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Diabetic retinopathy (DR) stands as a leading cause of global blindness. Early identification and 
prompt treatment are essential to prevent vision impairment caused by DR. Manual screening of 
retinal fundus images is challenging and time-consuming. Additionally, in low-income countries, there 
is a significant gap between the number of DR patients and ophthalmologists. Currently, machine 
learning (ML) and deep learning (DL) are becoming a viable alternative to traditional DR screening 
techniques. However, DL suffers a major limitation in resource-constrained devices because of its large 
model size and substantial computational demands. Knowledge distillation is a prominent technique 
for creating lightweight models, effectively transferring knowledge from a larger, complex model to 
a smaller, more efficient one without significant loss in performance. Therefore, in this research, a 
lightweight student model is proposed, which follows the MobileNet architectural design by utilizing 
depthwise separable convolutions. This design ensures efficient performance suitable for edge device 
deployment. For binary classification, our proposed model achieved an accuracy, precision, and recall 
of 98.38% on the APTOS 2019 dataset, whereas the proposed model achieved an accuracy of 93.03% 
for ternary classification on APTOS 2019.
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Diabetic Retinopathy (DR), a microvascular complication of diabetes mellitus, has emerged as a leading cause 
of blindness among working-age adults (20–74 years) worldwide1,2. According to the International Diabetes 
Federation (IDF), 451 million adults (18–99 years old) have diabetes worldwide, and by 2045, that number is 
expected to reach 693 million3,4. Approximately half (49.7%) of people living with diabetes remain undiagnosed, 
significantly delaying critical ophthalmologist interventions5. Among diagnosed patients, global estimates 
indicate that 34.6% develop DR, with 10.2% progressing to vision-threatening stages1.

The epidemiological situation in Ethiopia reflects concerning trends, with diabetes prevalence ranging from 
2.0% to 6.5% across regions6. Recent studies report DR prevalence of 19.48% among Ethiopian diabetic patients, 
with 10.7% having vision-threatening DR (VTDR)7,8. This poses substantial public health challenges given 
Ethiopia’s severe ophthalmologist shortage (1:1,200,000 ratio) and limited eye care access (available to only 26% 
of the population)9.

Current clinical guidelines recommend that type 1 diabetics undergo initial retinal examination 5 years 
post-diagnosis, while type 2 diabetics require immediate screening at diagnosis10,11. However, poor compliance 
persists due to multifactorial barriers including limited health literacy, inadequate infrastructure, and insufficient 
insurance coverage12,13. The diagnostic process itself remains labor-intensive, requiring ophthalmologists 
to manually screen fundus images for characteristic findings, including microaneurysms, intra-retinal 
hemorrhages, venous beading, exudates, and neovascularization14. With only 232,866 ophthalmologists globally 
serving millions of potential DR cases, this manual approach creates critical bottlenecks15.

Lesions are symptoms of the severity level of DR14. Lesions can be broadly classified into four categories: soft 
and hard exudates (EX), hemorrhages (HM), and microaneurysms (MA). Due to the weakening of the vessel 
walls, MA, an early stage of DR, is identified by the appearance of tiny, round red spots on the retina. These dots 
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have clear boundaries and are usually less than 125 micrometers in size16. On the other hand, unlike MA, HMs 
are recognized by the presence of large patches on the retina that have irregular edges and diameters greater 
than 125 micrometers. There are two forms of HM: flame and blot17. Flame refers to superficial areas, while blot 
indicates deeper ones. Hard EX are caused by blood leakage and appear as yellow patches on the retina. They 
have clear borders and span the outer layers of the retina18. Soft EX’s are observable white ovals in the retina that 
result from swelling of nerve fibers16. Hemorrhages and MA frequently appear as red lesions, whereas both types 
of EX are usually seen in white lesions. The DR lesion details are shown in Fig. 1. These lesions are critical for ML 
models, as they serve as the primary features from which the models learn.

AI-enabled systems, particularly leveraging ML and DL, have become useful in automating DR screening 
by analyzing retinal fundus images for key lesions such as microaneurysms, hemorrhages, and exudates20. 
Among these, convolutional neural networks (CNNs) have demonstrated remarkable success, offering superior 
diagnostic accuracy, faster processing, and greater consistency compared to traditional manual screening 
methods, thereby reducing dependency on specialized ophthalmologists21,22. These advancements facilitate 
large-scale, cost-effective screening programs, making them especially valuable in resource-limited settings like 
Ethiopia, where infrastructure and personnel constraints hinder traditional approaches23.

However, despite their transformative potential, existing AI models face significant challenges, including 
large model sizes, high computational demands, and excessive memory footprints. These limitations hinder real-
time usability, particularly on edge devices such as portable fundus cameras, mobile health platforms, or tele-
ophthalmology setups, resulting in high energy consumption20. While tele-ophthalmology initiatives in Africa 
have provided partial solutions, delays persist due to the need for centralized professional interpretation of 
images24. Overcoming these barriers is critical for deploying AI-enabled DR screening in remote, low-resource 
environments.

This study addresses these challenges by developing a lightweight model for DR screening. By bridging 
the gap between AI advancements and practical deployment constraints, this research contributes to clinical 
practice in diabetes related vision care. To address these limitations, our research leverages knowledge 
distillation to develop a lightweight student model that achieves good diagnostic performance while significantly 
reducing computational requirements and model complexity. This makes the proposed solution well-suited for 
deployment in real-world, resource-constrained environments, thereby facilitating accessible and scalable DR 
screening.

The remaining sections of this paper are organized as follows. Section 2 provides an exploration of the related 
works. Section 3 discusses the methodology employed in our research. Section 4 presents the experimental 
setup, result analysis, and performance comparison. In Section 5, highlights the contributions of the proposed 
models. Finally, Section 6 summarizes the key findings and challenges and outlines future directions for further 
research.

Related work
DR screening is an active research area focused on finding better techniques to assist physicians in diagnosing 
DR. As a result, several research papers have been published on DR screening, particularly in the context of 
binary and multi-class classification.

Anoop et al.25 and Ishtiaq et al.26 employed custom-designed CNN models for DR classification, which 
involve a large number of trainable parameters25,26. Ishtiaq et al.27 designed a custom CNN model to extract 
complex patterns of retinal lesions and used a classical ML classifier for classification. This combination of CNNs 
and ML classifiers improves overall performance by leveraging CNNs for feature extraction and ML classifiers 
for classification, despite the model’s computational intensity. The CNN models proposed by Anoop et al.25 
and Ishtiaq et al.26 are resource-intensive. In contrast, Bala et al.28 developed a computationally efficient model 
resembling existing architectures29, using four dense convolutional blocks and employing shortcut connections, 

Fig. 1.  Visualization of unhealthy retina with their respective lesion19: (a) Macula, (b) Fovea, (c) Hard Exudate, 
(d) Hemorrhages, (e) Optic Disc, (f) Abnormal Blood Vessels Growth, (g) Aneurysms, (h) Soft Exudate.
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which help maintain gradients during back-propagation. This model has 1.1 million parameters, making it 
lighter28.

