
Modified vedic multiplier
architecture using Nikhilam and
Karatsuba algorithms with hybrid
adders for enhanced performance
Sathiya A. & Sridevi A.

High-performance computing applications rely on efficient multipliers, such as Digital Signal
Processing (DSP) and Machine Learning (ML). This paper proposes an optimized 8 × 8 multiplier
architecture by utilizing a Modified Vedic Nikhilam(VN) Sutra with a Modified Karatsuba Algorithm
(KA) in order to increase speed, lower power consumption, and reduce complexity. The design will
be equipped with hybrid adders with a Fast Carry Switching Adder (FCSA) and Kogge-Stone Adder
(KSA) for carry propagation, as well as latency improvements.Synthesized onaXilinx Spartan-3E
and reprogrammed with a KP2 (team analog) device, the proposed architecture achieved a 30%
speed improvement and a 25% reduction in power consumption from conventional (standard) Vedic
Multipliers (VMs). The Modified VN Multiplier operates with a delay of 27.95 ns at a power consumption
of 248.93 mW.In comparison, the Modified Karatsuba design operates with a delay of 25.79 ns and
a power consumption of 293.65 mW. The combined architecture has a Power Delay Product (PDP)
of 7270 pJ, which will yield substantial improvement from Wallace, Dadda, and VMs. The proposed
architecture is well-suited for many low-power, maximum-speed applications in real-time signal
processing and embedded systems. Future implementations aim to scale the design up to 32-bit and
64-bit operations to validate its effectiveness for high-performance computing applications.

Keywords  Adders, Karatsuba algorithm, Kogge-Stone adder, Modified version, Nikhilam sutras

 Multiplication is a crucial arithmetic instruction1 in modern computer systems, particularly within Digital
Signal Processing (DSP), Machine Learning (ML), and real-time applications, all of which need high-speed,
efficient hardware to operate on large data sets with low latency and power dissipation. Thus, improving the
performance of multipliers is important for maximizing the performance of the system as a whole2,3.

There are many variants of multipliers, such as array multipliers and Booth multipliers4–7, that are common
throughout technological systems; however, these traditional multipliers can typically be prone to issues related
to speed, power, and scalability8. Although the idea of using ancient algorithms from Vedic mathematics9are
promising alternative approach to performing multiplication faster and more efficiently, specific techniques like
Urdhva-Tiryagbhyam, wherein vertical and crosswise arithmetic is performed10. Nikhilam, which considers
using complements to arrive at the answer more easily, has been adapted for implementations using binary so
that computation could be performed more quickly. Implementation was improved11–13. However, independent
of whether identifiers from Vedic or traditional methods are used, complex applications can lead to high power
consumption and limit scalability14–16.

To tackle these challenges, the focus of this study is on developing a new Vedic Multiplier (VM) architecture.
The architecture is an 8 × 8 multiplier based on a Modified Nikhilam Sutra multiplication technique, in
combination with a modified Karatsuba Algorithm (KA) that performs multiplication using a divide-and-
conquer technique to reduce the time to multiply larger seeds. The Modified Nikhilam multiplication technique
utilizes 2’s complement adjustments that will optimize its binary multiplications17,18 for speed and minimize
poor propagation delays from each carry operation within the multiplication19. Likewise, the modified KA
minimizes computational complexity while providing an accelerated multiplication for larger operands20–22.
Even further improvements to performance are accomplished by implementing an advanced hybrid adder,
the Fast Carry Switching Adder (FCSA), based on the Kogge-Stone Adder (KSA) structure. The adder takes

Department of Electronics and Communication Engineering, M.Kumarasamy College of Engineering (Autonomous),
Karur 639113, Tamil Nadu, India. email: sathya_ayyadurai@yahoo.com

OPEN

Scientific Reports | (2026) 16:1772 1| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-30966-7&domain=pdf&date_stamp=2026-1-13

advantage of speculative carry logic in parallel prefix to increase speed while decreasing power requirements
when performing the addition in the multiplier23.

The architecture presented in this work achieves processing speeds of over 30% faster with up to 25%
lower power than current VM designs while being adaptable and modular for utility in any number of high-
performance or real-time applications24–26.This work enables an efficient, scalable, low-power alternative across
multiplying options that can bridge the performance gap in traditional designs and meet the growing needs of
advanced computation for DSP, ML, and embedded systems.

Thus, the primary contributions of this work are:

	1.	 An optimized 8 × 8 VM based on the Modified Nikhilam Sutra for improved binary multiplication efficiency.
	2.	 Integration of the Modified KA to reduce the computational complexity of large-number multiplications.
	3.	 A hybrid adder design (FCSA + Kogge-Stone) to enhance speed and reduce power consumption in high-per-

formance computing systems.
	4.	 Extensive performance evaluations demonstrate the superiority of the proposed design in terms of speed,

power, and computational efficiency over traditional multiplier architectures.

Hence, this paper presents the efficient and influential architecture of the 8 × 8 VMs per current high-powered
digital systems by using complex multiplication and advanced adder circuits. The applications of Vedic math, the
adjusted KA, and the modern hybrid adder show the low complexity of the given combinational circuit, better
performance and high reliability of the computed outcome, which uses the enhanced arithmetic processing
units.

Literature review
Balaji and Padmaja27 designed an area- and delay-efficient RNS-based FIR filter with fast multipliers to increase
the speed of any required signal processing application. Although the authors have shown improvements in
speed and area, the capabilities and effectiveness of scalability for high-order filter designs do not meet the
application needs, and the authors didn’t tackle power efficiency implications at varying input loads. These gaps
in scalability and potential for higher power efficiency limit the applications in power-sensitive or dynamically
adaptive systems.

Cui et al.28 used a speculative secret flow tracking approach to provide some security during speculative
execution within modern processors. The authors demonstrated how to prevent unintended information
leakages when speculative behavior created a threat. However, the approach also had additional hardware
complexity and latency overheads, ruling out the possibility of real-time, resource-limited embedded systems.

Ijjada et al.29 introduced a Multiplier-Accumulator (MAC) unit via a rounding-based approximation
method to alleviate computational complexity and speed up the processing time. Although the design achieves
considerable area and power reductions, the accuracy suffers, which makes it unsuitable for applications that
have high accuracy, such as scientific computing and advanced DSP tasks.

Kaushik and Bodapati30 suggested an IMPLY-based high-speed conditional carry and conditional carry
select adders for in-memory computing architectures. The advantage of the design is improvement in speed of
computation and confirmation of data movement. The acknowledgment of the trade-off between memristor
technology and CMOS technology creates integration problems as well as the variability of the memristor; this
restricts the stability and scalability of the designs in a conventional CMOS-based system.

Mugatkar and Gajre31 presented an efficient VM and rigorously evaluated performance on speed as well
as resource utilization. The design does yield improved throughput; however, the design does not attempt to
minimize power consumption or provide for scalability, ultimately impacting its value for power-limited or
large-scale systems.

Park et al.32 presented a space-efficient GF(2^m) multiplier for special pentanomials optimized via an n-term
KA. The design is intended to limit area usage for cryptographic hardware. While this is promising work for
specific polynomial forms, it has very limited utility and flexibility for general purposes and field sizes.

Patel et al.33 researched creating VMs using 45 nm CMOS technology, offering reduced speed and area
performance issues. However, this type of design is not particularly useful for current advanced technology
nodes. Also, it does not consider trade-offs between area, speed, and additional power, which further limits its
usefulness in low-power applications.

Raj et al.34 studied how speed and use area utilization were affected by multiple adder forms on a 32-bit VM.
The study was informative about how adders affect speed but ignored power efficiency and high-bit scalability,
which are essential components of high-performance embedded systems.

Rao et al.35 have presented a rounding-based approximate multiplier design based on a modified form
of the KA that minimizes the long processing steps present in the original algorithm through the use of an
approximate variant of the Karatsuba product tree structure to realize speed increases and resource savings.
The authors demonstrated that while accelerating performance increases through approximations are useful in
applications emphasizing speed or overall performance, this variation limits overall precision and, therefore,
limits application in computation tasks emphasizing precision and accuracy.

Reddy et al.36 proposed an M-term non-homogeneous hybrid Karatsuba polynomial multiplier for optimizing
large multiplications with numbers, and the authors showed that time and calculations might have been
significantly reduced; nonetheless, this implementation has downsides of structural complexity and increased
resources required. Thus, implementations of this technique may have issues with applications requiring reduced
size for embedded or lightweight.

Scientific Reports | (2026) 16:1772 2| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Problem statement and research gap
Suffering inefficiencies in terms of power consumption, delay and computational complexity limit the usefulness
of present multiplier designs in High-Performance Computing (HPC) and signal processing activities. To
maximize the performance, such as speed, power and area, this work provides a modified Vedic Nikhilam (VN)
and Karatsuba multiplier design, thereby meeting the desire for an efficient multiplier.

Although several multiplier architectures have characterized the application of Vedic mathematics, Booth
encodings, or KAs, much of the previous work has one or more specified disadvantages that limit modern use in
high-performance computing and embedded systems.

•	 Most prior work has been aimed at single optimizations, such as basic methods of Vedic mathematics (Urd-
hva-Tiryagbhyam) or standard Karatsuba multipliers, without exploring the integration of each technique
together.

•	 Most traditional technical designs either provide high speed with substantial power use (Wallace, Dadda, etc.)
or low power with additional latency that reduces performance for real-time applications.

•	 Past VMs did not use complementary logic effectively, resulting in woeful duplication of carry propagation
across entire bit-widths.

•	 The minimal focus has been placed on the combined optimization of multiplication and add logic. For ex-
ample, the use of fast multipliers with standard ripple-carry adders has diminishing returns on performance.

Motivation for hybrid combination and novelty justification
Applying Modified Nikhilam Sutra, Modified KA, and hybrid adder design (FCSA + Kogge-Stone) will directly
address the analysis in Sect. Carry save adder for implementing as separate implementations. Nikhilam Sutra-
based multipliers produce low-complexity designs for operands that lie near power-of-two. While the Nikhilam
Sutra retains simple architecture, it suffers from carry-propagation delays. The Karatsuba approach minimizes
multiplicative operations for larger operands while also introducing recursive overhead. Both limitations were
addressed by utilizing the Nikhilam Sutra as before but with additional 2’s complement pre-processing and carry
path improvements. The same approach was taken to use the Karatsuba strategy at the higher bit segments to
shorten the operation depth instead of using a full recursion strategy.

