
Explainable machine learning using 
EMG and accelerometer sensor 
data quantifies surgical skill and 
identifies biomarkers of expertise
Rahul Soangra1,2, Areef Hossain3, Jay Sonagra4 & Vennila Krishnan5

Traditional evaluations of surgical skill rely heavily on subjective assessments, limiting precision and 
scalability in modern surgical education. With the emergence of robotic platforms and simulation-
based training, there is a pressing need for objective, interpretable, and scalable tools to assess 
technical proficiency in surgery. This study introduces an explainable machine learning (XAI) 
framework using surface electromyography (sEMG) and accelerometer data to classify surgeon 
skill levels and uncover actionable neuromuscular biomarkers of expertise. Twenty-six participants, 
including novices, residents, and expert urologists, performed standardized robotic tasks (suturing, 
knot tying, and peg transfers) while sEMG and motion data were recorded from 12 upper-extremity 
muscle sites using Delsys® Trigno™ wireless sensors. Time- and frequency-domain features, along 
with nonlinear dynamical measures such as Lyapunov exponents, entropy, and fractal dimensions, 
were extracted and fed into multiple supervised machine learning classifiers (SVM, Random Forest, 
XGBoost, Naïve Bayes). Classification performance was evaluated using accuracy, F1-score, MCC, and 
AUC. To ensure interpretability, SHAP and LIME were employed to identify and visualize key features 
distinguishing skill levels. Ensemble models (XGBoost and Random Forest) outperformed others, 
achieving classification accuracies above 72%, with high F1-scores for all classes. Nonlinear features, 
particularly Mean_Long_Lyapunov exponent, Correlation Dimension, Approximate Entropy, and Hurst 
exponent, consistently ranked among the top predictors. Expert surgeons exhibited higher movement 
complexity and temporal consistency, reflected in higher entropy and correlation dimension, and 
lower Lyapunov exponents compared to novices. XAI methods revealed that different classes were 
driven by distinct feature sets: entropy measures best identified novice patterns, while fractal and 
stability features were more predictive of expert performance. SHAP and LIME enabled both global 
and instance-specific interpretation of classifier decisions, enhancing transparency and enabling 
targeted feedback. This study demonstrates the feasibility and utility of combining multimodal 
wearable sensor data with explainable machine learning to assess robotic surgical skill. The identified 
biomarkers capture nuanced aspects of motor control such as adaptability, complexity, and stability 
that distinguish novice, intermediate, and expert surgeons. Beyond classification, the explainable 
framework offers interpretable insights into why specific skill levels were assigned, providing a 
pathway for personalized surgical feedback and training. This approach advances the development of 
objective, transparent, and clinically meaningful assessment tools in surgical education.

 Technical proficiency in surgery is a critical determinant of patient outcomes and surgical quality. Prior studies 
have shown that surgeons with superior technical skills achieve significantly lower complication rates than their 
less skilled counterparts (e.g., 5.2% vs. 14.5% complication rate for top- vs. bottom-quartile surgeons)1,2. In 
the context of robotic urologic surgery, tasks such as suturing and knot tying are fundamental, and mastery of 
these skills is essential for operative efficiency and patient safety. Traditionally, surgical skill has been evaluated 
using expert observation and global rating scales, which, while useful, are subjective and resource-intensive. 
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As robotic surgery and simulation-based curricula expand, the need for objective, scalable, and interpretable 
methods of skill assessment has become increasingly urgent. Traditional approaches rely on expert observation 
and global rating scales, which, while informative, are inherently subjective and resource-intensive.

Recent advances in sensor technology and machine learning have enabled more quantitative evaluation 
of surgical performance. Wearable sensors and motion tracking systems can capture rich data on a surgeon’s 
technique during standardized tasks3. For example, our prior work has demonstrated that performance in 
simulated suturing, peg transfer, or knot-tying tasks can be assessed using surface electromyography (sEMG) to 
monitor muscle activation alongside kinematic measurements of instrument motion3,4. Machine learning (ML) 
algorithms applied to such multimodal datasets have shown promise in distinguishing novices from experts, 
sometimes achieving high classification accuracies5. However, a recent systematic review noted that while the 
majority of ML-based surgical skill assessments utilize kinematic or motion data, only a small fraction (~ 1%) of 
studies have incorporated physiological signals like sEMG5.

Beyond motion tracking, several groups have demonstrated that wearable force and muscle-activity signals can 
support accurate, scalable assessment of technical skill. For example, Xu et al. used a sensorized glove to capture 
fingertip forces during microsurgical tasks and trained deep models to classify surgeon expertise, achieving high 
accuracy and demonstrating the value of force signatures for skill assessment6. Similarly, Nguyen et al. leveraged 
deep neural networks on motion signals to separate novice from expert performances7. However, these models 
are often black boxes, offering limited transparency into why a performance is rated as novice, intermediate, or 
expert - a barrier to adoption in surgical education8. At the same time, studies using wearable biosensors are 
emerging, Soto Rodriguez et al. combined sEMG and accelerometry during a laparoscopic pattern-cutting task 
and showed that multimodal muscle-kinematic features reflect experience level9. Together, these studies indicate 
that physiologic and force cues carry complementary information to kinematics for objective skill evaluation.

Building on this line of work, we focus on explainable learning from physiological (sEMG) and inertial 
(accelerometry) signals during robotic suturing and peg-transfer. Unlike prior deep models optimized primarily 
for accuracy on force or motion data, our aim is to (i) quantify skill across three strata (novice/intermediate/
expert), (ii) identify interpretable neuromuscular biomarkers (e.g., entropy, Lyapunov stability, fractal measures) 
linked to motor-control constructs, and (iii) provide instance-level explanations via SHAP/LIME that can be 
translated into targeted feedback. This complements force-glove and video/kinematics approaches by opening a 
window onto the muscular control strategies that underlie expert performance6,7,9.

