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Despite the widespread availability of sphygmomanometers, hypertension remains underdiagnosed 
and poorly controlled globally—largely due to its asymptomatic onset, low screening adherence, 
and measurement biases such as white-coat hypertension. Current methods fail to enable scalable, 
passive, and early detection in real-world settings. To develop a non-invasive, camera-based screening 
approach using deep learning that overcomes these barriers by enabling early, accessible, and 
interpretable hypertension detection through facial image analysis. We analyzed facial images from 
375 hypertensive patients and 131 normotensive controls. An improved U-Net model was employed 
to segment the face into six anatomically defined regions. Subsequently, ResNet-based classifiers 
were trained to predict hypertension using either the whole face or individual facial regions as input. 
The segmentation achieved a high mIoU of 98.43%. The whole-face model achieved 83% accuracy. 
Notably, models using only the zygomatic and cheek regions achieved 82% accuracy each—performing 
on par with the full-face model. This suggests these regions contain concentrated physiological signals 
associated with hypertension, potentially linked to microvascular or perfusion changes. This study 
demonstrates that deep learning analysis based on facial images can serve as a scalable, passive, 
non-invasive initial screening tool, operable in everyday environments using only standard cameras. 
Notably, the zygomatic and buccal regions exhibit specificity in identifying hypertension.
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Abbreviations
mIoU	� mean Intersection over Union
mPA	� mean Pixel Accuracy
ACC	� Accuracy

Hypertension is one of the most prevalent chronic non-communicable diseases worldwide and may result in 
long-term cardiac overload1, substantially increasing the risk of myocardial infarction, coronary artery disease, 
and heart failure, thereby posing a serious threat to human health2. However, most patients remain asymptomatic 
in the early stages, hindering timely detection. As a result, many individuals seek medical care only after disease 
progression, by which point damage to the heart, kidneys, or brain may already have occurred, leading to 
severe outcomes such as stroke, disability, or death3. Thus, early identification and intervention are essential for 
preventing or delaying target organ complications, reducing morbidity and mortality, and improving long-term 
prognosis.

Currently, the diagnosis of hypertension relies primarily on blood pressure measurement. Although this 
method is clinically validated and widely implemented, its effectiveness in real-world practice remains limited. 
Epidemiological data indicate that the early detection rate of hypertension is still below 50%4. Multiple factors 
contribute to this gap. In clinical settings, some patients experience “white-coat hypertension,” in which 
blood pressure rises abnormally during medical visits but remains normal in daily life, increasing the risk of 
misdiagnosis. At home, elderly individuals often face difficulties operating electronic sphygmomanometers, 
while younger adults frequently neglect routine self-monitoring. Other non-invasive techniques such as 
photoplethysmography (PPG) can estimate blood-pressure trends, but they still require contact sensors and 
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are susceptible to motion artifacts and ambient light interference. These limitations highlight a critical public 
health challenge: despite the widespread availability of blood pressure devices, a substantial proportion of 
hypertension cases remain undiagnosed. Key reasons include low screening adherence, the asymptomatic onset 
of the disease, and measurement biases. Consequently, there is an urgent need for a low-cost, highly accessible, 
and passive screening approach capable of proactively identifying high-risk individuals during the “silent” phase 
of hypertension, thereby addressing the “first-mile” gap in the current diagnostic and management pathway.

According to Traditional Chinese Medicine (TCM) theory, the facial appearance reflects internal physiological 
and pathological states, with different facial regions corresponding to distinct visceral organs. Recent studies 
have demonstrated associations between facial features and cardiovascular diseases5,6. Facial image analysis, as 
a non-invasive and convenient approach, therefore holds considerable promise5. With the rapid development 
of deep learning, computer vision techniques now enable highly precise identification and analysis of facial 
characteristics, offering an efficient tool for health monitoring. Deep learning, as a core branch of artificial 
intelligence, has advanced significantly in medical image analysis7,8. By constructing and training deep neural 
networks, it is possible to automatically extract and interpret image features, thereby enhancing both diagnostic 
accuracy and efficiency. In facial analysis, such models can detect subtle changes imperceptible to the human 
eye, facilitating early disease identification.