The hybrid adder was purposely selected to complement this structure, where the FCSA was used forLeast
Significant Bits (LSB) operations with speculative logic. At the same time, the KSA operated Most Significant
Bits (MSB) with efficiency and parallelism. The selection of these sections was data-led, where the simulations
produced a 27% speed increase and 25% less power than the VMs.

Unlike previous works that use these techniques in isolation, the novelty lies in the following:

•	 The specific architectural integration of these three techniques in an 8 × 8 multiplier design.
•	 Optimized operand segmentation and pipeline-friendly adder allocation (LSB via FCSA, MSB via Kog-

ge-Stone).
•	 A resource- and delay-aware implementation strategy, validated on FPGA with measured results across area,

power, and PDP.

Analysis of Vedic multiplier using modified Vedic Nikhilam and modified Karatsuba
algorithm
This section presents the details of the architecture and developmental method for the proposed 8 × 8 VM as per
the “UrdhvaTiryagbhyam” Sutra, along with the KA and advanced adder design. Transient analysis examining
the temporal performance of such a design from a transitory standpoint emphasizes how signals travel through
the architecture and how the system responds to inputs over time.

Figure 1 explains the design method for the 8 × 8 multiplier architecture proposed here takes a modular,
performance-based approach through the integration of the Modified VN Sutra, the Modified KA, and a hybrid
adder using an FCSA and architecture. The VN Sutra was first modified to a binary format using 2’s complement
logic to reduce carry propagation and simplify the multiplication process, especially when operands are close
to a power of two. Secondly, the Modified KA was used to increase performance for large operand segments
by reducing the number of multiplication operations needed through recursive operand splitting. Finally, the
hybrid adder architecture was used because it uses the FCSA for low-order bits and the KSA architecture for
high-order bits, which maximized delay and power savings with speculative carry logic. The design was fully
described in Verilog HDL, simulated for functional operation, and synthesized on Xilinx Spartan-3E and Zynq-
7000 FPGA platform using the same toolchain. The comparison performance was measured as delay, power,
PDP, and area. Both ablation studies and comparisons with multipliers proposed by Wallace, Dadda, and Booth
showed the improvements represented in the results are due to architectural benefits and not due to years of
experience with synthesis tool advantages or synthesizing performance improvements based on the platform.

Basic Vedic multiplier architecture
Vedic arithmetic implements a multiplication circuit, particularly the “UrdhvaTiryagbhyam” Sutra, for an 8 ×
8 multiplier. According to Parameswaran&Chinnusamy37 and Sai Venkatramana Prasada et al.38, this structure
also divides the multiplication into four VM modules of four-by-four bits. The outputs of these modules are then
added using the carry saves and binary adders, thus obtaining the required 16-bit product. The so-called Vedic
UrdhvaTiryagbhyam Multiplier is depicted, and the multiplication method is described in Fig. 2.

The design of the VM using"UrdhvaTiryagbhyam” Sutra is done by using the four 4 × 4 VM blocks, one 8-bit
carry-save adder and two 9-bit binary adder stages. This setup is intended to bring out the required format of the
final 16-bit product practically and realistically. As stated before, the computations are initiated with four 4 × 4

Scientific Reports | (2026) 16:1772 3| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

VM modules, which partition the 8 × 8 multiplication into multiple small segments to increase the manageability
and efficiency of the computations.

The least significant 4-bits of the 16-bit product and p3 to p0 are directly obtained from the output of the
rightmost 4 × 4 multiplier module out of 64 4 × 4 multiplier modules. For the middle part (p7-p4), an 8-bit carry-
save adder is used, which processes the three 8-bit operands: the linked light-bit “0000” and eight bits from the
significant right 4 × 4 multiplier module and the second and third 4 × 4 multiplier modules’ outputs.

The Nikhilam Sutra is applied by taking the 2’s complement of the multiplicand and multiplier and simplifies
the multiplication process to the NikhilamSutrausingthe 2’s complement of the multiplicand and multiplier.
This Sutra also simplifies the multiplication process to those inputs and processes the second 9-bit adder, which
yields the final eight bits of the product (p15-p8). The carry bit from this stage is skipped to maintain the correct
product length.

Modified Vedic multiplier: 4 × 4 Vedic multiplier modules
Each 4 × 4 VM module multiplies the two 4-bit numbers. The following equation describes the process:

	
P = A × B =

∑ 3

i=0
,
∑ 3

j=0
ai.bj · 2i+j � (1)

Where in Eq. (1),

A= (a3a2a1a0)2.
B= (b3b2b1b0)2.
P is the product of A and B.

The partial products are generated and then added using the Carry Save Adder (CSA) stages.

Carry save adder
The 8-bit CSA adds the three 8-bit operands. The operands are:

Fig. 1.  Functioning of the Proposed 8 × 8 Multiplier Architecture.

Scientific Reports | (2026) 16:1772 4| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	1.	 The linked 8-bit result of the rightmost 4 × 4 multiplier with leading zeros: (“0000” & P 3−0)
	2.	 The 8-bit output of the second 4 × 4 multiplier (P7 − 4).
	3.	 The 8-bit output of the third 4 × 4 multiplier (P11 − 8​).

CSA produces two outputs: a sum vector and a carry vector. The addition is performed as follows:

	 Sum = A ⊕ B ⊕ C � (2)

	 Carry = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ A)� (3)

Where A, B and C are the three operands.

Binary adders
Two 9-bit binary adders are used in the final stages to combine the results from CSA and generate the final
product.

	1.	 First 9-bit Adder:

The outputs of the CSA (sum vector and carry vector) are added to generate a 9-bit sum:

	 S1 = Sum + carry” 1� (4)

The middle part of the product (P7 − 4) is extracted from the sum.

	2.	 Second 9-bit Adder:

The 8-bit output of the leftmost 4 × 4 multiplier and the linked 8-bit result of the most significant part of
S1​ with leading zeros (“000” & S1,8−1​) are added:

	 S2 = P{15−8} = {Left 4x4 output} + ({S1 [8−0]} << 3)� (5)

Conventional multiplier designs
Traditional multipliers have many methods such as Array, Booth, Wallace, Dadda, and Vedic Urdhva-
Tiryagbhyam multipliers. All these are used in digital multiplication with the own pros, cons and other
constraints. Array Multiplier typically has a simple structure but is inefficient in terms of area and latency. The
Booth Multiplier reduces the size of the operands’ number of partial products. Booth multipliers handle signed
multiplication well, although theselack from increased latency as the bit size of the operand increases. Wallace
Trees are the fastest design style of multiplier using CSA (Carry-Save Adders). Even though Wallace Trees are
fast, these are also very inefficient in terms of power and design complexity. Dadda Multiplier uses fewer gates

Fig. 2.  Vedic UrdhvaTiryagbhyam Multiplier.

Scientific Reports | (2026) 16:1772 5| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

than a Wallace Tree but has difficulty with respect to scalabilities. The Vedic Urdhva-Tiryagbhyam Multiplier
is moderately performing but has limitations in terms of long carry propagation and power efficiency. Each of
this multiplier has similar weaknesses with respect to the Karatsuba Multiplier. Karatsuba Multiplier reduces the
number of multiplicative steps.However, Karatsuba has processors overhead for small word sizes.

Modified Nikhilam Sutra
In contrast to these typical designs, the proposed system utilizes a Modified- Vedic Nikhilam Sutra and a
two’s complement modification to reduce carry propagation, a Modified Karatsuba Algorithm that decreases
multiplicative complexity with no significant recursive overhead and a Hybrid Adder (FCSA + Kogge-Stone) to
improve speed and power efficiency all in the same system. These developments solved the latency, power and
scalability problems connected to conventional multipliers, achieving a 30% improved speed, and 25% more
power was reduced against traditional Vedic, Wallace, and Dadda designs.

According to Yashet al.39, the Nikhilam Sutra, derived from Vedic mathematics, is typically used to multiply
numbers by complementing them to the nearest power of 10. In the binary system, this Sutra is adapted by
taking the 2’s complement of the multiplicand and multiplier. The Modified Nikhilam Sutra enhances this
approach by adjusting carry units during the computation, which significantly optimizes binary multiplication.
Instead of performing direct multiplication, the algorithm first computes the 2’s complement of the operands,
simplifying the multiplication process by transforming the original problem into a series of smaller additions
and subtractions.

Figure 3 shows Modified VN Sutra Multiplier and shows the complements used on binary multiplication. The
Nikhilam Sutra realized a binary number system, depending on which operand, adopting the 2 s complement
of either the multiplicand or multiplier. The method eases the multiplication of two numbers each containing 8
bits by representing them as the multiplication of the complements, and then adding them together. To attain
this, the architecture has a 2s complement block using which an 8 bit complemented multiplier input (-a) and
the complemented input operand (-b) are created. These complemented outputs are in turn fed as inputs into
the multiplier.

Fig. 3.  Modified Vedic Nikhilam Multiplier.

Scientific Reports | (2026) 16:1772 6| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The implementation of the Modified Nikhilam Sutra in the Us architecture is in this manner: 2 complement
of both operands are formed by the input of a 2 complement block. These complemented are pumped in to
the multiplier modules, where the binary multiplication occurs. An advantage of this method in hardware is
that it minimizes the total amount of carry propagation, which can itself be very inefficient in hardware. A
direct complement of the Modified Nikhilam Sutra is that by minimising the carried propagation, an enhanced
performance in terms of speed and reduced power is achieved.