Pre-trained CNN models have also been used for binary classification of DR30–33. These models, including 
EfficientNet32, ResNet33, Inception-V330, and DenseNet31, are not architecturally identical but use the same 
fundamental CNN operations. While pre-trained models offer a substantial number of trainable parameters, 
training them with a relatively small number of samples raises concerns, particularly due to their high 
computational demands30–33. Beghriche et al.34 compared the performance of pre-trained models on DR 
classification, finding that fine-tuned XCeption outperformed DenseNet121 and MobileNetV234.

The integration of custom-designed CNN models with techniques like active deep learning35 and Siamese 
networks36 offers a robust solution for image classification, especially when data is limited. Qureshi et al.37 
demonstrated active deep learning for DR classification, allowing the algorithm to select informative image 
patches, thereby optimizing model performance. Additionally, integrating Siamese networks with custom CNNs, 
along with hierarchical clustering of image patches for feature extraction, further enhances performance38. This 
combined approach has proven effective in overcoming data limitations and improving classification outcomes37.

Islam et al.39 employed knowledge distillation to transfer knowledge from a teacher model, a fusion of 
ResNet152V2 and the Swin Transformer, to a student model, XCeption, enhanced with a Convolutional Block 
Attention Module (CBAM). Despite using knowledge distillation, the teacher model remains resource-intensive, 
with 145.8 million parameters and 84.4 MB of memory, while the student model, although reduced, still retains 
21.4 million parameters and 82 MB39.

Some studies40,41 have addressed the complexities of DR classification by re-categorizing inseparable classes, 
which simplifies the model design and handling of data features, improving DR grading accuracy.

The VGG model, known for its hierarchical architecture, has been extensively applied to DR classification42–44. 
Khan et al.44 enhanced VGG with stacked spatial pyramid pooling and network-in-network (NiN) layers, which 
improves scale invariance and non-linearity, important for identifying DR at varying image scales. However, 
VGG’s computational demands can cause gradient vanishing during training, prompting the use of genetic 
algorithms (GA) as an optimization tool, though GA is also resource-intensive45.

MobileNet and DenseNet offer computationally efficient alternatives for DR classification, especially in 
resource-constrained devices. MobileNet, designed for mobile and embedded applications, provides a lightweight 
option46, while DenseNet’s dense connectivity enhances supervision and reduces model complexity29,47. 
According to Ayala et al.48, DenseNet excels in parametric efficiency, while MobileNet’s lighter structure makes 
it more suitable for mobile DR screening applications. InceptionV3, with its inception modules for multi-scale 
lesion detection, has demonstrated efficacy in DR grading by capturing features at varying scales. Although 
segmentation into smaller patches improves feature extraction, it can be suboptimal due to the convolutional 
operations’ ability to capture localized information49,50. Advanced models such as InceptionResNetV2 and graph 
neural networks (GNNs) further expand DR classification capabilities51.

A novel semi-local centrality to identify influential nodes in complex networks by integrating multidimensional 
factors (SLCMF)52. Unlike traditional metrics, SLCMF integrates structural, social, and semantic factors, 
enhancing both accuracy and scalability. It employs distributed local subgraphs, redefines centrality using the 
average shortest path, and captures latent relationships through semantic graph embedding. On the other hand, 
augmentation of the binary grey wolf optimization through quantum computing methodology was used for 
vision-threatening DR53.

Study54 identified Lipocalin-2 (LCN2) as a key mediator of neuroinflammation in retinal ischemia-
reperfusion injury, suggesting its potential as a biomarker for glaucoma. Additionally, study55 linked endocrine 
disruptors to diabetes through mitochondrial dysfunction, highlighting disruptions in oxidative phosphorylation 
and ROS generation. Technological advances include a CRDS-based breath analyzer56 for non-invasive 
metabolic monitoring and deep learning methods like CS-Net57 and AM-Net58for real-time ultrasound super-
resolution imaging. In metabolic regulation59, emphasized the role of selenoproteins, while60 characterized 
pembrolizumab-induced uveitis as a treatable immune-related adverse event. Generally, these works54–60 
underscore interdisciplinary progress in pathophysiology and precision diagnostics.

Furthermore, ML techniques offer promising accuracy for automated glaucoma detection by analyzing 
retinal images through preprocessing, feature extraction, and classification, providing valuable clinical support 
in identifying glaucomatous symptoms61. A hybrid model, ML and Nature-Inspired Model for Coronavirus 
(MLNI-COVID-19), combines ML and nature-inspired algorithms to enhance the classification and optimization 
of brain Magnetic Resonance Imaging (MRI) scans in COVID-19 patients, demonstrating improved diagnostic 
accuracy, sensitivity, and specificity62. However, computational complexity remains challenging in a resource-
constrained environment. Soft-computing-based gravitational search optimization is used for feature selection, 
to eliminate unnecessary features, enhance performance, and reduce computational complexity for glaucoma 
predictions63. On the other hand, a genetic algorithm-based differential evolution-based multi-objective feature 
selection approach is used to extract only important features64.

Methodology
Dataset
DL algorithms rely heavily on large datasets to understand image patterns that depict infections or lesions, 
as well as normal conditions. Training ML or DL models with substantial and high-quality datasets enhances 
model performance.

The Asian Pacific Tele-Ophthalmology Society (APTOS 2019)65 is one of the most widely used publicly 
available retinal fundus image datasets, published on Kaggle. It contains 3662 retinal fundus images with varying 
resolutions, collected from Aravind Eye Hospital in India. The dataset was specifically designed for DR screening, 
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making it highly suitable for training and evaluating DR detection models. The class distribution of the dataset is 
shown in Fig. 2, providing insights into the prevalence of different DR severity levels within the dataset.

In addition to the APTOS 2019, the primary dataset was collected from local eye clinic centers, including 
WAGA Ophthalmology Center, Biruh Vision Specialized Eye Care Center, and KENESER Specialized Eye 
Clinic. 3D OCT-1 Maestro 2 and DRI OCT Triton of the Topcon funduscopic machine are used to capture 
retinal fundus from the eye care center. The collected images first underwent an expert-based filtering process 
to remove low-quality or noisy data. In the second stage, the remaining images were independently annotated 
by two experienced ophthalmologists. The dataset is categorized into three classes: No DR (normal retinal 
fundus), NPDR (non-proliferative diabetic retinopathy), and PDR (proliferative diabetic retinopathy). The class 
distribution is presented in Fig. 2.