Prior work in facial image analysis has explored various methods for health and non-health applications. 
For instance, HOG-based feature extraction has been applied to facial expression recognition, demonstrating 
that handcrafted features can capture basic facial patterns but often lack robustness in complex or noisy 
environments9. Similarly, Haar cascade classifiers have been used for face mask detection during the COVID-19 
pandemic, offering an efficient solution for binary classification tasks10. However, as highlighted by studies such 
as A Framework for Recognition of Facial Expression Using HOG Features11 and Face Mask Detection Using 
Haar Cascades Classifier To Reduce The Risk Of Coved-1912, these traditional computer vision approaches rely 
on handcrafted features and rigid templates, which are limited in representational capacity and generalizability—
especially in medical contexts where subtle, morphologically complex patterns must be identified.

These limitations underscore a critical research gap: prior approaches largely rely on handcrafted features 
or global facial representations, while the diagnostic value of region-specific facial characteristics remains 
underexplored. Although existing deep learning-based research supports the feasibility of facial image analysis 
for cardiovascular disease detection, many studies treat the face as a holistic input without incorporating region-
aware processing13. This strategy may overlook localized yet clinically meaningful facial cues—consistent with 
TCM theory—and often reduces the interpretability of model predictions.

To address this gap, we propose a deep learning framework that integrates anatomical region segmentation 
with region-specific classification, aiming to establish a novel paradigm for hypertension screening that is device-
free, non-invasive, and independent of clinical settings. The framework first employs an improved U-Net model 
to segment facial images into six anatomically defined regions (e.g., forehead, periorbital, nasal, zygomatic, 
cheek, and mandibular). Subsequently, ResNet-based classifiers are trained independently for each region to 
evaluate its individual capability in predicting hypertension. Unlike conventional approaches that treat the 
face as a holistic input, our method emphasizes a systematic comparison of the diagnostic performance across 
distinct facial subregions. This “divide-and-analyze” strategy enables not only the identification of the most 
discriminative facial zones, but also the exploration of localized visual biomarkers—such as microcirculatory 
changes, pigmentation, or subtle edema—that may be associated with hypertensive pathophysiology.

Notably, this approach can help mitigate measurement biases such as “white-coat hypertension,” enabling 
passive, frequent, and scalable screening in real-world settings. It provides a valuable complement to existing 
diagnostic methods such as sphygmomanometry and PPG, thereby addressing practical challenges including 
low screening adherence and insufficient monitoring frequency.

The main contributions of this study are summarized as follows:
① We conduct the first systematic evaluation of six anatomical facial regions in hypertension recognition, 

revealing that the zygomatic and cheek regions achieve classification accuracies of 82%—comparable to the 
whole-face model (83%). This finding suggests that specific facial subregions may contain concentrated visual 
biomarkers of hypertension, paving the way for privacy-preserving, region-focused mobile health applications.

② By integrating TCM facial diagnosis principles with model interpretability analysis, we observe a strong 
alignment between the high-contribution regions (e.g., cheek, periorbital) and TCM’s face-organ correspondence 
(e.g., cheek for heart/lung, periorbital for kidney). This physiologically interpretable insight enhances clinical 
trust and provides data-driven support for the modernization of TCM theories.

③ Experimental results demonstrate that lightweight models (e.g., ResNet-18) outperform deeper 
architectures (e.g., ResNet-50) in region-specific tasks, indicating superior efficiency and generalization under 
limited medical data. This supports the deployment of our framework on mobile or edge devices, enabling low-
cost, large-scale community-based hypertension screening.

The remainder of this paper is organized as follows. Section “Method” describes the data sources, diagnostic 
criteria, inclusion and exclusion criteria, and model training methods, including the improved U-Net 
segmentation model, the ResNet-based classification model, the experimental environment, and interpretability 
analysis. Section “Workflow overview” presents the experimental results on multi-region facial segmentation, 
hypertension classification performance, and interpretability analysis. Section  “Data sources” discusses the 
implications of our findings and their relevance to clinical practice. Section “Diagnostic criteria” concludes the 
paper. Finally, the manuscript ends with the ethics statement, author contributions, and references.
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Method
Workflow overview
This study followed a five-stage pipeline. First, high-resolution facial images were acquired under standardized 
lighting conditions using professional equipment, and low-quality images were excluded. Pixel-level manual 
annotations were then performed to generate ground-truth masks. Second, an improved U-Net model with 
a VGG-16 encoder was employed to segment six facial regions: forehead, zygoma, cheeks, nose, lips, and jaw. 
Third, the segmented regional images as well as whole-face images were fed into ResNet models for hypertension 
classification. To address class imbalance (375 hypertensive vs. 131 healthy controls), we applied weighted binary 
cross-entropy (weights: 0.64 and 1.91), label smoothing (α = 0.3), and data augmentation (random cropping and 
horizontal flipping). Finally, model performance was evaluated using metrics such as accuracy, AUC, and mIoU, 
and Grad-CAM visualization was applied to highlight the facial regions most influential in the predictions.