Modified Karatsuba algorithm
According to Heidarpur&Mirhassaniet al.40, for large number multiplication, the Modified KA is used to divide
the numbers into smaller parts, which reduces the number of multiplicative operations:

Figure 4 indicates the feature of the Modified Karatsuba Multiplier in terms of large-number multiplications.
The Right-Hand Side (RHS) of the product is computed using an 8 × 8-bit multiplication, while the 8-bit carry-
save adder handles the Left-Hand Side (LHS). Surplus bits from the RHS product are fed into the one input of the
carry-save adder with the correct formation of the LHS result. The negative of the complemented multiplicand
produced by the 2’s complement block is joined into the left-hand side processing. The carry-save adder combines
the three 8-bit operands (two inputs and the partial output of the multiplier) to produce the sum and carry
vectors. A binary adder block processes these vectors to yield the final left-hand side result of the multiplication.

The KA is a divide-and-conquer technique for multiplying large numbers, which splits the operands into
smaller parts and reduces the number of multiplicative operations required. The basic idea is that multiplying
two large numbers, x and y, can be reduced to three multiplications of smaller numbers rather than four, as in the
traditional method. This reduction in multiplicative operations results in a significant decrease in computational
complexity.

In the proposed architecture, the Modified KA is applied to the multiplication of large numbers. The algorithm
splits both operands into two smaller parts:

	 Let x = 10k.x1 + x0 and y = 10k.y1 + y0� (6)

Now, the multiplication is computed as

	 x.y = 102k.x1.y1 + 10k. (x1.y0 + x0.y1) + x0.y0� (7)

In the proposed design, the KA reduces the number of multiplicative steps in the large-bit-width multiplication
process, making it highly efficient for applications that require rapid multiplication of large numbers. The
Modified KA reduces the complexity and speed of the multiplication of larger numbers by breaking down the
numbers into parts and multiplying recursively.

The components of the architecture in this design, namely Modified Nikhilam Sutra, Modified KA, and
the hybrid adder, work together very closely to enhance the overall performance of the multiplier. In this case,
the Modified Nikhilam Sutra significantly improves the multiplication by reducing the carry propagation
in the multiplication process. The Modified KA improves performance by decreasing the total number of
multiplication operations performed for large number multiplication. The results of both of these components
can take the results in the hybrid adder design. The hybrid adder implements a combination of the FCSA for the
LSB along with the KSA for the MSB. The FCSA handles the carry in the lower-order bits, reducing the carry
propagation, which is critical to doing the multiplication quickly. In contrast, the Kogge-Stone handles the carry
propagation that is far more complex to deal with in the MSB and adds high-speed parallelism to the design. By
implementing this hybrid addition, it is made sure the multiplication process is fast and more power efficient
since the speculative carry propagation minimizes the power usage in the adder stages.

Hybrid adder design
The hybrid adder is one of the key components of the proposed architecture. It combines the FCSA and KSA to
achieve both speed and power efficiency. The FCSA was used for the least significant bit addition because of its
ability to achieve fast carry propagation from the use of speculative logic. During this stage of addition, carry
bits can be predicted, and errors resolved during the aggregation phase of the addition. This approach reduces

Fig. 4.  Modified Karatsuba Multiplier.

Scientific Reports | (2026) 16:1772 7| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

the time it takes to propagate the carry because that portion of the block is not involved in the delay. The KSA
was used in the most significant bit addition. As a parallel prefix adder, a great deal of carry and propagate bits
are generated in parallel through pre-processing, resulting in a faster computation through larger bit widths.
The KSA is known for its efficiency, carrying over reasonably-sized bits, and providing a fast carry propagation
without much additional time overhead or latency. Together, these two adders in the hybrid adders take a small
amount of time and consume a small amount of energy for an effective multi-input adder. The FCSA reduces
the amount of time it takes to propagate carry in the lower-order bits of the multiplication. At the same time, the
logic in the KSA manages the complexity of the upper-order bits, resulting in a fast and efficient multiplication
process.

The hybrid adder combines FCSA and KSA and also uses speculative logic to create a better level of precision
and use less power:

	1.	 FCSA for LSB Addition: Performs addition for the least significant bits.
	2.	 Kogge-Stone Adder for MSB Addition: Handles the most significant bits quickly and efficiently.
	3.	 Speculative Logic: Speculates the carry based on higher-order bits and corrects the errors using an error

correction module.

The interface between the partial-product and hybrid adder stages uses the modified Nikhilam Sutra shown
in Fig. 5, which provides two’s-complement correction and error recovery to guarantee the accurate and low-
latency carry propagation between the FCSA and Kogge–Stone blocks. The adder incorporates the FCSA in the
least significant part with the Kogge-Stone form of parallel prefix adder in the most significant part through
the carry speculative logic. The speculative logic processes the predicted carry from FCSA to carry the input
of the Kogge stone adder through a Multiplexer (MUX) select signal. MUX selection signal is generated by the
combination of OR operation of K and G. G is the generated output obtained by AND in the MSB value of A and
B in FCSA. K is the AND of the inverted value of A and B from the LSP bit of the Kogge stone adder.

Speculative logic appears in the case of addition to predict the carry bit of the addition process into the higher-
order bit. This prediction is helpful for the addition process because of the decrease in the need for the carry
bit, which spreads sequentially. This speculation is present in the hybrid adder to increase the computational
capability of the circuit.

These optimizations are present in the proposed architecture results with the high-speed and low-power
multiplication found in several computational calculations. The FCSA design is represented in Fig. 5.

Figure 6 represents the combination of hybrid addition with the FCSA and the Kogge–Stone adder. In this
adder architecture, this adder involves using a carry and sum bit adder to add the three operands. The FCSA
handles the LSB addition, and the KSA handles the most crucial addition. A speculative (logic) adder adds the
calculated carries by the higher order bits of the FCSA module to increase the addition speed with the slightest
delay. The KSA is based on the parallel prefix adder and is suitable for high-speed computation arithmetic.

Fig. 5.  Hybrid Adder.

Scientific Reports | (2026) 16:1772 8| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

This adder uses pre-processing to generate the bit-wise signals for the following steps: creating a carry (g) and
spreading out a carry (p). The KSA operates on these signals in parallel, which speeds up the addition, especially
in the wide bit-width operand.

The original result of the KSA design is illustrated in Fig. 7 which consists ofP-Propagate and G- Generate
block in the pre-processing stage performing the robust carry propagation of the KSA. The intermediate stage,
mentioned as a circle in Fig. 7, receives two propagate-generate pairs from the pre-processing stage and gives
the intermediate single PG values. The final post-processing stage forms the sum block, which produces the final
summation output through XOR operation. KSA calculations are shown in Eqs. (8), (9), (10), (11), (12), and
(13).

	 Propagate Signal : P i = Ai ⊕ Bi� (8)

	 Generate Signal : Gi = Ai · Bi� (9)

	 Sum : Si = Pi ⊕ Ci−1� (10)

	 Group Generate Signal : Gi:k = Gi OR (Pi · Gk−1:j)� (11)

	 Group Propagate Signal : Pi:k = Pi · Pk−1:j � (12)

	 Final Sum : Si = Pi ⊕ Gi−1:0� (13)

Bit Addition Logic (BAL)combines the initial addition in the hybrid adder’s first stage. This adds the three
operands to give the mid sum and carry values to FCSA in assisting the Kogge-Stone adder to get the final
adding results. The Bit Addition Logic (BAL)incorporated in the hybrid adder design is shown in Fig. 8 below.

The proposed VM is composed of an FIR filter where the signals are multiplied with the coefficients (b0-bn).
This application clearly explains the assessment and calculation with the VM, which helps in saving time and
providing the exact result in the digital processing signal, where the multipliers are applied in an FIR filter setup,
as shown above in Fig. 9.

Fig. 6.  Fast Carry Switching Adder (FCSA).

Scientific Reports | (2026) 16:1772 9| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 8.  Bit Addition Logic.

Fig. 7.  Kogge-Stone Adder.

Scientific Reports | (2026) 16:1772 10| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Implementation results and analysis
This work used the Verilog HDL language to generate the multipliers, and the design was synthesized with
Xilinx ISE. The target hardware platform was the Spartan-3E FPGA family, specifically an XC2S600E device.
Most of the steps in implementation were classified into different stages: design specification, coding, synthesis
and verification. The first step involved determining the specifications for the multipliers. These requirements
included high speed, low power and efficient utilization of FPGA resources. The specific purpose of this design
was to facilitate the different operand sizes and scales to suit the other multiplications, making it a flexible
solution applied in numerous scenarios. The output power performance of the 8 × 8 VM proposed in this paper
has been verified through the simulation. The discovered results display the proposed architecture’s effectiveness
and speed increase.

FPGA platform
The hardware implementation of the proposed 8-bit multiplier architecture, Modified VN Sutra and Modified
Karatsuba Multiplication, and the FIR filter is done with the Digilent BASYS2 board featuring a Xilinx Spartan-
3E FPGA. While some recent works including Anh& Quang41and Agarwal et al.42 have been able to implement
control and image processing systems using Spartan-3E, the same board is used to emphasize the use of resources
and speed. The respective BASYS2 board is shown in Fig. 10.

The modern System-on-Chip (SoC) platforms seem to be on the rise; the choice of BASYS2 for this research
was both deliberate and justified for the following reasons:

Fig. 10.  BASYS2 Board.

Fig. 9.  FIR Filter.

Scientific Reports | (2026) 16:1772 11| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 The Spartan-3E FPGA on the BASYS2 board is commonly used in both academic and research contexts for
developing validation of algorithms for arithmetic and signal processing. It provides a controlled setting for
prototyping and debugging and includes accessible I/O capabilities.

•	 The designs proposed on a legacy and resource constrained FPGA such as Spartan-3E support the area- and
power-efficient nature of the proposed designs as well as show that these executions have minimal overhead
and are scalable.

•	 The BASYS2 includes onboard LEDs, switches, and a seven-segment display which allow for real-time verifi-
cation of internal signal transitions without the utilization of external instruments. The use of the integrated
circuit and logic circuit design simulation was crucial during the functional validation of the logic circuits.

•	 The multiplier and filter designs are described in Verilog HDL so that these can be verified across FPGA
families. The same HDL code can be synthesized and devices implemented on advanced SoCs (Xilinx Zynq
or Intel Cyclone V SoC) if desired.

To combat the scalability and modern deployment concern, future work will involve deploying these architectures
on an SoC platform. The architectures will be deployed on an SoC platform, such as the Zynq-7000 series, where
embedded processors and increased clock frequency can be used to implement system-level integration and
real-time applications.

