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Intracerebral hemorrhage (ICH) is the deadliest form of stroke and is associated with high disability 
rates. Accurate segmentation and quantitative analysis are critical for effective patient management, 
yet current 3D ICH segmentation methods often require extensive manual annotations and 2D 
methods fail to capture inter-slice relationships. Currently, prompt-based ICH segmentation methods 
have only one-time interaction and lack feedback functions. We propose ICH-HPINet, a novel hybrid 
propagation interaction network for intelligent and interactive segmentation of ICH regions in 3D 
images to address these challenges. The model reduces annotation needs while maintaining or 
improving segmentation performance. ICH-HPINet consists of four key components: the Volume 
Interaction Module, the Slice Interaction Module, the Feature Convert Module, and the Multi-
Propagation Feature Fusion Module, enabling hybrid propagation and intelligent interaction. We 
validated ICH-HPINet on both a private dataset and the Physionet dataset, demonstrating superior 
performance compared to existing state-of-the-art methods with fewer prompts.

Intracerebral hemorrhage (ICH) is a leading cause of stroke-related deaths worldwide, responsible for nearly 
10%−20% of all fatalities linked to strokes1. The devastating impact of this disease stems from its sudden onset 
and rapid hematoma enlargement, which often leads to irreversible neurological damage within hours. Due to its 
acute onset and rapid progression, timely diagnosis and treatment are essential for patient survival2–4. Accurate 
ICH segmentation is crucial for proper diagnosis and the creation of personalized treatment plans, making it a 
key aspect of clinical practice5.

Non-contrast CT (NCCT) is routinely used in emergency stroke imaging to assess the severity of ICH6. 
However, compared to magnetic resonance imaging (MRI), the visualization of ICH in NCCT exhibits significant 
limitations: insufficient tissue contrast and suboptimal signal-to-noise ratio. These technical deficiencies directly 
contribute to the challenges in boundary delineation and low-contrast interpretation of ICH lesions, particularly 
on CT images7. Specifically, the boundary between hemorrhagic regions and healthy brain tissue is often difficult 
to discern due to variations in blood density and partial volume effects, especially in cases of small hematomas 
or diffuse bleeding patterns where hemorrhage blends subtly with surrounding tissues. This process is labor-
intensive and highly subjective, even for experienced clinicians, and is further affected by factors such as image 
quality, resolution, and noise6.

In response to these challenges, intelligent technologies, particularly deep learning methods, offer significant 
potential for the automated and accurate segmentation of ICH regions, greatly reducing the time and effort 
required by clinicians, while providing precise diagnostic information, ultimately improving treatment and 
patient outcomes8. For example, AI-driven segmentation achieves submillimeter precision in measuring 
hematoma volume, a critical determinant of surgical intervention thresholds9. In addition, these automated 
models can continuously improve through ongoing training and optimization, advancing clinical imaging 
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analysis by adapting to new data and evolving medical knowledge. Recently, some segmentation methods utilize 
convolutional and multilayer perceptron techniques10,11. Among these architectures, SLEX-Net12 specifically 
targets ICH segmentation by aggregating cross-slice contextual information based on hematoma expansion. 
The integration of structural and relational information has also proven beneficial in other medical imaging 
domains, such as leveraging anatomical graphs for osteoarthritis prediction13. However, these methods often 
produce suboptimal results unless human intervention is applied to make corrections. To address this, interactive 
segmentation models with human-in-the-loop mechanisms become essential for overcoming these limitations 
while maintaining clinical interpretability.

Recent advancements in SAM-based segmentation models14 have shown remarkable success in natural 
image processing15,16, but they face significant challenges in medical imaging, particularly for ICH segmentation. 
For example, SAMed17 offers lightweight deployment via parameter freezing strategies and reduced training 
costs, but its limited parameter adjustments are insufficient for full adaptation to medical datasets. Fine-tuned 
variants, such as SAM-Med2D18, MedSAM19, SAM2-UNet16, and SAMIHS20 improve segmentation accuracy, 
yet they primarily focus on 2D slices, overlooking the critical 3D volumetric context necessary for assessing 
hematoma spatial progression in sagittal/coronal planes and requiring extensive manual annotations. This 
necessitates physician intervention for prompt annotation on each image, creating impractical workloads for 
large-scale clinical applications and hindering automated medical processing. Conversely, MedSAM221 achieves 
strong performance with 3D medical images through prompt-guided segmentation, though its effectiveness for 
ICH segmentation remains inconsistent across different datasets. Recently, Sun et al22. proposed an interactive 
clustering-based segmentation method that delivers excellent results with fewer prompts. However, this approach 
does not offer user feedback on the model’s output to improve segmentation accuracy.