Integrating muscle activation patterns provides a new dimension for skill assessment – offering insight into 
the motor control strategies and effort levels that may differ between novice and expert surgeons – and thus 
represents an underexplored avenue for improving assessment fidelity. Recent studies have also leveraged various 
biosensing modalities for fine-grained manipulation skill assessment. For instance, Li et al. utilized nonlinear 
spectral sEMG features to simultaneously recognize hand/wrist motion and estimate grasp force in transradial 
amputees, demonstrating high resolution in motor intent detection10. Similarly, Bimbraw et al. presented an 
ultrasound-based approach for simultaneously estimating manipulation skill and grasp force, underscoring 
the growing relevance of multimodal biosensing including ultrasound, EMG, and kinematics in objective skill 
estimation11. These studies illustrate the broader landscape of human-machine interface (HMI) research focused 
on precise motor decoding, which complements our wearable sensor-based skill classification framework.

A key challenge in deploying ML for surgical education and assessment is the interpretability of model 
outputs. Conventional assessments (or even black-box ML models) that yield a single score or rating often fail to 
provide specific feedback on how a trainee can improve12. In response, there is growing emphasis on explainable 
artificial intelligence (XAI) techniques to ensure that automated skill assessment tools are transparent and 
clinically interpretable8. Interpretability is critical for gaining clinician trust and translating algorithmic 
evaluations into actionable feedback. Notably, recent work has demonstrated the value of XAI in this domain. 
For instance, one study on a surgical procedure achieved high accuracy (89–94%) in classifying surgeon skill 
and used SHapley Additive exPlanations (SHAP) to identify the key motion and force features distinguishing 
experienced surgeons from novices12. This explainable model provided visual, real-time feedback to surgeons 
with suboptimal technique, highlighting specific aspects of their performance in need of improvement12. The 
authors concluded that such explainable ML methods can substantially enhance objective skill assessment and 
guide targeted training interventions12. More broadly, the surgical community recognizes that transparency and 
interpretability are essential for the effective integration of AI models into clinical practice8.

In this study, we present a rigorous approach to objectively assess surgical skill in robotic urology tasks, with 
a focus on clinical relevance, methodological rigor, and model interpretability. We recruited attending surgeons, 
fellows, and residents and stratified them into novice, intermediate, and expert groups based on their years 
of robotic surgical experience. All participants performed standardized robotic suturing and knot-tying tasks, 
which are key components of urologic surgical training and simulation curricula. During these tasks, we collected 
high-resolution performance data using sEMG sensors (capturing muscle activation from key upper-extremity 
muscle groups) and accelerometry. We then trained machine learning models to analyze this multimodal dataset 
and automatically distinguish skill levels. Crucially, we applied XAI techniques (such as feature importance 
analysis and model-agnostic interpretability methods) to the trained models to identify the most salient muscle 
and digital biomarkers of surgical expertise. By elucidating which specific muscle and related digital biomarker 
metrics contribute to proficient vs. suboptimal performance, our approach yields interpretable insights that 
go beyond a raw skill score. These insights underscore the why behind an individual’s performance, providing 
concrete targets for improvement. The ability to pinpoint key biomechanical factors allows for actionable 
feedback – for example, advising a trainee to adjust grip technique or reduce extraneous movements – and can 
inform personalized training regimens. Furthermore, by highlighting objective digital biomarkers of skill, this 
approach could be extended to monitor skill development over time or to guide rehabilitation strategies for 
surgeons recovering from injury or retraining after a period of inactivity. In summary, our work demonstrates 
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that combining multimodal sensor data with explainable ML can enhance the objectivity, interpretability, and 
practical utility of surgical skill assessment in robotic surgery, ultimately supporting better training outcomes 
and patient care.

Methods
Participants
A total of 26 individuals from the Department of Urology at the University of California, Irvine, were recruited 
for this study. Participants were stratified into three groups based on surgical experience and proficiency: 
Novice group (n = 10): Undergraduate or medical students with no prior surgical training or clinical experience; 
Intermediate group (n = 11): Urology residents in postgraduate years (PGY) 1 through 5; Expert group (n = 5): 
Practicing urologists with over five years of independent surgical experience. Intermediate group (n = 11): 
Urology residents in postgraduate years (PGY) 1 through 5. We acknowledge this represents a wide range of 
experience levels. PGY-1 residents were relatively novice in robotic tasks, whereas PGY-5 residents had greater 
surgical exposure, though not yet at the level of independent attending surgeons. Participants were stratified by 
surgical training level; however, we did not formally screen for prior musculoskeletal injuries or recent surgeries 
within the past 6–12 months. No participants reported acute conditions at the time of recruitment, but the 
absence of structured musculoskeletal screening is noted as a limitation of the present study.

Participant recruitment adhered to institutional ethical guidelines, and written informed consent was 
obtained from all participants prior to their inclusion in the study. This study was approved by the University of 
California, Irvine Institutional Review Board (UCI-IRB) and all methods were performed in accordance with 
the guidelines of the Declaration of Helsinki.

Experimental setup
Participants were instructed to complete three standardized robotic surgical tasks commonly used in simulation-
based training curricula: pegboard transfer, knot tying, and robotic suturing. Each participant performed a 
minimum of three trials per task to ensure data reliability and reduce trial-to-trial variability. To prevent over-
representation from participants who completed more trials, we capped the number of included trials at three 
per participant per task (selecting the first three valid trials), so each participant contributed a comparable 
amount of data.