Using the BASYS2 Spartan-3E FPGA, comparing design performance on both a legacy FPGA (Spartan-3E)
and a modern SoC FPGA (Zynq-7000). The intent of this comparison is not to benchmark between platforms but
rather to demonstrate the algorithm scalability, portability, and efficiency across the generations of hardware. The
results confirm that the proposed multiplier/FIR filter design retains low area usage and acceptable performance
across both platforms proving appropriateness for deployment on modern SoC environments as well.

Table 1 values are synthesized using Xilinx Vivado for the Zynq-7000 and ISE for the Spartan-3E.
The architectures used the same Verilog HDL design; this demonstrates platform independence for this
implementation. The SoC implementation enjoyed dedicated DSP blocks and quicker routing fabric, while the
Spartan-3E implementation showed minimal resource usage of the design and was capable of operating on older
platforms.

Key data values and signal States for the Vedic multiplier, Karatsuba multiplier, and FIR filter
designs
Applying the UrdhvaTiryagbhyam Sutra or the superimpose, the multiplier fractionizes the multiplication, which
enables the computation process to be effectively accomplished. Table 2shows the signals from the Modified
VN Multiplier Simulation. In this design, two 8-bit inputs, an and b, both set to 11,111,111 (which is 255 in
decimal), are being multiplied. The result of this multiplication is correctly shown as 1,111,111,000,000,001,
which is 65,025 in decimal (the product of 255 × 255). Other signals like mul_op, tc_a, tc_b, sum, x, y, and
product represent the intermediate steps in the multiplication process. These signals help to track the operation

Signal Name Value (Binary)

/vedic_nik_8_pro/a 11,111,111

/vedic_nik_8_pro/b 11,111,111

/vedic_nik_8_pro/result 1,111,111,100,000,001

/vedic_nik_8_pro/mul_op 0000110001111011

/vedic_nik_8_pro/tc_a 00000001

/vedic_nik_8_pro/tc_b 00000001

/vedic_nik_8_pro/sum 11,111,110

/vedic_nik_8_pro/V1/x 00000001

/vedic_nik_8_pro/V1/y 00000001

/vedic_nik_8_pro/V1/product 0000000000000001

Table 2.  Simulation results of modified Vedic Nikhilam Multiplier.

Metric Spartan-3E (XC3S100E) Zynq-7000 (XC7Z020)

Slice LUTs Used 120 98

Slice Registers Used 85 76

Multipliers/DSP Blocks Used 0 1

Maximum Operating Frequency 46.2 MHz 97.8 MHz

Dynamic Power Consumption 78 mW 55 mW

Static Power Consumption 98 mW 123 mW

Execution Time (8-bit Mult) 21.65 ns 11.22 ns

Table 1.  Comparison of resource utilization and performance on Spartan-3E vs. Zynq-7000 FPGA.

Scientific Reports | (2026) 16:1772 12| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

at different stages, ensuring computations of the final result. Overall, this waveform represents the internal
working of the multiplier as it performs the calculation step by step.

Table 3 displays the Simulation of the Modified Karatsuba Multiplier, which shows the multiplication of the two
8-bit binary numbers (x = 11001101 and y = 10001001). The final product is represented as 01110110110110110
in binary. Throughout the process, various signals explain the different stages of multiplication. Intermediate
signals like /x1y1 and /xryr hold the partial results during the algorithm’s recursive steps. Additionally, carry-out
signals /cout1 and /cout2 are used in the final stages of addition when combining the partial products. Overall,
this waveform illustrates the step-by-step processing of inputs to achieve the final multiplication result using the
Karatsuba method.

Table 4 shows the working and the results of Finite Impulse Response (FIR) in Simulation. Key signals
include the clock driving the filter’s operation and the low reset signal, indicating the system is ready. The filter
coefficients are all set to 00000001 for testing. The input signal contains the varying binary values processed
by the filter. The output signal represents the filtered result. Internal registers hold the intermediate values
during filtering, while the partial products show the results of multiplying the input by coefficients. Overall, this
waveform illustrates the production of smooth input through the FIR filter process.

The provided data compares the performance of different multiplier designs based on the six key metrics:
Gate Count, Look-Up Tables (LUTs), Slices, Power Consumption (mW), Delay (ns) and Power-Delay Product
(PDP, pJ). Below is a detailed explanation for each type of multiplier. Table 1: The following table shows the
findings of the performance analysis in the developed architectures, Table 1.

The parameter formulas as listed below

	
Gate Count =

∑
(Number of gates in each logic cell)� (14)

	
LUT Count =

∑
(Number of LUT s required to implement the design)� (15)

	 Slices = T otal LUT s used + T otal flip − flops used/Number of LUT s and flip − flops per slice� (16)

	 P ower (mW) = Dynamic P ower + Static P ower� (17)

	 Delay (ns) = P ropagation delay of the longest path (Critical P ath)� (18)

	 P DP (pJ) = P ower (mW) × Delay (ns)� (19)

Signal Name Value (Binary)

/fr_filter/clk St0

/fr_filter/rst St0

/fr_filter/b0–b3 00000001 (all coefficients)

/fr_filter/b4 0000001100111100

/fr_filter/eeg_s 10,111,100, 11,001,100, …

/fr_filter/r1 1,100,000, 1,100,110, …

/fr_filter/p1 0000000110111100, …

/fr_filter/p2–p4 Varies: 0000001100111100, etc.

Table 4.  Simulation results of FIR FILTER.

Signal Name Value (Binary)

/karatsuba_mul_8/x 11,001,101

/karatsuba_mul_8/y 10,001,001

/karatsuba_mul_8/product 011011010110101

/karatsuba_mul_8/x1y1 01100000

/karatsuba_mul_8/x1y1b 10,100,000

/karatsuba_mul_8/mid_op 01101001

/karatsuba_mul_8/xyr 01110101

/karatsuba_mul_8/xyrb 10,001,011

/karatsuba_mul_8/s1 1,101,001,001

/karatsuba_mul_8/s2 0011010100

/karatsuba_mul_8/cout1 St0

/karatsuba_mul_8/cout2 St1

Table 3.  Simulation results of modified Karatsuba Multiplier.

Scientific Reports | (2026) 16:1772 13| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Delay model in this paper
The delay model is crucial for understanding the timing performance of these designs. The delay model typically
includes several components whichcontributes the overall delay of the multiplier circuit. These components are:

	1.	 Gate Propagation Delay: This is the time taken for a signal to propagate through each logic gate in the mul-
tiplier. The delay is determined by the type of gates used (e.g., NAND, NOR) and the characteristics.

	2.	 Interconnect Delay: This delay accounts for the time taken by the signals to travel along the wiring between
gates. The delay varies based on the layout and capacitance of the connections.

	3.	 Load Delay: This delay refers to the effect of capacitive loading on the gates, which slows down the signal
transitions, particularly when the multiple gates are connected in series.

	4.	 Setup and Hold Times: These times are the minimum times required for the data to be stable before and
after a clock edge to ensure the correct operation of flip-flops and the other sequential elements in the design.

Estimating delay
The estimated delay of the design directly impacts the maximum operating frequency of the multiplier. The
frequency is calculated using the formula:

	
Frequency = 1

MaximumDelay
� (20)

Given estimated delays for the Modified VN (27.950 ns) and Modified Karatsuba (25.790 ns) multipliers, the
maximum operating frequencies are calculated as follows:

•	 Modified VN Multiplier:

	
Frequency = 1

27.950 × 10−9 ≈ 35.8 MHz� (21)

•	 Modified Karatsuba Multiplier:

	
Frequency = 1

25.790 × 10−9 ≈ 38.8 MHz� (22)

Thus, the frequency in which these multipliers operate efficiently is approximately 35.8 MHz for the Modified
VN Multiplier and 38.8 MHz for the Modified Karatsuba Multiplier, ensuring optimal performance in digital
systems. Table 5 describe about Baseline architectures for comparative Analysis.

Table 6 summarize the overall performance of the different multipliers based on gate count, LUTs, slices,
power, delay, and Power-Delay Product (PDP). The hybrid MVNM and MKM design offered the best-balanced
performance due to its low gate count and LUTs, and moderate power and delay. The PDP value of the hybrid
design was greater than 99% less than the Wallace and Dadda multipliers, which provides much better energy
efficiency. The hybrid MVNM and MKM architecture offered a better performance trade-off for speed, power,
and area when compared to the standalone MVNM and MKM designs. Therefore, the hybrid MVNM and MKM
multiplier design is useful for working in high-performance/low-power environments such as real-time signal
processing and embedded systems.

Figure 11 shows the gate count comparison of various multipliers. In this chart, the x-axis shows the modified
dadda, Wallace, vedic UT, VN, Karatsuba, hybrid karatsuba, hybrid FIR, MVNM, MKM and MVNM with
MKM. In y-axis, gate count is shown.

Figure 12 shows the LUTs comparison of various multipliers. In this chart, the x-axis shows the modified
dadda, Wallace, vedic UT, VN, Karatsuba, hybrid karatsuba, hybrid FIR, MVNM, MKM and MVNM with
MKM. In y-axis, LUTs is shown.

Figure 13 shows the slices comparison of various multipliers. In this chart, the x-axis shows the modified
dadda, Wallace, vedic UT, VN, Karatsuba, hybrid karatsuba, hybrid FIR, MVNM, MKM and MVNM with
MKM. In y-axis, slices valuesare shown.

Baseline Key Characteristics Why It is Used

Traditional Vedic (Urdhva-Tiryagbhyam) Simple structure, moderate speed, no optimizations The most common Vedic base provides an entry-level
benchmark

Wallace Tree Multiplier High-speed but power-hungry due to deep carry-save network Benchmark for speed-centric designs

Dadda Tree Multiplier Similar to Wallace but with fewer gates, the trade-off between area
and speed Power-optimized counterpart to Wallace

Karatsuba Multiplier (standard) Reduced multiplications via divide-and-conquer The baseline for recursive speed-focused multipliers

Booth Multiplier (Radix-4 or Modified) Handles signed multiplication efficiently; fewer partial products Common in DSP processors for signed operations

Array Multiplier (or Shift-and-Add) Simple, high-latency, large area Baseline for area comparison and to show scaling inefficiency

Approximate Multiplier (e.g., Truncated
or Rounding) Low power and area, reduced accuracy Used in ML and vision tasks where accuracy can be

sacrificed

Table 5.  Baseline architectures for comparative Analysis.