This paper proposes a novel ICH segmentation method that integrates both slice-based and volumetric 
techniques to facilitate multiple user-system interactions and reduce the need for annotation. The main 
contributions are threefold: (1) A hybrid propagation approach that merges volume and slice propagation is 
presented. Volume propagation captures three-dimensional features and spatial relationships, while slice 
propagation ensures detailed segmentation. By annotating a few slices, the entire volume can be segmented 
through inter-slice propagation. (2) A framework is proposed that supports iterative user interaction, enabling 
clinicians to refine outputs for more personalized results. (3) Extensive experiments conducted on both private 
and public datasets demonstrate significant performance improvements over existing methods.

Methods
Ethical approval
This study was conducted in accordance with the guidelines outlined in the Declaration of Helsinki and all 
the study procedures received approval from the Medical Ethics Committee at the Third Affiliated Hospital of 
Wenzhou Medical University (approval No. YJ2025001). All individuals involved in the experiment were fully 
informed of the study procedures and provided written informed consent.

Datasets
Private Dataset. The first dataset is a private dataset from a partnering hospital comprising 286 cases. Each 
case includes an original volumetric CT image along with corresponding masks of ICH regions. After window 
thresholding and normalization, we put these volume data into use. While the number of slices varies across 
cases, all slices maintain a consistent resolution of 512×512 pixels, ensuring uniformity in processing and 
analysis.

Physionet Dataset23. The second dataset is a public dataset with 75 cases. To ensure a meaningful analysis, 
only cases with three or more slices containing hemorrhage regions are selected. We utilize the provided 
preprocessing method to standardize the data. For the segmentation task, the dataset includes original CT 
images along with corresponding segmentation masks. Additionally, each slice of the volumetric data has a 
uniform resolution of 512×512 pixels.

Implementation Details. During training, scribbles are simulated from the ground truth masks. For each 
slice containing hemorrhage, we randomly sample 3–7 foreground pixels within the hemorrhage region and an 
equal number of background pixels in the surrounding tissue. These are encoded as two-channel binary maps: 
one for positive (hemorrhage) prompts and one for negative (background) prompts. The spatial distribution of 
these points is random within their respective regions. The model is configured with 500 epochs, a learning rate 
of 1 × 10−5, a weight decay of 1 × 10−7 to mitigate overfitting, and Adam optimizer. The setup includes CUDA 
version 11.8, PyTorch version 2.5.0, and an NVIDIA 3090Ti GPU. Scribbles are generated for slices in each 
dataset. To ensure generalization, Sr  and Sk  are randomly selected from the volume, allowing any slice’s mask to 
be predicted based on a starting slice. During evaluation, scribbles are generated for a certain slice, and the entire 
volume is iterated for volume-level segmentation. Comparative experiments with other state-of-the-art methods 
and ablation studies are conducted to analyze the effectiveness of the two segmentation strategies. Additionally, 
visualizations of sample results and performance variations with the number of interactions are provided to 
illustrate the final predictions and the impact of intelligent interactions. All experiments are performed through 
five-fold cross-validation.

ICH-HPINet architecture
The hybrid propagation in ICH-HPINet is designed as a primarily unidirectional flow from the Volume 
Interaction Module (VIM) to the Slice Interaction Module (SIM), with a closed-loop feedback mechanism 
through the memory module. Specifically, 3D contextual features from the VIM guide the 2D slice refinement in 
the SIM, while the segmentation results from both branches are stored in memory and used as prior knowledge 
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in subsequent iterations, creating an implicit feedback cycle that enhances temporal consistency across the 
volume.

For a given volumetric dataset, the input undergoes two complementary processes: volume propagation and 
slice propagation. During slice propagation, a specific slice is selected, and the system automatically generates 
annotation prompts during training to produce the slice segmentation result. As shown in Fig.1, our proposed 
method consists of four core components: the VIM, the SIM, the Feature Conversion Module (FCM), and 
the Multi-Propagation Feature Fusion Module (MPFFM). The VIM generates the volume segmentation mask 
and extracts feature maps for the entire input volume. The SIM computes the segmentation mask (Mr) for the 
current slice while retrieving the reference slice (Sk) and the current slice (Sr) from the memory module. These 
slices are then processed by the MPFFM. The FCM maps the volumetric feature maps into a 2D representation 
corresponding to Sk , which is used during slice propagation. These mapped features are further processed 
through convolution to generate the feature output (Fk), which is then fed into the MPFFM. Finally, the MPFFM 
facilitates the interaction and information exchange between slices. It computes the refined segmentation mask 
(Mk) for the reference slice.

Volume interaction module
The VIM, based on the ResidualUNet3d architecture24, is designed to process volumetric data for 
segmentation. Its input consists of the volumetric data (VD), user hints (H), and the prediction mask from 
the previous iteration (PM), expressed as {VD, H, PM}. Here, VD ∈ R1×Z×H×W , H ∈ R2×Z×H×W , and 
PM ∈ R1×Z×H×W . Within the VIM, the encoding and decoding structures are defined as {E1, E2, E3, . . .} 
and {Dn, Dn−1, . . . , D3, D2, D1}, respectively. Each encoding layer receives its input (Ein

i ) from the output 
of its preceding layer (Eout

i−1). Similarly, each decoding layer’s input (Din
i ) is constructed by concatenating the 

output of the next decoding layer (Dout
i+1) with the corresponding encoding layer’s output (Eout

i ). The final 
output of the decoding process is the volume segmentation mask (VM = Dout

1 ) and the 3D volume feature map 
(Feature Map = {Dout

1 , Dout
2 , Dout

3 }).

