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Applications designed for real-time IoT operations improve cloud-based service utilization due to 
their rapid scalability. Though cloud computing appears to be more effective for data processing and 
storage in a range of IoT applications, its real-time scalability presents issues in fulfilling the demands 
of network bandwidth and latency-sensitive applications. In this context, fog computing is shown to 
be a complementary paradigm to cloud computing, providing extra benefits and capabilities aimed 
at extending cloud services to end users and edge devices. Due to the restricted capabilities of fog 
nodes, only lightweight activities can be conducted locally, while jobs requiring more processing 
time are handled in the cloud. As a result, an Improved Multi-Strategy Enhanced Secretary Bird 
Optimization Algorithm using Reinforcement Learning (IMSESBOA + RL) for IoT Task Scheduling 
(TS) mechanism is presented to reduce data processing time and enhance Quality of Service (QoS) in 
fog-cloud computing. This IMSESBOA + RL approach is designed as an efficient scheduling model that 
investigates and processes various scalable quantities of tasks while minimizing latency and energy 
costs. It used a multi-objective methodology based on Secretary Bird Optimization Algorithm’s (SBOA) 
balanced exploration and exploitation capabilities, which has multi-strategy benefits in terms of 
maximizing resource consumption rate and shortening makespan. It further uses RL for dynamically 
adapting to the new workloads by excelling in learning optimal strategies using the interaction of trial 
and error with the environment. The simulation findings of the IMSESBOA + RL approach verified that 
it reduced makespan by 19.42% and execution time by 18.32% compared to the baseline approaches 
with various jobs originating from IoT applications.

Keywords  Internet of things (IoT) applications, Task scheduling (TS), Secretary bird optimization algorithm 
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In recent past, technology of Internet of Things (IoT) has evolved as an indispensable paradigm which helped in 
enhancing diversified dimensions of human life for facilitating comfort in their day-to-day activities1. A myriad 
of devices such as classical smart devices, wearable devices, machines and sensors are connected through the 
Internet for the objective of interconnecting the benefits of IoT devices and their associated technologies such 
that support the actions carried out by humans2. These interconnected devices facilitated different numbers 
of services that are related to the domains of vehicular networking, logistics, smart retails, intelligent traffic 
control, health monitoring, and so on. But the amount of data produced by these smart devices needs to be 
processed potentially for the purpose of extracting essential amounts of information that assists the applications 
of IoT in a more reactive manner3. But these amounts of data generated in the monitoring environment cannot 
be significantly processed by IoT devices since they possess limitations in terms of storage and processing 
capabilities. At the same time, cloud computing represents a distributed computing paradigm which wide opens 
the option of providing an on-demand pool of resources to users who are connected over the Internet4. The 
tasks should be assigned to the more powerful cloud nodes for the purpose of utilizing the rich number of 
available resources possessed by them since the IoT devices are prone to the inherent limitations of storage, low 
computing power and restricted battery life5. But the exponentially growing IoT devices with the support of 
the Internet increase the possibility of generating unprecedented amounts of data which could not be reliably 
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handled by cloud datacenters which cannot satisfy the requirement of IoT applications in dynamic manner6‚39. 
However, the possibility of realizing the influences of transmission delay and network congestion is unavoidable 
and they considerably degrade the performance of QoS when deadline-driven IoT applications associated 
with the applications of online gaming, smart transportation, smart cities and healthcare, and so on need to 
be executed with delay sensitivity in real-time7‚40. These limitations realized in the cloud computing paradigm 
motivated the option of extending cloud resources to network edge such that the IoT tasks associated with these 
applications can be executed within the considered deadline in real time.

To extend benefits of cloud computing paradigm to network edge, Cisco introduced fog computing for 
minimizing the cloud datacenters’ burden imposed during the process of executing the IoT tasks8. This fog 
computing paradigm comprises of different types of devices that include surveillance cameras, routers, switches, 
gateways, access points, embedded servers, cellular base stations and controllers. This fog computing paradigm 
facilitates the benefits of low latency during the execution of delay-sensitive IoT applications. Attaining location 
awareness, geographical distribution of IoT devices, supporting mobility, minimizing the rate of energy 
consumption and conserving the degree of network bandwidth9. However, the capabilities of fog nodes based 
on storage and computing capabilities are insufficient during the execution of large IoT applications like the 
one that pertains to big data analytics. Moreover, cloud and fog nodes need to cooperate with one another such 
that they can support computation-intensive and delay sensitive IoT tasks with the development of a paradigm 
termed cloud-fog computing which exploits benefits of cloud and fog resources simultaneously10. In specific, 
the widely utilized cloud-fog computing architecture used for achieving the benefits of cloud-fog computing 
is the three-tier architecture depicted in Fig. 1. This three-tier architecture is used for implementing cloud-fog 
computing comprises of 3 layers that pertain to IoT devices, fog nodes and cloud datacenters11. The bottom-
most tier includes several numbers of IoT devices which incorporated GPS capability for enabling the users to 
submit the required tasks depending on the on-demand increased in the network. The middle tier represents 
the fog computing platform for varying number of edge nodes which play an anchor role in computing and 
handling the data which are very closer to the place where it is getting generated12. The final tier represents the 
cloud computing platform which opens the option of providing a massive number of resources as datacenters. 
It further facilitates a convenient environment which offers an extensive range of computing resources. These 
cloud-fog systems employed the technology of virtualization for providing resources in the form of VMs 
associated with the fog and cloud nodes13.

Moreover, this cloud-fog system prevents the heterogeneity of server for enhancing the rates of resource 
utilization and achieving server consolidation. Moreover, the system of virtualized cloud–fog is determined 
to be efficient and effective in deploying the bag-of-tasks applications that are related to video encoding, video 
decoding computational biology and massive searches. These applications comprise of several independent 
tasks which possess the capability of executing them in parallel14. In addition, Task Scheduling (TS) is a major 
challenge in cloud-fog system for achieving the requirements of the IoT applications.

In cloud-fog computing paradigm, TS algorithm attempts to identify the best task assignments to the 
available VMs with the view to satisfying the necessitated objectives of scheduling15. This TS process needs to be 
achieved by satisfying the deadline requirements of real-time tasks with reduced costs of execution, makespan 
values, optimized energy consumptions and maximized resource providers’ profits. These TS algorithms may 
be either static or dynamic based on the consideration or ignoration of the deadline constraints during the 
process of determining optimal schedules16. In specific, static TS approaches are more ideal for handling 
the execution of moderate and small sized IoT tasks. But static TS algorithms are not completely ideal for 
dynamic IoT environments since they generate large-sized application tasks with different arrival times into the 

Fig. 1.  Three-tier architecture of cloud-fog computing paradigm
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implementation environment. This process of dynamic TS on cloud-fog computing scenario is an optimization 
problem with NP-Hard complexity. In this context, metaheuristic schemes are seen to be ideal solutions for 
addressing the process of TS which incurs NP-Hard complexity17. Hence, it is identified that the development of 
dynamic real-time TS mechanism is highly required for executing the task in delay-sensitive IoT applications. 
The metaheuristic algorithms used for attaining TS process in cloud-fog computing domain contributed to 
literature includes Ant Colony Optimization (ACO), Genetic Algorithm (GA), Artificial Bee Colony (ABC), 
Particle Swarm Optimization (PSO), moth flame, bees’ life and so on18.

Motivation
The IoT applications in general generate large amounts of data that demand processing, storage and analysis 
for the objective of determining potential judgements that satisfy the goals and requirements of the users. In 
cloud-fog computing paradigms, metaheuristic optimization algorithms-based dynamic TS approaches are 
significant for satisfying user demands within the necessitated response time as it is essential for executing the 
IoT tasks without delay in real time19. In specific, metaheuristic algorithms are utilized for determining efficient 
solutions that helps in solving the engineering and optimization problems in real-world through the inclusion 
of nature inspired behaviors. The bio-inspired metaheuristic optimization algorithms are usually developed 
by mimicking the behaviors of animals, ants, birds, fishes, termites and so on. These behaviors considered 
in the development of bio-inspired metaheuristic optimization algorithms may be associated with the social 
organization, swarming, foraging, hunting, reproduction, mating of the species, and so on. These behaviors 
of the species are analogical to exploration and exploitation stages of bio-inspired metaheuristic optimization 
algorithms that are utilized for attaining the objectives of the real engineering problem like the IoT TS process 
in cloud-fog computing paradigms. Further, the incorporation of diversified number of Swarm Intelligent (SI) 
optimization algorithms into the real-world problem has facilitated success and exhibited its suitability and 
ideality in several applications. Many swarm-intelligent bio-inspired optimization schemes are developed for 
real-time problems. However, during decision making, these algorithms should be enhanced for attaining an 
improved balance between exploration and exploitation20. Further, these algorithms were successfully utilized 
in the domain of IoT for handling the problems of intrusion detection, sensing applications, feature selection, 
and so on. Several SI bio-inspired metaheuristic optimization-based TS solutions are proposed over the recent 
years. But most of them possessed a scope of significant improvement based on makespan, failure rate, execution 
time and response time during the process of scheduling IoT tasks to available cloud and fog associated VMs 
in implementation environment. Secretary Bird Optimization Algorithm (SBOA) is one of the recent SI bio-
inspired metaheuristic optimization algorithms, which is known for its stability, rate of convergence and 
searching accuracy. But this classical SBOA algorithm at the first level needs to obtain high accurate solutions 
with faster convergence. At the second level, global information exchanged between the phases cannot fully 
adjust the strategy of position updating in the searching space. Finally, it still faces the problem of falling into 
local optimality when it adopts few simple random strategies of exploitation in the Search Space (SS). Hence, 
multi-strategy improved CSBOA is indispensable for enhancing the capability of traditional algorithms by 
utilizing the merits of Feedback Regulation (FR) mechanism, Golden Sinusoidal Guidance (GSG) approach, 
Co-Operative Camouflage (CC) method and Cosine Similarity (CS)-based update approach for enhancing 
the rate of exploration and exploitation in a more well-balanced manner. At the same time, RL determines 
different policies which consolidate the impact of scheduling decisions over time such that it can optimize the 
intermediate gains. It helps in facilitating optimization which focuses on the long-term objectives that target on 
maximizing resource utilization, energy consumption and makespan in the fog computing scenario. Motivated 
by aforementioned merits, an Improved Multi-Strategy Enhanced SBOA and RL (IMSESBOA + RL)-based IoT 
TS mechanism is proposed for minimizing the delay incurred during mapping tasks to available cloud and fog 
associated VMs which is highly essential in real-time.