The samples of retinal fundus images for each class are shown in Fig. 3, highlighting the lesions or features 
that distinguish one class from another.

Data preprocessing
The image pre-processing steps involve noise removal, quality enhancement, and preparation of retinal fundus 
images to be suitable for the model.

Retinal fundus images often contain black borders around the actual retina, which do not contribute useful 
features for class differentiation. To address this, the cropping process converts the image to grayscale, applies 
a threshold (set to 7) to create a binary mask, and retains only the areas with pixel values above the threshold, 
effectively removing irrelevant dark regions66. Additionally, a bi-linear interpolation down-scaling algorithm is 
used to reduce computational load and memory requirements, while adjusting the image size to fit the model’s 
input size. Since fundus images are typically in RGB format, all channels are retained to capture comprehensive 
features, although the green channel is often most useful for highlighting blood vessels. Furthermore, contrast-
limited adaptive histogram equalization (CLAHE) with a clipLimit of 2.0 and tileGridSize of (8, 8) is applied 
channel-wise to enhance the contrast of the image. CLAHE improves primary contrast, making features in the 
retinal image more visible and easier for the model to analyze. The pre-processing techniques are illustrated in 
Fig. 4 and Algorithm 1

Fig. 3.  Severity level of diabetic retinopathy65: (a) No DR; (b) NPDR; (c) PDR.

 

Fig. 2.  APTOS 2019 and Primary datasets class distribution.
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Algorithm 1.  Pseudocode for data processing and model training

The dataset was initially split into two subsets: 85% of the pre-processed data as the training dataset and 15% 
as the testing dataset. The training dataset was then further divided into 85% as the training set and 15% as the 
validation set. Following the data splitting steps, data augmentation was applied on the training set to enhance 
dataset diversity, thereby improving model generalization and performance. This process was consistently 
applied to the primary dataset and the APTOS 2019 datasets for model training.

Model
MobileNet is a family of lightweight CNN architectures optimized for efficient deployment on mobile and 
embedded devices46. In this study, a MobileNet-like structure is chosen due to its ability to significantly reduce 
computational complexity and memory footprint through the use of depthwise separable convolutions. This 
design makes the model highly suitable for resource-constrained devices such as smartphones or portable 
fundus cameras. Moreover, MobileNet has demonstrated competitive performance in various computer vision 
tasks, including medical imaging, while maintaining an architecture. These characteristics align with the goal of 
developing a lightweight, reliable DR screening model deployable in remote or low-resource settings. To further 
reduce the model’s computational complexity, knowledge distillation (KD) is used to transfer knowledge from 
a larger, pre-trained “Teacher” model to a smaller “Student” model. This process ensures that the smaller model 
achieves comparable performance while significantly reducing computational requirements, making it ideal for 
resource-constrained devices6768. Figure 5 shows the architecture of the “Teacher” model and “Student” model.

A lightweight student model was developed from MobileNet, by the principle of simplifying the teacher 
network by reducing the number of network layers and the sizes of filters, as outlined by Gou et al.67. This 
alignment also minimizes the “model capacity gap”, where a significant difference can hinder the Student model’s 
ability to effectively gain knowledge from the Teacher67. Then deeper blocks were systematically trimmed, filter 
sizes adjusted, stride patterns modified, and a custom fully connected classification head was used to achieve an 

Fig. 5.  Teacher and Student model architectural differences.

 

Fig. 4.  Retinal data pre-processing.
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optimal balance between computational complexity and predictive performance. These choices were specifically 
tailored for high-resolution (512×512) medical images and resource-constrained deployment scenarios. 
Reducing the deeper layers in a Student model can help maintain important feature extraction ability while 
balancing computational efficiency and performance. The deeper layer frequently contains complicated, high-
level information; yet, these layers can be computationally intensive. Therefore, by removing deep layers and 
building the shallower layers, which capture the core structural and low-level elements, the Student model 
achieves a good balance between maintaining useful information and minimizing the model’s overall size and 
latency. Our approach aligns with Wang et al.69, who explained that simplified models focus on retaining the 
main features while offloading complex, task-specific details to improve interpretability and performance on 
resource-constrained devices. The detailed Student model architecture is shown in Fig. 6 and Table 1.

The distillation of knowledge on MobileNet involves key components and steps as mentioned in Algorithm 
2. The distillation process employs a composite loss function combining the standard task-specific loss with a 
distillation loss that encourages the Student to mimic the Teacher’s output distribution. The task-specific loss is 
computed using Categorical Cross-Entropy, while the distillation loss is calculated using the Kullback-Leibler 
(KL) divergence applied to softened probability distributions from both models. 

Algorithm 2.  Pseudocode for Knowledge Distillation

The Teacher model is a robust, pre-trained neural network that serves as the source of knowledge. It generates 
“soft labels” which are logits, probability distributions over classes, providing richer and more information than 
hard labels. On the other hand, the Student model is a smaller, lightweight network designed to replicate the 
performance of the Teacher model. The distillation loss is based on a composite loss function that integrates both 
soft and hard losses. Figure 7 shows the distillation process and how losses are calculated.

The predictions of the Teacher and Student models are softened using a temperature parameter T , as described 
in Eqs. (1) and (2). The application of the SoftMax function with T  smooths the probability distributions of the 
Teacher, making them less sharp (peaky) and more informative. This softened output allows the Student model 
to better capture important patterns during training.

	
softLabels = softMax

(Logitsteacher

T

)
� (1)

Fig. 6.  Architecture of the proposed Student model.
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Layer Type Output Shape Parameters

Input Layer (512, 512, 3) 0

Conv2D (3×3, 32 filters, stride 2) (256, 256, 32) 896

Batch Normalization (256, 256, 32) 128

ReLU Activation (256, 256, 32) 0

Block 1 (64 filters, stride 1)

Depthwise Conv2D (3×3) (256, 256, 32) 320

Batch Normalization (256, 256, 32) 128

ReLU Activation (256, 256, 32) 0

Pointwise Conv2D (1×1, 64 
filters) (256, 256, 64) 2,112

Batch Normalization (256, 256, 64) 256

ReLU Activation (256, 256, 64) 0

Block 2 (64 filters, stride 2)

Depthwise Conv2D (3×3) (128, 128, 64) 640

Batch Normalization (128, 128, 64) 256

ReLU Activation (128, 128, 64) 0

Pointwise Conv2D (1×1, 64 
filters) (128, 128, 64) 4,160

Batch Normalization (128, 128, 64) 256

ReLU Activation (128, 128, 64) 0

Block 3 (128 filters, stride 1)