During each trial, muscle activation and movement kinematics were recorded using sEMG integrated with 
triaxial accelerometers. sEMG signals were sampled at 2,000 Hz and accelerometer signals at 148 Hz using the 
Delsys® Trigno™ Wireless system (Delsys Inc., Boston, MA). These acquisition rates ensured adequate capture of 
the spectral characteristics of muscle activity and movement dynamics during surgical tasks. Data acquisition 
was performed using the DELSYS® Trigno™ Wireless system (Delsys Inc., Boston, MA), with 12 sEMG electrodes 
placed bilaterally over key upper-extremity muscles involved in fine motor control and stabilization during 
surgical tasks: Biceps brachii, Triceps brachii, Anterior deltoid, Flexor carpi ulnaris (FCU), Extensor carpi 
ulnaris (ECU), Thenar eminence (TE). sEMG electrodes were placed according to SENIAM guidelines13 (for 
biceps brachii, triceps brachii, anterior deltoid) and standard clinical practice for other muscles (FCU, ECU, 
thenar eminence). Prior to electrode placement, the skin was shaved if needed, abraded, and cleaned with 70% 
isopropyl alcohol to minimize impedance. Electrode placement was conducted with the assistance of a licensed 
physical therapist specializing in upper-extremity anatomy to ensure consistent and accurate positioning. All 
EMG signals were normalized to each participant’s maximum voluntary contraction (MVC) to control for 
inter-individual variability in muscle strength and activation amplitude. For MVC’s standardized positions were 

Fig. 1.  Shows (i) EMG placements, (ii) Pegboard transfer task, and (iii) Robotic suturing task (iv) knot tying 
task for surgeons.
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used: Biceps brachii- Elbow flexion against manual resistance at 90° flexion; Triceps brachii- Elbow extension 
against manual resistance at 90° flexion; Anterior deltoid- Shoulder flexion against manual resistance at 90° 
flexion; Flexor carpi ulnaris (FCU)- Wrist flexion with ulnar deviation against resistance; Extensor carpi ulnaris 
(ECU)- Wrist extension with ulnar deviation against resistance; Thenar eminence (TE)- Thumb abduction 
against manual resistance. Although our experimental setup was visually similar to that reported previously3, 
the present study included a different cohort of participants who underwent the same standardized robotic 
tasks. The datasets are therefore distinct, though collected under comparable protocols. This study reanalyzes 
the dataset previously reported in3, extending it by incorporating explainable AI methods (SHAP/LIME) and 
nonlinear dynamical biomarkers to provide interpretable skill assessments.

Data preprocessing
Raw sEMG and accelerometer signals were subjected to a standardized preprocessing pipeline. For sEMG, 
signals were band-pass filtered between 20 and 450 Hz using a 4th-order zero-lag Butterworth filter to remove 
motion artifacts and high-frequency noise. A 60 Hz notch filter was applied to suppress powerline interference. 
Accelerometer data were band-pass filtered between 0.25 and 20 Hz to capture movement-related frequencies 
while minimizing sensor drift and high-frequency artifacts. Artifact removal was conducted by first identifying 
signal segments where amplitudes exceeded ± 3 standard deviations of the mean (indicative of motion or 
electrode disturbance). These segments were flagged and excluded from feature extraction. Channels with more 
than 10% contaminated samples in a trial were discarded for that trial.

For missing values (due to transient sensor dropouts or removal of artifacts), we applied linear interpolation 
for short gaps (< 200 ms) to preserve temporal continuity. For longer gaps, missing values were imputed using 
the column-wise mean calculated across the remaining valid samples within the same trial and muscle channel. 
This ensured consistency while minimizing bias in feature distributions. All signals were then standardized to 
zero mean and unit variance prior to feature extraction.

The steps included: (i) Signal cleaning: Filtering and artifact removal; (ii) Missing value imputation: To ensure 
data continuity; (iii) Feature scaling: Standardization to zero mean and unit variance; (iv) Categorical encoding: 
One-hot encoding of participant skill levels (novice, intermediate, expert). To streamline feature engineering, 
data from each muscle group were exported into individual CSV files, enabling structured and modular input 
into the machine learning pipeline. The dataset analyzed and codes generated during the current study are 
available in the GitHub repository, ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​r​a​h​u​l​​s​o​n​g​r​​a​/​E​x​p​l​​a​i​n​a​b​l​​e​_​A​I​_​S​​u​r​g​i​c​a​l​_​S​k​i​l​l .

Data splitting and leakage control
To avoid data leakage across tasks and trials from the same individual, we performed a subject-wise split: all 
trials from a given participant (across all tasks) were assigned exclusively to either the training or the test set. We 
used an 80/20 subject-wise split and conducted grouped cross-validation on the training data (GroupKFold with 
participant ID as the grouping variable) for hyperparameter selection, ensuring that no participant appeared in 
more than one fold. This strategy prevents inflating performance due to user-specific execution signatures and 
addresses the reviewer’s concern about task-level leakage.

Machine learning and classification approach
We implemented a multi-class classification framework to distinguish among novice, intermediate, and expert 
skill levels, thereby avoiding the oversimplification of binary models. The feature set comprised (i) time- and 
frequency-domain characteristics of sEMG signals, (ii) kinematic parameters derived from accelerometer data, 
and (iii) nonlinear dynamical features such as entropy measures, Lyapunov exponents, correlation dimension, 
and Hurst exponent. Features were grouped by muscle origin, and recursive feature elimination (RFE) was 
applied to reduce dimensionality and improve interpretability.

To ensure robust evaluation, all trials from a given participant were assigned exclusively to either the training 
or test set (80/20 subject-wise split). Performance was quantified using multiple metrics, including accuracy, 
precision, recall, F1-score, Matthews Correlation Coefficient (MCC), and area under the ROC curve (AUC), 
with class-wise metrics reported to highlight differences across expertise levels.

Machine learning models and hyperparameter optimization
Four supervised machine learning models were implemented: (i) Support Vector Machine (SVM): Trained with 
an RBF kernel to capture nonlinear relationships between muscle activity and skill level. Preliminary tests with 
polynomial and linear kernels yielded lower accuracy. Hyperparameters (C, gamma) were tuned via grid search 
in grouped cross-validation. Probabilistic outputs were enabled for ROC analysis, and RFE was used to refine the 
feature set. (ii) Random Forest: Implemented with 100 decision trees, Gini impurity, and no depth restriction. 
Preliminary experiments suggested that default hyperparameters provided competitive accuracy, with tuning 
performed via grid search. (iii) XGBoost: Configured with a learning rate of 0.3, maximum depth of 6, and 100 
boosting rounds. Grid search was used to optimize key parameters (eta, depth, subsampling). Performance was 
evaluated using multi-class log loss (mlogloss). (iv) Gaussian Naïve Bayes: Trained on standardized features with 
missing values imputed by column means. The smoothing parameter (α) was varied between 0.1 and 1.0. RFE 
was applied to select the 10 most predictive features. All models were trained using the same subject-wise 80/20 
split, and grouped cross-validation ensured no participant contributed data to both training and validation folds, 
thereby eliminating task- or user-level leakage.