Data sources
This study was conducted as part of the National Key Research and Development Program project ‘Key 
Technologies and Equipment for Intelligent Acquisition and Analysis of Head Facial Inspection and Complexion 
Information’ (2022YFC3502301). Data were collected from both outpatient and inpatient of Cardiovascular 
Medicine at Dongzhimen Hospital, Beijing University of Chinese Medicine. A total of 375 hypertensive patients 
diagnosed between August and December 2023 were included. The healthy control group comprised 131 
participants, primarily recruited from university students, hospital staff, and patients’ relatives. This study was 
approved by the Medical Ethics Committee of Dongzhimen Hospital, (approval number: 2023DZMEC-228-03).

Diagnostic criteria
Diagnostic criteria for hypertension were based on internationally recognized guidelines, including NICE, 
2013 ESH/ESC, and JNC714,15. Hypertension is diagnosed if multiple measurements obtained on different days 
show a systolic blood pressure ≥ 140 mmHg and/or a diastolic blood pressure ≥ 90 mmHg, in the absence of 
antihypertensive therapy, with secondary hypertension is excluded.

Healthy controls were defined according to the World Health Organization’s ten health standards (2000), 
which include physical vitality, emotional stability, adequate sleep, strong adaptability, balanced physique, good 
mobility, preserved vision and reflexes, healthy dentition, and normal skin, hair, and musculature. Individuals 
meeting these standards and lacking significant family histories of hereditary or chronic disease were considered 
healthy16.

Inclusion and exclusion criteria
Eligible hypertensive participants were required to meet established diagnostic criteria for hypertension and 
provide complete data. Healthy participants were required to meet World Health Organization (WHO) criteria 
for normal health status, including normotension and absence of major chronic diseases, and to provide 
complete data. Additional criteria included: (1) confirmed hypertension without medication, or hypertension 
uncontrolled by medication; (2) age between 18 and 80 years; (3) provision of informed consent by the participant 
or a close relative.

Exclusion criteria included: secondary hypertension; stable hypertension controlled for more than one 
year; recent use (within one month) of medications affecting facial complexion (e.g., beta-blockers, calcium 
channel blockers, diuretics); facial skin defects, dermatological conditions, or significant pigmentation; major 
cardiovascular, cerebrovascular, hepatic, renal, or psychiatric disorders; recent infections, trauma, surgery, or 
fever; pregnancy or lactation; inability to cooperate during data collection; incomplete clinical or demographic 
data; or any condition deemed unsuitable by investigators.

Information collection
Participants who met the inclusion criteria were recruited after being provided with detailed information about 
the study objectives, procedures, and potential discomforts. Written informed consent was obtained from all 
participants. Data were collected on demographic characteristics, lifestyle factors, medical history, and family 
history.

Blood pressure was measured after participants rested for 3–5 min in a seated position, using a calibrated 
upper-arm electronic sphygmomanometer. Three measurements were taken at one-minute intervals, and the 
average of the final two readings was recorded.

Facial images were captured under standardized artificial lighting using the DS01-B Tongue and Facial 
Diagnostic Information Collection System and the M3 TCM Smart Screen All-in-One System. Equipment was 
calibrated prior to use. Participants sat upright with neutral facial expressions and standard posture, under stable 
lighting conditions (Fig. 1).

Image processing and model development
Preprocessing and annotation
Images with obstructions, poor illumination, or improper posture were excluded. Facial regions (whole face, 
forehead, zygoma, cheek, nose, lips, jaw) were manually annotated by trained staff using Labelme software 
following TCM diagnostic regions. Masks were stored in JSON format as ground truth for segmentation.

Segmentation model
Data were randomly split into training and testing sets at a 9:1 ratio. U-Net, a deep learning architecture proposed 
by Ronneberger, was adopted for medical image segmentation17. Its encoder–decoder structure enables efficient 
feature extraction and restoration of spatial details, making it particularly suitable for small-sample biomedical 
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datasets. To improve performance, a VGG network was integrated into the encoder, enhancing generalization 
and feature extraction from subtle local variations (e.g., between cheeks and zygoma)18.