Justification behind selection of SBOA
SBOA is identified as a highly competitive optimization framework, particularly suitable for complex problems 
such as IoT TS where achieving a fine-grained balance between exploration and exploitation is critical. Many 
conventional optimization techniques exhibit either excessive exploration, leading to slow convergence or 
excessive exploitation, which increases the risk of premature convergence. In contrast, SBOA maintains a more 
adaptive interplay between these two phases. Its intrinsic mechanism enables broad exploration of the solution 
space during the initial iterations, while progressively shifting focus towards exploiting promising regions as 
the search advances. This adaptive search behavior results in enhanced global optimization capability and a 
notably faster convergence rate. Moreover, SBOA demonstrates a strong ability to evade falling into local optima, 
a common drawback in several existing bio-inspired and swarm-based algorithms. Its dynamic movement 
patterns and adaptive step-size adjustments contribute to escaping local optimal regions and identifying more 
diverse and competitive candidate solutions. This capability becomes especially beneficial in IoT TS scenarios, 
where the optimization landscape is highly dynamic and multimodal.

To further strengthen SBOA’s performance, multiple enhancement strategies have been incorporated. 
Cooperative strategies help individuals share beneficial information, thereby improving population intelligence 
and reducing redundant search efforts. CS-based updating assists in identifying individuals with correlated search 
behaviors, guiding the algorithm towards more meaningful directions in the solution space. FR mechanisms 
stabilize the search dynamics by adjusting parameters in response to intermediate performance. Techniques 
borrowed from differential evolution introduce controlled perturbations to increase exploration depth, while 
chaotic maps enhance randomness and help avoid repetitive or stagnated search patterns. These enhancements 
draw inspiration from powerful optimization frameworks such as PSO, ABC, and the Harris Hawk Algorithm, 
enabling a hybridized version of SBOA capable of delivering superior optimization quality. Collectively, the 
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integration of these strategies not only enriches solution diversity but also offers improved accuracy, robustness 
and reliability of optimization outcomes. Consequently, the improved SBOA becomes highly suitable for 
addressing the complex, time-sensitive, and resource-dependent requirements of IoT TS and similar large-scale 
optimization problems.

Justification behind adaptability of proposed approach under batch and dynamic workloads
The proposed methodology facilitated adaptive TS under dynamic batch workloads by utilizing the benefits of 
Enhanced SBOA intelligent algorithm (ESBOA) and iterative learning (RL). It facilitates real time monitoring 
for adjusting task allocation dynamically depending on the requirements of user QoS, resource availability and 
workload changes. The use of RL helps in improving the IoT TS process by using execution time and deadline 
for determining task priority and achieving optimal resource allocation through continuous feedback. This use 
of RL facilitates the suitable mapping of tasks to fog computing resources in constantly changing environment. 
It adopted intelligent resource mapping during the implemented system assigns tasks by considering the types 
of resource pertaining to memory, CPU and their capabilities. It specifically minimized task rejection rates 
and SLA violations by providing high priority to latency sensitive tasks. It included a dynamic load balancing 
mechanism during which adaptive scheduling is achieved by distributing the workloads over the available fog 
computing nodes depending on the execution and current capabilities. This inclusion of dynamic load balancing 
mechanism prevents bottlenecks and further optimizes resource utilization rate. It performed batch processing 
under dynamic workloads such that the system is capable for potentially utilizing the resources by processing 
multiple numbers of tasks together. This batch processing minimized the SS when the IoT tasks to be scheduled 
have similar dependencies or requirements. This batch processing also enhances matching of resource capacity.

Reasons for selecting ESBOA and integrating RL for boosting TS process
The ESBOA is used for boosting the process of IoT TS due to its capability of fast convergence, stability and 
maximized diversity of solutions in SS. In specific, the incorporation of multiple strategies into the classical SBOA 
played an indispensable role in attaining better convergence speed and superior solution quality. It is capable 
of determining better solutions compared to the baseline optimization algorithms, and it obtains optimal or 
near-optimal solutions more quickly. Inclusion of multiple strategies helps in establishing balanced exploration 
and exploitation which searches for new solutions, while refining current solutions in the SS. It possesses a high 
degree of versatility and adaptability which makes it more ideal for different scenarios of scheduling. Its flexibility 
also facilitates the option of tailoring with other optimization methodologies for the objective of addressing the 
challenges associated with scheduling process. Further RL is integrated with ESBOA for the reasons that include 
(i) it uses agents to make intelligent decisions depending on the past interactions and experiences with the 
implementation scenario, (ii) The agents learns from rewards and punishments for the purpose of facilitating 
optimal task allocation methodology and scheduling tasks over different VMs, (iii) it possesses the capability 
of handling non-deterministic and dynamic situations under which the resource availability and characteristics 
of tasks are uncertain, and (iv) It adopted a trial and error learning process which can significantly handle 
uncertain situations and facilitated reliable decisions of scheduling.

Objectives
The core objectives of this research are listed as follows.

	 i)	 To implement a dynamic real-TS scheme for executing the bag-of-tasks applications in the Fog-Cloud en-
vironment.

	ii)	 To formulate and implement a permutation-based problem of TS over which multi-strategy improved 
SBOA and RL are used for facilitating different permutations of tasks in every round of the scheduling 
process.

	iii)	 To allocate the tasks to each of the virtual machine which possesses adequate amount of resources such that 
minimized execution time is incurred when they are scheduled in the order identified by the best permuta-
tions.

	iv)	 To assess the capability of ESBOA-based TS algorithm with respect to evaluation metrics of makespan, 
execution time, Fitness function, Mean energy consumptions and Mean cost under different number of IoT 
tasks entering into theFog-Cloud Computing environment.

Major contributions
Major contributions of proposed IMSESBOA-based IoT TS mechanism is listed as follows.

	a)	 Employed a multi-objective methodology using the balanced exploration and exploitation capabilities of 
SBOA with multi-strategy benefits help in maximizing resource utilization rate and shortening makespan.

	b)	 A blended Improved SBOA using RL with the potential of reducing the time incurred for data processing 
and improving QoS in fog-cloud computing.

	c)	 Developed as an optimized scheduling model which explores and processes different scalable numbers of 
tasks by minimizing latency and energy costs.

	d)	 The simulation experiments confirmed better results based on execution time, makespan, energy consump-
tion with scalable number of IoT tasks in contrast to benchmarked schemes under the evaluations done with 
real and synthetic workloads.

The following sections are structured as follows. Related work Section gives the survey of existing SI bio-inspired 
metaheuristic optimization algorithms-based TS solutions proposed in recent years with their pros and cons. 
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Next Section gives a detailed view of the problem formulated, multi-objective optimization model used for IoT 
TS, and the background details of CSBOA and the adopted Multi strategy-improved SBOA algorithm used for 
attaining the objective of IoT TS in cloud-fog computing scenario. Results and discussions Section shows the 
simulation results and interpretations determined from experiments conducted for evaluating the capability 
of IMSESBOA-based IoT TS scheme based on makespan, execution time, value of fitness function, energy 
consumptions and cost with change in the number of incoming IoT tasks. Last Section gives the conclusion with 
major contributions, limitations and future scope of improvement.

Related work
In this section, existing SI bio-inspired metaheuristic optimization algorithms-based IoT TS solutions proposed 
in recent years are presented with pros and cons.

Mousavi et al.21 have proposed a Directed Non-Dominated Sorting Genetic Algorithm (DNSGA-II)-based 
TS mechanisms for addressing issues of latency partially and resolving the shortcomings of IoT-based cloud 
computing paradigm in a more dynamic manner. This DNSGA-II-based TS mechanism helped in attaining high 
quality services which maximize system performance such that energy consumptions incurred to the process 
of mapping computing devices to IoT tasks are comparatively minimized in the implementation environment. 
It was proposed as a significant solution to bi-objective optimization problem which concentrated on reducing 
response time and energy consumptions incurred by the servers during the execution of the IoT tasks. It 
specifically adopted the merits of the recombination operator into the DNSGA-II algorithm for balancing 
exploration and exploitation stages involved in resource utilization. This adoption of recombination operator 
also aided in controlling the process of selecting the agents which facilitated the option of optimal mapping of 
IoT tasks to fog servers within specified deadline considered for execution. Abohamama et al.22 have proposed 
a Permutation-Inspired Modified Genetic Algorithm-based TS (PIMGATS) for preventing delay sensitive 
applications from being executed in the cloud data centers. This PIMGATS approach facilitated the option of 
extending cloud resources to network edge such that response time of IoT tasks is reduced comparatively during 
execution. It was proposed as a semi-dynamic TS strategy which uniquely addressed the problems associated 
with the bag-of-tasks applications by formulating the problem as a permutation-based optimization solution. 
It specifically used the modified version of GA for generating different possibilities of arrived tasks which need 
to be scheduled to the computing resources at each round of implementation. It further assigned the tasks 
depending on the best permutation to the available VMs for the objective of utilizing the necessitated resources 
that aids in minimizing the required time of execution. The results of this PIMGATS approach confirmed 
reduced failure rate, elapsed run time, mean delay, total execution time and makespan compared to the best first, 
first fit, bee and GA algorithms used for comparison.

Further Hussain and Begh23 have proposed a Hybrid Flamingo Search with a Genetic Algorithm-based TS 
(HFGATS) technique for facilitating the support that aids in maximizing the degree of QoS and simultaneously 
minimizing data delay in cloud-fog scenario. This HFGATS technique achieved TS by maintaining the 
requirements of QoS such that high service latency introduced by occurrence of bursty data traffic never hurdles 
the process of dynamic TS process in the cloud-fog environment. It boosted the QoS level by concentrating on 
the process of minimizing the deadline violation cost, communication cost and computational costs such that 
unnecessary delay is completely prevented in the implementation environment. The statistical results of this 
HFGATS technique conducted using the Friedman Rank Test confirmed its efficiency in guaranteeing reduced 
throughput and response time during the execution of IoT tasks. The experiments of this HFGATS technique, 
conducted using different scalable number of tasks and sizes, confirmed its predominance in attaining the 
essential level of QoS better than compared RR, Min-V, Min-CCV, PSO, and GA-based TS approaches used 
for comparison. Agarwal et al.24 have proposed a GA-based optimized IoT TS mechanism (GAOITSA) which 
concentrates on minimizing the amount of energy utilized and makespan in cloud-fog computing environment. 
This approach facilitated energy aware scheduling for the objective of executing the tasks over the processors 
such that better schedules of tasks are determined in fog-cloud computing in a dynamic manner. It specifically 
integrated the significance of GA and energy conscious scheduling strategy for preventing computationally 
expensive application tasks from starving for a considerably longer time compared to conventional TS schemes. 
It used GA to generate three primary solutions which are explored and exploited well during the process of 
handling the issues that are associated with energy utilization rates. The results confirmed improved results based 
on makespan and energy consumptions compared to RR, ACO, GSA and PSO-based TS strategies contributed 
for executing IoT tasks in fog-cloud environment.