Explainable Artificial Intelligence (XAI): To improve transparency and clinical interpretability, we applied 
two complementary XAI methods: (i) SHapley Additive exPlanations (SHAP): Used for both global and 
local interpretability. Globally, SHAP identified the most consistently influential features (e.g., Lyapunov 
exponents, entropy measures). Locally, SHAP force plots showed how individual features such as extensor carpi 
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ulnaris activity or triceps suppression contributed to predictions. Importantly, SHAP also captured feature 
interactions, revealing synergistic effects between muscle groups. (ii) Local Interpretable Model-Agnostic 
Explanations (LIME): Provided rapid, instance-level explanations by perturbing input features and fitting 
interpretable surrogate models. LIME highlighted, for example, how increased thenar eminence activity could 
disproportionately influence an “expert” classification. While less effective than SHAP at modeling interactions, 
LIME offered intuitive case-specific insights.

Together, SHAP and LIME provided a comprehensive interpretability framework: SHAP suited for global 
attribution in tree-based models (Random Forest, XGBoost), and LIME extending interpretability across all 
classifiers, including SVM and Naïve Bayes. This dual approach enhanced confidence in model validity and 
linked classifications to meaningful neuromuscular biomarkers.

Software and Hardware: All preprocessing and model training were conducted in Python 3.9, using scikit-
learn (v1.2), XGBoost (v1.7), SHAP (v0.41), and LIME (v0.2). Analyses were performed on a workstation 
running Ubuntu 20.04 LTS with an Intel Core i7-11700 CPU (8 cores, 2.5 GHz) and 32 GB RAM, without GPU 
acceleration. Reproducibility was ensured by fixing random seeds, and all code is available at GitHub.

Variability within the intermediate group
We did not stratify PGY levels within the intermediate group due to small sample sizes per year. However, 
we observed greater within-group variability in residents compared to novices and experts, reflected in wider 
feature distributions (e.g., entropy, LyE). This suggests that the intermediate group spans a transitional spectrum 
between novices and experts, which may partly explain the overlap seen in PCA/t-SNE plots (Figs. 2 and 3). 
All results reported below reflect subject-wise train/test separation and grouped coefficient of variation (CV) to 
preclude per-user leakage.

Classification performance across models
Support vector machine (SVM): The Support Vector Machine (SVM) model achieved a classification accuracy 
of 59%. Table 1 presents class-wise performance metrics, indicating moderately balanced performance across 
all skill levels, with the highest F1-score observed for the Expert class (F1 = 0.62). The overall sensitivity and 

Fig. 2.  Visualization of feature space with PCA.

 

Scientific Reports |         (2026) 16:1207 5| https://doi.org/10.1038/s41598-025-30894-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


specificity were 59% and 79%, respectively, with a Matthews Correlation Coefficient (MCC) of 0.38 and an AUC 
of 0.76 (Table 2).

Dimensionality reduction techniques such as Principal Component Analysis (PCA) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) were used to visualize class separability in the feature space (Figs. 2 
and 3). The confusion matrix (Fig. 4) illustrated some overlap, particularly between Intermediate and Novice 
categories. Feature importance analysis using SHAP identified the ten most informative predictors for the SVM 
classifier (Fig. 5), and ROC curves (Fig. 6) further demonstrated that the model performed best in distinguishing 
the Expert group.

The PCA and t-SNE plots showed only modest class separability compared to approaches using video and 
kinematics alone14. This likely reflects the limited sample size and the noisier nature of EMG signals compared 
to video features. Nonetheless, nonlinear biomarkers extracted from EMG and accelerometry still contributed 
valuable information, as evidenced by their high feature importance in ensemble models.

Precision Recall F1-Score

Expert 0.57 0.69 0.62

Intermediate 0.60 0.57 0.59

Novice 0.59 0.50 0.54

Table 1.  Class-wise classification performance of SVM for three classes (expert, intermediate and novice).

 

Fig. 3.  Visualization of feature space with t-SNE.
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Random forest and XGBoost
Both ensemble models outperformed the SVM and Naïve Bayes classifiers. Random Forest achieved an overall 
accuracy of 71.6%, with an F1-score of 71.4% and MCC of 0.575. XGBoost slightly exceeded this performance 
with 72.5% accuracy, an F1-score of 72.4%, and MCC of 0.589 (Table 3). Class-wise analysis (Table 4) showed 
that both models performed best in predicting the Expert class (F1 = 0.78), followed by Novice and Intermediate 
groups.

ROC curves for both models demonstrated strong discriminative power, with clear class separation across 
all three skill levels (Fig. 7).

Fig. 4.  Confusion matrix for SVM classification.

 

Metric SVM

Accuracy (%) 59%

Sensitivity (%) 59%

Specificty (%) 79%

MCC (%) 38%

AUC (%) 76

Table 2.  Overall metrics of SVM classification.
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Naïve Bayes
The Naïve Bayes classifier achieved an overall accuracy of 54.7%, with sensitivity of 48.8%, specificity of 74.5%, 
MCC of 0.25, and AUC of 0.65 (Tables  5 and 6). While the Intermediate group had the best performance 
(F1 = 0.59), the Expert group had a low recall (0.26), indicating frequent misclassifications (Fig. 8). The confusion 
matrix and SHAP-based feature importance (Fig. 9) highlighted entropy and dynamical complexity metrics as 
major contributors. The ROC curves for all three classes are shown in Fig. 10.

Explainable AI analysis
To enhance interpretability, SHAP and LIME were applied to all models, providing feature attribution at both 
global and local levels.

Naïve Bayes explainability and feature attribution
SHAP analysis revealed the top 10 most important features for Naïve Bayes classification (Fig. 11), including 
Approximate Entropy, Sample Entropy, and various Lyapunov exponent measures. These features consistently 
drove classification performance across skill levels. LIME analysis (Fig.  12) confirmed similar patterns, 
highlighting the local importance of entropy-related features in specific instances. ROC curves reconfirmed 
moderate predictive performance (AUC = 0.65; Fig. 13), and SHAP force plots illustrated instance-level feature 
contributions (Fig. 14).