Segmentation performance was quantitatively assessed using mean Intersection over Union (mIoU), mean 
Pixel Accuracy (mPA), and overall Accuracy (ACC), in addition to visual inspection. Model parameters are 
summarized in Table 1, and the architecture is illustrated in Fig. 2.

Fig. 2.  U-Net network structure.

 

Task Segmentation Classification

Model(s) U-Net (VGG backbone) ResNet-18, −34, −50 (ImageNet pretrained)

Input size 512 × 512 224 × 224

Batch size 2 (frozen),
50 (unfrozen) 32

Epochs 100 100

Optimizer Adam Adam

Learning rate 1e-4 → 1e-6 0.0002

Scheduler Cosine annealing OneCycleLR

Loss function(s) Cross-entropy loss Weighted BCE, Label smoothing (0.3)

Regularization / Class weights for imbalance

Data augmentation Resize, random crop, horizontal flip, normalization Random cropping, horizontal flip (p = 0.5), brightness/contrast ± 20%, normalization

Table 1.  Model Parameters.

 

Fig. 1.  Facial image collection process.
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Classification model
Prior to classification, categorical labels were numerically encoded: hypertensive patients as (1) and healthy 
controls as (0). The dataset was randomly split into training and test sets in an 8:2 ratio, with a fixed random seed 
(2024) to ensure reproducibility. Given the limited dataset size and class imbalance (375 hypertensive vs. 131 
healthy controls), data augmentation was applied to enhance generalization. Augmentations included random 
cropping and horizontal flipping. Training images were resized to 224 × 224 pixels, converted to tensors, and 
normalized using ImageNet mean and standard deviation ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]); validation 
images underwent center cropping with identical normalization. ResNet was selected due to its residual learning 
framework19, which alleviates vanishing gradients and degradation in deep networks17. Its hierarchical 
architecture is well-suited for capturing subtle facial phenotypic differences associated with hypertension. We 
evaluated ResNet-18, ResNet-34, and ResNet-50 to investigate the impact of network depth on performance 
(current results based on ResNet-18).

All models were initialized with ImageNet pre-trained weights and fine-tuned using the Adam optimizer 
with OneCycleLR learning rate scheduling (maximum learning rate = 2 × 10⁻⁴). The batch size was set to 32, 
and training was conducted for 100 epochs. Model weights were saved at the epoch with the highest validation 
accuracy.

To address class imbalance, class weights were computed as:

	
wc = N

2 × Nc
� (4)

where N  =506 is the total number of samples and Nc is the number of samples in class.
C . This yielded weights of 0.64 for the hypertensive group and 1.91 for healthy controls. These weights 

were incorporated into a custom weighted binary cross-entropy loss (WeightedBCEWithLogitsLoss) to increase 
the contribution of the minority class during training. Additionally, label smoothing (α = 0.3) was applied by 
softening one-hot encoded labels, which helps prevent overfitting and improves model calibration. Although 
focal loss(γ = 2.0,α = 0.25)was implemented during preliminary experiments, it did not outperform the weighted 
BCE with label smoothing in terms of accuracy and training stability, and was therefore not used in the final 
model.

The final strategy combined class-weighted loss, label smoothing, and data augmentation to effectively 
mitigate class imbalance and ensure stable training.

In this study, the model’s performance was comprehensively evaluated using standard image classification 
metrics, including ACC, Precision, Recall, F1 score, AUC, and confusion matrices. Additionally, five-fold cross-
validation was used to validate the robustness of the model.
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Interpretability analysis
To improve interpretability, we applied Grad-CAM to visualize the regions most influential in model predictions. 
Saliency maps were generated for correctly classified hypertensive and control samples. This allowed us to 
identify discriminative facial regions while ensuring alignment with clinical and TCM perspectives.

Experimental environment
Experiments were conducted on a server configured with an Intel 6230 CPU, NVIDIA Tesla V100S (32 GB) 
GPU, and Ubuntu 20.04.5 operating system. The models were implemented in Python 3.10 using PyTorch 1.8.

Results
Segmentation of multiple facial regions
The primary objective of this experiment was to evaluate whether the proposed U-Net model with VGG backbone 
and transfer learning could accurately and robustly segment hypertension-relevant facial regions, providing a 
reliable foundation for subsequent classification. Accurate delineation of anatomically meaningful zones—such 
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as the forehead, nose, zygomatic area, and jaw—is critical, as these regions are hypothesized to exhibit subtle 
color and texture changes associated with cardiovascular status, particularly in the context of TCM.

