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Parkinson’s disease (PD) is a common neurological disorder. The research has found that G protein-
coupled receptors (GPCRs) may affect the pathogenesis of PD. This study aimed to explore the 
value of GPCRs-related genes (GPCRs-RGs) with PD. In this study, the PD, control samples, and 
GPCRs-RGs were obtained from the public database. Then, the candidate genes were identified 
through differential expression genes obtained from differential expression analysis and GPCRs-RGs. 
Subsequently, biomarkers were obtained through machine learning, expression analysis, and ROC 
analysis. Notably, the nomogram, regulatory network, and gene set enrichment analysis (GSEA) of 
biomarkers were explored. In addition, a clustering analysis was adopted based on the biomarkers, and 
the immune infiltration were analyzed between the clusters. Finally, the expressions of biomarkers 
were further validated in clinical samples by reverse transcription quantitative PCR (RT-qPCR). 
This study identified NTSR1 and GPR161 as biomarkers associated with GPCRs and constructed a 
nomogram with good predictive ability with PD. The GSEA found 26 common pathways, such as 
oxidative phosphorylation enriched by NTSR1 and GPR161. Furthermore, the PD samples were divided 
into PD1 and PD2. Biomarkers were upregulated in PD1, while the scores of the 10 immune cells, 
such as mast cells and monocytes, in PD 1 were lower than PD 2. Finally, six drugs, such as sorafenib, 
10 proteins, such as ARRB1 and ARRB2, and 15 miRNAs, such as hsa-miR-140-5p were found to be 
associated with biomarkers. The RT-qPCR results showed that biomarkers were downregulated in the 
PD group, which was consistent with the bioinformatics analysis results. NTSR1 and GPR161 were 
identified as novel biomarkers associated with GPCRs in PD. These might serve as potential therapeutic 
targets and provide new ideas for disease prevention, diagnosis, and treatment of PD. 
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Parkinson’s disease (PD) is a common neurodegenerative disorder with a rising rate worldwide and is 
characterized by the loss of dopaminergic neurons in the substantia nigra (SN)1. The clinical features of PD 
include motor symptoms, such as bradykinesia, resting tremor, muscle rigidity, and postural instability, as well 
as non-motor symptoms, such as sensory abnormalities, sleep disturbances, mental disorders, and autonomic 
dysfunctions2. Therefore, the daily activities of PD patients are severely affected, prominently increasing 
the burden on families and society. Currently, treatments for PD include both non-pharmacological and 
pharmacological therapies. Non-pharmacological therapies, such as rehabilitation training, exhibit efficacy that 
is contingent upon individualized implementation. The main pharmacological therapy for PD is to enhance 
dopamine nerve transmission, which effectively alleviates motor and nonmotor symptoms. However, these 
therapeutic agents fail to arrest the neurodegenerative progression and are associated with significant long-term 
adverse effects3,4. Thus, strategies for further treatment targets are still urgently needed.

G protein-coupled receptors (GPCRs), also known as heptahelical or 7-transmembrane receptors, are 
a large class of cell membrane protein in humans and multiple other species5. GPCRs can identify a large 
amount of extracellular and inhibiting or activating downstream signaling cascades in the cell6. Stimulation of 
GPCRs also initiates the function of heterotrimeric G proteins and associated intracellular signaling pathways. 
Furthermore, beyond their signaling through heterotrimeric G proteins, GPCRs may regulate downstream 
effector pathways via interactions with various small G proteins5. Existing studies have demonstrated that 
certain GPCRs act as regulators of microglial activation, thereby modulating the impact of neuroinflammation 
on the pathophysiology of PD7. Interestingly, CPSRs are highly druggable targets focused on a broad range of 
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therapeutic areas, and over 700 approved drugs target this receptor family8. Furthermore, studies have found 
the correlation of pharmacological modulation of some specific GPCRs for PD symptomatic therapy. Beyond 
dopamine receptors, many other GPCRs may provide potential non-dopaminergic therapeutic alternatives for 
treating PD by regulating the neural circuits affected by PD9.

Based on the public database, our study aimed to find novel biomarkers associated with GPCRs in PD 
through machine learning, expression analysis, and ROC analysis.

We further investigated the biological functions, differences in immune infiltration, and clinical utility of 
the acquired biomarkers. Several public databases were used to obtain the potential proteins, miRNAs, and 
drugs associated with the biomarkers. These results provide insights into molecular mechanisms and therapeutic 
strategies, which offer great promise for the development of new and personalized treatments for PD.