Fig. 1.  Overall framework of the proposed ICH-HPINet. It consists of the Volume Interaction Module, the 
Slice Interaction Module, the Feature Convert Module, and the Multi-Propagation Feature Fusion Module.
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The VM serves a role exclusively during training, adjusting the module’s parameters to refine the segmentation 
process. Meanwhile, the Feature Map integrates multi-scale volumetric information, enhancing the accuracy 
and robustness of the segmentation process by providing critical features for subsequent stages. After each 
interaction round, the VM is updated in memory and used as input for the next iteration. During the first 
interaction round, the PM is initialized as a zero map of the same dimensions as VD, ensuring a consistent 
starting point for the iterative process.

Slice interaction module
The SIM leverages the Deeplabv3 framework25 for its operations. The input for this module includes slice 
data (VDr), user-specified prompts for the slice (Hr), and the prediction mask from the previous interaction 
(PMr), expressed as {VDr, Hr, PMr}. Here, r indicates the specific slice’s index within the volume data, 
where VDr ∈ R1×H×W , Hr ∈ R2×H×W , and PMr ∈ R1×H×W . The module’s output is the Mr , where 
Mr ∈ R1×H×W . Upon completing each interaction round, the PMr  is updated in memory, providing input for 
subsequent interactions. In the initial interaction round, PMr  starts as a zero map of the same dimensions as 
VDr , establishing a baseline for the segmentation process.

Feature convert module
The FCM adopts a dictionary-based approach to extract relevant features for slice segmentation. Before this 
module, the index of the slice mask to be predicted by the SIM is identified. Based on this index, the FCM selects 
and processes the corresponding 2D slice features from each part of the Feature Map generated by the VIM. 
The extracted features are compiled into a dictionary as follows:

	 Fk = {Conv1(Dout
1 [k]), Conv2(Dout

2 [k]), Conv3(Dout
3 [k])},� (1)

where Conv represents the convolution operation.
To mitigate potential information loss during the 3D-to-2D feature projection, we employ multi-scale feature 

preservation and skip connections. Specifically, the FCM processes features from three different scales of the 
VIM encoder (Dout

1 , Dout
2 , Dout

3 ) and applies dedicated convolutional layers to adapt each scale to the 2D slice 
domain. This approach preserves both high-resolution spatial details and rich semantic context from the 3D 
volume. Quantitative analysis shows that this multi-scale projection retains 92% of the original 3D feature 
discriminability measured by class separation metrics.

Multi-propagation feature fusion module
The MPFFM processes the inputs {Sk, Sr, Mr, Fk} to predict the segmentation mask. Inspired by STCN26, the 
internal structure of the MPFFM is designed to apply attention mechanisms for effective feature propagation 
between slices.

Both Sk  and Sr  are passed through a shared Query Encoder, generating multi-scale features {f1k, f2k, f3k, Kk, Vk} 
for Sk  and {f1r, f2r, f3r, Kr, V′

r} for Sr . Simultaneously, the mask Mr  is processed by the Memory Encoder, using 
Sr  and its high-level feature f3r , to compute the value representation Vr :

	 Vr = Memory Encoder(Sr, Mr, f3r).� (2)

Next, the module computes the affinity between the key features of the two slices (Kk  and Kr) using the 
following formula:

	 Ã = Compute Affinity(Kk, Kr) = −K2
r + 2 · KT

r × Kk − K2
k.� (3)

The raw affinity matrix Ã is then normalized using a scaled softmax operation:

	
A = Softmax

(
Ã√
d

)
,� (4)

where d represents the feature dimension of the key representations. This normalization stabilizes training by 
controlling the variance of attention weights.

Tensor dimensions in MPFFM are specified as follows: Kk, Kr ∈ RC×HW  where C = 256 is the 
channel dimension and HW  is the flattened spatial dimension; Vk, Vr ∈ RC×HW ; and the affinity matrix 
A ∈ RHW ×HW  encodes the similarity between all spatial locations in the two slices.

The affinity acts as a measure of similarity, allowing information to be transferred from Sr  to Sk . Finally, the 
predicted mask for Sk  is generated by the Mask Decoder, which integrates the multi-scale features from Fk , Vk , 
Vr  and A along with the intermediate features f1k  and f2k :

	 Mk = Mask Decoder(Fk, Concat(Vr × A, Vk), f1k, f2k).� (5)

Interactive mechanism and scribble processing
The interactive segmentation process in ICH-HPINet is designed to refine the results through iterative human 
feedback. The detailed process of how user scribbles are integrated is outlined below and in the accompanying 
pseudocode. Scribble Generation and Encoding:
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•	 Source: During training, scribbles are computationally simulated from the ground truth segmentation masks 
to emulate user corrections. This allows for large-scale training without extensive manual annotation.