As shown in Table 2 and visualized in Fig. 3, the model achieved excellent performance in segmenting the 
entire face, with an mIoU of 98.35%, mean Pixel Accuracy (mPA) of 99.22%, and overall accuracy of 99.34%. The 
predicted masks exhibit smooth boundaries and high fidelity to ground truth, demonstrating strong robustness 
to variations in facial shape, pose, and illumination. This indicates that the model effectively captures global 
facial structure, which is essential for consistent region localization across diverse subjects.

At the regional level, the model also performed well. The forehead was segmented with an mIoU of 94.31% 
and accuracy of 99.37%; the nose with 92.88% mIoU and 99.59% accuracy; and the lips with 93.51% mIoU and 
99.86% accuracy. These results suggest that the model can reliably isolate regions with relatively clear boundaries 
and distinct color contrasts.

However, segmentation performance was moderately lower in more anatomically complex regions: the 
zygomatic area achieved an mIoU of 85.07%, and the jaw reached 88.02%. This performance gap is likely 
attributable to greater contour variability, subtler texture transitions, and shading effects under non-uniform 
lighting, which make precise boundary definition more challenging. Despite this, the segmentation remained 

Fig. 3.  Results of the multi-region facial segmentation model. a training loss curves of the segmentation model 
for different facial regions. B training miou curves of the segmentation model for different facial regions.

 

Model Accuracy Precision Recall F1 AUC

FaceResNet−18 0.83 0.81 0.72 0.75 0.84

FaceResNet−34 0.79 0.75 0.65 0.67 0.78

FaceResNet−50 0.77 0.70 0.63 0.65 0.74

ForeheadResNet−18 0.78 0.72 0.72 0.72 0.72

ForeheadResNet−34 0.76 0.69 0.68 0.68 0.68

ForeheadResNet−50 0.76 0.69 0.70 0.70 0.7

ZygomaResNet−18 0.80 0.76 0.68 0.70 0.75

ZygomaResNet−34 0.82 0.78 0.72 0.74 0.78

ZygomaResNet−50 0.79 0.74 0.66 0.68 0.73

CheekResNet−18 0.82 0.79 0.70 0.73 0.76

CheekResNet−34 0.79 0.79 0.62 0.64 0.68

CheekResNet−50 0.80 0.90 0.62 0.63 0.69

NoseResNet−18 0.77 0.75 0.58 0.58 0.58

NoseResNet−34 0.75 0.67 0.56 0.55 0.6

NoseResNet−50 0.77 0.88 0.56 0.54 0.62

LipResNet−18 0.73 0.61 0.58 0.58 0.75

LipResNet−34 0.69 0.53 0.52 0.52 0.7

LipResNet−50 0.69 0.56 0.55 0.55 0.68

JawResNet−18 0.77 0.88 0.56 0.54 0.57

JawResNet−34 0.77 0.71 0.61 0.62 0.64

JawResNet−50 0.75 0.88 0.52 0.47 0.58

Table 2.  Performance comparison of different hypertension classification and diagnosis models across 
multiple facial Regions.
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visually coherent and functionally sufficient for downstream classification, as misclassified pixels were typically 
confined to marginal areas with minimal diagnostic impact.

Notably, the model converged within 20 epochs using transfer learning, significantly reducing training time 
and computational cost. This rapid convergence underscores the effectiveness of pretraining on natural image 
data (ImageNet) for initializing facial segmentation tasks, even with a relatively small medical dataset.

In summary, these results validate that our U-Net–based framework can accurately isolate key facial zones 
relevant to hypertension analysis. While performance in complex regions suggests room for improvement, 
the current segmentation quality is robust and sufficient to support region-specific feature extraction in the 
classification stage.

Hypertension classification and diagnosis model
ResNet models were fine-tuned for hypertension classification using both whole-face and region-specific 
facial inputs, with training conducted over 100 epochs and early stopping applied to prevent overfitting. In the 
whole-face analysis, ResNet-18 achieved the highest accuracy of 83% with stable convergence (loss reduced to 
0.33), demonstrating that global facial features contain discriminative information sufficient for hypertension 
screening (Table 2; Figs. 4A and 5A). This model was therefore established as the performance benchmark for 
subsequent regional comparisons.