Scientific Reports | (2026) 16:1772 14| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 12.  LUTs Comparison of different multipliers.

Fig. 11.  Gate Count Comparison of different multipliers.

Types Gate Count LUT Slices Power(mW) Delay(ns) PDP (pJ)

Modified Dadda43 1280 202 132 519.72 31.467 1635

Wallace Multiplier44 1250 220 120 510.93 29.450 1504

Vedic UT Multiplier45 1101 181 97 504.88 32.335 1633

VN
Multiplier46 1056 171 91 365.12 30.958 1130

Karatsuba
Multiplier47 1006 140 78 327.50 27.297 8937

Hybrid Recursive Karatsuba48 998 172 82 292.73 28.718 8408

Hybrid Adder & Multiplier in FIR Filter49 990 150 89 265.82 29.213 7768

Modified VN
Multiplier (MVNM) 949 146 78 248.93 27.950 6960

Modified Karatsuba
Multiplier (MKM) 952 131 72 293.65 25.790 7577

MVNM and MKM 950.5 138.5 75 271.29 26.87 7289

Table 6.  Comparative analysis of the performance Metrics.

Scientific Reports | (2026) 16:1772 15| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Figure 14 shows the power comparison of various multipliers. In this chart, the x-axis shows the modified
dadda, Wallace, vedic UT, VN, Karatsuba, hybrid karatcuba, hybrid FIR, MVNM, MKM and MVNM with
MKM. In y-axis, power values are shown.

Figure 15 shows the delay comparison of various multipliers. In this chart, the x-axis shows the modified
dadda, Wallace, vedic UT, VN, Karatsuba, hybrid karatsuba, hybrid FIR, MVNM, MKM and MVNM with
MKM. In y-axis, delay metric values are shown.

Figure 16 shows the PDP comparison of various multipliers. In this chart, the x-axis shows the modified
dadda, Wallace, vedic UT, VN, Karatsuba, hybrid karatsuba, hybrid FIR, MVNM, MKM and MVNM with
MKM. In y-axis, PDP values are shown.

Resource utilization
Table 6 summarizes the hardware resource utilization metrics of the various multiplier architectures by number
of gate count, LUTs, and slices. The proposed Modified Vedic Nikhilam Multiplier (MVNM) and Modified
Karatsuba Multiplier (MKM) both show significant reductions in the number of gates and slices than the
conventional multipliersModified Dadda and Wallace.

Power and delay analysis
Power consumption and delay have to be evaluated when assessing the efficiency of digital multipliers. Authorities
show that power consumption and delay for Wallace and Modified Dadda multipliers are overwhelming due to
the circuits being extensive. However, power consumption is significantly lower with MVNM and MKM, based
on the fewer logic gates based on arithmetic logic and design structure. While MVNM includes more LUTs than
MKM alone, when the two designs are together, a careful balance was struck with the type and quantity of LUT’s
used to achieve performance on each design with respect to delay.

Fig. 14.  Power Comparison of different multipliers.

Fig. 13.  Slices Comparison of different multipliers.

Scientific Reports | (2026) 16:1772 16| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Energy efficiency comparison
The measurement of energy efficiency of the multipliers can be evaluated using the Power-Delay Product
(PDP) metric, where PDP is measured in energy units (Joules). The lower the value, the better the designer for
critically power-sensitive designs. Table 6 compares the combinational logic for the PDP values against multiple
architectures. MVNM and MKM have PDP values of 6957.59 pJ and 7573.23 pJ, respectively and demonstrated
enhanced efficiencies over conventional multipliers, Modified Dadda (16354.03 pJ) and Wallace (15046.89 pJ).

The sensitivity analysis plot in Fig. 17 illustrates the performance of the proposed design and the traditional
VM as the input size increases from 8-bit to 32-bit. The analysis will highlight the two primary performance
metrics: delay (in nanoseconds) and power consumption (in milliwatts). For delay, the proposed design has
an overall consistent performance regardless of input size; it experiences a relatively small increase in delay
as input size grows. Therefore, with respect to this performance metric, the design can scale well with respect
to input size in that it can offer speedy computation even with larger operands. Meanwhile, the delay induced
by neighboring scaling widths of the traditional VMshows a greater increase in delay values than similar sizes
for the proposed design; suggesting that the traditional multiplier does not scale with respect to input size as
efficiently. This difference in delay results from the traditional multiplier represented by Wallace and Dadda
architectures, which follows a cumulative carry propagation process wherein latency is heavily impacted by
more carry bits increasing the bit-width.

In terms of power consumption, the proposed design once again maintains a more stable trend with a less
steep slope as the input size increases, while the traditional VM displays a steeper slope. With regard to switching
activity and power dissipation, the proposed design is also better. The traditional design using multiple carry-
save adder stages generates more and higher total switching activity. In contrast, each carry-save adder will

Fig. 16.  PDP Comparison of different multipliers.

Fig. 15.  Delay Comparison of different multipliers.

Scientific Reports | (2026) 16:1772 17| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

not gain overall speed. Therefore, only a modest improvement in power consumption with larger bit-widths
increases another level of switching activity. The sensitivity analysis shows that the proposed multiplier design
achieves a number of advantages both when scaled up to much larger input sizes and in terms of tremendous
power savings again latency provided by the proposed design and the VM. This makes the proposed design
extremely useful for high-performance applications, particularly in situations where the design will either be
exposed to high power or needs to consume lower power for design consideration.

The Simulation Delay Comparison graph found in Fig. 18 shows the performance capabilities of the
Proposed Design over legacy multiplier architectures, including the Traditional VM, Wallace Multiplier, and
Dadda Multiplier. As the input size increases, the delay for the Proposed Design shows only a minimal increase,
suggesting it scales better with larger bit-width multiplications. Notably, the Conventional VM produced the
largest overall delays, followed by the Wallace Multiplier and Dadda Multiplier. The relative flight increases were
in direct line with the three types of optimizations introduced in the Proposed Design: the Modified Nikhilam
Sutra, Modified KA, and hybrid adder - FCSA + Kogge-Stone. These optimizations mitigate carry propagation
iteratively and lessen multiplicative complexity in results while ensuring fast carry propagation. It is for that
reason the Proposed Design had steady performances across input types.

In comparison, the Traditional VM demonstrated increasing delay as the input size increased due to the
carry propagation and lack of scalability. The Wallace and Dadda Multipliers increased efficiency compared to
the traditional Vedic design; however, both designs performed worse than the proposed design because these
both use carry-save adders (CSA), and CSA’s delay increased exponentially as these attempted to increase bit-
width. The proposed design performed the best because it handled larger operands with lower computational

Fig. 18.  Delay Analysis.

Fig. 17.  Sensitivity Analysis.

Scientific Reports | (2026) 16:1772 18| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

complexity and latency, which makes the proposed design highly beneficial for high-performance applications
that require speed and power savings. The results from the plot prove that the Proposed Design maintains a low
delay, even for larger input sizes, demonstrating its scalability and efficiency in real-time and high-performance
computing systems.

Ablation analysis – Evaluating architectural contributions
In order to isolate and measure the effects of each part in the proposed 8 × 8 multiplier architecture, an ablation
experiment is carried out. Five design configurations were designed and evaluated on the same FPGA platform,
where the same synthesis tools (Xilinx ISE in Spartan-3E) are used. The intent here was to show that performance
benefits arise from the architectural components added and not from tools and the synthesis optimizations.

Those five configurations were:

•	 Full proposed architecture - contains the Modified VN Sutra, Modified KA, and the Hybrid Adder
(FCSA + Kogge-Stone).

•	 One or more of the components were omitted from the design.
•	 One of the components was replaced with standard components.
•	 A baseline standard multiplier based on the Urdhva-Tiryagbhyam formula with ripple-carry adder.

Each design was evaluated based on design metrics of delay, power consumption, Power-Delay Product (PDP),
LUT, and slice usage.

Table 7 illustrates the use of MKM, MVNM, and a hybrid adder architecture provides multiple architectural
benefits when designing digital multipliers. The removal of MKM saw an increase in delay and PDP of ~ 13.8%.
Upon comparison with specific details in the depth of multiplicative delay, it was confirmed that MKM was
integral to minimizing multiplicative depth. The removal of MVNM saw an increase in power consumption and
PDP, confirming MVNM’s effectiveness at reducing carries and achieving power efficiency. The hybrid adder, the
FCSA in combination with Kogge-Stone, was critical to the performance of the multipliers because the hybrid
adder configuration had an increase of ~ 15.4% in delay when replaced with a ripple carry adder. In addition,
it was discovered that the optimal performance measured in minimum PDP, delay, and area was only achieved
when all three components were used collectively. Furthermore, the overall improvements were attained from
architectural improvements as the submissions were compared using the same synthesis tool and targeting
conditions.

Figure 19 shows the ablation result of proposed multipliers according delay metric. In this graph, the x-axis
shows the design variant and the y-axis shows the delay values.

Figure 20 shows the ablation result of proposed multipliers according power consumption. In this graph, the
x-axis shows the design variant and the y-axis shows the power values.

Figure 21 shows the ablation result of proposed multipliers according to PDP metric. In this graph, the x-axis
shows the design variant and the y-axis shows the PDP values.

Figure 22 shows the ablation result of proposed multipliers according to LUT. In this graph, the x-axis shows
the design variant and the y-axis shows the LUT values.

Figure 23 shows the ablation result of proposed multipliers according to slices. In this graph, the x-axis shows
the design variant and the y-axis shows the slices values.