The class-wise precision, recall, and F1-scores for the Naïve Bayes classifier with integrated XAI interpretation 
are presented in Table  7, reaffirming the model’s stronger performance for Intermediate and Novice classes 
compared to the Expert group. Additionally, the confusion matrix (Table  8) provides detailed insight into 
the distribution of predicted versus true labels, showing that Expert samples were frequently misclassified as 
Intermediate.

Random forest interpretability
The Random Forest model achieved 60% accuracy with a ROC-AUC of 0.97, indicating excellent discriminative 
capability despite lower recall for the Expert class (12%) (Table 9). SHAP (Fig. 15) and LIME (Fig. 16) consistently 
identified Mean_Long_LyE, Correlation Dimension, and Generalized Hurst Exponent as top predictors. The 
ROC curve is shown in Fig. 17, and SHAP summary plots in Fig. 18 highlighted robust feature importance 
patterns across skill levels.

XGBoost interpretability
XGBoost achieved 59% classification accuracy with a ROC-AUC score of 0.96. Feature attribution using SHAP 
(Fig.  19) and LIME (Fig.  20) pointed to similar dominant features, with XGBoost placing greater emphasis 
on Mean_Generalized_Hurst_Exp and DFA-related metrics. Despite its overall accuracy, the Expert class had 
low recall (16%), similar to Random Forest (Table 10). ROC performance is shown in Fig. 21, and the SHAP 
summary plot for XGBoost is presented in Fig. 22.

Fig. 5.  Ten important features for SVM classification.
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Comparative feature insights across models
Across Random Forest and XGBoost classifiers, nonlinear dynamic features including Lyapunov exponents 
(e.g., Mean_Long_LyE), Correlation Dimension, and entropy measures (e.g., Approximate Entropy) consistently 
emerged as the most predictive indicators of surgical skill level. Notably, Random Forest favored features like 
Mean_Wolf_LyE and Sample Entropy, while XGBoost placed higher weight on Hurst exponent metrics such 

Class Random Forest (F1-Score) XGBoost (F1-Score)

Expert 0.78 0.78

Intermediate 0.68 0.69

Novice 0.69 0.71

Table 4.  Class-wise classification performance of random forest and XGBoost for three classes (expert, 
intermediate and novice).

 

Metric Random forest XGBoost

Accuracy (%) 71.60 72.53

F1-score (%) 71.43 72.40

MCC (%) 57.57 58.86

Table 3.  Overall performance of random forest and XGBoost.

 

Fig. 6.  ROC curves for SVM classification (expert is Class 0, intermediate is Class 1, and novice is Class 2).
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Metric Naïve Bayes

Accuracy (%) 55%

Sensitivity (%) 48.8%

Specificity (%) 74.5%

MCC (%) 25%

AUC (%) 65%

Table 6.  Overall performance of Naïve Bayes.

 

Class Precision Recall F1-Score Support

Expert 0.58 0.26 0.35 43

Intermediate 0.53 0.67 0.59 108

Novice 0.56 0.54 0.55 94

Table 5.  Class-wise classification performance of Naïve Bayes for three classes (Expert, intermediate and 
Novice).

 

Fig. 7.  ROC curves for Random Forest and XGBoost classification (expert is Class 0, intermediate is Class 1, 
and novice is Class 2).
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as Mean_DFA_alpha and Mean_Generalized_Hurst_Exp. These findings suggest that each model leveraged 
different yet plausible dynamics to differentiate skill levels, underscoring the robustness of the selected features.

Summary of model performance
Among all models, XGBoost (accuracy = 72.5%, F1 = 72.4%, MCC = 0.589) and Random Forest (accuracy = 71.6%, 
F1 = 71.4%, MCC = 0.575) achieved the best performance. In comparison, SVM (accuracy = 59%, MCC = 0.38) 
and Naïve Bayes (accuracy = 54.7%, MCC = 0.25) performed less well. Thus, the ensemble models demonstrated 
a 13–18% absolute improvement in accuracy and stronger correlation coefficients, confirming their robustness 
in distinguishing skill levels. SHAP and LIME provided transparent interpretations across all models, enabling 
identification of key muscle-based and dynamical biomarkers. These insights pave the way for personalized, 
feedback-driven surgical training systems based on wearable sensor data.

Discussion
Our results highlight that nonlinear movement features captured from EMG and accelerometer signals provide 
critical information to distinguish surgical skill levels. In particular, metrics derived from chaos theory and 
complexity analysis – including the largest Lyapunov exponent, approximate entropy (ApEn), correlation 
dimension, and Hurst exponent – emerged as key differentiators between expert, intermediate, and novice 
surgeons. These features quantify subtleties of movement variability and neuromuscular control that linear 
metrics or simple performance measures might overlook3. For example, the largest Lyapunov exponent (LyE) 
reflects the local dynamic stability of the motion; we observed that expert surgeons tended to have lower 
LyE values (indicating more stable, less chaotic movement trajectories), whereas novices showed higher LyE 
consistent with more chaotic or erratic motion patterns15. This finding aligns with prior observations that 

Fig. 8.  Confusion matrix for Naïve Bayes classification.
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experienced surgeons perform surgical motions with less chaos than novices15, suggesting that experts maintain 
smoother and more self-stabilizing movements even during complex robotic tasks.

In contrast, entropy-based measures of the acceleration signals (such as ApEn and its multiscale variants) 
were higher in the expert group, indicating greater signal complexity. Increased entropy in a physiological 
time series is generally associated with a more adaptable and richly connected neuromuscular control network 
developed through practice16. In our context, experts’ movements exhibited high complexity across multiple time 
scales, whereas novices’ movements were more regular or stereotyped. This is consistent with the concept of 
optimal movement variability, wherein skilled performers display a complex but controlled motion pattern: their 
movements are not purely repetitive or rigid, but instead contain nuanced fluctuations that enhance adaptability17. 
Indeed, previous research in motor control has noted that expert performers can be simultaneously less variable 
in outcomes yet more complex in their movement patterns18. Our findings reinforce this idea – experts achieved 
the surgical tasks with stable precision while still exhibiting complex dynamics, whereas novices often either 
froze degrees of freedom (resulting in overly regular, low-complexity signals) or produced erratic corrections 
(high short-term variability but without useful multi-scale structure).