Furthermore Saif et al.25 have propounded a Multi-Objective Grey Wolf Optimizer Algorithm-based IoT TS 
Scheme (MOGWATSS) for cloud-fog computing scenario as offloading tasks to fog nodes decreases transmission 
delay to the required level. This MOGWATSS approach focused on the objectives of energy consumption, 
delay and QoS for the purpose of distributing the tasks using the fog broker. It was implemented as one of the 
significant approaches which helped in increasing energy consumption degree, while migrating tasks to the cloud 
with increased transmission delay. The simulation results confirmed minimized energy consumption and delay 
independently to the number of tasks entering cloud-fog computing environment. Khiat et al.26 have proposed 
another GA-based TS Algorithm (GATSA) for establishing an optimal balance amid the total response time and 
total consumed energy in fog-cloud-based environment. This GATSA approach is capable of minimizing the 
latency with reduced energy consumptions by mapping tasks produced from IoT devices to existing fog servers 
in implementation scenario. It was proposed as one of the predominant scheduling strategies which helped in 
mapping the resources in a more reasonable time. The investigations of this GATSA scheme conducted using 
eight datasets with different scalable sizes guaranteed mean improvement in terms of the normalized function 
used for evaluating process of TS.
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In addition, Attiya et al.27 have proposed a TS Mechanism using merits of Hunger Game Search and Marine 
Predator Algorithm (HGSMPA) for addressing the limitation associated with the network bandwidth that helped 
in executing the latency-sensitive applications in fog-cloud environment. HGSMPA dynamically and mutually 
balanced the benefits of MPA and HGS for establishing the objective of executing the IoT tasks without any delay 
in cloud-fog computing scenario. It was one among the few methods which not only concentrated on mapping 
tasks to the resources but also focused on satisfying multiple number of constraints that played a vital role during 
the determination of schedules. The results of the HGSMPA scheme confirmed lesser makespan and energy 
consumptions with respect to scalable number of tasks derived from the real workloads during the scheduling 
process. With respect to synthetic workloads, this HGSMPA approach also confirmed the same pattern based 
on energy consumption and makespan compared to baseline schemes taken for assessment. Further, Salehnia 
et al.28 have propounded a Multi-Objective Moth-Flame Optimization Algorithm-based IoT task Request 
Scheduling Method (MOMFOA) for accelerating the rate of storing and processing the big data aggregated in 
the fog-cloud environment. This MOMFOA approach contributed towards minimized energy consumption, 
throughput rates and tasks’ request completion time for the objective of enhancing the IoT services quality 
which is highly essential in fog-cloud computing system. It was proposed with a strategy which emphasizes 
that diminishes in the percentage of carbon emissions proportionally decreases rate of energy consumption in 
implementation scenario. The results of this MOMFOA approach were identified to increase the rate of system 
performance with minimized energy consumption, carbon emissions and delay while processing of IoT tasks in 
fog-cloud computing scenario.

Ali and Sridevi29 have proposed an IoT TS algorithm using mobility for enhancing the degree of processing 
time when the process of real-time tasks is imposed for execution in the fog-cloud computing environment. This 
MSTSM-based TS model was proposed with the requirements of security and resource requirements which need 
to be handled with the task time constraints. It first focused on the issue of mobility which aided in assigning the 
tasks generated by IoT devices by including factors of load, bandwidth and distance into account. It specifically 
used fuzzy logic to handle uncertainty such that TS can be optimized by introducing ideal distribution of tasks 
over the fog-cloud scheduling by adopting the requirements of tasks security. It exploited the deadlines and 
demands of the tasks for selecting the proper and suitable processing unit for selecting tasks in the fog computing 
layer. The results of MSTSM-based TS model confirmed better processing time, success ration, turnaround time 
and makespan.

Salimi et al.30 have proposed a greedy randomized adaptive search algorithm (GRASA) -based IoT TS 
algorithm is proposed for effectively utilizing the VMs of the cloud and fog for satisfying user demands. This 
GRASA approach was formulated as a reliable strategy which addressed the problem of heterogeneity which 
is realized in terms of energy consumption, communication delay and processing power. It was proposed with 
the capability of scheduling the tasks by due consideration of overall energy consumption and individual task 
deadlines. It specifically used a randomized greedy approach for attaining optimal allocation of tasks to suitable 
VMs of fog-cloud scenario. It utilized only a restricted number of tuning factors with implementation ease and 
simplicity for the objective of attaining optimized tasks allocation. The results confirmed minimized makespan, 
reduced energy consumption and shortened mean response time with due satisfaction of deadlines in the 
implementation domain.

Vijayalakshmi and Saravanan31 have proposed a RL-based multi-objective energy efficient TS approach for 
satisfying the requirements of the users interacting in the IoT systems. This TS algorithm used ID3 algorithm 
for classifying the tasks depending on the process requirements, QoS and priority. Then it selected suitable fog 
nodes after the classification process with respect to the factors associated with the tasks under execution using 
proximity of IoT nodes, processing capability and energy consumption of nodes in the fog computing scenario. 
It further used first fit algorithm for offloading the unhandled tasks from the fog nodes to the cloud data centers 
depending on the location of fog node, requirements of QoS and available resources. Finally, reinforcement 
algorithm is incorporated for scheduling the tasks for execution once the required cloud data centers or fog 
nodes are identified in the network. The results of this RL-based multi-objective energy efficient TS approach 
confirmed better resource management, energy efficiency, task completion rate and accuracy rate compared to 
the benchmarked Round Robin, FCFS and SJF methods.

Wang et al.32 have proposed hierarchical adaptive federated RL approach for achieving reliable scheduling 
and resource allocation in fog computing environment. It was proposed with capability of handling stochastic 
and dynamic properties of IoT applications. This RL approach was implemented to limit the computational 
burden over fog computing systems such that the requirements of the users on demand are satisfied with better 
optimality. It was proposed as an adaptive and efficient optimizing strategy which optimizes the response time 
required for the execution of heterogeneous IoT application such that load is balanced in the fog computing 
systems. It was implemented as a real time scheduler with the support of the FogBus2 function which helped in 
attaining a service framework to create fog-cloud blended serverless computing scenario. The results of this RL 
mechanism confirmed minimized weighted cost, response time and load balancing compared to the baseline 
approaches.

In addition, Choppara and Mangalampalli33 have proposed an Integrated deep RL and fuzzy logic-based 
TS method for achieving efficient processing and managing of data in the fog cloud computing scenario. It 
was propounded with efficiency of fulfilling the needs of IoT nodes in terms of real time processing, reduced 
makespan, and optimized bandwidth utilization. It specifically used a Takagi-Sugeno fuzzy inference system. 
Continuous interaction with the environment is to be facilitated such that tasks can be prioritized while 
scheduling tasks in fog computing scenario. It handled the continuously changing requirements of the IoT tasks 
through the real-time change of the rules associated with the scheduling process. The results of RL scheme 
confirmed better performance based on fault tolerance, cost, energy consumption and makespan.
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Extract of the literature
Following shortcomings are identified from the survey on existing metaheuristic optimization algorithms-based 
IoT TS approaches.

	 i)	 It faces the challenge during the process of optimizing resource utilization, since it poses the problem of 
managing the complexity involved during the management of distributed resources.

	 ii)	 It encounters the challenge during the process of guaranteeing real-time performance for time-sensitive 
IoT applications, since it struggles in establishing a balance between the latency with respect to resource 
consumptions.

	iii)	 It poses the difficulty of managing heterogeneous resources with varying capabilities such that well balance 
of energy consumption and cost is attained in the cloud-fog computing scenario under implementation.

	iv)	 The IoT TS methods that utilize a standalone metaheuristic optimization algorithm (Scheduling algorithms 
that used PSO, GA and MFOA) suffered from issues of premature convergence, poor solution diversity and 
increased chance of falling into local point of optimality during load balancing and resource utilization..

	 v)	 The existing hybrid metaheuristic optimization algorithms-based TS approaches (Scheduling approaches 
that used HGS-MPA and LF-MFOA faced the challenge of integrating conflicting factors that contribute 
towards efficient and effective IoT TS process.

	vi)	 The existing IoT TS approaches generally are semi-dynamic and hence the delay incurred during the pro-
cess of resource allocation gets peaked when large amount of data is generated from the input determining 
environment.

	vii)	 Majority of the recently developed metaheuristic optimization algorithm based IoT TS approaches still 
possessed a scope of enhancing the degree of throughput with minimized delay, energy consumptions and 
failure rate.

An improved Multi-Strategy enhanced SBOA (IMSESBOA)-based IoT TS mechanism
In this section, initially problem formulation of IoT TS Mechanism used for implementing the proposed 
IMSESBOA approach is presented. Then the detailed view of the classical SBOA and its enhanced version used 
for attaining IoT TS process in cloud-fog computing scenario is presented in Fig. 2.

Problem statement
This problem of IMSESBOA approach-based IoT TS Mechanism works on the considered three layered 
architectures of fog, cloud and IoT devices for determining the schedules using task scheduler (that mimics 
the characteristics of ESBOA) that helps in allocating the tasks to respective computing nodes. This TS used 
the benefits of ESBOA for exploring and exploiting the properties of the tasks produced by IoT devices with 
consideration with the potential ties of the resources existing in the fog-cloud computing model. This approach 
was offered as a reliable attempt in satisfying the processing and storage requirements of the requests associated 
with the IoT devices which need to be sent to the higher layers of cloud and fog. It facilitates the option of storing 
and processing time-sensitive tasks which are much closer to the devices for reducing delay by adopting fog 
computing. It also used the methodology of sending computational-intensive tasks to the cloud servers since the 
cloud servers facilitate better storage and computing capabilities compared to the fog nodes.