•	 Density and Distribution: For a given slice, a random number of points (3–7) are sampled from both the 
foreground and background regions. The points are randomly distributed within these regions.

•	 Channels: The scribbles are encoded into a two-channel binary map H. Channel 0 contains the foreground 
scribbles, and Channel 1 contains the background scribbles.Iterative Refinement Process: The model im-
proves its segmentation over multiple interaction rounds. In each round, the user provides new scribbles on 
the current imperfect output. The model then takes the original image, the new scribbles, and the prediction 
from the previous round to produce a refined segmentation. This loop continues until a satisfactory result is 
achieved.

Algorithm 1.  Interactive Segmentation with Scribble Input

Loss function
Our loss function is designed to address both slice and volume segmentation tasks using three distinct sub-losses: 
Volume Segment Loss (VSL), Slice Segment Loss (SSL), and Feature Convert Loss (FCL). Each incorporates Dice 
Loss (Ldice) and pixel-level Cross-Entropy Loss (Lce). The formula for any sub-loss is: L = αLdice + βLce, 
where both α and β are experimentally set to 0.5.

The inputs for calculating these sub-losses vary. For VSL, the loss is computed between the VM and the true 
volume labels. In SSL, the loss is determined both between Mr  and Sr  and between Mk  and Sk . Lastly, for FCL, 
the loss is the aggregate of losses for each element of the Fk  relative to Mk . Overall, the total loss (Ltotal) is:

	 Ltotal = λ1LVSL + λ2LSSL + λ3LFCL,� (6)

where λ1, λ2, and λ3 are set to 5, 1, and 4, respectively.
The sensitivity analysis of loss weights reveals important insights: (1) The volume segmentation loss (λ1) 

requires higher weighting as it provides crucial 3D contextual constraints; (2) Increasing the slice segmentation 
loss (λ2) beyond 1 consistently degrades performance, suggesting that over-emphasizing 2D optimization 
disrupts the 3D structural consistency; (3) The feature conversion loss (λ3) exhibits an optimum at 4, indicating 
its importance in aligning 3D and 2D feature representations. This balanced configuration ensures that global 
volume context guides local slice refinement while maintaining feature-level consistency.

Results
Comparative experiments
We initially evaluated our model against several state-of-the-art models, including SAMed17, SAM-Med2D18, 
SAM2-UNet16, SAMIHS20, MedSAM19, and MedSAM221. To ensure a fair comparison, we used the default 
parameters from the open-source code of each competing method, aligning data volume with the number of 
training cycles. Our evaluation metrics included Dice, Jaccard, Hausdorff Distance (HD), and Mean Absolute 
Error (MAE). All results are reported as mean ± standard deviation over five-fold cross-validation. Statistical 
significance was assessed using paired t-tests with Bonferroni correction, where p-values < 0.01 were considered 
statistically significant. As shown in Table 1, our method outperformed all other models across each metric. On 
the private dataset, our method achieves Dice, Jaccard, HD, and MAE scores of 0.7797, 0.6532, 3.59, and 0.0035, 
respectively, representing improvements of at least 0.1116, 0.1028, 0.03, and 0.0007 over other methods. On 
the Physionet dataset, it achieves scores of 0.7467, 0.6094, 2.96, and 0.0022, respectively, with improvements of 
0.0489, 0.0107, 0.66, and 0.0013. Notably, this superior performance was achieved even with fewer annotations.
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Ablation study
To assess the effectiveness of the hybrid propagation segmentation strategy in ICH-HPINet, we conducted 
ablation experiments by training the model using only Volume Propagation (referred to as Volume-Pro) or only 
Slice Propagation (referred to as Slice-Pro). We further evaluated the contribution of the memory mechanism by 
comparing with a variant that clears memory between slices. The results, presented in Table 2, demonstrate that 
the hybrid propagation approach significantly outperforms both individual propagation methods. Specifically, 
the hybrid strategy improved Dice, Jaccard, HD, and MAE scores by at least 0.1243, 0.1277, 0.73, and 0.00143 
on the private dataset, and 0.1116, 0.0942, 1.33, and 0.01255 on the Physionet dataset, respectively. The memory 
mechanism contributes significantly to performance, improving Dice scores by 6.4% and 8.7% on the private 
and Physionet datasets, respectively. This confirms that maintaining inter-slice continuity through memory 
persistence is essential for consistent 3D segmentation. These results highlight the substantial contribution of 
the hybrid propagation approach to the model’s overall performance, underscoring its effectiveness in enhancing 
segmentation outcomes.

Analysis of hybrid propagation mechanism
To quantitatively validate the proposed hybrid propagation mechanism, we conducted additional experiments 
beyond the basic ablation studies in Table 2.

First, we analyzed feature exchange between modules by computing the cosine similarity between feature 
maps from VIM and SIM at corresponding spatial levels. The average similarity increased from 0.58 ± 0.07 in 
early training to 0.82 ± 0.04 in final training, indicating effective feature alignment and propagation between the 
two branches.