Depthwise Conv2D (3×3) (128, 128, 64) 640

Batch Normalization (128, 128, 64) 256

ReLU Activation (128, 128, 64) 0

Pointwise Conv2D (1×1, 128 
filters)

(128, 128, 
128) 8,320

Batch Normalization (128, 128, 
128) 512

ReLU Activation (128, 128, 
128) 0

Block 4 (128 filters, stride 2)

Depthwise Conv2D (3×3) (64, 64, 128) 1,280

Batch Normalization (64, 64, 128) 512

ReLU Activation (64, 64, 128) 0

Pointwise Conv2D (1×1, 128 
filters) (64, 64, 128) 16,512

Batch Normalization (64, 64, 128) 512

ReLU Activation (64, 64, 128) 0

Block 5 (128 filters, stride 1)

Depthwise Conv2D (3×3) (64, 64, 128) 1,280

Batch Normalization (64, 64, 128) 512

ReLU Activation (64, 64, 128) 0

Pointwise Conv2D (1×1, 128 
filters) (64, 64, 128) 16,512

Batch Normalization (64, 64, 128) 512

ReLU Activation (64, 64, 128) 0

Fully Connected Layers

Global Average Pooling 2D (128,) 0

Dense (128 units, ReLU) (128,) 16,512

Dense (2 units) (2,) 258

Dense (3 units) (3,) 387
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softPredictions = softMax

(Logitsstudent

T

)
� (2)

To quantify how well the Student’s prediction distribution approximates the Teacher’s softened prediction 
distribution, the Kullback-Leibler (KL) Divergence is used. Therefore, the distillation loss is computed by 
applying KL Divergence to the softened labels (Eq. 1) and softened predictions (Eq. 2):

	
distillation_loss =

∑
x

SoftLabels(x) log
(

SoftP redicitons(x)
SoftLabels(x)

)
� (3)

Here, x represents the output logit for each class. The KL divergence quantifies how closely the Student’s softened 
probability distribution approximates that of the Teacher.

The total loss for training the Student model combines the task-specific loss (student_loss), which uses 
CategoricalCrossentropy, and the distillation loss. The total loss is defined in Eq. (4):

	 loss = α · student_loss + (1 − α) · distillation_loss� (4)

Here, α is a hyperparameter that controls the trade-off between learning from the ground truth labels (student_
loss) and learning from the Teacher’s knowledge (distillation_loss). When α → 1, the Student model relies more 
heavily on the task-specific loss; when α → 0, the Student model relies predominantly on the Teacher’s softened 
knowledge.

While the Distiller class allows flexibility in selecting α and temperature T , systematic hyperparameter 
tuning was conducted using Keras-Tuner’s Hyperband algorithm to identify optimal values. The search space for 
α was set to [0.1, 0.9] with increments of 0.1, and for temperature T to [0, 50] with increments of 5, optimizing 
for validation accuracy. The best-performing configuration was found to be alpha = 0.5 and T = 10, and used 
for the knowledge distillation from the Teacher model, leading to improved Student model performance.

Experiment and result analysis
Experimental setup
The proposed model was trained and tested on a machine equipped with hardware specifications of 13th Gen 
Intel(R) Core(TM) i7-13700H, 2400 MHz, and 8GB NVIDIA-SMI 546.12 GPU, CUDA 12.3. The proposed 
model was implemented using the Keras API on the TensorFlow framework version 2.10.0.

Performance evaluation metrics
Performance metrics are quantitative measures used to evaluate our model’s effectiveness on the dataset. The 
metrics formula used in our study is shown as follows;

Fig. 7.  MobileNet knowledge distillation process.

 

Parameter Summary

Dense (2 units)

Trainable 71,362

Non-trainable 1,920

Total 73,282

Dense (3 units)

Trainable 71,491

Non-trainable 1,920

Total 73,411

Table 1.  Detailed architecture of the proposed student model.
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Accuracy = T P + T N

T P + F P + T N + F N
� (5)

	
P recision = T P

T P + F P
� (6)

	
Recall = T P

T P + F N
� (7)

	
F 1 =2 × P recision × Recall

P recision + Recall
� (8)

	
AUC =

ˆ b

a

F (x) d(x) � (9)

Result analysis
Teacher model selection
This research utilizes MobileNet, a family of lightweight CNNs optimized for efficient use on mobile and 
embedded devices. Both MobileNet and MobileNetV2 are evaluated to find the best Teacher’s model that can 
effectively lead to the development of a lightweight, accurate Student model. During the Teacher model selection 
phase, the models are evaluated on ternary classification: No-DR, Non-proliferative DR, and Proliferative DR. 
The detail of model configuration is shown in Table 2 and various values of α, which determine the width 
multiplier. Our experiments showed that MobileNet with α value of 0.25 achieved the optimal combination 
of performance and efficiency, making it the ideal Teacher model for our research. Table 4 and Fig. 8 show the 
results of MobileNet with MobileNetV2 at various α values. These visualizations provide a clear overview of each 
model’s strengths and help us to identify a high-performing Teacher model, which will later be refined into an 
even lighter Student model suitable for real-time application in a computational constraint device.

Furthermore, the model training setup and configuration were thoughtfully designed to ensure smooth 
convergence and optimal generalization of the proposed student model enhanced through knowledge distillation. 
To support effective learning and systematically monitor the model’s performance, several callback mechanisms 

Parameter/Callback Value/Description

ReduceLROnPlateau Factor = 0.2, Patience = 3, Minimum LR = 1 × 10−12

EarlyStopping Patience = 13 epochs, Restore Best Weights = True

Table 3.  Model Training Configuration and Callback Settings.

 

Fig. 8.  The performance of MobileNet and MobileNetV2 at different alpha values on APTOS 2019 dataset.

 

Parameter Values

Input Shape 512x512

Batch Size 8

Initial Learning Rate 0.0001

Optimizer Adam

Alpha α for Distiller 0.5

Temperature T  for Distiller 10

Table 2.  Summary model configurations for Teacher, Student model, and Distiller.
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were integrated during training. Specifically, a ReduceLROnPlateau callback was employed to dynamically 
adjust the learning rate by a factor of 0.2 when the validation loss failed to improve for three consecutive epochs, 
with the minimum learning rate capped at 1 × 10−12. To mitigate overfitting, EarlyStopping was applied with 
a patience of 13 epochs, ensuring that the model reverted to the best-performing weights observed during 
training. The complete details of these configurations are summarized in Table 3.