Fig. 2.  Overall view of the proposed IMSESBOA-based IoT TS Mechanism
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Problem formulation
In fog-cloud computing environment, let ‘ n’ denote the number of real-time delay sensitive tasks (the tasks 
are independent of each other in cloud-fog environment) with m number of heterogeneous virtualized cloud 
node and z as the number of heterogeneous virtualized fog nodes. The problem of dynamic TS concentrates 
on the process of allocating each of the submitted IoT devices generated tasks to appropriate VMs in the 
fog-cloud environment with the constraints imposed during the implementation process. If each of the VMs 
are allocated with one or more tasks during execution, then the tasks list allocated to VMs is represented 
using [Tsk(1), Tsk(2), . . . Tsk(z), . . . ., Tsk(n)]. At this juncture, the proposed IMSESBOA approach helps in 
determining the suitable schedule through which the IoT tasks can be executed within the expected time of task 
completion ( FTExp) determined based on Eq. (1)

	 FTExp(i) = ATBr(i) + RTTK(i) + WTij + ETExp(i)� (1)

Where, FTExp(i) and ATBr(i) represents the completion time expected for each of the ithtask to be executed 
on jth VM and arrival time of the broker (can be cloud or fog broker) during the process of scheduling the 
ithtask. Further RTTK(i) and WTij represents the ithtask remaining time of execution and waiting time of 
ithtask to wait in the queue before it is scheduled over the cloud VMs or fog VMs in cloud-fog environment. 

Moreover, ETExpindicates the execution time expected for each of ithtask to be executed in jth VM. Then, ith
task remaining time of execution ( RTTK(i)) is determined based on Eq. (2)

	 RTTK(i) = ATN(i) − ATBr(i)� (2)

Where ATN(i) is the ithtask arrival time (node arrival time) at selected jth VM. Further the ETExp 
representing the execution time expected for each of the ithtask to be executed in the jth VM is computed 
based on Eq. (3)

	
ETExp =

FSIN (i) + FSOUT(i)

VMBW(j)
+

Ltsk(I)

CECP (V M(j)) ∗ NCE(MIP S(j))
� (3)

Where, FSIN (i)and FSOUT(i) denotes input and output file size associated with ithtask executed in the 
selected jth VM. Then VMBW(j)and Ltsk(I) indicates the bandwidth related to jth VM and length of ithtask 
(in million instructions). In addition, CECP (V M(j)) and NCE(MIP S(j)) represents the computing elements’ 
processing capability associated with each of the jth VM (in million instructions per second (MIPS)) and 
number of processing elements associated with the same jth VM.

In this context, if FTExp(ij) ≤ DLtsk(i) is satisfied, then ithtask is executed in the selected jth VM. Else 
the ithtask is failed, and it is not executed on the selected jth VM. Where DLtsk(i)is the deadline for executing 
each of the tasks in the fog nodes. The rate of failure ( FRTSK) with respect to the ithtask is determined based 
on Eq. (4)

	
FRTSK =

NFL(TSK)

NT SK
� (4)

Where NFL(TSK) and NT SK represents number of tasks failed and total number of tasks which need to be 
executed in available VMs (cloud and fog VMs). When RT n

T SK is the final task allocated to jth VM, then time 
essential for completing the execution of tasks ( ETTSK(j)) allocated to jth VM is determined based on Eq. (5)

	 ETTSK(j) = FTExp(ij)� (5)

At this juncture, Makespan is defined as the total time necessitated by the system for completing the execution 
of all the tasks in the fog-cloud environment, then it is computed based on Eq. (6)

	
Makespan = max

1≤ j≤ m
ETTSK(j)� (6)

Where m denotes the total number of VMs considered for executing the complete set of tasks in the cloud-fog 
environment. Further MinMakespan is defined as the minimized time required for completing all the tasks 
(which is the lower threshold of the makespan)

	

MinMakespan =




∑
n
i=1FSIN (i)+FSOUT(i)∑

m
j=1VMBW(j)

+
∑

n
i=1Ltsk(I)∑ m

j=1
CECP (V M(j))∗NCE(MIP S(j))

If k = 1
∑

n
i=1FSIN (i)+FSOUT(i)∑

m
j=1VMBW(j)

+
∑

n
i=1Ltsk(I)∑ m

j=1
CECP (V M(j))∗NCE(MIP S(j))

+ (k∗δ +(k−1)∗δ )
2 If k > 1

� (7)

Where k which lies between 1 and ∞  indicates current TS round with n and m as total number of tasks coming 
into first round of scheduling until the final kthscheduling round and number of VMs in cloud-fog computing 
environment. The value of k = 1 denotes the first scheduling round which starts at time 0 for all the complete 
set of tasks whose arrival time of the broker is equal to 0. In specific, the term (k∗δ +(k−1)∗δ )

2  helps in including 
the arrival time of different brokers with respect to the execution of each task in every round of scheduling. In 
other words, it indicates the mean arrival time of broker with respect to the tasks considered in the present round 
of scheduling. Hence the broker arrival times of tasks are represented using ATBr(i) ≤ (k − 1) ∗ δ , such that 
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the scheduling times is determined based ShTime = (k − 1)*δ , respectively. This term k also represents the 
condition when the number of rounds is greater than 1.

In this cloud-fog computing environment of implementation, the monetary cost used for attaining the 
required objective of IoT TS completely depends on cost with respect to bandwidth, memory and processing. In 
this proposed IMSESBOA-based IoT TS Mechanism, a model of pricing which is similar to the pricing model of 
Alibaba cloud resource is considered for determining the cost of each resource as a separate entity. It is noted that 
the cost of bandwidth consumption is completely different from the computing power utilization or memory 
utilization. Then the cost of executing the ithtask ( CE(TSK(ij))) to be executed in the jth VM is calculated 
using CCPU

ij , CRAM
ij  and CBW

ij as presented in Eq. (8)

	 CE(TSK(ij)) = CCPU
ij + CRAM

ij + CBW
ij � (8)

Then the cost of CPU cost ( CCPU
ij ) is determined based on processing cost per unit cost ( PCj) and expected 

time of execution ( ETExp) as specified in Eq. (9)

	 CCPU
ij = PCj*ETExp� (9)

Further the cost of memory unit ( CRAM
ij ) is determined based on memory requirements ( MRT(i)) of the ith

task and memory cost per storage unit ( MCSU(j)) associated with the jth VM as mentioned in Eq. (10)

	 CRAM
ij = MCSU(j)*MRT(i)� (10)

In addition, the bandwidth cost ( CBW
ij ) is determined based on bandwidth requirements ( BWR(i)) of the ith

task and bandwidth cost per data unit ( BCDA(VM(j))) associated with the jth VM as mentioned in Eq. (11)

	 CBW
ij = BCDA(VM(j))*BWR(i)� (11)

Then the requirements of bandwidth BWR(i) is calculated based on Eq. (12)

	 BWR(i) = FSIN (i) + FSOUT(i)� (12)

As mentioned earlier, FSIN (i)and FSOUT(i)signifies the input and output file size associated with the ithtask 
executed in the selected jth VM. Then, total cost incurred ( ECTotal) for implementing the complete set of tasks 
in the cloud-fog computing scenario is computed based on Eq. (13)

	
ECTotal =

∑ n

i=1

∑ m

j=1
BV*CE(TSK(ij))� (13)

Where, BV is the binary value which is set to 0 ( ithtask is not allocated to the selected jth VM) or 1 ( ithtask is 
allocated to the selected jth VM).

If Min Costjis the least cost required for executing tasks in the given cloud-fog computing model with 
the available cost information associated with diverse VMs, then the tasks executed on the least cost node is 
determined based on Eq. (14) and Eq. (15).

	
Min Costj = min

1≤ j≤ m
CE(TSK(ij))� (14)

	
Min EXCost =

∑
n
i=1Min Costj� (15)

Based on the above facts, the dynamic TS model used for implementing the proposed IMSESBOA-based IoT TS 
Mechanism is formulated as the problem of optimization as specified in Eq. (16)

	
ObjFn = Maximize

(
MinMakespan

Makespan
,

Min EXCost

ECTotal

)
� (16)

In most scenarios of optimization, the value of MinMakespan may be equal to Makespan, and the value 
of Min EXCost may also be equal to the value of ECTotal. Hence the upper threshold of every term used in 
Eq. (16) may be equal to 1.

In specific, Fig. 3 demonstrates process of TS in cloud-fog computing environment.

Secretary bird optimization algorithm (SBOA)
Classical SBOA (CSBOA) was proposed by Fu et al.34 inspired by the foraging behavior of secretary birds which 
are termed as large terrestrial raptors that are present in semi-desert and savannas regions. It was specifically 
proposed based on their inspiration during their process of searching prey and evading search from its predators. 
This CSBOA algorithm is identified to be more suitable for addressing the problems of complex optimization 
which are common in solving in engineering problems such as the process of IoT TS problem which possesses 
a NP-hard complexity. The mathematical modeling of the utilized CSBOA algorithm is presented as follows.
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Phase of initialization
The initial solution considered for starting the process of searching with the objective of mapping incoming IoT 
tasks to available resources in fog-cloud environment is identified. This phase is accountable for determining n 
number of initial candidate solutions’ population through the use of ‘ n’ search agents (secretary birds). These 
search agents evaluate the n number of initial candidate solutions CSB =

[
CSB(1), CSB(2), . . . . . . , CSB(n),

]
 

using d number of variables or dimensions considered for solving the problem of optimization. In this context, 
each candidate solution CSB(i) corresponds to the solution identified by the ithsearch agent (secretary bird) as 
presented in Eq. (17)

	 CSB(i) = LBD + rand[0,1] * (UBD−LBD)� (17)

Where, UBD and LBD represent upper and lower threshold values of ‘d’ number of variables or dimensions 
considered for solving the problem of optimization. Then, rand[0,1] ∈ [0, 1] is a random number. At this 
juncture, the complete candidate solution matrix determined by ‘ n’ search agents (secretary birds) with respect 
to ‘d’ variables is presented in Eq. (18)

	

CSB(Matrix) =




sb1
1 sb2

1 · · · sbd
1

sb1
2 sb2

2 · · · sdd
2

...
sd1

n

...
sd2

n

· · ·
. . .