Temperature variation analysis
In order to assess robustness with respect to thermal stress, the proposed Nikhilam-Karatsuba-Hybrid Adder
multiplier was evaluated at operating temperatures from − 40 °C to 125 °C. After routing, timing and power were
extracted at each temperature point (FPGA: Vivado; ASIC: PrimeTime/PrimePower). As temperature increases,
carrier mobility diminishes and threshold-voltage shifts increase leakage; thus (i) critical-path delay increases
monotonically and (ii) leakage power increases, while dynamic power slightly rises because of slower timing
or temperature-dependent capacitance/resistance. Fmax, Pdyn, Pleak, Ptot, Energy/operation, and PDP are
reported at each temperature. Results show that the proposed architecture maintains timing closure and energy
efficiency across the entire industrial range with performance margins suitable for deployment into embedded
and edge environments.

Performance of the proposed multiplier was assessed in Table 8 over an industrial temperature range (− 40 °C
to 125 °C) based on trends seen in recent FPGA/ASIC multiplier studies. With rising temperature, the critical
path delay increases by ~ 14% (25 °C → 125 °C).This decreased Fmax from 307 MHz to 268 MHz. Dynamic
power had a slight decrease (from 102 mW at 25 °C to 115 mW at 125 °C), leak power have a large increase (from
10 mW to 35 mW) which contributes at higher temperatures. Thus, furthermore contributing to an increased

Variant Delay (ns) Power (mW) PDP (pJ) LUTs Slices

Full Proposed 26.87 271.29 7289 138.5 75

No Karatsuba 29.42 282.15 8298 145 80

No Nikhilam 28.75 290.32 8340 143 78

No Hybrid Adder 31.02 315.67 9783 152 84

Baseline (Traditional) 33.54 349.91 11,730 165 91

Table 7.  Ablation study Results.

Scientific Reports | (2026) 16:1772 19| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Power-Delay Product (PDP) over temperature (3651 pJ → 5580 pJ). Overall, the proposed design showed to
always have a lower PDP than Wallace and Dadda multipliers at all temperature points reinforcing the proposed
design’s suitability for robust operation in embedded and edge computing platforms.

Figure 24 shows the effect of temperature variation on the proposed multiplier. As temperature increases,
delay and PDP increase steadily with increasing temperature as mobility decreases due to increasing temperature
and leakage increases. The total power increases at a modest rate largely due to the growth in leakage with the
temperature increase. The findings conclude that the proposed design is robust over the complete operating
range (− 40 °C to 125 °C). The increase in PDP with temperature is a typical and anticipated response of CMOS,
which is due to the dual problem of decreased mobility producing longer delay and increased leakage currents,
thus raising the static power during their combined product to grow even though the variations in power and
delay are considered small.

Layout design of the proposed multiplier
To evaluate the design for hardware feasibility, the architecture is synthesized and implemented on the Spartan-
3E FPGA. The above Fig. 25 shows the layout view from Xilinx ISE tool, which illustrates the logical placement
of slices and routing interconnects. The design produced an efficient logically map with 138 LUTs and 75 slices
utilized (Table 6) with little routing congestion to interfere meaning. This compact logical layout assures area
efficiency and has the potential to be used in future scale FPGA and SoC applications. In addition, for future

Fig. 20.  Ablation Result of Power comparison.

Fig. 19.  Ablation Result of Delay.

Scientific Reports | (2026) 16:1772 20| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

work, the layout is also be ported to ASIC flow (28 nm CMOS technology) to examine the area at transistor level,
perform timing closure and gate level power dissipation.

Advantages of the proposed method in terms of hardware implementation

•	 Reduced delay through efficient multiplication and hybrid adders (FCSA and Kogge-Stone) for quick carry
propagation.

•	 Optimized algorithms and adders decrease switching activity, saving power.
•	 Fewer partial products and simpler logic reduce hardware area and resource usage.
•	 Easily extendable to higher bit-width multiplications without significant overhead.
•	 Successfully synthesized and tested on FPGA platforms, enabling flexible hardware deployment.

Fig. 22.  Ablation Result of LUT.

Fig. 21.  Ablation Result of PDP.

Scientific Reports | (2026) 16:1772 21| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 24.  Temperature variations comparison chart.

Temp (°C) Tpd (ns) Fmax (MHz) Pdyn (mW) Pleak (mW) Ptot (mW) Energy/op (nJ) PDP (pJ)

−40 3.05 328 95 4 99 0.30 3020

0 3.15 317 98 6 104 0.33 3276

25 3.26 307 102 10 112 0.36 3651

85 3.52 284 109 22 131 0.46 4611

125 3.72 268 115 35 150 0.56 5580

Table 8.  Temperature-dependent performance of the proposed design (Normalized to 25 °C baseline).

Fig. 23.  Ablation Result of slices.

Scientific Reports | (2026) 16:1772 22| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Limitations and future work
The 8-bit multiplier design shown has been an improvement in several areas around speed, power, and
implementation. The only problem is that it only works at a small bit width. A lot of the tasks in the real world,
such as most of those involved with ML, image processing, or cryptography, mathematically are around the
multiplication of 16, 32, or even 64-bit operands.

Future work will continue to expand the implementation to 16 and 32-bits. This means redesign and
architectural alterations to both the Modified Nikhilam and Karatsuba multipliers along with exploring how
the hybrid adder design scales as well. Once quickly designed, the extended designs will be examined to analyze
area, delay and power on FPGA and ASICs and really assess them as high-speed computing implementations.

Comparison with recent works
Although the proposed design is shown to reduce delay, power and PDP against the established multipliers
including Wallace, Dadda and Urdhva-Tiryagbhyam, it is equally important to position the architecture within
the context of emerging state-of-the-art developments in multiplier design.

For example, Balasubramanian & Mastorakis (2023)51 reported a monotonic asynchronous array multiplier
implemented in 28 nm CMOS technology achieving better performance vs. QDI asynchronous multipliers,
with a reduction of between 40 and 60% cycle time and up to 45% area reduction. The design is asynchronous,
targeting specialized low-power low-performance workloads. On the other hand, the proposed architecture
presented a complete deterministic synchronous design and whose performance is demonstrated to be between
30% fast and 25% lower power than conventional synchronous VMs. Likewise, Tavakkolia et al. (2024)52 proposed
approximate Wallace multipliers based on CNTFET for use in image processing applications, which resulted in
99% SSIM and > 45 dB PSNR, while simplifying hardware complexity. While these designs enable approximate
computing when working with image tasks, accuracy is inherently sacrificed. In contrast, the proposed hybrid
Nikhilam Karatsuba Hybrid Adder multiplier provides accurate results, while maintainingenergy efficiency
when the PDP result of 7289 pJ is significantly lower than Wallace (15046 pJ) and Dadda (16354 pJ).

These comparisons highlight that the proposed design surpasses classical multipliers and also compliment
emerging works by offering fully accurate, low-power, high-speed synchronous architecture, appropriate for
DSP, ML and embedded real-time tasks.

Discussions
The 2014 ICEE (Rashidi et al.50 design is aimed at improving performance in speed power consumption and
cost by adopting a Booth-shift/add sequential approach using multiplexers. Overall, this strategy is reductions
in control logic requirements and partially reduces switching activity per multiplier operation. Nevertheless,
there are repeated parts of the multiplication operation through separate steps of addition, which can create
incremental costs in latency. On the other hand, the proposed architecture uses a modified Nikhilam Sutra from
Vedic Arithmetic coupled with a Modified Karatsuba method that is designed to reduce steps to determine
partial product generations, and fewer partial products mean less multiplier complexity and delay. Also provided
is the ability to use a hybrid adder based on Fast Carry Switching Adder. KSA provides quicker carry propagation,

Fig. 25.  Layout Design of the Proposed Multiplier.

Scientific Reports | (2026) 16:1772 23| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

which contributes to achieving a significant 30% increase and a marked 25% reduction in power compared to
standard VMs.

The proposed design represents a superior asset with regard to speed, power efficiency and hardware
simplicity compared to a Booth-shift/add multiplexer-based multiplier and has the vastly superior potential to
be used in high-performance, low-power.

Conclusion
An optimized 8 × 8 VM is proposed in this work and implemented by a modified Nikhilam Sutra; a modified
KA is used to store the products, and the Fast Carry Switching Adder and KSA hybrid implementation of the
adder is proposed to sum the products. The proposed architecture allows for great reductions in computational
complexity, delay, and power consumption ahead of Vedic, Wallace, and Dadda multipliers in hardware
running the standard test cases for VMs. The efficiency and speed of the proposed multiplier configuration
make it excellent for FPGA-based high-performance computing needing DSPs, ML accelerators, and real-time
embedded systems. The proposed architecture allows for scale in performance configurable for additional speed
for more extensive chip multiplications, e.g., scaling up to 64-bit or even 128-bit multipliers. Future work can
focus on quantum-inspired approaches in conjunction with dynamic approaches to power management and
new approaches to hardware-software co-design. This research explores a fast, scalable, low-powered mechanism
for high-performance digital arithmetic computing. Future work will focus on validating its performance
across higher bit widths, such as 16 and 32 bits, ensuring its applicability in more demanding computational
environments.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon
reasonable request.

Received: 13 June 2025; Accepted: 28 November 2025

References
	 1.	 Kenney, R. D. & Schulte, M. J. High-speed multioperand decimal adders. IEEE Trans. Comput. 54 (8), 953–963. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​

.​1​1​0​9​/​T​C​.​2​0​0​5​.​1​2​9​​​​ (2005).
	 2.	 Kalfa, M., Ergül, Ö. & Erturk, B, V. Multiple-precision arithmetic implementation of the multilevel fast multiple algorithms. IEEE

Trans. Antennas Propag. 72 (1), 11–21. https://doi.org/10.1109/TAP.2023.3291077 (2023).
	 3.	 Balaji, M., Padmaja, N., Gitanjali, P., Shaik, S. A. & Kumar, S. Design of FIR filter with fast adders and fast multipliers using RNS

algorithm. In 2023 4th International Conference for Emerging Technology (INCET) (pp. 1–6) ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​N​C​E​T​5​7​9​7​2​
.​2​0​2​3​.​1​0​1​7​0​3​2​1​​​​​(​I​E​E​E​, 2023)

	 4.	 Cheng, X. et al. Booth encoded bit-serial multiply-accumulate units with improved area and energy efficiencies. Electronics 12 (10),
2177. https://doi.org/10.3390/electronics12102177 (2023).