Binary classification
In binary classification, our objective is to evaluate the performance of the model in classifying retinal fundus 
images into two groups: ’No_DR’ and ’DR’. The model performed well in the binary classification task, indicating 
that it is capable of accurately distinguishing the two classes. This high degree of separability demonstrates 
the model’s ability to efficiently differentiate normal retinal fundus images from those containing DR features. 
The Teacher model demonstrates superior performance on APTOS 2019 and primary datasets compared to 
the Student models, including both the Student with KD and without KD. Notably, the Student model with 
KD achieves comparable performance to the Teacher model across these datasets. This outcome shows the 
effectiveness of KD techniques in successfully transferring insights from the Teacher model to the Student model. 
Additionally, training the model on the primary dataset begins with initializing the model with the weights 
gained from the APTOS 2019 dataset. This approach adopts the model’s generalization capacity from the APTOS 
2019 dataset to a primary dataset, assuring its robustness and effectiveness in deployment for a local eye clinic.

Table 5 presents the performance of the Teacher and Student models, with and without knowledge distillation, 
on the APTOS 2019 dataset. Similarly, Table 6 shows primary datasets. The Student model trained with KD 
consistently outperformed students without KD, achieving an accuracy of 98.36% on APTOS 2019 and 93.20% 
on the primary dataset. These results demonstrate the effectiveness of KD in enhancing model generalization 
and accuracy, especially under limited data conditions. While all models performed best on APTOS 2019, the 
performance drop on the primary dataset is likely due to the small dataset and variability. Nonetheless, KD 
proved beneficial in transferring knowledge from the Teacher to the Student model. Additionally, the model’s 
performance is shown in detail in Fig. 9.

Model Averaging Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Teacher
macro avg 93.88 92.65 93.88 93.21

weighted avg 93.88 94.05 93.88 93.92

Student without KD
macro avg 85.71 83.79 86.73 84.69

weighted avg 85.71 87.28 85.71 86.01

Student with KD (Proposed Model)
macro avg 93.20 93.24 91.33 92.18

weighted avg 93.20 93.20 93.20 93.12

Table 6.  Model’s performance of binary classification on a primary dataset.

 

Model Averaging Accuracy (%) Precision (%) Recall(%) F1 Score(%)

Teacher
macro avg 99.45 99.45 99.45 99.45

weighted avg 99.45 99.45 99.45 99.45

Student without KD
macro avg 94.73 94.73 94.73 94.73

weighted avg 94.73 94.733 94.73 94.73

Student with KD (Proposed Model)
macro avg 98.36 98.36 98.36 98.36

weighted avg 98.36 98.36 98.36 98.36

Table 5.  Models Performance of Binary Classification on APTOS 2019 Dataset.

 

Model Alpha (α) Trainable Parameter Accuracy (%) Precision (%) Recall (%) F1 Score (%)

MobileNet

0.25 279,635 94 89 88 89

0.50 950, 691 92 84 79 81

0.75 2, 014, 195 92 87 76 79

1 3, 470, 147 93 86 80 82

MobileNetV2

0.35 724835 93 86 82 84

0.50 1, 016, 387 91 83 78 80

0.75 1, 684, 131 93 86 82 84

1 2, 552, 579 92 85 82 83

Table 4.  Comparison of Teacher models selection on ternary classification on APTOS 2019 dataset.
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Cross-validation is a resampling technique used to assess the performance of a machine learning model by 
partitioning the dataset into multiple subsets. This method ensures that the model is evaluated on unseen data, 
reducing the risk of overfitting and providing a more reliable estimate of its generalization performance.

Furthermore, cross-validation is employed to evaluate the robustness of the proposed model as shown in 
Table 7. Given the high class imbalance in the dataset, the StratifiedKFold method is utilized to maintain the 
original class distribution across training and validation splits, ensuring a fair evaluation.

The model’s learning curve gives useful information about the pattern of the Teacher model and Student model 
with KD and without KD in the training stage, indicating if the model has reached the optimal performance. It 
also helps in detecting signs of over-fitting or under-fitting. Additionally, it indicates the model’s learning pattern, 
indicating whether it is failing to learn or progressively improving over time. Therefore, the learning curve of our 
models demonstrates strong performance and convergence to an optimal performance. Additionally, the curve 
does not show any signs of under-fitting or over-fitting, indicating a well-fitted model. However, the learning 
curve of the models on the primary dataset shows slight fluctuations, indicating difficulty in understanding the 
unique aspects of the primary data, particularly for the Student model without KD. Despite these fluctuations, 
the curve gradually converges, indicating that the model has been successfully trained to identify DR from 
normal retinal fundus images. Figures 10, 11 shows the learning curve of student model with KD, where as 
Figs. 17, 18 shows the learning curves of the Teacher and Student models without knowledge distillation, on the 
APTOS 2019 and primary datasets, respectively.

A confusion matrix provides a clearer picture of class-wise model performance, especially on imbalanced 
datasets, making it essential for targeted model improvements. Therefore, our model’s confusion matrix in 
binary classification shows that our model is good at identifying the class of samples without confusion in 
APTOS 2019 and the primary datasets. The model predicts True Positives and True Negatives well, while False 
Positives and False Negatives occur more rarely. This shows that the model’s predictions are very close to the 

Dataset Fold (k) Accuracy(%) Precision(%) Recall (%) F1 Score (%)

APTOS 2019

1 98.36 98.36 98.36 98.36

2 97.45 97.46 97.45 97.45

3 97.64 97.64 97.64 97.64

4 97.09 97.09 97.09 97.09

5 97.82 97.83 97.82 97.82

Mean 97.67 97.68 97.67 97.67

Std ±0.46 ±0.47 ±0.46 ±0.46

Primary Dataset

1 89.12 89.12 89.12 89.12

2 93.20 93.20 93.20 93.12

3 88.44 88.81 88.44 88.01

4 92.52 92.91 92.52 92.60

5 91.84 91.81 91.84 91.74

Mean 91.04 91.17 91.04 90.92

Std ±1.89 ±1.87 ±1.89 ±2.01

Table 7.  Comparison of Student with knowledge distillation model cross-validation on APTOS 2019 and 
Primary Dataset.

 

Fig. 9.  Comparison of models’ performances on APTOS 2019 and primary datasets for binary classification.
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Fig. 12.  Confusion matrices comparing model performance across datasets: (i-iii) APTOS 2019, (iv-vi) 
Primary Dataset.

 

Fig. 11.  Training curves of student with KD on binary classification using primary dataset; (a) Accuracy, (b) 
AUC, and (c) Loss.

 

Fig. 10.  Training curves of student with KD on binary classification using APTOS dataset; (a) Accuracy, (b) 
AUC, and (c) Loss.
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actual labels. Figure 12 shows the confusion matrix of the teacher and student model with KD and without KD 
on each dataset.