...
sdm

n


 where 1 ≤ i ≤ n and1 ≤ j ≤ d� (18)

Then the fitness value of each candidate solution in SS during each iteration is determined based on Eq. (19)

	

F (SCij) =




F (sb1
1 sb2

1 . . . sbd
1)

F (sb1
2 sb2

2 . . . sdd
2)

...
F( sd1

n

...
sd2

n

. . .
. . .

...
sdm

n )


 where 1 ≤ i ≤ and ≤ j ≤ d� (19)

Phase of exploration
This exploration phase of CSBOA mimics the hunting strategy adopted by the secretary birds during the process 
of searching, attacking and consuming the prey (snakes). The mathematical model with respect to the three steps 
of exploration such as searching, attacking and consuming the prey is presented as follows.

Prey searching
In this first step of exploration, sufficient amount of information associated with the process of searching is 
acquired. Then depending on this information acquired from the SS, the search agents explore new regions 
by considering the positions of the other search agents. To achieve this process of exploring the new regions, 
operations associated with differential mutation is used for enhancing the solution diversity of the algorithm. 
Thus each of the ithsearch agent uses Eq. (20) and Eq. (21) for updating its position when present iteration count 
is less than one-third of maximized number of iterations ( IterCurr < 1

3 IterMax).

	 CSB
PS−New(t)
(i) = CSB(i) (t) +

(
CSB(r1) (t) − CSB(r2) (t)

)
× RV(1)� (20)

Fig. 3.  Process of TS in cloud-fog computing environment
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CSB

t+1
(i) =

{
CSB

PS−New(t)
(i) If FNew

i < Fi

CSB
t
(i) Otherwise

� (21)

where CSB(r1) (t) and CSB(r2) (t) are two individual solutions randomly chosen from present population with 
RV(1) as the random vector that included 1 × M elements chosen from the range [0, 1].

Prey consumption
In this second step of exploration, the search agents perform the global optimization process in which they 
search for better candidate solutions in SS. This behavior of the search agent (secretary birds) corresponds to the 
Brownian motion of encircling the candidate solution depending on the random number whose dimensions lies 
between [1, d] under the condition 1

3 IterMax ≤ IterCurr ≤ 2
3 IterMax as specified in Eq. (22)

	 BRM = Rand[1, d]� (22)

Where, Rand[1, d] is the vector generated randomly by satisfying the properties of the classical normal 
distribution whose mean value and standard deviation are 0 and 1 respectively.

	 CSB
PC−New(t)
(i) = CSB(i) (t) +

(
CSB(r1) (t) − CSB(r2) (t)

)
× RV(1)� (23)

	
CSB

t+1
(i) =

{
CSB

PC−New(t)
(i) If FNew

i < Fi

CSB
t
(i) Otherwise

� (24)

As mentioned in Eq.  (24a), when fitness value of current solution FNew
i  is less than the fitness of previous 

solution ( Fi), then the position of present solution in the prey consumption phase ( CSB
PC−New(t)
(i) ) is updated 

based on Eq. (23). Else the previous solution is considered as the current solution as specified in Eq. (24b).

Prey attacking
In this prey attacking phase is executed when the value of IterCurr ≥ 2

3 IterMax as specified in Eq. (25) depends 
on the method of levy flight.

	 CSB
PA−New (t)
(i) = CSB(i) (t) +

(
CSB(r1) (t) − CSB(r2) (t)

)
× RV(1)� (25)

	

{
CSB

t+1
(i) = CSB

PA−New(t)
(i) If FNew

i < Fi

CSB
t+1
(i) = CSB

t
(i) Otherwise

� (26)

As specified in Eq. (26a), when fitness of current solution FNew
i is less than fitness of previous solution Fi, then 

position of current solution in prey attacking phase ( CSB
PC−New(t)
(i) ) is updated based on Eq. (25). Else the 

previous solution is considered as the current solution as specified in Eq. (26b).

Limitations of the classical CSBOA algorithm
The classical CSBOA algorithm, despite several merits, still possesses several limitations with respect to the 
process of determining high accuracy solutions and faster convergence rate. In specifically, the four main 
limitations of the classical CSBOA algorithm include (i) improper use of global information during the process 
of adjusting the strategy of position updating, (ii) it ignores the prey performance during the employment of 
attack mode associated with the hunting phase of SBOA, (iii) simple random methods adopted during the 
process of preventing premature convergence, and (iv) imbalanced exploration and exploitation while attaining 
the objective. These components are essential for maintaining an optimal balance between exploration and 
exploitation, preventing early convergence to local optima, and improving the overall exploration capability by 
promoting superior solution diversity. Hence, IMSESBOA is adopted using the merits of FR mechanism, GSG 
strategy, CC strategy and CS-based update strategy for handling the issues of CSBOA and at the same time, 
improving the process of IoT TS in the cloud-fog computing environment.

Improved Multi-Strategy enhanced SBOA
In this section, the detailed view of the utilized Improved Multi-Strategy Enhanced SBOA is presented with the 
merits introduced by them during the process of IoT TS in the cloud-fog computing system.

Enhancement 1: strategy of feedback regulation (FR)
This strategy of FR mainly focuses on the process of determining the possible state of IoT tasks allocation to 
the available cloud and fog VMs in the immediate state depending on the condition of the current state. This 
regulation mechanism receives feedback for decision making with respect to the allocation of tasks to the 
existing resources as specified in Eq. (27)

	 CSB(i) (t) = CSB(i) (t − 1) + CSB(Best) (t) − CSB(Best) (t − 1)� (27)
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Where CSB(Best) (t) and CSB(Best) (t − 1) represents the best candidate solution determined in the current 
and previous iteration during the process of FR. Candidate solution is determined in the current and previous 
iteration during the process of exploration.

This strategy of FR assists in determining the optimal allocation of IoT tasks into the suitable VMs of the 
fog-cloud environment in each iteration such that outcome of one iteration is used for enhancing the process 
of improving the optimal resource allocation in the subsequent phases. It explores and exploits the SS in a more 
reliable manner such that resource management is better facilitated during the scheduling process. In addition, 
the regulation of feedback helps in achieving more optimized solutions under the enforcement of deadline 
constraints employed during the optimization process.

Enhancement 2: strategy of golden sinusoidal guidance (GSG)
This strategy of GSG is mainly for utilizing the merits of the location information associated with the objective 
(TS process) such that the success rate is significantly improved in the implementation scenario (cloud-fog 
computing system). This enhancement mimics the process of how the secretary bird attacks the prey after 
locking them. This strategy is also useful in improving the potential of developing local regions which need to 
be significantly exploited in the SS for determining different feasible solutions (different feasible solutions which 
represent the mapping of tasks to the available VMs (fog or cloud system)). With respect to each of the search 
agents in the population, the candidate solutions are updated using GSG strategy as specified in Eq. (28)

	 CSB(i)(t + 1) = CSB(i) (t) +
∣∣sin (

r1[0,2π ]
)∣∣ + r2[0,π ] ×

∣∣sin (
r1[0,2π ]

)∣∣ ×
∣∣δ 1 × CSB(Best) (t) + δ 2 × CSB(Best) (t)

∣∣� (28)

Where r1[0,2π ] and r2[0,π ] represents the first and second random value that lies between 0 to 2π , and 0 
to π , respectively. Further δ 1and δ 2 indicates the GSG coefficient. In specific, the value of δ 1and δ 2 are 
determined based on Eqs. (29) and (30)

	 δ 1 = −π + 2π (1 − τ )� (29)

	 δ 2 = −π + 2π τ � (30)

Where the value of τ  is computed using τ = 1−
√

5
2 .

In specific, GSG method plays an indispensable role in enhancing the rate of determining the optimal 
solution by extracting the local information in the SS such that overloaded or underloaded conditions of VMs 
during the process of resource allocation is prevented under execution of IoT tasks in a more balanced manner 
over the fog-cloud computing environment. This GSG method wide opened the option of integrating the merits 
of golden section search which is a numerical method that helps in identifying the minimum of the function. It 
targeted the process of enhancing the potential of the algorithm such that potential regions of the SS are explored 
to attain the guidance towards the process of determining an optimal solution.

Enhancement 3: strategy of cooperative camouflage (CC)
This strategy of CC is mainly for exchanging information between the individuals of the population which is 
highly ignored in the CSBOA algorithm. This phase mimics how the secretary bird feels threatening, and how 
they disguise themselves with the use of the existing environment. This strategy is implemented by considering 
different positions of the individuals (say CSB(a), CSB(b) and CSB(c)) such that a new candidate solution is 
generated based on Eq. (31)

	 CSB(i) (t + 1) = CSB(a) + rv[0,1]
∣∣CSB(b) − CSB(c)

∣∣� (31)

Where rv[0,1] is the random variable that lies between 0 and 1.
This CC strategy helps the search agents to work together such that they cooperatively balance exploration 

and exploitation rates so that optimal solutions are obtained at a rapid rate without any delayed convergence. This 
method is crucial for avoiding premature convergence to local optima, thereby enabling significant reductions 
in energy consumption and cost during IoT task execution within real-world implementation scenarios. It 
also facilitated a balanced search such that potential regions are only exploited during the process of IoT tasks 
migration under the execution scenario.

Enhancement 4: strategy of cosine similarity (CS) updating
The CS-based updating strategy is employed to determine the probability that facilitates escaping from local 
optima, thereby improving the robustness of the solution search process. This strategy mimics the pattern 
through which the secretary birds escape from their enemies by moving intelligently to an empty space. This 
strategy avails a better region of searching over which potential solutions (mapping possibilities of tasks to 
resources are achieved) in the SS. The CS which is used for assessing the degree of crowding with respect to 
different candidate solutions as seen from the perspective of the search agents are determined based on two 
vectors ( VA and VB) as specified in Eqs. (32) and (33)

	 VA = CSB(i) (t) − CSB(Best) (t)� (32)

	 VB = CSB(j) (t) − CSB(Best) (t)� (33)
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Where the solutions considered for similarity are completely different ( i ̸= j). Then the similarity between VA 
and VB is calculated based on Eq. (34)

	
ϕ i,j = VA · VB

⌈Va⌉ |VB | � (34)

Once the value of CSB(i) is compared with the other existing solutions, then the solution with the least CS is 
considered during this strategy of CS updating such that the direction of updating will be considered as CSB(s). 
Hence the new solution CSB(s) is determined using CS updating through Eq. (35)

	 CSB(i) (t + 1) = CSB(Best) + R ×
(
CSB(s) − TIR*CSB(i)

)
� (35)

Where TIR and R is the toggling integer random that lies between 1 and 2, and a vector that includes random 
elements that lie between 0 and 1.