When evaluating individual facial regions, several areas showed strong diagnostic potential. The zygomatic 
region achieved 82% accuracy using ResNet-34, a result comparable to the whole-face model (Table 2; Figs. 4C 
and 5C), suggesting that this anatomically distinct zone may capture hypertension-related physiological 
signals—such as microvascular changes or localized blood flow patterns—highly relevant to cardiovascular 
status. Similarly, the cheek region reached 82% accuracy with ResNet-18 (Table 2; Figs. 4D and 5D), further 
supporting the value of lateral facial zones in non-invasive screening. These findings indicate that specific facial 
subregions may independently contribute meaningful information, beyond what is captured by global averaging.

For the forehead, ResNet-18 achieved 78% accuracy, outperforming ResNet-34 and ResNet-50 (both 76%) 
(Table 2; Figs. 4B and 5B). However, ResNet-50 exhibited more consistent performance across cross-validation 
folds, highlighting a trade-off between peak accuracy and model stability—important considerations for real-
world deployment. In the nose region, ResNet-50 achieved the highest accuracy at 77% (Table 2; Figs. 4E and 
5E), potentially due to its rich vascular network and stable texture, which may benefit deeper architectures 
in extracting subtle physiological cues. The jaw region also performed relatively better with ResNet-34 (77% 
accuracy) (Table 2; Figs. 4G and 5G), likely because medium-depth networks better handle its complex contour 
and shading variations. In contrast, the lip region achieved 73% accuracy with ResNet-18 (Table 2; Figs. 4F and 
5F)—the lowest among all regions—possibly due to external factors such as lipstick, dryness, or color variation, 
though the model showed stable generalization across test sets.

These results collectively demonstrate that while whole-face analysis with ResNet-18 remains optimal, 
certain localized regions—particularly the zygoma and cheek—achieve performance close to the global model, 
reinforcing their potential as targets for region-focused, interpretable hypertension screening tools.

When comparing the best-performing models across regions (Table  3; Fig.  6), whole-face analysis with 
ResNet-18 remained optimal. However, the zygoma (ResNet-34) and cheek (ResNet-18) models demonstrated 
comparable accuracy, emphasizing their clinical potential for regional diagnostics.

Confusion matrix analysis (Fig.  7) provided an intuitive assessment of each model’s classification 
performance. The Overall Facial Area ResNet-18 model achieved a high number of true positives (TP = 270) 
with a moderate number of false positives (FP = 63), indicating a balanced trade-off between sensitivity and 
specificity. The Forehead Area ResNet-50 model achieved a comparable TP (263) but with substantially more FP 
(118), reflecting lower specificity. The Zygomatic Area ResNet-34 and Cheek Area ResNet-18 models exhibited 
low FP rates (76 and 7, respectively); however, the Cheek model had a high number of false negatives (FN = 202), 
resulting in reduced recall. The Nose Area ResNet-50 model produced almost no FP (0) but a very low TP 
(14), while the Jaw Area ResNet-34 model maintained low FP (7) but only moderate TP (101). The Lip Area 
ResNet-18 model identified the highest TP (323) but at the cost of a relatively high FP (84).

In summary, the confusion matrix analysis further confirms the superior and well-balanced performance of 
the whole-face model. It also suggests that, in addition to global facial features, the zygomatic and cheek regions 
may contain valuable physiological signals associated with hypertension, warranting further investigation into 
their underlying mechanisms for clinical screening applications.

To further contextualize the effectiveness of our proposed approach, we compared its diagnostic performance 
with representative state-of-the-art non-invasive methods, as summarized in Table 4. Specifically, traditional 
statistical models based on facial complexion (CIELAB color space) achieved AUC values around 0.82–0.83, 
while contact-based PPG morphology classification methods reported an accuracy of approximately 0.73. Our 
framework, which integrates U-Net–based facial region segmentation with ResNet-18 classification, achieved 
an accuracy of 0.83, F1-score of 0.75, and AUC of 0.84 on 506 images. These results demonstrate that our non-
contact, deep learning–based model performs on par with or better than existing non-invasive techniques. 
Moreover, compared with contact-dependent approaches such as PPG, our method offers the advantage of 
convenience and broader applicability in real-world clinical or community settings, highlighting its potential as 
a promising tool for large-scale hypertension screening.

Interpretability analysis
Grad-CAM visualizations revealed that the model primarily focused on the zygomatic and cheek regions when 
distinguishing hypertensive patients from controls. Importantly, these areas are clinically relevant, as they 
correspond to facial manifestations commonly emphasized in TCM, such as zygomatic discoloration and cheek 
redness. This finding indicates that the model is not only learning abstract image patterns but also capturing 
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physiologically meaningful features that align with both biomedical knowledge and TCM diagnostic principles, 
thereby enhancing the credibility and interpretability of its decision-making process.

