teacher Model MobileNet 279,378 94.18% 94.23% 94.18% | 94.18%
Student without KD Reduced parameter MobileNet | 71,491 79.09% 85.09% 79.09% | 81.03%
Student with KD (Proposed Model) | Reduced parameter MobileNet | 71,491 93.09% 93.03% 93.09% | 93.07%

Table 12. Ternary classification performance on APTOS 2019 datasets.
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Metric Teacher Model Student Model (Proposed Model)
Computational Complexity (FLOPs) | 1557.14 MFLOPS | 1018.73 MFLOPS

Model Disk Size 3.92 MB 0.30 MB

RAM Usage 3.67 MB 0.21 MB

Table 13. Comparison of Teacher and Student Model Computational Complexity.

On the other hand, t-SNE was employed to demonstrate the model’s ability to cluster the test dataset
effectively. We visualized the feature representations extracted from the Global Average Pooling (GAP) layer
and the Output layer to assess how well the models are clustering the data. In the binary classification task, the
models show a clear ability to group the test dataset according to their respective classes, demonstrated on the
APTOS 2019 and primary dataset in Figs. 21, 22, 23, and 24. However, in the ternary classification task, the
models exhibit slight confusion when distinguishing between the three classes, particularly the Student model
without KD. This indicates that while the model performs well in binary classification, it faces more challenges
when dealing with ternary classes.

To further validate these observations, the Silhouette Score and Davies-Bouldin Index (DBI) for both binary
and ternary classification on the primary dataset, and APTOS 2019 dataset dataset are shown in Tables 14, 15,
16, and 17. These metrics quantitatively assess the quality of grouping in the extracted features from GAP and
the output layer of each model. The Output layer consistently achieves good feature separability compared to
the GAP layer and the test dataset. Furthermore, the Student model with KD generally demonstrates superior
clustering behavior compared to the Student model without KD, supporting the effectiveness of KD in improving
the model’s performance of feature representations. While in the binary classification, the model demonstrated
better feature separability for classifying No DR and DR cases, its performance notably decreased for ternary
classification, indicating the model’s a little confusion in capturing lesion variations between categories like PDR
and NPDR.

Knowledge distillation is a technique that enables a smaller Student model to learn from a larger, more
complex Teacher model. Through this process, the Student model captures essential knowledge and approximates
the performance of the Teacher model, even with reduced computational complexity. As a result, knowledge
distillation produces a highly efficient Student model that is compact enough for deployment on resource-
constrained devices. Table 13 shows the detailed model computational complexity of the teacher model and the
proposed student model on the primary dataset.

Generally, the main strengths and contributions of the study presented in this article include:

o A lightweight student model was developed from MobileNet, by the principle of simplifying the teacher net-
work by reducing the number of network layers and the sizes of filters, as outlined by Gou et al.%’.

« The significance of knowledge distillation in building lightweight models with performance comparable to
Teacher model.

« The robustness of the proposed model, demonstrated by evaluating its performance on the APTOS 2019
dataset and the primary dataset for both binary and ternary classification.

Conclusion and future work

This study presented a knowledge distillation technique to transfer knowledge from the Teacher model to the
proposed Student model. The Student model comprises only five Depthwise Convolutional Blocks, followed by
two fully connected layers for classification. With knowledge distillation, the proposed model demonstrated
promising results, whereas the Student model without knowledge distillation struggled to perform effectively.

The models were evaluated on APTOS 2019 and primary datasets, demonstrating robustness across diverse
datasets. A comparison with state-of-the-art techniques revealed that the proposed model achieves comparable
performance while being significantly less resource-intensive. For binary classification, our proposed model
achieved an accuracy of 98.38% on the APTOS 2019 dataset. Furthermore, the student model with knowledge
distillation achieved an accuracy of 93.03% for ternary classification on APTOS 2019.

Additionally, the proposed model demonstrates strong class separability in feature space, as visualized using
t-SNE on test data. To further assess separability, features extracted from the Global Average Pooling (GAP) and
Output layers were visualized using t-SNE

The findings of this study show that the proposed lightweight model with knowledge distillation achieves
good performance and is suitable for deployment in resource-constrained devices. Future work will focus on
enhancing the model’s performance using alternative knowledge distillation techniques like FitNets, Hint-
based KD, self-distillation, and using Neural Architecture Search or pruning for selecting important nodes,
an algorithmic solution for inseparable classes, and employing interpretability techniques to enhance the
understanding and clarity of the model’s predictions.
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Fig. 23. t-SNE visualization of models for ternary classification on APTOS 2019 dataset: (i) Teacher Model, (ii)
Student Model Without KD, and (iii) Student Model With KD.
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Fig. 24. t-SNE visualization of models for ternary classification on primary dataset: (i) Teacher Model, (ii)
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Data/Layer | Model Silhouette Score | Davies-Bouldin Index
Test Data - 0.0373 5.71
Teacher 0.3777 1.02
GAP Layer Student (KD) 0.3305 1.23
Student (w/o KD) | 0.5702 0.59
Teacher 0.5713 0.62
Output Layer | Student (KD) 0.6118 0.51
Student (w/o KD) | 0.6887 0.38

Table 14. Analysis of test data and features generated at the GAP and Output layers for clustering using
Teacher and Student models (with and without knowledge distillation) for binary classification on the APTOS
2019 dataset.

Data/Layer | Model Silhouette Score | Davies-Bouldin Index
Test Data - 0.0466 3.98
Teacher 0.2254 1.14
GAP Layer Student (KD) 0.1743 2.14
Student (w/o KD) | 0.1908 1.60
Teacher 0.5696 0.46
Output Layer | Student (KD) 0.4841 0.65
Student (w/o KD) | 0.3617 0.85

Table 15. Analysis of test data and features generated at the GAP and Output layers for clustering using
Teacher and Student models (with and without knowledge distillation) for binary classification on the Primary

dataset.
Data/Layer | Model Silhouette Score | Davies-Bouldin Index
Test Data - 0.0567 5.53
Teacher 0.1750 2.62
GAP Layer Student (KD) 0.1245 3.23
Student (w/o KD) | 0.2451 5.45
Teacher 0.3121 1.63
Output Layer | Student (KD) 0.4313 1.06
Student (w/o KD) | 0.3469 6.79

Table 16. Analysis of test data and features generated at the GAP and Output layers for clustering using
Teacher and Student models (with and without knowledge distillation) for ternary classification on the APTOS
2019 dataset.

Data/Layer | Model Silhouette Score | Davies-Bouldin Index
Test Data - 0.0097 8.39
Teacher 0.0901 2.38
GAP Layer Student (KD) 0.0894 2.28
Student (w/o KD) | 0.0763 2.81
Teacher 0.3447 0.9433
Output Layer | Student (KD) 0.2683 1.0481
Student (w/o KD) | 0.1962 1.1204

Table 17. Analysis of test data and features generated at the GAP and Output layers for clustering using
Teacher and Student models (with and without knowledge distillation) for ternary classification on the
Primary Dataset.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.

Appendix A: Learning curves
See Figs. 14, 15, 17 and 18.

Appendix B: Supplemental figures
See Figs. 21, 22, 23, 24.

Appendix C: Supplemental tables
See Tables 14, 15, 16, 17
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