This strategy of CS Updating is used for determining how the current solution is changed compared to the 
previous solution in terms of magnitude such that the positions of the current solution need be replaced is 
identified. It helps in determining the degree to which the current solutions’ position is updated in the SS.

In addition, Fig.  4 presents the flowchart of the adopted IMSESBOA used for IoT TS in the cloud-fog 
computing environment.

Fig. 4.  The proposed IMSESBOA-based IoT TS algorithm
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In addition, Algorithm 1 presents the Implementation steps included into the proposed IMSESBOA-based 
IoT TS algorithm for determining optimal schedules in fog-cloud computing scenario.

Based on the above-mentioned IMSESBOA-based IoT TS algorithm, the tasks scheduler selected the best and 
most optimal VMs associated with the fog and cloud for executing the IoT tasks on the user side. It specifically 
derived the benefits of CSBOA with multiple number of strategies which has good strength in terms of attaining 
shortened makespan and minimized execution time, it also possessed a good strength in determining near-
optimal local solution with maximized accuracy.

Reinforcement learning (RL) technique
The merits of Q-learning algorithm-based RL are used for updating the position of the individual in the 
population35,36. RL is specifically employed to characterize and address the problems through which the 
agents acquire different methodologies to maximize returns37,38. These returns aid in establishing the required 
objectives using interactions with the environment. It is used for learning how well the mapping between the 
state and the action can be achieved for the purpose of maximizing the reward. The agents under RL select an 
action and employ a specific strategy for execution depending on the current state realized in the environment. 
When the agent’s action is received in the environment, the status is updated such that the agent receives reward 
feedback. In specific, Q-learning pertains to the value-based algorithm associated with RL. It is a model free-type 
machine leaning approach in which the agent does not require the necessity of understanding the environment. 
It uses states and actions for a specific environment, in which state refers to the observed value and the sample 
determined from the environment. On the other hand, the action is the selected option made by the agent after 
the process of observing the environment. At this juncture, environment assigns a reward based on determined 
state, and the primitive concept of Q-learning takes the responsibility of constructing a Q-Table which comprises 
of reserved Q-values which is associated with each pair of state and action identified from the environment.

	 Qi+1 (Si, ai) = Qi (Si, ai) + α ∗ δ � (36)

Where Qi (Si, ai)and Qi+1 (Si, ai)represents the expectation that an action is achieved based on the 
facilitation of a specific state at time t, and the Q-value which is rewarded for making the agent to learn about 
the environment after the specific time t + 1. In specific δ  and α  represents the estimation error and the 
learning rate which ranges between 0 and 1. In this context, the value of δ  is determined based on Eq. (37)

	 δ = ract(t+1) + dscoeff [0,1] · Qi+1 (Si, ai) − Qi (Si, ai)� (37)

However, the value of estimation error decreases as it converges towards the target. Further dscoeff [0,1]
and ract(t+1) represents the discount coefficient which lies between 0 and 1, and the reward achieved after 
performing an action ai in the state Si. This ract(t+1) reward is considered to be finite during the process of 
continuous learning.

Algorithm 1: Implementation of the proposed IMSESBOA-based IoT TS algorithm.
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Integration of RL into IMSESBOA approach
The IMSESBOA approach incorporates uniform updating operations across all individuals in the population, 
wherein each individual is iteratively refined through the exploration and exploitation phases. Transition 
between phases of exploration and exploitation is essential for attaining a better balance between exploration 
and exploitation rates such that algorithmic performance is improved during the process of optimization. At the 
same time, the RL method possesses the capability of learning from the tasks and environments in an adaptive 
manner. It also helps in determining better solutions by adjusting the strategies depending on the results of the 
learning process. This potentiality offered by RL helps in providing flexibility under the influence of unknown, 
dynamic and complex environments. Thus, the concept of RL is utilized for setting reasonable rewards after 
the process of updating and supporting the individuals of the population. These merits of RL attribute towards 
the determination of the solutions which are suitable for updating phases during the process of optimization. 
Then the method of fitness evaluation is used after exploration and exploitation phases for retaining the better 
individuals in the population. But the inclusion of RL into IMSESBOA helps to evaluate the fitness value only 
once. This combination effectively mitigates premature convergence and prevents the solution from becoming 
trapped in local optima during successive search iterations. In specific, the phases of RL- IMSESBOA helps in 
updating the phase of prey attacking (specified in Eq. (25)) as specified in Eq. (38)

	 CSB
PA−New (t)
(i) = CSB(i) (t) +

(
CSB(r1) (t) − T F Mean

)
× RV(1)� (38)

Where CSB(i) (t) and RV(1)is the individual of the population with the best fitness value and the random 
number which ranges between 0 and 1. In specific, T F Meanis the random integer which lies between 1 and 
2 with Mean as the average fitness value associated with the complete set of individuals in the population. 
Further a simple selection probability factor is proposed for computing the indices based on Eq. (39)

	
SPIndex =

NIPop − IN(I)

NIPop
� (39)

Where NIPopand IN(I)represents the number of individuals in the population and the remaining individuals 
are determined after reordering the fitness values in ascending order.

 Results and discussions
In this section, different experiments are conducted with the proposed IMSESBOA + RL and the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches with respect to the 
performance metrics of makespan, execution time, fitness cost and energy consumptions for varying number 
of IoT tasks. The complete experimentation is conducted using MATLAB R2018a which is installed over the 
system which comprises of Windows 10, 4 GB of RAM, Intel Core i5-4200U 2.4 GHz CPU. The experiments are 
conducted with different numbers of cloud and fog VMs that include (i) 5 Cloud VMs and 10 Fog VMs, (ii) 10 
Cloud VMs and 20 Fog VMs and (iii) 15 Cloud VMs and 30 Fog VMs. Comprehensive set of experiments are 
conducted using the same machine which possesses the same characteristics. However, the fog and clouds in the 
implementation environment are considered to possess different processing power which is measured in terms 
of resource usage costs (in Grid Dollars (G$), Values of Bandwidth (Megabytes Per Second (MBPS), memory 
capacity (Megabytes (MB)) and processing power values (MIPS). In specific, G$ represents a unit of currency 
which is an alternate for real money through a predefined ratio36. This is considered as the virtual cost can be 
easily mapped to any of the pricing models considered for assessment. In addition, Table 1 lists the parameters 
used in the implementation of the proposed IMSESBOA scheme.

Three VM configurations (5 C-10 F, 10 C-20 F, 15 C-30 F) are selected as they are sufficient for exploring 
the potential of the proposed IMSESBOA + RL and the baseline IMSESBOA, MOMFOA, TSMHGSMPA, 
MOGWATSS and GAOITSA approaches with respect to the scheduling process which targeted on the process of 
mapping to the maximum of 4000 IoT tasks incoming into the cloud-fog environment. The size of the population 
is 200 for the proposed IMSESBOA + RL and the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS 
and GAOITSA approaches for ensuring fair comparisons. In addition, 50 iterations are considered such that the 
mean value of the performance metrics is utilized for plotting the graphs in the subsequent sections.

Performance evaluation of the proposed IMSESBOA using Makespan for varying number of 
IoT tasks
In this first fold of analysis, the proposed IMSESBOA + RL and the baseline IMSESBOA, MOMFOA, 
TSMHGSMPA, MOGWATSS and GAOITSA approaches are compared using makespan (seconds) for varying 
number of IoT tasks under three scenarios (5 Cloud VMs and 10 Fog VMs,10 Cloud VMs and 20 Fog VMs and 
15 Cloud VMs and 30 Fog VMs) respectively. Figures 5, 6 and 7 demonstrate the plots of makespan which is 
defined as the total time utilized for executing the complete set of tasks and scheduling them to the processors 
for varying number of IoT tasks and three scenarios considered for evaluation.

This investigation with respect to makespan is conducted for the objective of identifying how the proposed 
IMSESBOA + RL approach is predominant over the baseline approaches in executing the complete set of tasks 
in the cloud-fog system. When the number of IoT tasks increases in the cloud-fog environment, the makespan 
increases since the time to execute the number of incoming tasks increase systematically. But this proportionally 
gets decreased with the increase in the number of clouds VMs and fog VMs. Since the resource used for 
allocating and executing the scalable number of IoT tasks increases in the cloud-fog computing system. But the 
proposed IMSESBOA + RL approach is capable in executing the tasks with the necessitated deadline time such 
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that makespan is significantly decreased during the TS process. This excellence of the proposed IMSESBOA + RL 
approach is mainly due to the multi-strategy and RL included during process of exploration and exploitation that 
aids in mapping the IoT tasks to the available fog and cloud VMs. The adoption of multi-strategies and RL into 
the traditional SBOA helped in supporting the actions of the agents for balancing the tradeoff between makespan 

Fig. 5.  Proposed IMSESBOA-Makespan for varying number of IoT Tasks (5 Cloud VMs and 10 Fog VMs)

 

Parameter Unit Value

Characteristics of real time IoT tasks

Time of Broker Arrival Second 1–100

Size of input file MB 10–100

Size of output file MB 10–100

Memory MB 10–150

Task length MIPS 1000–20,000

Characteristics of cloud VMs

Cost of bandwidth utilization G$/MB 0.06–0.1

Cost of memory utilization G$/MB 0.03–0.06

Cost of CPU utilization G$/Second 0.6–1.0.6.0

Bandwidth Mbps 512–4096

RAM MB 5000–20,000

Computing power MIPS 3000–5000

Number of VMs VM 5,10,15

Characteristics of fog VMs

Cost of bandwidth utilization G$/MB 0.01–0.03

Cost of memory utilization G$/MB 0.01–0.04

Cost of CPU utilization G$/Second 0.2–0.5

Bandwidth Mbps 128–1024

RAM MB 250–5000

Computing power MIPS 1000–2000

Number of VMs VM 10,20,30

Table 1.  Parameters used in the implementation of the proposed IMSESBOA scheme
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and execution with maximized solution diversity and proper utilization of global information shared in the 
scenario. On the other hand, MOMFOA utilized multi-objective MFOA algorithm for well placing the tasks to 
the fog and cloud VMs with confirmed objectives of QoS in the network. This IMSESBOA + RL approach well 
balanced the resources of the fog-cloud environment with respect to the tasks which eventually gets increased 

Fig. 7.  Proposed IMSESBOA-Makespan for varying number of IoT Tasks (15 Cloud VMs and 30 Fog VMs)

 

Fig. 6.  Proposed IMSESBOA-Makespan for varying number of IoT Tasks (10 Cloud VMs and 20 Fog VMs)
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in the environment with corresponding increase in the makespan. However, the proposed IMSESBOA + RL 
approach included a CC strategy which helps the search agents to work together such that they cooperatively 
balance exploration and exploitation rates such that optimal solutions are determined at a rapid rate without 
any delayed convergence. It further plays a crucial role in avoiding entrapment in local optima, which in turn 
leads to significant reductions in energy consumption and cost during IoT task execution within real-world 
implementation scenarios. It also facilitated a balanced search such that potential regions are only exploited 
during the process of IoT tasks migration under the execution scenario.