Moreover, this observation suggests that interpretability analysis can serve as a valuable tool for clinicians 
to assess the rationality of AI-assisted diagnosis, thereby strengthening trust in such systems. It also provides 
a pathway for future interdisciplinary research—linking model attention maps with traditional diagnostic 
experience to further explore underlying pathophysiological mechanisms. This dual alignment enhances the 

Fig. 4.  Loss-accuracy curve of ResNet hypertension diagnosis model retraining in different facial region. (A) 
Whole-face (B) forehead (C) zygomatic (D) cheek (E) nose (F) lip and (G) jaw.

 

Scientific Reports |         (2026) 16:1218 8| https://doi.org/10.1038/s41598-025-30936-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


clinical applicability of the model and lays a foundation for deeper integration between artificial intelligence and 
TCM diagnostic practices.

Discussion
This study validated the feasibility of deep learning–based facial image analysis for non-invasive hypertension 
screening. By combining an improved U-Net for segmentation with ResNet classifiers, we systematically 

Fig. 5.  Five-fold cross-validation results of ResNet hypertension diagnosis model retraining in different facial 
region. (A) Whole-face (B) forehead (C) zygomatic (D) cheek (E) nose (F) lip and (G) jaw.
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evaluated six anatomically defined facial regions. The results demonstrated that the zygomatic and cheek regions 
achieved diagnostic accuracies (82%) comparable to the whole-face model (83%), suggesting that these local 
regions may contain concentrated visual biomarkers associated with hypertension. This not only supports the 
clinical utility of region-specific models but also aligns with the TCM theory of “inspection,” in which facial 
zones correspond to internal organs, thereby enhancing both interpretability and clinical trust20,21.

Compared with conventional diagnostic approaches22, the proposed method offers multiple advantages. 
The sphygmomanometer remains the gold standard for hypertension diagnosis, yet its dependence on 
physical contact, trained personnel, and standardized procedures limits its scalability for population-level or 
opportunistic screening. PPG is another non-invasive alternative, but it still requires contact sensors and is 
prone to motion artifacts and ambient light interference23. In contrast, our framework relies solely on facial 
images to achieve fully contactless, rapid, and convenient hypertension screening. While not intended to replace 
established clinical measurements, this approach can serve as a valuable complementary tool to address real-
world challenges such as low screening adherence and insufficient monitoring frequency. Its scalability further 
highlights potential applications in telemedicine and community health contexts.

Fig. 6.  Five-fold cross-validation results of different hypertension classification models.

 

Model Accuracy Precision Recall F1 AUC

The Overall Facial Area ResNet-18 0.83 0.81 0.72 0.75 0.84

The Forehead Area ResNet-50 0.76 0.69 0.70 0.70 0.7

The Zygomatic Area ResNet-34 0.82 0.78 0.72 0.74 0.78

The Cheek Area ResNet-18 0.82 0.79 0.70 0.73 0.76

The Nose Area ResNet-50 0.77 0.88 0.56 0.54 0.6

The Lip Area ResNet-18 0.73 0.61 0.58 0.58 0.75

The Jaw Area ResNet-34 0.77 0.71 0.61 0.62 0.64

Table 3.  Performance comparison of different hypertension classification Models.
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In segmentation tasks, the improved U-Net achieved overall excellent performance (mIoU > 98%)24, 
particularly in the forehead, lips, and nose regions. However, accuracy was relatively lower in anatomically 
complex regions such as the zygoma (85%) and jaw (88%), likely due to intricate contours, greater inter-
individual variation, and sensitivity to illumination24. Future work should consider advanced strategies such as 
attention mechanisms or hybrid architectures integrating convolutional and transformer layers to better capture 
both global and local features.

In classification, the ResNet-18 whole-face model yielded the best performance (83%), confirming the 
diagnostic value of global facial features. Interestingly, localized models based on the zygoma and cheeks also 
achieved 82% accuracy, comparable to the full-face model. This finding resonates with TCM diagnostic theory 
and aligns with modern evidence linking regional vascular changes to systemic conditions20,21. In contrast, 
models trained on the nose and lips performed less well (77% and 73%), likely due to weaker or less consistent 
hypertensive manifestations in these regions, as well as greater susceptibility to environmental and emotional 
factors25. These results suggest that combining multiple facial regions may be necessary for reliable clinical 
application.