Second, we visualized cross-slice attention maps from the MPFFM module. As shown in Figure 3, the 
attention mechanism successfully identifies and emphasizes anatomically consistent regions across adjacent 
slices, demonstrating the model’s ability to leverage 3D contextual information for slice-level refinement.

Method

Private Dataset Physionet Dataset

Dice↑ Jaccard↑ HD↓ MAE↓ Dice↑ Jaccard↑ HD↓ MAE↓

Volume-Pro
0.6554 0.5255 5.96 0.0050 0.6351 0.5152 4.29 0.0180

 ± 0.026  ± 0.023  ± 0.51  ± 0.0006  ± 0.029  ± 0.025  ± 0.46  ± 0.0021

Slice-Pro
0.6468 0.5202 4.26 0.0054 0.4587 0.3728 5.45 0.0148

 ± 0.027  ± 0.024  ± 0.39  ± 0.0006  ± 0.035  ± 0.030  ± 0.58  ± 0.0018

w/o Memory
0.7152 0.5896 4.12 0.0046 0.6598 0.5381 4.85 0.0052

 ± 0.024  ± 0.021  ± 0.37  ± 0.0005  ± 0.028  ± 0.024  ± 0.49  ± 0.0006

ICH-HPINet (Ours)
0.7797 0.6532 3.59 0.0035 0.7467 0.6094 2.96 0.0022

 ± 0.021  ± 0.018  ± 0.32  ± 0.0004  ± 0.024  ± 0.021  ± 0.28  ± 0.0003

Table 2.  Ablation experiment on propagation strategies and memory mechanism. Results are presented as 
mean ± standard deviation from five-fold cross-validation. The best and second-best results are bolded and 
underlined, respectively.

 

Method

Private Dataset Physionet Dataset

Dice↑ Jaccard↑ HD↓ MAE↓ Dice↑ Jaccard↑ HD↓ MAE↓

SAMed
0.5308 0.4177 4.06 0.0064 0.4146 0.3406 5.17 0.0145

 ± 0.034  ± 0.029  ± 0.45  ± 0.0008  ± 0.041  ± 0.035  ± 0.62  ± 0.0021

SAM-Med2D
0.6276 0.5018 4.21 0.0083 0.6495 0.5280 4.04 0.0059

 ± 0.028  ± 0.025  ± 0.38  ± 0.0009  ± 0.031  ± 0.028  ± 0.42  ± 0.0007

SAM2-UNet
0.5557 0.4469 3.62 0.0063 0.4363 0.3439 3.95 0.0036

 ± 0.031  ± 0.027  ± 0.35  ± 0.0007  ± 0.038  ± 0.032  ± 0.41  ± 0.0005

SAMIHS
0.6681 0.5504 3.63 0.0042 0.5819 0.4546 3.62 0.0035

 ± 0.026  ± 0.023  ± 0.36  ± 0.0005  ± 0.033  ± 0.029  ± 0.39  ± 0.0004

MedSAM
0.5932 0.4650 4.26 0.0065 0.5292 0.3978 5.06 0.0185

 ± 0.030  ± 0.026  ± 0.43  ± 0.0008  ± 0.036  ± 0.031  ± 0.55  ± 0.0023

MedSAM2
0.5044 0.3953 4.07 0.0069 0.6978 0.5987 4.00 0.0055

 ± 0.035  ± 0.030  ± 0.44  ± 0.0009  ± 0.027  ± 0.024  ± 0.41  ± 0.0007

ICH-HPINet (Ours)
0.7797 0.6532 3.59 0.0035 0.7467 0.6094 2.96 0.0022

 ± 0.021  ± 0.018  ± 0.32  ± 0.0004  ± 0.024  ± 0.021  ± 0.28  ± 0.0003

Table 1.  Quantitative comparison with other methods on the private and public datasets. Results are presented 
as mean ± standard deviation from five-fold cross-validation. The best results are in bold.
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Third, we performed a fine-grained ablation of the MPFFM components. Removing the affinity computation 
decreased Dice by 6.7%, while disabling the feature fusion reduced performance by 8.9%, confirming that both 
cross-slice attention and feature integration are crucial for the hybrid propagation.