Ternary classification
The main objective of ternary classification is to build a robust model for automated grading of retinal fundus 
images, in which images are classified based on DR categories. This classification is crucial for the early detection 
and treatment of DR. The three categories considered for ternary classifications are listed as follows70: 

	1.	 No DR: The retina is free of detectable signs of DR, indicating a healthy retinal condition.
	2.	 Non-proliferative DR (NPDR): This category represents the blood or liquid leakage at the back of the eye, the 

so-called retina. This category includes a grade of mild, moderate, and severe diabetic retinopathy.
	3.	 Proliferative DR (PDR): This category identifies advanced DR, characterized by the growth of abnormal 

blood vessels. PDR poses a high risk of vision impairment if left untreated, which requires timely ophthal-
mologist intervention.

In our experiment, the proposed model achieves good performance across all datasets, demonstrating 
its robustness in ternary classification. The results are presented in Table 8 and 9 for the APTOS 2019 and 
Primary datasets, respectively. The performance of the model on the Primary datasets is slightly lower than 
on the APTOS 2019 dataset, as the Primary datasets are smaller. However, the performance of our proposed 
model shows comparable results to the teacher model. The proposed model achieves up to 93.09% accuracy on 
the APTOS 2019 dataset, whereas the proposed model achieved 85.51% accuracy on the primary dataset. The 

Fig. 13.  Comparison of model performances on different datasets.

 

Model Averaging Accuracy (%) Precision (%) Recall(%) F1 Score(%)

Teacher Model
macro avg 86.39 85.70 84.49 85.04

weighted avg 86.39 86.33 86.39 86.33

Student without KD
macro avg 76.19 73.78 78.07 75.04

weighted avg 76.19 78.01 76.19 76.36

Student with KD (Proposed Model)
macro avg 85.71 83.58 83.38 83.46

weighted avg 85.71 85.62 85.71 85.65

Table 9.  Model’s performance of ternary classification on a primary dataset.

 

Model Averaging Accuracy (%) Precision (%) Recall(%) F1 Score(%)

Teacher Model
macro avg 94.18 88.58 89.34 88.93

weighted avg 94.18 94.23 94.18 94.18

Student without KD
macro avg 79.09 67.18 69.02 66.04

weighted avg 79.09 85.09 79.09 81.03

Student with KD (Proposed Model)
macro avg 93.09 87.37 87.32 87.34

weighted avg 93.09 93.03 93.09 93.07

Table 8.  Model’s performance of ternary classification on APTOS 2019 dataset.
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scores, particularly in recall (the ability to correctly identify all relevant cases) and F1-score (which balances 
precision and recall), indicate reliable classification and strong generalization capability. Additionally, the model’s 
performance is shown in detail in Fig. 13. Despite a 74% reduction in trainable parameters and floating point 
operations per second (FLOPS), the model maintains strong performance. As our main objective is to build a 
model with less computational intensity while maintaining comparable performance to the Teacher model (pre-
trained), a lightweight Student model is successfully developed with strong performance in ternary classification 
as well (Table 10).

Furthermore, cross-validation is also employed for the ternary class to evaluate the class-wise performance 
and robustness of the proposed model as shown in Figure 10.

The learning curves illustrate the training patterns of our models, showing a smooth convergence for each 
model. Additionally, it depicts the learning behavior of the teacher model and the student models, both with and 
without KD. Figures 14 and 15 show the learning curves of the student model with KD, whereas Figs. 19 and 
20 shows the Teacher and Student models without KD on the APTOS 2019 and Primary datasets, respectively.

Fig. 15.  Training curves of student with KD on ternary classification using primary dataset; (a) Accuracy, (b) 
AUC, and (c) Loss.

 

Fig. 14.  Training curves of student with KD on ternary classification using APTOS dataset; (a) Accuracy, (b) 
AUC, and (c) Loss.

 

Dataset Fold (k) Accuracy(%) Precision(%) Recall (%) F1 Score (%)

APTOS 2019

1 87.64 89.28 87.64 88.23

2 92.73 92.74 92.73 92.73

3 90.55 90.26 90.55 90.38

4 87.09 88.68 87.09 87.26

5 93.09 93.06 93.09 93.07

Mean 90.22 90.80 90.22 90.33

Std ±2.63 ±1.90 ±2.63 ±2.38

Primary Dataset

1 83.67 84.02 83.67 83.58

2 85.03 85.77 85.03 84.63

3 85.03 84.85 84.03 84.65

4 85.71 85.62 85.71 85.65

5 83.67 84.02 83.67 83.58

Mean 84.62 84.86 84.42 84.42

Std ±0.88 ±0.83 ±0.89 ±0.86

Table 10.  Comparison of Student with knowledge distillation model cross-validation on APTOS 2019, and 
Primary Dataset.
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On the other hand, the confusion matrices illustrate the classification performance of the models. The 
Student model without knowledge distillation (KD) on the APTOS 2019 dataset shows significant confusion, 
indicating difficulty in distinguishing between classes. The confusion matrices for each model across all datasets 
are presented in Fig. 16. Overall, the results demonstrate that the models have effectively learned and extracted 
essential features and lesion patterns during training.

Performance comparision
Binary classification
The performance comparison of the proposed model with various state-of-the-art techniques is shown in Table 
11. While many of the reviewed models demonstrate competitive accuracy, our proposed Student model with 
knowledge distillation (KD) achieves a superior balance between classification performance and computational 
efficiency.

Chetoui et al.32 employed the EfficientNet-B7 architecture, achieving a recall of 98.1%. However, its large 
model size, approximately 66.7 million trainable parameters, renders it impractical for deployment on resource-
constrained devices. In contrast, our Student model with KD achieves a nearly equivalent recall of 98.18% while 
using only 71,362 parameters, offering a drastic reduction in complexity.

Author and Year Models Trainable Parameters Accuracy Precision Recall F1-Score

Chetoui et al., 202032 EfficientNet-B7 66, 700, 000 - - 98.1% -

BK Anoop et al., 202225 Custom CNN 184, 197, 154 94.6% - 86% -

Bala et al., 202228 Custom CNN 1, 100, 000 97.54% 97.55% - 0.97

Nandakumar et al., 202231 Modified DenseNet-121 - 96% 93.51% 98% 0.98

Begriche et al., 202334 fine-tuned XCeption - 99.8% - - -

ResNet152V2 + VIT (Teacher Model) 145, 800, 000 95.15% - - -

 Islam et al., 202339 XCeption + CBAM (Student Model) 21, 400, 000 99% - - -

Tuncel et al., 202571 VGG16 - 97% 97% 97% 97%

Naveen et al., 202572 EffNet-SVM - 97% 97% 97% 97%

Teacher Model MobileNet 279, 378 99.45% 99.45% 99.45% 99.45%

Student without KD Reduced parameter MobileNet 71,362 94.73% 94.73% 94.73% 94.73%

Student with KD (Proposed Model) Reduced parameter MobileNet 71,362 98.36% 98.36% 98.36% 98.36%

Table 11.  Binary classification performance on APTOS 2019 datasets.