Interpretability analysis further enhanced clinical relevance. Grad-CAM visualizations revealed that the 
models primarily attended to the zygomatic and cheek regions, which are richly vascularized and highly sensitive 
to hemodynamic alterations in hypertension26. Subtle changes in skin tone and texture in these areas may 
provide discriminative cues—consistent with findings from optical imaging studies. From a TCM perspective, 
these regions are also diagnostically important; for example, expert consensus identifies zygomatic vascular 
engorgement or stasis as a hallmark of blood stasis constitution27. This convergence across model attention, 
physiological evidence, and traditional diagnostic knowledge strengthens clinical plausibility and fosters trust in 
AI-assisted approaches. Interestingly, deeper models (e.g., ResNet-50) did not consistently outperform shallower 
ones. While ResNet-50 produced more stable cross-validation results, ResNet-18 occasionally achieved superior 
accuracy in smaller or localized regions. This suggests a trade-off between model complexity and dataset size, 

Study/Method Modality Model/Approach Dataset size Reported metrics Notes

Facial complexion using L\ and a\ (Bayesian) 
([PMC][1])

Facial color 
(CIELAB)

Bayesian & LASSO-based statistical 
models

1,099
subjects AUC ≈ 0.82–0.83 Non-DL, TCM 

context

PPG morphology classification ([MDPI][2]) PPG signals ML classification on waveform features 359 recordings Accuracy ≈ 0.73 Contact-based 
wearable tech

Proposed (this study) Facial images U-Net + ResNet-18 (deep learning) 506 images Acc ≈ 0.83, F1 ≈ 0.75, 
AUC ≈ 0.84

Non-contact, 
interpretable 
via facial zones

Table 4.  A comparison with state of art. Note: [1]: Ang L, Lee B J, Kim H, et al. Prediction of hypertension 
based on facial complexion[J]. Diagnostics, 2021, 11(3): 540.; [2]: Evdochim L, Dobrescu D, Halichidis S, 
et al. Hypertension detection based on photoplethysmography signal morphology and machine learning 
techniques[J]. Applied Sciences, 2022, 12(16): 8380.

 

Fig. 7.  Comparison of confusion matrix of hypertension detection models in different facial regions.
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where lightweight architectures may generalize better under limited data. Future research should investigate 
larger and more diverse datasets and explore optimized architectures to balance performance and efficiency28,29.

Despite these promising findings, several limitations should be acknowledged. First, although the sample 
size is comparable to other medical imaging studies constrained by clinical recruitment and ethical approvals, 
it remains relatively small for deep learning applications, potentially limiting the generalizability of our models. 
Second, while segmentation accuracy was high overall, performance in complex regions such as the zygoma 
and jaw was less robust, highlighting the need for more advanced segmentation strategies. Third, although this 
study included preliminary comparisons with conventional diagnostic approaches and non-invasive methods, 
systematic benchmarking remains insufficient and should be addressed in future work. To overcome these 
limitations, future research should incorporate larger, multi-center, and more diverse cohorts, and explore 
attention-based or hybrid CNN-transformer architectures to enhance robustness and fairness, ensuring 
applicability across different ethnicities, genders, and age groups.

Overall, this study provides preliminary yet compelling evidence that deep learning–based facial image 
analysis can serve as a valuable complement to existing hypertension diagnostic pathways. By bridging modern 
AI techniques with TCM diagnostic principles, our framework lays the foundation for scalable, interpretable, and 
clinically meaningful non-contact screening, offering new opportunities for early identification and intervention 
in hypertension.

Conclusion
Hypertension often goes undetected due to limited access to screening tools and low patient compliance. This 
study explores a non-invasive, AI-driven approach for early hypertension detection using facial features, inspired 
by TCM face diagnosis. We found that deep learning models can effectively classify hypertension from facial 
images, with the zygomatic and cheek regions achieving accuracy (82%) close to that of whole-face analysis 
(83%). This supports the TCM concept that specific facial zones reflect systemic health and suggests that region-
based assessment may enable simpler, more interpretable screening.

By combining modern AI with TCM knowledge, our method offers a convenient and scalable tool for 
preliminary risk assessment—particularly valuable in primary care and resource-limited settings. While 
promising, further validation on larger, diverse populations is needed before clinical deployment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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