Experimental analyses of loss function weighting, detailed in Table 3 and Table 4, demonstrate that optimal 
medical image segmentation performance requires precise calibration of loss components. As shown in Table3, 
peak performance occurs when Cross Entropy loss and Dice loss are equally weighted at a 1.0:1.0 ratio. This 
balanced configuration achieves Dice scores of 0.7797, Jaccard indices of 0.6532, HD of 3.59, and MAE of 0.0035 

λ1 λ2 λ3

Private Dataset Physionet Dataset

Dice↑ Jaccard↑ HD↓ MAE↓ Dice↑ Jaccard↑ HD↓ MAE↓

1 1 8
0.7124 0.5812 3.82 0.0041 0.6464 0.5046 4.52 0.0047

 ± 0.025  ± 0.022  ± 0.36  ± 0.0005  ± 0.031  ± 0.027  ± 0.48  ± 0.0006

1 3 6
0.7236 0.5927 3.75 0.0040 0.6328 0.4915 4.35 0.0045

 ± 0.024  ± 0.021  ± 0.35  ± 0.0005  ± 0.032  ± 0.028  ± 0.46  ± 0.0006

1 5 4
0.7358 0.6039 3.71 0.0038 0.6043 0.4692 4.77 0.0049

 ± 0.023  ± 0.020  ± 0.34  ± 0.0005  ± 0.034  ± 0.030  ± 0.51  ± 0.0006

1 7 2
0.7283 0.5974 3.78 0.0039 0.6096 0.4672 4.79 0.0071

 ± 0.024  ± 0.021  ± 0.35  ± 0.0005  ± 0.033  ± 0.029  ± 0.52  ± 0.0009

3 1 6
0.7512 0.6245 3.65 0.0037 0.6983 0.5487 3.42 0.0035

 ± 0.022  ± 0.019  ± 0.33  ± 0.0004  ± 0.028  ± 0.024  ± 0.35  ± 0.0004

3 3 4
0.7624 0.6389 3.62 0.0036 0.7126 0.5724 3.28 0.0031

 ± 0.021  ± 0.018  ± 0.33  ± 0.0004  ± 0.027  ± 0.023  ± 0.33  ± 0.0004

3 5 2
0.7478 0.6213 3.67 0.0038 0.6842 0.5319 3.54 0.0038

 ± 0.022  ± 0.019  ± 0.34  ± 0.0005  ± 0.029  ± 0.025  ± 0.37  ± 0.0005

5 1 4
0.7797 0.6532 3.59 0.0035 0.7467 0.6094 2.96 0.0022

 ± 0.021  ± 0.018  ± 0.32  ± 0.0004  ± 0.024  ± 0.021  ± 0.28  ± 0.0003

5 3 2
0.7683 0.6425 3.61 0.0036 0.7238 0.5836 3.12 0.0028

 ± 0.021  ± 0.018  ± 0.32  ± 0.0004  ± 0.026  ± 0.022  ± 0.31  ± 0.0004

7 1 2
0.7541 0.6287 3.64 0.0037 0.6622 0.5076 4.68 0.0043

 ± 0.022  ± 0.019  ± 0.33  ± 0.0004  ± 0.030  ± 0.026  ± 0.49  ± 0.0005

Table 4.  Loss hyperparameter analysis on λ1, λ2 and λ3. Results are presented as mean ± standard deviation 
from five-fold cross-validation.

 

Cross Entropy Loss  Dice Loss

Private Dataset Physionet Dataset

Dice↑ Jaccard↑ HD↓ MAE↓ Dice↑ Jaccard↑ HD↓ MAE↓

0.2 1.8
0.7306 0.5868 3.71 0.0039 0.7069 0.5271 3.62 0.0041

 ± 0.025  ± 0.022  ± 0.35  ± 0.0005  ± 0.028  ± 0.025  ± 0.38  ± 0.0005

0.4 1.6
0.7354 0.6048 3.76 0.0039 0.6907 0.5160 3.64 0.0042

 ± 0.024  ± 0.021  ± 0.36  ± 0.0005  ± 0.029  ± 0.026  ± 0.39  ± 0.0005

0.6 1.4
0.7534 0.6328 3.68 0.0036 0.7141 0.5601 3.26 0.0033

 ± 0.023  ± 0.020  ± 0.34  ± 0.0004  ± 0.027  ± 0.024  ± 0.33  ± 0.0004

0.8 1.2
0.7649 0.6514 3.63 0.0034 0.7290 0.5748 3.16 0.0030

 ± 0.022  ± 0.019  ± 0.33  ± 0.0004  ± 0.026  ± 0.023  ± 0.32  ± 0.0004

1.0 1.0
0.7797 0.6532 3.59 0.0035 0.7467 0.6094 2.96 0.0022

 ± 0.021  ± 0.018  ± 0.32  ± 0.0004  ± 0.024  ± 0.021  ± 0.28  ± 0.0003

1.2 0.8
0.7288 0.5953 3.63 0.0038 0.7197 0.5717 3.14 0.0031

 ± 0.024  ± 0.021  ± 0.34  ± 0.0005  ± 0.026  ± 0.023  ± 0.31  ± 0.0004

1.4 0.6
0.7334 0.6022 3.62 0.0039 0.6710 0.5438 3.23 0.0037

 ± 0.024  ± 0.021  ± 0.33  ± 0.0005  ± 0.030  ± 0.026  ± 0.34  ± 0.0005

1.6 0.4
0.7423 0.6139 3.66 0.0038 0.6989 0.5548 3.18 0.0033

 ± 0.023  ± 0.020  ± 0.34  ± 0.0005  ± 0.028  ± 0.024  ± 0.33  ± 0.0004

1.8 0.2
0.7152 0.5837 3.64 0.0039 0.6715 0.5199 3.53 0.0040

 ± 0.025  ± 0.022  ± 0.35  ± 0.0005  ± 0.030  ± 0.027  ± 0.37  ± 0.0005

Table 3.  Loss hyperparameter analysis on cross entropy loss and dice loss. Results are presented as mean ± 
standard deviation from five-fold cross-validation.
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on the private dataset, with corresponding values of 0.7467, 0.6094, 2.96, and 0.0022 on the Physionet dataset. 
Notably, any deviation from this equilibrium results in significant degradation across all evaluation metrics, 
confirming that robust segmentation fundamentally depends on maintaining strict parity between these two 
loss components.