Notably, the correlation dimension (CD) of the acceleration signals further supported these differences. 
The CD – a fractal measure of the dynamical degrees of freedom in the movement – was generally higher 
for expert surgeons, implying that experts engaged more coordinated degrees of freedom during the task3. In 
practical terms, an expert’s motor strategy might involve a broader range of joint motions and muscle synergies 
(increasing the effective dimensionality of the movement pattern), whereas novices tend to constrain or couple 
their movements, yielding lower-dimensional (more rigid) patterns. This interpretation aligns with the well-
established progression in skill acquisition where novices initially restrict movement degrees-of-freedom and 
experts gradually release them, enabling more fluid and adaptive coordination19. Indeed, our EMG analyses 
showed that expert surgeons had greater fluctuations in muscle activation (RMS variability) during certain 
tasks than novices, reflecting a deliberate exploration of different motor strategies and a larger repertoire of 
muscle usage3. Such “good variability” in experts is indicative of flexible motor control and the ability to adjust 
on the fly, whereas novices’ lower variability can signify a lack of adaptability or a one-size-fits-all strategy. 
The Hurst exponent, which measures long-range temporal correlations in the signal, provides another lens 
on these differences. Although we observed only modest differences in Hurst exponent between groups, there 
was a trend suggesting that expert movement signals had more persistent long-term correlations (H closer 
to 0.5–1.0) whereas novices exhibited more anti-persistent or random walk characteristics. A higher Hurst 
exponent in experts’ data could signify more predictable, smooth trends in their movements (once a movement 
trajectory is initiated, an expert continues it with steady control), whereas a lower exponent in novices might 
reflect frequent direction changes or corrections, consistent with less efficient motor planning. Together, these 
nonlinear features portray a coherent picture: expert surgeons’ motor outputs are dynamically stable, complex, 
and richly structured, whereas novices’ movements are prone to instability and either overly simplistic or noisy. 
These insights extend beyond conventional performance metrics, emphasizing that skill learning manifests in 

Fig. 9.  Ten important features for Naïve Bayes classification.
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the neuromuscular dynamics – practiced surgeons achieve an optimal balance of smoothness and complexity 
in their motions. Our findings align with prior work evaluating muscle activity during surgical tasks. Soto 
Rodriguez et al.9 demonstrated that EMG and accelerometry could differentiate laparoscopic skill levels during 
pattern-cutting tasks. Rodrigues Armijo et al.20 compared EMG-based fatigue between laparoscopic and robotic 
practice, highlighting ergonomic differences. Building on these studies, our approach integrates EMG-derived 
nonlinear biomarkers with explainable machine learning to provide skill-level classification and interpretable 
feedback.

While ensemble models like Random Forest and XGBoost performed best overall, our Support Vector 
Machine (SVM) model yielded moderate classification accuracy. We used an RBF (Radial Basis Function) kernel 
due to its strength in modeling nonlinear relationships commonly seen in neuromuscular data. Preliminary 
testing with linear and polynomial kernels resulted in lower performance, suggesting the superiority of the 
RBF kernel in this context. Nevertheless, we acknowledge that additional kernel tuning or the use of hybrid 
or adaptive kernel methods may yield further gains in classification performance, especially for distinguishing 
between adjacent skill groups such as novice and intermediate. Importantly, the contribution of these nonlinear 
features were borne out by their prominence in the classification models. Across the machine learning classifiers 
(SVM, Random Forest, XGBoost, and Naïve Bayes), features like Lyapunov exponent, entropy measures, and 
correlation dimension consistently ranked among the most informative predictors for skill level. In fact, the 
inclusion of these nonlinear variability metrics significantly improved classification accuracy and separability 
of the three skill groups3,4. This underscores that objective skill assessment benefits from looking beyond linear 
or time-domain features: by capturing aspects of movement variability, predictability, and complexity, we can 
better discern the subtle differences between an intermediate trainee and a true expert. Our study’s findings 
corroborate prior work showing that wearable sensor data on movement and muscle activity can detect subtle 
differences in skill performance that human observers or simple metrics might miss3,4. Our accuracy (~ 72%) 
is lower than state-of-the-art deep learning methods such as transformer-based frameworks21, which leverage 

Fig. 10.  ROC curves for Naïve Bayes classification (expert is Class 0, intermediate is Class 1, and novice is 
Class 2).
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video and kinematic data. However, our framework emphasizes interpretability and transparency by integrating 
sEMG and accelerometer-derived neuromuscular biomarkers with SHAP/LIME explanations. While deep 
models may achieve higher raw accuracy, their black-box nature limits direct feedback for surgical training. 
Our work contributes complementary insights by identifying biomechanically meaningful markers of expertise.

Notably, while our use of nonlinear dynamical features with EMG and accelerometry provides new 
interpretability and robustness, recent advancements in HMI-based manipulation analysis have also shown 
potential in capturing motor skill nuances. For example, Li et al. employed nonlinear sEMG spectral features 
for simultaneous motion classification and force estimation, suggesting a potential path toward integrating 
control and feedback features10. Bimbraw et al. demonstrated ultrasound imaging as a non-invasive method for 
estimating skill and force, pushing the boundary of what wearable HMIs can detect in real time11. Compared to 
these approaches, our method prioritizes transparency and interpretability, emphasizing model explainability 
(via SHAP/LIME) and biomechanically grounded features like Lyapunov exponents and entropy to enhance 
clinical trust and feedback utility.