On the other hand, the baseline TSMHGSMPA and MOGWATSS are hybrid approaches of TS, but well 
balance between the local and global searching is not realized in the implementation scenario. Moreover, the 
benchmarked GAOITSA approach possessed the limitations of poor solution diversity and ignored the use of 
global information shared between the entities in cloud-fog system. As in Fig. 5, With respect to 5 Cloud VMs 
and 10 Fog VMs, the proposed IMSESBOA + RL approach with different IoT tasks minimized the makespan by 
13.28%, 15.56%, 16.52%, 17.64% and 18.56% better than the baseline IMSESBOA, MOMFOA, TSMHGSMPA, 
MOGWATSS and GAOITSA approaches. On the other hand, the proposed IMSESBOA + RL approach with 
respect to 10 Cloud VMs and 20 Fog VMs with different IoT tasks reduced the makespan by 12.68%, 14.76%, 
15.45%, 16.92% and 17.62%, better than the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and 
GAOITSA approaches as presented in Fig. 6. In addition, the proposed IMSESBOA + RL approach with respect 
to 15 Cloud VMs and 30 Fog VMs with different IoT tasks reduced the makespan on average by 12.45%, 14.76%, 
15.24%, 16.42% and 17.54% better than the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and 
GAOITSA approaches as shown in Fig. 7.

Performance evaluation of the proposed IMSESBOA using execution time for varying 
number of IoT tasks
In the second part of the investigation, the execution time (G$) incurred by the proposed IMSESBOA + RL and 
the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches are evaluated for 
varying number of IoT tasks under three scenarios that comprises of 5 Cloud VMs and 10 Fog VMs, 10 Cloud 
VMs and 20 Fog VMs and 15 Cloud VMs and 30 Fog VMs. This experiment is conducted using execution time 
to determine how the proposed IMSESBOA scheme is better than the baseline approaches in reducing the time 
of waiting in the queue, getting allocated to the resources and response for the initiated tasks is achieved in the 
cloud-fog system. This execution time completely depends on size of file considered as input, bandwidth, CPU 
and memory availability in the cloud-fog system. Thus, a reliable IoT TS approach needs to efficiently map the 
tasks to the existing resources such that QoS is highly satisfied with minimized delay in the network. The results 
of execution time presented in Figs.  8, 9 and 10 confirmed that the proposed IMSESBOA + RL approach is 
capable enough in facilitating a contextual alteration of satisfying the demands IoT tasks in the cloud-fog system.

The proposed IMSESBOA + RL approach specifically used the merits of RL and FR strategy for determining 
the possible mapping of tasks to the resources depending on the refinement imposed over the current state. 

Fig. 8.  Proposed IMSESBOA-Execution Time for varying number of IoT Tasks (5 Cloud VMs and 10 Fog 
VMs)
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Fig. 10.  Proposed IMSESBOA- Execution Time for varying number of IoT Tasks (15 Cloud VMs and 30 Fog 
VMs)

 

Fig. 9.  Proposed IMSESBOA- Execution Time for varying number of IoT Tasks (10 Cloud VMs and 20 Fog 
VMs)
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This blend of RL and FR approach included into the CSBOA algorithm played an anchor role in exchanging 
global information between the search agents such that each impact of the emerging factors is handled in a more 
reactive manner. It also used the benefits of CS strategy through the crowding distance can be computed for 
facilitating better mapping of tasks to the available fog and cloud VMs. This strategy of CS updating is used for 
determining how the current solution is changed compared to the previous solution in terms of magnitude such 
that the positions of the current solution need to be replaced are identified. It helps in determining the degree to 
which the current solutions’ position is updated in the SS.

At the same time, MOMFOA and TSMHGSMPA approaches ignored the inclusion of reactive factors 
that attributed towards better resource mapping processes. They were also marginal in performing dynamic 
adjustment since they contributed as a semi-dynamic approach of TS. At the same time, MOGWATSS and 
GAOITSA included only a limited number of factors which helped in mapping of tasks to existing VMs of the 
cloud-fog environment. Thus, the proposed IMSESBOA + RL approach in the presence of 5 Cloud VMs and 
10 Fog VMs, minimized the execution time by 13.32%, 16.54%, 17.18%, 18.76% and 19.36%, better than the 
baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches as shown in Fig. 8. 
This proposed IMSESBOA + RL approach with respect to 10 Cloud VMs and 20 Fog VMs further reduced the 
execution time on average by 11.65%, 13.76%, 14.42%, 15.69% and 16.54%, better than the baseline IMSESBOA, 
MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches as detailed in Fig.  9. In addition, 
the proposed IMSESBOA + RL approach with respect to 15 Cloud VMs and 30 Fog VMs and IoT tasks also 
reduced the execution time on average by 11.76%, 13.86%, 14.54%, 15.76% and 16.64% better than the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches as presented in Fig. 10.

Performance evaluation of the proposed IMSESBOA using fitness function
In this section, the fitness function used for TS in the cloud-fog computing environment is investigated for 
varying number of tasks. This fitness function is used for establishing a better balance between the total 
execution cost and makespan with respect to the real-time tasks entering the cloud-fog computing scenario. This 
problem of IoT TS is developed as a maximizing optimization problem, and hence the high fitness value infers a 
better balance between the execution cost and makespan. This experiment is mainly conducted for assessing and 
realizing the degree of balance existing between the proposed IMSESBOA + RL and the baseline IMSESBOA, 
MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches for varying number of IoT tasks under 10 
Cloud VMs and 20 Fog VMs, and 15 Cloud VMs and 30 Fog VMs as depicted in Figs. 11 and 12 respectively.

The above plots clearly proved that the proposed IMSESBOA approach with respect to scalable increase 
in the number of IoT tasks performed well on par with the baseline approaches since it established a better 
tradeoff between the total execution cost and makespan. The potentiality of this proposed IMSESBOA approach 
is mainly due to the incorporation of the GSG method which wide opened the option of integrating the merits of 
golden section search which is a numerical method which is helpful in identifying the minimum of the function. 
It targeted the process of enhancing the potential of the algorithm such that potential regions of the SS are 
explored such that it guides towards the process of determining an optimal solution.

Fig. 11.  Proposed IMSESBOA-Fitness Function value for varying number of tasks during IoT TS(10 Cloud 
VMs and 20 Fog VMs)
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At the same time, the baseline MOMFOA and TSMHGSMPA approaches exhibited a similar kind of pattern, 
but this trend decreased with large increase in the number of IoT tasks in the cloud-fog computing scenario. 
This is because, these approaches could not balance the impact of large tasks in a reactive way by adopting to the 
influence parameters of TS. Likewise, the other benchmarked MOGWATSS and GAOITSA even through being 
stochastic in nature could not perform well with a well balance since the probability of offloading was computed 
randomly without considering the factors of uncertainty into account. But the proposed IMSESBOA + RL 
approach confirmed the potential of efficiently exploring the large SS as it adopted multi-strategies into the 
classical SBOA for attaining balance between the phases of exploration and exploitation and reinforcement 
leaning useful for learning patterns from new workloads.

Performance evaluation of the proposed IMSESBOA approach using energy consumptions 
and cost with scalable number of IoT tasks
In this section, the energy consumption and cost incurred by proposed IMSESBOA + RL and the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA schemes with scalable number of IoT 
tasks are compared and the results are presented. This comparative investigation is conducted using energy 
consumption and cost for the objective of determining how well the proposed IMSESBOA approach and the 
baseline schemes perform in the real-world IoT applications where energy constraints are critical. In specific, 
Results in Figs.  13 and 14 demonstrates the plots of energy consumption incurred by the IMSESBOA + RL 
approach and the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches 
under 1000 to 5000 tasks with 10 cloud VMs and 20 Fog VMs and 15 cloud VMs and 30 Fog VMs. In both the 
scenarios, the proposed IMSESBOA approach exhibited better performance since the adoption of multi-strategy 
enhanced SBOA explored and exploited the SS for mapping incoming IoT tasks to the suitable VMs for rapid 
execution which considerably minimized the energy spent during the execution process. This excellence of the 
proposed IMSESBOA approach under scalable number of IoT tasks is evidently realized during implementation 
since the deadline constraints considered during the optimization process is highly dynamic and ideally suits 
during the process of IoT tasks execution with comparatively minimized delay. These reactive deadline constraints 
were not utilized by the baseline MOMFOA and TSMHGSMPA approaches, and hence they performed 
marginally compared to proposed IMSESBOA approach. Tthe thresholds considered during the assignment of 
fog resources to the incoming IoT tasks are not dynamic and hence possess a scope of improvement in terms of 
energy consumptions. Thus, the proposed IMSESBOA + RL approach minimized the energy consumption under 
1000 to 5000 tasks with 10 cloud VMs and 20 Fog VMs by 7.16%, 8.12%, 10.54%, 12.31% and 13.98%, compared 
to the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches taken for 
comparison as in Fig. 13. Likewise, proposed IMSESBOA + RL approach minimized the energy consumption 
under 1000 to 5000 tasks with 15 cloud VMs and 30 Fog VMs by 6.78%, 7.84%, 9.42%, 11.76% and 12.64%, 
compared to the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches 
used for comparison as depicted in Fig. 14.