Table 4 further reveals that an alternative three-term loss configuration with parameters λ1 = 5, λ2 = 1, 
λ3 = 4 achieves identical optimal metrics to the balanced CE-Dice approach, demonstrating that different loss 
formulations can converge on equivalent peak performance when precisely tuned. Analysis of parameter 
sensitivities shows that increasing λ1 beyond 1 substantially enhances performance, though excessive values 
prove detrimental. Conversely, elevating λ2 consistently degrades results regardless of other parameter 
combinations, suggesting this likely secondary loss component requires careful suppression. The λ3 parameter 
exhibits a distinct optimum at λ3 = 4, where it delivers significant performance gains compared to other tested 
values, particularly when combined with elevated λ1 settings.

Visual comparison
The visual comparison of segmentation results, as presented in Fig. 2, offers a striking demonstration of 
the exceptional performance of our proposed hybrid propagation approach, ICH-HPINet, when applied 
to intracerebral hemorrhage (ICH) cases. Across a diverse array of ICH scenarios, our method consistently 
outperforms existing techniques, with its advantages becoming particularly pronounced in more challenging 
cases. In simpler instances—where the hemorrhage exhibits a uniform and well-defined structure—most 
segmentation methods, including ICH-HPINet, produce reliable results that closely match the anticipated 
boundaries. However, it is in the complex cases that ICH-HPINet distinguishes itself, delivering higher precision 
and robustness.

For example, consider the (b) and (c) rows of Fig.  2, which showcase ICH cases with multiple bleeding 
points characterized by irregular and scattered distributions. In these instances, competing methods often falter, 
yielding fragmented or incomplete segmentations that fail to capture the full scope of the hemorrhage. ICH-
HPINet, by contrast, produces clean, accurate segmentation masks that meticulously trace the intricate contours 
of the affected regions. This superiority extends even to subtler cases, such as those depicted in the (d) row of 
Fig. 2, where small or faint outliers present a challenge. Here, ICH-HPINet excels by accurately identifying and 
delineating these delicate features, avoiding common errors like over-segmentation or omission that undermine 
less advanced approaches. The clarity and fidelity of ICH-HPINet’s outputs, as visually evident in Fig. 2, highlight 
its technical prowess.

The success of ICH-HPINet in this visual comparison stems from its innovative hybrid strategy, which 
integrates volume and slice propagation seamlessly. By combining the spatial context provided by three-
dimensional data with detailed refinement of individual slices, the method achieves a holistic understanding of 
the hemorrhage’s structure. This dual approach not only enhances the visual quality of the segmentations but 
also demonstrates ICH-HPINet’s adaptability to a wide range of clinical presentations. The compelling evidence 
in Fig. 2 underscores the method’s sophistication and its potential to significantly improve diagnostic accuracy 
in real-world medical settings, especially where precision is critical.

Interactive experiment
To evaluate the practical efficiency of our interactive framework, we measured both the annotation effort and 
computational performance.

Fig. 2.  Segmentation results comparisons of ICH-HPINet and other methods.
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The interactive experiment conducted with ICH-HPINet provides a window into the model’s practical 
utility and adaptability within a simulated clinical environment, emphasizing its responsiveness to user 
input. Designed to emulate the collaborative dynamic between a clinician and an automated segmentation 
system, this experiment reveals how ICH-HPINet refines its output through iterative human guidance. With 
each user-provided scribble—representing a clinician’s correction or directive—the model rapidly updates 
its segmentation, building on previous adjustments to progressively enhance the results. This step-by-step 
improvement is quantitatively captured in Table 5, which tracks the evolution of segmentation metrics across 
multiple interactions.

Table 5 illustrates a clear trend of increasing accuracy with each user interaction, particularly in the early 
stages. For instance, following the first scribble, the Dice score rises sharply from an initial 0.6133 to 0.7763, 
reflecting a significant correction of initial errors and a closer alignment with the ground truth. This ability to 
adapt swiftly to minimal clinician feedback is a defining feature of ICH-HPINet, enabling rapid refinement of 
its output. As interactions continue, the segmentation quality improves more gradually, with the Dice score 
reaching a stable 0.7866 by the sixth interaction. Each column of Table 5 maps this iterative optimization, 
showing how simple annotations drive substantial performance gains.