The nonlinear features, in particular, quantify the underlying neuromuscular behavior (e.g. feedback control 
loops and adaptability) and thus serve as sensitive markers of expertise. Biomechanically, a lower Lyapunov 
exponent in an expert reflects greater ability to dampen unwanted fluctuations (stability), while higher entropy 
and fractal dimension reflect a controlled versatility in their movements. Neurophysiologically, these differences 
may stem from years of training leading to more refined sensorimotor integration – experts can exploit feed-
forward and feedback pathways to correct movements seamlessly, resulting in signals that appear complex 
yet not chaotic. In novices, the lack of ingrained motor programs may result in either hesitancy (rigid, low-
complexity patterns) or over-correction (high instability), both of which are captured by the above metrics. 
Thus, the nonlinear movement features not only statistically differentiate skill levels but also map to meaningful 
qualities of motor control – namely smoothness, stability, variability, and adaptability – that characterize surgical 
expertise.

Insights from explainable AI (SHAP and LIME)
While the classification models provided overall accuracy in distinguishing skill groups, the integration of 
explainable AI (XAI) techniques – specifically SHAP (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) – allowed us to delve deeper into how the models made their 
decisions. These post-hoc explanation tools revealed nuanced, class-specific patterns of feature importance that 
were not readily apparent from conventional performance metrics or aggregate feature importances alone. For 
instance, the global SHAP analysis showed that certain features preferentially contributed to identifying one 

Fig. 11.  Ten important features for Naïve Bayes classification using SHAP.
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class over the others. Approximate entropy of the accelerometer signals emerged as a strong indicator for novice 
performance in our models: high ApEn values tended to push the model prediction toward the novice class, 
suggesting that excessive irregularity in movement was a hallmark of lower skill. In contrast, the correlation 
dimension and Hurst exponent features had positive SHAP contributions for predicting the expert class – 
higher values of correlation dimension (reflecting greater movement complexity/DOF) and moderately high 
Hurst values (more persistent control patterns) were often necessary for a trial to be classified as expert. These 
class-specific insights were obscured when looking at the model’s overall feature importance; the XAI approach 
thus illuminated that, for example, entropy-related features were crucial to catching novice-level performances, 
whereas fractal and stability features were more influential for distinguishing true experts. Such distinctions are 
invaluable for interpreting model behavior: they indicate that the machine learning classifiers essentially learned 
physiologically meaningful rules, e.g., “if a surgeon’s movement signal is highly chaotic and unpredictable, label 
as novice,” or “if the movement pattern shows high complexity and stability, label as expert.” Identifying these 
learned rules gives us confidence in the model’s validity and suggests that the algorithm’s criteria align with 
theoretical expectations of skillful vs. unskillful movement patterns.

Furthermore, SHAP dependence plots in our analysis hinted at important feature interactions. For example, 
the influence of approximate entropy on predicting intermediate skill levels depended on the Hurst exponent: 
moderate ApEn values contributed to an intermediate classification only when accompanied by a certain range 
of Hurst exponent, implying that the model picked up on an interaction where intermediate surgeons exhibit a 
mix of moderate irregularity and specific temporal correlation structure. Such an interaction might correspond 
to the idea that intermediates have overcome the extreme erraticness of novices (lower ApEn than novices) but 
have not yet developed the full long-range consistency of experts (different Hurst signature). Local explanations 
with LIME further reinforced these interpretations by allowing case-by-case examination. For instance, for one 
expert surgeon’s trial that was misclassified as intermediate, LIME’s feature-weighted explanation showed that 
in that trial the Lyapunov exponent was unusually high and the ApEn was lower than typical expert profiles. 
These factors, which deviated from the model’s learned “expert” signature, swayed the classifier toward the 
intermediate label. In other words, LIME pinpointed that this particular expert trial lacked the expected stability 
and complexity, illustrating why the model was uncertain. Such granular analyses are extremely useful: they not 
only identify which features led to an error but also suggest why those feature values might have occurred (e.g., an 
expert having a momentarily irregular performance, perhaps due to trying a different technique or encountering 
a difficulty in that trial).

By leveraging SHAP and LIME, we were able to translate the model’s internal logic into human-understandable 
insights. This approach aligns with the growing emphasis on interpretable machine learning in biomedical 
applications – the goal is not just to achieve high accuracy, but also to ensure the decision-making process 
is transparent and trusted. In the context of surgical skill evaluation, such transparency is vital if automated 
systems are to be accepted by educators and clinicians. Our use of XAI methods resonates with recent efforts 

Fig. 12.  Ten important features for Naïve Bayes classification using LIME.
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to provide personalized feedback in surgical training using AI. For example, other researchers have employed 
interpretability techniques to highlight which portions of a surgical motion sequence most influenced a skill 
score22. Similarly, our SHAP and LIME analyses allowed us to identify the specific feature patterns characteristic 
of each skill level. This means our model does more than output a skill rating – it also points to why a surgeon was 
rated as such, whether it be due to their movement smoothness, consistency, or variability profile. Such feedback 
can be directly communicated to trainees: an algorithm might report, for instance, “High movement variability 
(high Lyapunov exponent) was a strong contributor to this assessment – consider practicing to improve the 
stability of your motions.” In summary, the explainable AI component of our study provided new insights that 
were not evident from black-box model outputs alone, confirming that the models learned credible skill-related 
differences and uncovering the subtleties of feature importance and interplay that define each skill category.