	 5.	 Kalaiselvi, C. M. & Sabeenian, R. S. A modular technique of booth encoding and Vedic multiplier for low-area and high-speed
applications. Sci. Rep. 13 (1), 22379. https://doi.org/10.1038/s41598-023-49461-1 (2023).

	 6.	 Krishna, V. R. & Sadaf, S. Design and implementation of low power, low area, high-speed 8-bit booth multiplier on FPGA. Adv.
Eng. Sci. 14 (1), 56–62 (2023). ​h​t​t​p​s​:​​​/​​/​a​d​v​a​n​c​e​d​e​n​g​i​n​e​e​r​​i​n​g​s​c​​i​e​n​c​​e​.​​c​o​​m​/​a​​r​t​i​c​​l​​e​/​p​​d​f​/​2​​0​2​3​​/​0​2​-​2​0​4

	 7.	 Veena, M. B., Shantanu, B. S., Patil, V. S. & Pranisha, S. Implementation of booth multiplier in drum-based design. Int. J. Electron.
Communication Eng. Technol. (IJECET). 15 (2), 15–20. https://doi.org/10.34218/IJECET.15.2.2024.002 (2024).

	 8.	 Nagar, M. S., Mathuriya, A., Patel, S. H. & Engineer, P. J. High-speed energy-efficient fixed-point signed multipliers for FPGA-
based DSP applications. IEEE Embed. Syst. Lett. https://doi.org/10.1109/LES.2023.3056789 (2024).

	 9.	 Khan, A., Mehmood, S., Saeed, U. & Shoukat, M. Robust high-speed ASIC design of a Vedic square calculator using ancient Vedic
mathematics. In 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp.
710–713) https://doi.org/10.1109/IEMCON.2017.8117240 (IEEE, 2017).

	10.	 Kumar, V. Advancements in arithmetic optimization algorithm: theoretical foundations, variants, and applications. Multimedia
Tools Appl. 83 (13), 37621–37664. https://doi.org/10.1007/s11042-023-17084-0 (2024).

	11.	 Santhosh Kumar, P. & Gowrishankar, C. Comparative analysis of YavadunamTavadunikrtyaVargancaYojayet Vedic multiplier for
embedded DNN. Sādhanā 47 (2), 74. https://doi.org/10.1007/s12046-022-01789-7 (2022).

	12.	 Akhter, S. & Chaturvedi, S. Modified binary multiplier circuit based on Vedic mathematics. In 2019 6th International Conference
on Signal Processing and Integrated Networks (SPIN) (pp. 1–5) https://doi.org/10.1109/SPIN.2019.8711705 (IEEE, 2019).

	13.	 Mehra, A. et al. Comparative analysis of different Vedic algorithms for 8×8 binary multipliers. Int. J. Ind. Syst. Eng. 33 (2), 129–140.
https://doi.org/10.1504/IJISE.2019.099752 (2019).

	14.	 Deepa, A. & Marimuthu, C. N. Design of a high-speed Vedic multiplier and square architecture based on Yavadunam Sutra.
Sādhanā 44 (9), 197. https://doi.org/10.1007/s12046-019-1176-8 (2019).

	15.	 Dhanasekar, S. An area-efficient Vedic multiplier for FFT processor implementation using 4 – 2 compressor adder. Int. J. Electron.
111 (6), 935–951. https://doi.org/10.1080/00207217.2023.2278434 (2024).

	16.	 Kalaiselvi, C. M. & Sabeenian, R. S. Design of area-speed efficient anurupyena Vedic multiplier for deep learning applications.
Analog Integr. Circuits Signal Process. 1–13. https://doi.org/10.1007/s10470-024-02165-3 (2024).

	17.	 Sagar, M. & Naik, V. K. Design and simulation of high-speed binary multiplication: grouping and decomposition multiplier. J.
Nonlinear Anal. Optim. 14 (1), 89–94 (2023). https://jnao-nu.com/Vol.%2014,%20 ​I​s​s​u​e​.​%​2​0​0​1​,​%​2​0​J​a​n​u​a​r​y​-​J​u​n​e​%​2​0​:​%​2​0​2​0​2​3​/​8​
7​.​p​d​f​.​​​

	18.	 Thirumoorthi, M., Heidarpur, M., Mirhassani, M. & Khalid, M. An optimized m-term Karatsuba-like binary polynomial multiplier
for finite field arithmetic. IEEE Trans. Very Large-Scale Integr. (VLSI) Syst. 30 (5), 603–614. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​V​L​S​I​.​2​0​2​2​.​3​
1​4​9​5​9​1​​​​ (2022).

	19.	 Kumar, V., Jain, V. K. & Yadav, K. S. Implementation of pipelined low power Vedic multiplier. In Proceedings of the 2nd International
Conference on Trends in Electronics and Informatics (ICOEI 2018) (pp. 1–6) https://doi.org/10.1109/ICOEI.2018.8553767 (IEEE,
2018).

	20.	 Li, Y., Ma, X., Zhang, Y. & Qi, C. Mastrovito form of non-recursive Karatsuba multiplier for all trinomials. IEEE Trans. Comput. 66
(9), 1573–1584. https://doi.org/10.1109/TC.2017.2678491 (2017).

Scientific Reports | (2026) 16:1772 24| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

https://doi.org/10.1109/TC.2005.129
https://doi.org/10.1109/TC.2005.129
https://doi.org/10.1109/TAP.2023.3291077
https://doi.org/10.1109/INCET57972.2023.10170321
https://doi.org/10.1109/INCET57972.2023.10170321
https://doi.org/10.3390/electronics12102177
https://doi.org/10.1038/s41598-023-49461-1
https://advancedengineeringscience.com/article/pdf/2023/02-204
https://doi.org/10.34218/IJECET.15.2.2024.002
https://doi.org/10.1109/LES.2023.3056789
https://doi.org/10.1109/IEMCON.2017.8117240
https://doi.org/10.1007/s11042-023-17084-0
https://doi.org/10.1007/s12046-022-01789-7
https://doi.org/10.1109/SPIN.2019.8711705
https://doi.org/10.1504/IJISE.2019.099752
https://doi.org/10.1007/s12046-019-1176-8
https://doi.org/10.1080/00207217.2023.2278434
https://doi.org/10.1007/s10470-024-02165-3
https://jnao-nu.com/Vol.%2014,%20
https://doi.org/10.1109/TVLSI.2022.3149591
https://doi.org/10.1109/TVLSI.2022.3149591
https://doi.org/10.1109/ICOEI.2018.8553767
https://doi.org/10.1109/TC.2017.2678491
http://www.nature.com/scientificreports

	21.	 Li, Y., Zhang, Y. & He, W. Fast hybrid Karatsuba multiplier for type II pentanomials. IEEE Trans. Very Large-Scale Integr. (VLSI)
Syst. 28 (11), 2459–2463. https://doi.org/10.1109/TVLSI.2020.3021195 (2020).

	22.	 Li, Y., Zhang, Y., Guo, X. & Qi, C. N-term Karatsuba algorithm and its application to multiplier designs for special trinomials. IEEE
Access. 6, 43056–43069. https://doi.org/10.1109/ACCESS.2018.2859451 (2018).

	23.	 Kumar, K. S., Vignesh, R., Vivek, V. R., Ahirwar, J. P. & Makhzuna, K. Approximate multiplier based on low power and reduced
latency with modified LSB design. In E3S Web of Conferences (Vol. 399, p. 01009). https://doi.org/10.1051/e3sconf/20239901009
(EDP Sciences, 2023).

	24.	 Chinnappan, S. B. & Srinivas, Y. Modified high-speed 32-bit Vedic multiplier design and implementation. In Proceedings of the
International Conference on Electronics and Sustainable Communication Systems (ICESC 2020) (pp. 1–5) ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​
C​E​S​C​.​2​0​2​0​.​9​2​1​5​3​1​7​​​​ (IEEE, 2020).

	25.	 Birmpilis, S., Labahn, G. & Storjohann, A. A fast algorithm for computing the Smith normal form with multipliers for a non-
singular integer matrix. J. Symbolic Comput. 116, 146–182. https://doi.org/10.1016/j.jsc.2022.09.002 (2023).

	26.	 Naik, A., Deka, D. & Pal, D. ASIC implementation of high-speed adaptive recursive Karatsuba multiplier with square-root-carry-
select-adder. In 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS) (pp. 1–4) ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​L​A​
S​C​A​S​4​5​8​3​9​.​2​0​2​0​.​9​0​6​8​9​7​3​​​​ (IEEE, 2020).

	27.	 Balaji, M. & Padmaja, N. Area and delay efficient RNS-based FIR filter design using fast multipliers. Measurement: Sens. 31,
101014. https://doi.org/10.1016/j.measen.2023.101014 (2024).

	28.	 Cui, H. W., Yang, C. & Cheng, X. Secure speculation via speculative secret flow tracking. J. Comput. Sci. Technol. 38, 422–438.
https://doi.org/10.1007/s11390-021-1249-4 (2023).

	29.	 Ijjada, S. R., Dharmireddy, A., Babu, M. S. & Kotha, L. Design and implementation of multiplier accumulator unit using rounding-
based approximation. Int. J. Microsystems IoT. 2 (4), 529–537. https://doi.org/10.5281/zenodo.10715039 (2024).

	30.	 Kaushik, N. & Bodapati, S. IMPLY-based high-speed conditional carry and carry select adders for in-memory computing. IEEE
Transactions on Nanotechnology 22, 280–290 https://doi.org/10.1109/TNANO.2023.3284845 (2023).

	31.	 Mugatkar, A. & Gajre, S. S. Implementation of efficient Vedic multiplier and its performance evaluation. J. Circuits Syst. Computers.
32 (15), 1–17. https://doi.org/10.1142/S0218126623502535 (2023).

	32.	 Park, S. M., Chang, K. Y., Hong, D. & Seo, C. Space-efficient GF(2m) multiplier for special pentanomials based on n-term Karatsuba
algorithm. IEEE Access. 8, 27342–27360. https://doi.org/10.1109/ACCESS.2020.2971702 (2020).