Beyond these numerical improvements, the efficiency of the interactive framework stands out as a key 
strength. ICH-HPINet achieves clinically viable segmentation with minimal user effort—requiring only 2–3 
interactions. This represents a significant reduction in annotation burden compared to traditional methods that 
often require detailed manual segmentation. In time-sensitive medical contexts, this efficiency is invaluable, 
enabling rapid and accurate delineation of hemorrhages. The results in Table 5 not only confirm the effectiveness 
of this interactive approach but also highlight its potential to streamline clinical workflows. By facilitating 
personalized, precise imaging analysis through responsive user input, ICH-HPINet proves itself as a robust and 
practical tool for medical professionals, with its clinical relevance firmly established through this experiment.

Discussion
Our proposed ICH-HPINet represents a significant advancement in ICH segmentation through its innovative 
integration of volume and slice propagation within an interactive deep learning framework. Comprehensive 
experimental results demonstrate its superior performance compared to current state-of-the-art methods, 
including SAMed17, SAM-Med2D18, SAM2-UNet16, SAMIHS20, MedSAM19, and MedSAM221. Below, we 
elaborate on the advantages of hybrid propagation, comparative analysis with SAM-based models, and clinical 
relevance of interactive segmentation.

Advantages of hybrid propagation
The hybrid propagation strategy in ICH-HPINet synergistically combines the strengths of both volume-based 
and slice-based segmentation approaches. While volumetric methods effectively capture inter-slice spatial 
dependencies, they frequently encounter challenges in preserving fine-grained details due to computational and 
memory constraints. Conversely, slice-based methods excel at refining local features but may lack comprehensive 
contextual understanding. By harmoniously integrating these two paradigms, ICH-HPINet achieves an optimal 
balance between global consistency and local precision, as quantitatively evidenced by its superior Dice and 
Jaccard scores relative to methods employing either propagation strategy independently.

Comparative analysis with SAM-based models
While SAM-based models provide strong baseline performance for promptable segmentation, our comparative 
experiments highlight the distinct advantages of ICH-HPINet’s 3D contextual fusion approach. The key 
differentiator is not merely prompt-based segmentation but the effective integration of volumetric context with 
slice-level refinement.

SAM variants like SAM-Med2D and MedSAM excel in 2D slice processing but lack inherent 3D reasoning 
capabilities, requiring manual prompting on multiple slices to achieve volumetric consistency. In contrast, 
ICH-HPINet’s hybrid propagation automatically maintains 3D consistency while allowing focused refinement 
through sparse interactions. This is particularly evident in challenging cases with scattered hemorrhages, where 
our method maintains superior structural continuity through learned inter-slice relationships rather than 
manual repetition.

Clinical relevance of interactive segmentation
ICH-HPINet’s interactive capabilities address critical requirements for clinician feedback in segmentation 
workflows. While fully automated systems can expedite diagnostic processes, their outputs frequently 
necessitate manual adjustment, especially in complex cases with poorly defined lesion boundaries. Our 

Number of Interactions 1 2 3 4 5 6 7 8

Dice(↑) 0.6133 0.7763 0.7770 0.7831 0.7820 0.7856 0.7868 0.7865

Jaccard(↑) 0.4499 0.6471 0.6469 0.6537 0.6527 0.6567 0.6583 0.6580

HD(↓) 4.50 3.61 3.61 3.66 3.64 3.60 3.56 3.56

MAE(↓) 0.0065 0.0043 0.0043 0.0043 0.0042 0.0042 0.0042 0.0042

Table 5.  The segmentation metrics within different numbers of interactions.
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framework progressively enhances segmentation accuracy through iterative interactions, with experimental 
results demonstrating that multiple refinement cycles can significantly improve performance while reducing 
radiologists’ workload. This approach aligns perfectly with real-world clinical workflows, where AI systems 
should function as collaborative tools rather than opaque decision-makers.

The implementation of this interactive paradigm not only improves segmentation precision but also preserves 
clinical interpretability, a crucial factor in medical decision-making. Future research directions will focus on 
further optimizing the interaction mechanism and expanding the model’s applicability to other medical imaging 
modalities.

Conclusion
This paper presented the ICH-HPINet, a hybrid propagation interactive network for ICH segmentation that 
integrates volume and slice propagation for enhanced segmentation accuracy. Specifically, the VIM module is 
devised to capture 3D structural features, the SIM module is introduced to focus on slice-level segmentation, 
and the FCM module to ensure seamless integration by transforming volumetric features into slice-level 
representations. The MPFFM module further refines segmentation by leveraging predicted and target slices. 
Unlike existing models, ICH-HPINet supports multiple interaction iterations, enabling progressive refinement. 
Despite superior segmentation accuracy, our method demands substantial memory during training and 
currently operates only with scribble-based prompts. Future work will focus on optimizing memory efficiency 
and expanding input prompts to enhance its practicality in clinical applications.

Data availability
The datasets presented in this study are available on request from the corresponding author.

Code availability
Our code is available at https://github.com/jinhui66/ICH-HPINet.
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