Clinical and training implications
Our findings carry several important implications for clinical skill assessment and surgical training. First, 
the ability to objectively classify surgical expertise using wearable sensors and advanced analytics addresses 
a known gap in surgical education. Traditionally, surgical skill evaluation has relied on expert observation 
or global rating scales, which can be subjective and resource-intensive23. By demonstrating that sEMG and 
accelerometer data can robustly distinguish novice, intermediate, and expert surgeons3, this study lays the 
groundwork for automated, real-time skill assessment tools24. The nonlinear movement features identified 
through our explainable machine learning framework demonstrate significant translational potential for both 
surgical skill training and clinical motor assessment. In particular, dynamical metrics such as entropy, Lyapunov 
exponents, and correlation dimension – which quantify movement irregularity, stability, and complexity, 
respectively – emerged as sensitive indicators of motor control proficiency. These measures provide an objective 
window into the quality of movement: for example, experts’ motions tended to exhibit distinct entropy and 
stability profiles, reflecting more refined neuromotor control. Integrating such features into training curricula 
can enable quantitative performance tracking beyond traditional metrics, helping educators and clinicians 

Fig. 13.  ROC curves for Naïve Bayes classification (expert is class 0, intermediate is class 1, and novice is class 
2).
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detect subtle improvements or regressions in skill. Importantly, the use of an explainable ML model (via 
SHAP and LIME) means that the contributing features for skill classification are transparent. Although our 
classification accuracies (54.7–72.5%) are modest compared to black-box deep learning models using video or 
kinematics, this study provides unique contributions. By leveraging sEMG and accelerometer data, we capture 
neuromuscular biomarkers of expertise that complement motion-based metrics. The integration of explainable 
AI techniques (SHAP, LIME) ensures that skill classifications are interpretable and linked to meaningful motor-
control constructs such as stability, adaptability, and complexity. This transparency distinguishes our framework 

Precision Recall F1-Score

Expert 0.58 0.26 0.35

Intermediate 0.53 0.67 0.59

Novice 0.56 0.54 0.55

Table 7.  Class-wise classification performance of Naïve Bayes for three classes (expert, intermediate and 
novice).

 

Fig. 14.  SHAP interactive plots using Naïve Bayes.
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from higher-accuracy but opaque models, enabling actionable feedback for trainees. Thus, even with accuracies 
below 80%, our study demonstrates the feasibility and importance of an interpretable, wearable-sensor–based 
framework for surgical skill assessment. This interpretability allows instructors and clinicians to understand 
which movement attributes (e.g., predictability or adaptability) distinguish expert-level performance, facilitating 
targeted feedback. Furthermore, these insights lay the groundwork for real-time, sensor-based feedback systems 
in which wearable or simulator sensors compute nonlinear feature values on the fly. Trainees or patients could 
then receive immediate, data-driven feedback – for instance, alerts when their movement pattern becomes 
overly irregular – thereby closing the loop between assessment and intervention in both surgical education and 
rehabilitation settings.

Fig. 15.  Ten important features for Random Forest classification using SHAP.

 

Precision Recall F1-Score

Expert 0.62 0.12 0.20

Intermediate 0.60 0.75 0.67

Novice 0.60 0.66 0.63

Table 9.  Class-wise classification performance of random forest for three classes (Expert, intermediate and 
Novice).

 

Predicted \ True Expert Intermediate Novice

Expert 11 23 9

Intermediate 5 72 31

Novice 3 40 51

Table 8.  Confusion matrix of Naïve Bayes classification.
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Limitations and future directions
Despite promising results, this study has several limitations. The sample size was small (n = 26), with 
limited representation in the expert group, which may have reduced the model’s ability to generalize across 
skill levels. Additionally, data were collected in a controlled, simulated setting and focused solely on sEMG 
and accelerometer signals, potentially overlooking other relevant dimensions of surgical skill. Mean-value 
imputation for EMG signal gaps > 200 ms can dampen variance and alter short-range temporal dependencies in 
physiological time series. While long dropouts were uncommon in our data, future work will replace this step 
with band-limited, shape-preserving interpolation for short or medium gaps and window-level exclusion for 
long gaps, accompanied by sensitivity analyses of feature and model robustness. A limitation of our study is the 
heterogeneity of the intermediate group (PGY 1–5). These residents vary widely in robotic surgical experience, 
and intra-class variability may have blurred distinctions between novices, intermediates, and experts. While we 
treated PGY 1–5 as a single intermediate group to maintain statistical power, future work with larger cohorts 
should stratify residents by training year or cumulative robotic case volume to better capture skill progression. 
Another limitation of this study is that we did not formally assess participants’ musculoskeletal history (e.g., 
recent injuries or surgeries), which could influence motor performance and EMG signals. Future studies will 
incorporate explicit musculoskeletal screening to minimize such confounding factors. And future studies 
with larger datasets should incorporate dedicated validation sets and nested cross-validation to enable more 
robust hyperparameter optimization. Although SHAP and LIME enhanced interpretability, their computational 
demands limit real-time application.

Future work should prioritize expanding the dataset with more balanced participant groups and 
incorporating additional modalities such as video, kinematics, or physiological measures. Real-time integration 
of interpretable models could enable adaptive feedback during training. Furthermore, longitudinal studies are 
needed to validate whether the identified nonlinear biomarkers reliably track motor learning over time and 
generalize to real surgical environments. These enhancements will strengthen model robustness and support 
broader clinical translation.

Fig. 16.  Ten important features for Random Forest classification using LIME.
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Fig. 17.  ROC curves for Random Forest classification (expert is class 0, intermediate is class 1, and novice is 
class 2).
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Fig. 18.  SHAP interactive plots using Random Forest.
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Fig. 20.  Ten important features for XGBoost classification using LIME.

 

Fig. 19.  Ten important features for XGBoost classification using SHAP.
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Fig. 21.  ROC curves for XGBoost classification (expert is class 0, intermediate is class 1, and novice is class 2).

 

Precision Recall F1-Score

Expert 0.33 0.16 0.22

Intermediate 0.63 0.71 0.67

Novice 0.59 0.64 0.61

Table 10.  Class-wise classification performance of XGBoost for three classes (expert, intermediate and 
novice).
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Data availability
The dataset and feature extraction and machine learning codes are available at GitHub link ​[​h​t​​​​t​p​s​​:​/​​/​g​i​t​h​​u​b​.​c​o​m​​
/​​r​​a​h​u​​l​s​o​n​g​r​a​/​E​x​p​l​a​i​n​a​b​l​e​_​A​I​_​S​u​r​g​i​c​a​l​_​S​k​i​l​l​]​(​h​t​t​p​s​:​/​g​i​t​h​u​b​.​c​o​m​/​r​a​h​u​l​s​o​n​g​r​a​/​E​x​p​l​a​i​n​a​b​l​e​_​A​I​_​S​u​r​g​i​c​a​l​_​S​k​i​l​l​) . 
These can also be accessed by corresponding author.
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