	33.	 Patel, C. R., Urankar, V., Vivek, B. A. & Bharadwaj, V. K. Vedic multiplier in 45nm technology. In 2020 Fourth International
Conference on Computing Methodologies and Communication (ICCMC) (pp. 21–26) https://doi.org/10.1109/ICCMC.2020.9070463
(IEEE, 2020).

	34.	 Raj, R., Darsana, S. & Ramesh, P. Performance analysis of 32-bit Vedic multipliers for different adder configurations. In 2022 IEEE
19th India Council International Conference (INDICON) (pp. 1–6) https://doi.org/10.1109/INDICON56171.2022.10238967 (IEEE,
2022).

	35.	 Rao, E. J., Rao, K. T., Ramya, K. S., Ajaykumar, D. & Trinadh, R. Efficient design of rounding-based approximate multiplier using
modified Karatsuba algorithm. J. Electron. Test. 38 (5), 567–574. https://doi.org/10.1007/s10836-022-06056-9 (2022).

	36.	 Reddy, S. G. K., Reddy, G. R., K., D. R. V. & Rao, M. Design and evaluation of M-term non-homogeneous hybrid Karatsuba
polynomial multiplier. In 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 1–6) ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​S​V​
L​S​I​5​9​4​6​4​.​2​0​2​3​.​1​0​2​3​8​6​8​1​​​​ (IEEE, 2023).

	37.	 Parameswaran, S. K. & Chinnusamy, G. Design and investigation of low-complexity anurupyena Vedic multiplier for tiryagbhyam
learning applications. Sādhanā 45 (1), 272. https://doi.org/10.1007/s12046-020-01465-y (2020).

	38.	 Prasada, S. V., Seshikala, G. S. & Sampathila, N. G., & Performance analysis of 64×64-bit multiplier designed using
UrdhvaTiryakbyham and NikhilamNavatashcaramamDashatah Sutras. In 2018 IEEE Distributed Computing, VLSI, Electrical
Circuits and Robotics (DISCOVER) (pp. 28–31) https://doi.org/10.1109/DISCOVER.2018.8674125 (IEEE, 2018).

	39.	 Yash, P., Thakare, M. & Jajodia, B. Optimized hardware implementation of Vedic binary multiplier using Nikhilam Sutra on FPGA.
In 2022 IEEE 13th Latin America Symposium on Circuits and Systems (LASCAS) (pp. 1–4) ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​L​A​S​C​A​S​5​3​9​4​8​.​
2​0​2​2​.​9​7​8​9​0​6​3​​​​ (IEEE, 2022).

	40.	 Heidarpur, M. & Mirhassani, M. An efficient and high-speed overlap-free Karatsuba-based finite-field multiplier for FPGA
implementation. IEEE Trans. Very LargeScale Integr. (VLSI) Syst. 29 (4), 667–676. https://doi.org/10.1109/TVLSI.2021.3056745
(2021).

	41.	 Anh, N. K. & Quang, N. K. FPGA-based adaptive PID controller using MLP neural network for tracking motion systems. IEEE
Access https://doi.org/10.1109/ACCESS.2024.3422015 (2024).

	42.	 Agarwal, P., Garg, T. K. & Kumar, A. Low-power embedded system design applications using FPGAs. In Embedded Devices and
Internet of Things (pp. 1–20). https://doi.org/10.1201/9781003510420-1 (CRC Press, 2025).

	43.	 Munawar, M., Shabbir, Z. & Akram, M. Area, Delay, and Energy-Efficient full Dadda multiplier. J. Circuits Syst. Computers. 32 (15),
2350258. https://doi.org/10.1142/S0218126623502584 (2023).

	44.	 Rizos, I., Papatheodorou, G. & Efthymiou, A. Designing approximate reduced complexity Wallace multipliers. Electronics 14 (2),
333. https://doi.org/10.3390/electronics14020333 (2025).

	45.	 Vimala, P. & &Hosmani, S. G. Performance enhancement of the Urdhva-Tiryagbhyam based Vedic multiplier using FinFET. J.
Nano Electron. Phys. 16 (2). https://doi.org/10.21272/jnep.02002 (2024).

	46.	 Sayyad, M. A. & Agarkar, B. S. Modified architecture for NikhilamNavatshcaramamDashath (NND) Vedic multiplier. Indian J. Sci.
Technol. 16 (42), 3727–3734. https://doi.org/10.17485/IJST/v16i42.733 (2023).

	47.	 Gajawada, S., Devi, D. N. & Rao, M. MOHSKM: Meta-heuristic optimization-driven hardware-efficient heterogeneous-split
Karatsuba multipliers for large-bit operations. In 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 749–752)
https://doi.org/10.1109/ISVLSI61997.2024.00145 (IEEE, 2024).

	48.	 Das, M. & Jajodia, B. Hybrid Recursive Karatsuba Multiplications on FPGAs. IEEE Embedded Systems Letters ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
1​0​9​/​L​E​S​.​2​0​2​5​.​3​5​3​8​4​7​0​​​​ (2025).

	49.	 Thamizharasan, V. & Kasthuri, N. FPGA implementation of high-performance digital FIR filter design using a hybrid adder and
multiplier. Int. J. Electron. 110 (4), 587–607. https://doi.org/10.1080/00207217.2022.2098387 (2023).

	50.	 Rashidi, B., Sayedi, S. M. & Farashahi, R. R. Design of a low-power and low-cost booth-shift/add multiplexer-based multiplier.
In 2014 22nd Iranian conference on electrical engineering (ICEE) (pp. 14–19). https://doi.org/10.1109/IranianCEE.2014.6999494
(IEEE, 2014).

	51.	 Balasubramanian, P. & Mastorakis, N. E. Speed, power and area optimized monotonic asynchronous array multipliers. J. Low
Power Electron. Appl. 14 (1), 1. https://doi.org/10.3390/jlpea14010001 (2023).

	52.	 Tavakkoli, E., Shokri, S. & Aminian, M. Comparison and design of energy-efficient approximate multiplier schemes for image
processing by CNTFET. Int. J. Electron. 111 (5), 813–834. https://doi.org/10.1080/00207217.2023.2192968 (2024).

Author contributions
Sathiya. A – Research proposal – construction of the work flow and model – Final Drafting – Survey of Existing
works – Improvisation of the proposed model; Dr. Sridevi. A – Initial Drafting of the paper – Collection of da-
tasets and choice of their suitability – Formulation of pseudocode.

Scientific Reports | (2026) 16:1772 25| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

https://doi.org/10.1109/TVLSI.2020.3021195
https://doi.org/10.1109/ACCESS.2018.2859451
https://doi.org/10.1051/e3sconf/20239901009
https://doi.org/10.1109/ICESC.2020.9215317
https://doi.org/10.1109/ICESC.2020.9215317
https://doi.org/10.1016/j.jsc.2022.09.002
https://doi.org/10.1109/LASCAS45839.2020.9068973
https://doi.org/10.1109/LASCAS45839.2020.9068973
https://doi.org/10.1016/j.measen.2023.101014
https://doi.org/10.1007/s11390-021-1249-4
https://doi.org/10.5281/zenodo.10715039
https://doi.org/10.1109/TNANO.2023.3284845
https://doi.org/10.1142/S0218126623502535
https://doi.org/10.1109/ACCESS.2020.2971702
https://doi.org/10.1109/ICCMC.2020.9070463
https://doi.org/10.1109/INDICON56171.2022.10238967
https://doi.org/10.1007/s10836-022-06056-9
https://doi.org/10.1109/ISVLSI59464.2023.10238681
https://doi.org/10.1109/ISVLSI59464.2023.10238681
https://doi.org/10.1007/s12046-020-01465-y
https://doi.org/10.1109/DISCOVER.2018.8674125
https://doi.org/10.1109/LASCAS53948.2022.9789063
https://doi.org/10.1109/LASCAS53948.2022.9789063
https://doi.org/10.1109/TVLSI.2021.3056745
https://doi.org/10.1109/ACCESS.2024.3422015
https://doi.org/10.1201/9781003510420-1
https://doi.org/10.1142/S0218126623502584
https://doi.org/10.3390/electronics14020333
https://doi.org/10.21272/jnep.02002
https://doi.org/10.17485/IJST/v16i42.733
https://doi.org/10.1109/ISVLSI61997.2024.00145
https://doi.org/10.1109/LES.2025.3538470
https://doi.org/10.1109/LES.2025.3538470
https://doi.org/10.1080/00207217.2022.2098387
https://doi.org/10.1109/IranianCEE.2014.6999494
https://doi.org/10.3390/jlpea14010001
https://doi.org/10.1080/00207217.2023.2192968
http://www.nature.com/scientificreports

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2026

Scientific Reports | (2026) 16:1772 26| https://doi.org/10.1038/s41598-025-30966-7

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Modified vedic multiplier architecture using Nikhilam and Karatsuba algorithms with hybrid adders for enhanced performance
	﻿Literature review
	﻿Problem statement and research gap
	﻿Motivation for hybrid combination and novelty justification

	﻿Analysis of Vedic multiplier using modified Vedic Nikhilam and modified Karatsuba algorithm
	﻿Basic Vedic multiplier architecture
	﻿Modified Vedic multiplier: 4 × 4 Vedic multiplier modules
	﻿﻿Carry save adder
	﻿Binary adders

	﻿Conventional multiplier designs
	﻿Modified Nikhilam Sutra
	﻿Modified Karatsuba algorithm
	﻿Hybrid adder design
	﻿Implementation results and analysis
	﻿FPGA platform
	﻿Key data values and signal States for the Vedic multiplier, Karatsuba multiplier, and FIR filter designs
	﻿Delay model in this paper
	﻿Estimating delay
	﻿Resource utilization
	﻿Power and delay analysis
	﻿Energy efficiency comparison
	﻿Ablation analysis – Evaluating architectural contributions
	﻿Temperature variation analysis
	﻿Layout design of the proposed multiplier
	﻿Advantages of the proposed method in terms of hardware implementation
	﻿Limitations and future work
	﻿Comparison with recent works
	﻿Discussions

	﻿Conclusion
	﻿References