Fig. 12.  Proposed IMSESBOA-Fitness Function value for varying number of tasks during IoT TS (15 Cloud 
VMs and 30 Fog VMs)
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Furthermore, the plots of mean cost incurred by the IMSESBOA + RL approach and the baseline IMSESBOA, 
MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches under 1000 to 5000 tasks with 10 cloud 
VMs and 20 Fog VMs and 15 cloud VMs and 30 Fog VMs. Thus, the proposed IMSESBOA + RL approach 
minimized the mean cost under 1000 to 5000 tasks with 10 cloud VMs and 20 Fog VMs by 7.16%, 8.12%, 10.54%, 
12.31% and 13.98%, compared to the proposed IMSESBOA + RL and the baseline IMSESBOA, MOMFOA, 
TSMHGSMPA, MOGWATSS and GAOITSA approaches used for comparison as shown in Figs. 15. Likewise, 
the proposed IMSESBOA + RL minimized the mean cost under 1000 to 5000 tasks with 15 cloud VMs and 30 

Fig. 14.  Proposed IMSESBOA + RL-MeanEnergy Consumptions for varying number of tasks during IoT TS 
(15 Cloud VMs and 30 Fog VMs)

 

Fig. 13.  Proposed IMSESBOA + RL-Mean Energy Consumptions for varying number of tasks during IoT 
TS(10 Cloud VMs and 20 Fog VMs)
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Fog VMs by 7.42%, 8.32%, 10.21%, 11.56% and 13.84%, compared to the proposed IMSESBOA and the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches used for comparison as in 
Figs. 16.

Figure 17 presents the scheduling overhead incurred by the proposed IMSESBOA + RL approach and the 
baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches under different 
number of tasks which need to be scheduled in the fog computing environment. This result confirmed that the 
proposed IMSESBOA + RL approach reduced the scheduling overhead relatively well compared to the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches since it dynamically learnt 

Fig. 16.  Proposed IMSESBOA + RL-Mean Cost for varying number of tasks during IoT TS (15 Cloud VMs 
and 30 Fog VMs)

 

Fig. 15.  Proposed IMSESBOA + RL-Mean Cost for varying number of tasks during IoT TS(10 Cloud VMs and 
20 Fog VMs)
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the patterns of the tasks under scheduling using the agents of RL which reactively understands the different 
features which decides upon the process of scheduling in the fog environment. In specific, RL is potent in 
dynamically adapting to the new workloads since it excels in learning optimal strategies using the interaction of 
error and trial with the environment. This use of error and trail interaction does not necessitate any pre-defined 
training data. This significance of RL is specifically useful in dynamic environments in which the situations are 
constantly changing, and the optimal solution is completely unknown. This inclusion of reinforcement leaning 
also permits the optimization associated with resource allocation and continues improvement in TS based on 
scalable increase in the number of tasks to be scheduled in the fog computing scenario. Hence the proposed 
IMSESBOA + RL minimized the scheduling cost under 1000 to 5000 tasks with 15 cloud VMs and 30 Fog VMs 
by 6.98%, 7.42%, 8.21%, 10.65% and 11.94% compared to the baseline IMSESBOA, MOMFOA, TSMHGSMPA, 
MOGWATSS and GAOITSA approaches used for comparison.

In addition, Fig.  18 presents the computational overhead facilitated by the proposed IMSESBOA + RL 
approach and the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches 
under different number of tasks. It is seen that the computational overhead during the application of the 
approaches got increased with increase in the tasks. Even though the use of RL facilitated better performance 
on one side, it is also responsible for comparative increase in the computation overhead. The use of RL helped 
in enhancing the process of decision-making during TS by permitting an agent to learn the situations through 
trial and error. But the process of learning frequently necessitates essential computational resources for attaining 
maximized rewards. These training processes also handle vast state space and complex environment. Hence 
the proposed IMSESBOA + RL minimized the computational overhead under 1000 to 5000 tasks with 15 cloud 
VMs and 30 Fog VMs by 7.76%, 8.42%, 9.98%, and 11.21%, compared to the baseline IMSESBOA, MOMFOA, 
TSMHGSMPA, MOGWATSS and GAOITSA approaches used for comparison. But in contrast, MOGWATSS 
performed comparatively well than the proposed IMSESBOA + RL approach by reducing the computational 
overhead by 5.76% under different number of tasks.

Results of ANOVA test
An ANOVA test is conducted to determine the potentiality of proposed IMSESBOA approach compared to 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA, respectively. The null and alternate 
hypothesis considered for this ANOVA statistical tests is listed as follows.

Null hypothesis ( H0): There is no difference in makespan and execution time in fog-cloud system after 
scheduling resources to IoT application tasks using proposed IMSESBOA approach.

Alternate hypothesis ( H1): There is a substantial difference in makespan and execution time in fog-cloud 
system after scheduling resources to IoT application tasks using proposed IMSESBOA approach.

In specific, Tables 2 and 3 presents the ANOVA test results of the proposed IMSESBOA scheme in terms of 
makespan and execution time.

From the above-mentioned ANOVA test results, it is evident that F-Statistic in both the vases is greater 
than the F critical value, and the value of p is smaller than 0.05 for the parameters of makespan and execution 
time. Hence, the null hypothesis ( H0) is rejected and Alternate Hypothesis ( H1) is accepted. Thus, there is a 

Fig. 17.  Proposed IMSESBOA + RL-Mean Cost for varying number of tasks during IoT TS (15 Cloud VMs 
and 30 Fog VMs)
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Groups Count Sum Mean Variance

Proposed IMSESBOA 20 1896 94.86 27.45

MOMFOA 20 1675 83,75 25.64

TSMHGSMPA 20 1198 59.98 26.82

MOGWATSS 20 1021 51.05 24.41

GAOITSA 20 1118 55.98 22.68

ANOVA

Source of Variation SS df MS F P-Value F-Critical

Between Groups 4876.32 4 1219.06 239.26 3.0245E-21 3.2186

Within Groups 428 84 5.095

Total 5453.94 99

Table 3.  ANOVA test results of the proposed IMSESBOA scheme with respect to execution Time

 

Groups Count Sum Mean Variance

Proposed IMSESBOA 20 1542 77.10 27.84

MOMFOA 20 1436 72.80 25.92

TSMHGSMPA 20 1032 51.60 19.61

MOGWATSS 20 986 49.32 18.46

GAOITSA 20 1154 57.72 21.98

ANOVA

Source of Variation SS df MS F P-Value F-Critical

Between Groups 4562.56 4 1140.64 224.094 3.12432E-21 3.2476

Within Groups 428 84 5.09

Total 5124.86 99

Table 2.  ANOVA test results of the proposed IMSESBOA scheme with respect to Makespan

 

Fig. 18.  Proposed IMSESBOA + RL-Computation Overhead Mean Cost for varying number of tasks during 
IoT TS (15 Cloud VMs and 30 Fog VMs)
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significant difference in the makespan and execution time in the fog-cloud system after the process of scheduling 
the resources to the IoT application tasks using the proposed IMSESBOA approach.

Computational complexity
Let us consider the number of total IoT tasks which need to be scheduled over m number of available VMs 
be n with k as the number of dependency constraints imposed during the process of resource allocation in 
the fog-cloud environment. Then the time complexity of this scheduling algorithms completely depends on 
the computation incurred for carrying out the necessitated essential operations such as allocation of suitable 
VMs to the IoT tasks and executing the allocated tasks which incurred the complexity of O (n*m).Sorting 
the tasks during the process of execution incurs the cost of O (k). Then the total computational complexity 
is O ((n*m) + n(m + k + nk) Thius the complexity of the proposed IMSESBOA approach is O

(
n2*k

)
.

Conclusions
The proposed IMSESBOA + RL-based IoT TS mechanisms during its application minimized the time incurred 
during data processing such that QoS is improved in fog-cloud computing. This IMSESBOA + RL approach is 
developed as an optimized scheduling model which explored and processed diversified numbers of tasks by 
minimizing latency and energy costs. It employed a multi-objective methodology using the balanced exploration 
and exploitation capabilities of SBOA with multi-strategy benefits help in maximizing the resource utilization 
rate and shortening the makespan. The results of the proposed IMSESBOA + RL approach with 5 Cloud VMs 
and 10 Fog VMs and different IoT tasks minimized the mean makespan by 19.42%, better than the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches. On the other hand, the 
proposed IMSESBOA + RL approach with respect to 10 Cloud VMs and 20 Fog VMs and different IoT tasks 
reduced the average makespan by 18.52%, better than the baseline IMSESBOA, MOMFOA, TSMHGSMPA, 
MOGWATSS and GAOITSA approaches. Further the proposed IMSESBOA + RL approach with respect to 
15 Cloud VMs and 30 Fog VMs with different IoT tasks reduced the mean makespan by 17.84%, better than 
the baseline IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches. Furthermore, 
the proposed IMSESBOA + RL approach minimized the energy consumption under 1000 to 5000 tasks with 
15 cloud VMs and 30 Fog VMs by 9.68%, compared to the baseline IMSESBOA, MOMFOA, TSMHGSMPA, 
MOGWATSS and GAOITSA approaches used for comparison. The proposed IMSESBOA + RL minimized the 
scheduling cost under 1000 to 5000 tasks with 15 cloud VMs and 30 Fog VMs by 9.06%, compared to the baseline 
IMSESBOA, MOMFOA, TSMHGSMPA, MOGWATSS and GAOITSA approaches used for comparison.

Limitations
The proposed IMSESBOA + RL-based IoT TS mechanism face the challenge of extensive data requirements and 
high demands of computational resources in the fog-cloud environment during the training process. It is also 
due to the dependency of well-defined reward functions which help in addressing the uncertain and dynamic 
nature of fog computing scenario.

Future scope of enhancement
The proposed scheduling algorithm can be implemented using the containers instead of VMs such that it can 
be extended with the suitability of being implemented in the dynamic environments instead of using the VMs 
of the cloud and fog computing system. It can be further modified in such a way that it can be used for load 
balancing and workflow schedule determination process. It can also be enhanced using recently developed 
hybrid optimization techniques, where one component excels in exploration and the other in exploitation. In 
addition, deep learning approaches can be employed to address the challenge of dynamic scheduling.

Data availability
All data generated or analyzed during this study are included in this article.
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