 

Fig. 16.  Confusion matrices for ternary classification across datasets: (i-iii) APTOS 2019 dataset, (iv-vi) 
Primary dataset.
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Similarly, BK Anoop et al.25 achieved 94.6% accuracy and 86% recall using a CNN model with an enormous 
184 million parameters. Despite its high accuracy, the substantial parameter count poses limitations for 
scalability. Our Student model with KD not only surpasses this model in accuracy (98.18%) and recall (98.18%) 
but does so with a model that is more than 2,500 times smaller.

Bala et al.28 proposed a CNN model with 1.1 million parameters, reporting 97.54% accuracy and an F1-score 
of 0.97. While their model is relatively lightweight compared to others, our KD-enabled Student model achieves 
comparable or better performance with less than 7% of the parameters, further emphasizing its efficiency.

In another notable work, Islam et al.39 utilized a hybrid ResNet152V2 + Vision Transformer (ViT) as a 
Teacher model, comprising 145.8 million parameters and yielding 95.15% accuracy. Our Teacher model, based 
on MobileNet, achieves a higher accuracy of 98.55% using only 279,378 parameters, underscoring our model’s 
efficiency without compromising accuracy. Furthermore, their corresponding Student model, built using 
XCeption with CBAM, achieved 99% accuracy with 21.4 million parameters. In comparison, our KD-based 
Student model achieves a competitive 98.18% accuracy with just 71,362 parameters.

Ternary classification
The performance comparison of the proposed model with state-of-the-art techniques for ternary classification is 
shown in Table 12. The results demonstrate that our proposed models consistently maintain good classification 
performance across APTOS 2019 datasets, while significantly reducing computational requirements. Although 
existing studies have achieved good results, many of them involve models with a large number of trainable 
parameters, limiting their practicality in resource-constrained environments.

Athira et al.40 utilized a ResNet50 model to achieve 94% accuracy, precision, and recall, using 25.6 million 
parameters. In comparison, our Student model with KD achieves a closely matching performance of 93% across 
all metrics, while requiring only 71,491 parameters, demonstrating a substantial reduction in model size.

Rao et al.73 proposed an InceptionResNet model and reported 88% accuracy, precision, recall, and F1-score 
with 55.9 million parameters. Our Student model with KD outperforms this model in all metrics, with nearly 
780 times fewer parameters.

Kobat et al.74 used a DenseNet architecture combined with a Cubic SVM classifier, achieving 93.85% 
accuracy and strong precision. Butt et al.41 introduced a hybrid model combining GoogleNet, ResNet-18, and 
SVM, reporting 89% across metrics. Although effective, these models likely carry higher computational loads 
compared to our student model with KD.

Our Teacher model, based on MobileNet, achieves 94% across all metrics on the APTOS dataset with only 
279,378 parameters. Meanwhile, the Student model without KD shows a notable performance drop (70% 
accuracy and recall), highlighting the effectiveness of knowledge distillation in enhancing lightweight models. 
The KD-based Student model demonstrates strong performance (93%) while remaining highly efficient.

These results show that our proposed KD-based Student model provides a good performance and efficiency. 
Its lightweight architecture makes it particularly well-suited for real-time and mobile applications, where 
memory and processing power are often limited.

Discussion
One of the limitations of ML models is that they are heavyweight. In this regard, our proposed model is a 
lightweight model with comparable performance to the heavy and highly computational-intensive model 
proposed by researchers. Furthermore, knowledge distillation has significantly impacted the transfer of 
knowledge from the teacher model to the student model. There is a huge difference between the student model 
built from scratch and the student model built with knowledge distillation; this shows a significant role of 
knowledge distillation techniques in transferring knowledge from the teacher model. Additionally, the proposed 
model has been evaluated on APTOS 2019, and primary datasets collected from local eye clinic centers. The 
performance of the model on primary datasets shows the robustness of the model on different datasets.

After a thorough experiment on the separability of NPDR severity levels, the distinction in NPDR severity 
levels often leads to overlaps in key image features called lesions. Furthermore, the case study presented at the 
TensorFlow Dev Summit 201775 demonstrated that even domain experts (ophthalmologists), may provide 
varying gradings for the same retinal images. These grading inconsistencies are particularly challenging in cases 
of NPDR. Therefore, for better alignment with clinical practice, clarity, and appropriateness of medication and 
treatment for each category, ternary classification is chosen to be our experiment for multi-class classification.

Author and Year Models Trainable Parameters Accuracy Precision Recall F1-Score

Rao et al., 202073 InceptionResNet 55, 900, 000 88% 88% 88% 0.88

Kobat et al., 202274  DenseNet + Cubic SVM - 93.85% 90.90% 80.60% 83.78%

Butt et al., 202241 GoogleNet + ResNet-18 + SVM - 89% 89% 89% 0.89

Athira et al., 202340 ResNet50 25, 600, 000 94% 94% 94% 0.93

Teacher Model MobileNet 279,378 94.18% 94.23% 94.18% 94.18%

Student without KD Reduced parameter MobileNet 71,491 79.09% 85.09% 79.09% 81.03%

Student with KD (Proposed Model) Reduced parameter MobileNet 71,491 93.09% 93.03% 93.09% 93.07%

Table 12.  Ternary classification performance on APTOS 2019 datasets.
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On the other hand, t-SNE was employed to demonstrate the model’s ability to cluster the test dataset 
effectively. We visualized the feature representations extracted from the Global Average Pooling (GAP) layer 
and the Output layer to assess how well the models are clustering the data. In the binary classification task, the 
models show a clear ability to group the test dataset according to their respective classes, demonstrated on the 
APTOS 2019 and primary dataset in Figs. 21, 22, 23, and 24. However, in the ternary classification task, the 
models exhibit slight confusion when distinguishing between the three classes, particularly the Student model 
without KD. This indicates that while the model performs well in binary classification, it faces more challenges 
when dealing with ternary classes.

To further validate these observations, the Silhouette Score and Davies–Bouldin Index (DBI) for both binary 
and ternary classification on the primary dataset, and APTOS 2019 dataset dataset are shown in Tables 14, 15, 
16, and 17. These metrics quantitatively assess the quality of grouping in the extracted features from GAP and 
the output layer of each model. The Output layer consistently achieves good feature separability compared to 
the GAP layer and the test dataset. Furthermore, the Student model with KD generally demonstrates superior 
clustering behavior compared to the Student model without KD, supporting the effectiveness of KD in improving 
the model’s performance of feature representations. While in the binary classification, the model demonstrated 
better feature separability for classifying No DR and DR cases, its performance notably decreased for ternary 
classification, indicating the model’s a little confusion in capturing lesion variations between categories like PDR 
and NPDR.

Knowledge distillation is a technique that enables a smaller Student model to learn from a larger, more 
complex Teacher model. Through this process, the Student model captures essential knowledge and approximates 
the performance of the Teacher model, even with reduced computational complexity. As a result, knowledge 
distillation produces a highly efficient Student model that is compact enough for deployment on resource-
constrained devices. Table 13 shows the detailed model computational complexity of the teacher model and the 
proposed student model on the primary dataset.

Generally, the main strengths and contributions of the study presented in this article include:

•	 A lightweight student model was developed from MobileNet, by the principle of simplifying the teacher net-
work by reducing the number of network layers and the sizes of filters, as outlined by Gou et al.67.

•	 The significance of knowledge distillation in building lightweight models with performance comparable to 
Teacher model.

•	 The robustness of the proposed model, demonstrated by evaluating its performance on the APTOS 2019 
dataset and the primary dataset for both binary and ternary classification.

Conclusion and future work
This study presented a knowledge distillation technique to transfer knowledge from the Teacher model to the 
proposed Student model. The Student model comprises only five Depthwise Convolutional Blocks, followed by 
two fully connected layers for classification. With knowledge distillation, the proposed model demonstrated 
promising results, whereas the Student model without knowledge distillation struggled to perform effectively.

The models were evaluated on APTOS 2019 and primary datasets, demonstrating robustness across diverse 
datasets. A comparison with state-of-the-art techniques revealed that the proposed model achieves comparable 
performance while being significantly less resource-intensive. For binary classification, our proposed model 
achieved an accuracy of 98.38% on the APTOS 2019 dataset. Furthermore, the student model with knowledge 
distillation achieved an accuracy of 93.03% for ternary classification on APTOS 2019.

Additionally, the proposed model demonstrates strong class separability in feature space, as visualized using 
t-SNE on test data. To further assess separability, features extracted from the Global Average Pooling (GAP) and 
Output layers were visualized using t-SNE

The findings of this study show that the proposed lightweight model with knowledge distillation achieves 
good performance and is suitable for deployment in resource-constrained devices. Future work will focus on 
enhancing the model’s performance using alternative knowledge distillation techniques like FitNets, Hint-
based KD, self-distillation, and using Neural Architecture Search or pruning for selecting important nodes, 
an algorithmic solution for inseparable classes, and employing interpretability techniques to enhance the 
understanding and clarity of the model’s predictions.

Metric Teacher Model Student Model (Proposed Model)

Computational Complexity (FLOPs) 1557.14 MFLOPS 1018.73 MFLOPS

Model Disk Size 3.92 MB 0.30 MB

RAM Usage 3.67 MB 0.21 MB

Table 13.  Comparison of Teacher and Student Model Computational Complexity.
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Fig. 18.  Training curves of binary classification on Primary Dataset.

 

Fig. 17.  Training curves of binary classification on APTOS 2019 dataset.
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Fig. 20.  Ternary classification models training curves on primary dataset.

 

Fig. 19.  Ternary classification model’s training curves on APTOS 2019 Dataset.
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Fig. 21.  t-SNE visualization of models for binary classification on APTOS 2019 dataset: (i) Teacher Model, (ii) 
Student Model Without KD, and (iii) Student Model With KD.
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Fig. 22.  t-SNE visualization of models for binary classification on primary dataset: (i) Teacher Model, (ii) 
Student Model Without KD, and (iii) Student Model With KD.
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Fig. 23.  t-SNE visualization of models for ternary classification on APTOS 2019 dataset: (i) Teacher Model, (ii) 
Student Model Without KD, and (iii) Student Model With KD.
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Fig. 24.  t-SNE visualization of models for ternary classification on primary dataset: (i) Teacher Model, (ii) 
Student Model Without KD, and (iii) Student Model With KD.
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Data/Layer Model Silhouette Score Davies-Bouldin Index

Test Data - 0.0097 8.39

GAP Layer

Teacher 0.0901 2.38

Student (KD) 0.0894 2.28

Student (w/o KD) 0.0763 2.81

Output Layer

Teacher 0.3447 0.9433

Student (KD) 0.2683 1.0481

Student (w/o KD) 0.1962 1.1204

Table 17.  Analysis of test data and features generated at the GAP and Output layers for clustering using 
Teacher and Student models (with and without knowledge distillation) for ternary classification on the 
Primary Dataset.

 

Data/Layer Model Silhouette Score Davies-Bouldin Index

Test Data - 0.0567 5.53

GAP Layer

Teacher 0.1750 2.62

Student (KD) 0.1245 3.23

Student (w/o KD) 0.2451 5.45

Output Layer

Teacher 0.3121 1.63

Student (KD) 0.4313 1.06

Student (w/o KD) 0.3469 6.79

Table 16.  Analysis of test data and features generated at the GAP and Output layers for clustering using 
Teacher and Student models (with and without knowledge distillation) for ternary classification on the APTOS 
2019 dataset.

 

Data/Layer Model Silhouette Score Davies-Bouldin Index

Test Data - 0.0466 3.98

GAP Layer

Teacher 0.2254 1.14

Student (KD) 0.1743 2.14

Student (w/o KD) 0.1908 1.60

Output Layer

Teacher 0.5696 0.46

Student (KD) 0.4841 0.65

Student (w/o KD) 0.3617 0.85

Table 15.  Analysis of test data and features generated at the GAP and Output layers for clustering using 
Teacher and Student models (with and without knowledge distillation) for binary classification on the Primary 
dataset.

 

Data/Layer Model Silhouette Score Davies-Bouldin Index

Test Data - 0.0373 5.71

GAP Layer

Teacher 0.3777 1.02

Student (KD) 0.3305 1.23

Student (w/o KD) 0.5702 0.59

Output Layer

Teacher 0.5713 0.62

Student (KD) 0.6118 0.51

Student (w/o KD) 0.6887 0.38

Table 14.  Analysis of test data and features generated at the GAP and Output layers for clustering using 
Teacher and Student models (with and without knowledge distillation) for binary classification on the APTOS 
2019 dataset.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Appendix A: Learning curves
See Figs. 14, 15, 17 and 18.

Appendix B: Supplemental figures
See Figs. 21, 22, 23, 24.

Appendix C: Supplemental tables
See Tables 14, 15, 16, 17
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