Materials and methods
Sample collection and sequencing
The tissue samples of PD in the GSE49036 and GSE26927 datasets were downloaded and viewed from the GEO 
database. The GSE49036 dataset, which used the GPL570 sequencing platform, includes 15 PD samples and 8 
normal samples. The GSE26927 dataset, which was based on the GPL6255 sequencing platform, comprised 12 
PD samples and 8 normal samples. 1,045 GPCRs-RGs were obtained from the MSigDB, and 394 GPCRs-RGs 
were obtained from the previous research10. These genes were merged for analysis.

Differential expression analysis in the GSE49036 dataset
The differentially expressed genes (DEGs) between PD and control samples in the GSE49036 dataset were 
identified based on the “limma” R package (v 3.54.0)11, and the criteria were P < 0.05 & |log2 Fold Change (FC)| 
> 0.5. The top 10 up-regulated and down-regulated DEGs, sorted by the |log2FC| values, were marked by volcano 
plot and heat plot, which were made use of “ggplot2” package (v 3.4.4)12 and “ComplexHeatmap” package (v 
2.14.0)13, respectively. Then, the intersection of DEGs and GPCRs-RGs was taken to obtain the candidate genes 
for this study by “VennDiagram” R package (v 1.7.3)14.

Enrichment analysis and PPI network
GO and KEGG enrichment analyses of candidate genes were operated using the “clusterProfiler” R package (v 
4.7.1.003)15 to explore the biological functions and pathways (P < 0.05). The GO includes three parts: molecular 
function (MF), cellular component (CC), and biological process (BP). Ulteriorly, to investigate the interactions 
between encoded proteins of candidate genes, the STRING database was borrowed to construct a PPI network 
(confidence score > 0.7), and the results were visualized through Cytoscape software (v 3.10.2)16.

Acquisition of biomarkers
To obtain the candidate biomarkers, LASSO and SVM-RFE algorithms were applied in this study. We used the 
“glmnet” R package (v 4.1.4)17 to build the LASSO model, and the feature genes were obtained based on 10-
fold cross-validation (lambda best = lambda min). The SVM-RFE algorithm was implemented by the “caret” 
R package (v 6.0–93)18, which obtained feature genes by finding the optimal combination with the lowest 
error rate. The candidate biomarkers were acquired from the intersection of the two feature gene sets by the 
“VennDiagram” R package. To evaluate the diagnostic value of the candidate biomarkers, an ROC curve was 
plotted in the GSE49036 and GSE26927 datasets by the “pROC” R package (v 1.18.0)17, while the AUC greater 
than 0.7 as the filtering threshold. Furthermore, the Wilcoxon test assessed the expression level analysis, which 
required that the expression trends of genes between the PD and control groups in the two datasets were 
consistent and significant (P < 0.05).

Construction and evaluation of nomogram
To assess the prediction of PD risk by biomarkers, a nomogram was constructed by the “rms” R package (v 
6.5.0)19 based on the biomarkers in the GSE49036 dataset. The calibration curve was also obtained by the “rms” 
R package to assess the accuracy of prediction results with nomogram (P > 0.05, MAE < 0.1). Finally, the DCA 
was implemented by the “rmda” R package (v 1.6)20 to evaluate the clinical utility of the nomogram.

GSEA analysis
The GSEA was conducted to understand the biological function of biomarkers implicated in PD progression in 
this study. Firstly, the Spearman correlation coefficients between biomarkers and all genes were calculated in the 
disease samples of the GSE49036 dataset. Afterward, the genes were arranged in descending order of correlation 
coefficient, and then the GSEA on each biomarker was performed by “clusterProfiler” R package (FDR < 0.05). 
In this analysis, the “c2.cp.kegg.v7.4.symbols.gmt” from the MSigDB was selected as the reference gene set, and 
the top 5 pathways based on the FDR values of each biomarker were visualized by “enrichplot” R package (v 
1.18.3)21.

Analysis of consensus cluster
Based on the biomarkers identified above, the “Consensus Cluster Plus” R package (v 1.65.0)22 was used to 
conduct consensus cluster analysis, and the PD samples in the GSE49036 dataset were divided into different 
clusters by the k-means algorithm with the cycle computation of 1,000 times. The expression of biomarkers was 
performed between the different clusters according to the previously referenced method (P < 0.05). In order to 
evaluate the differences in biological function between different clusters, GSVA was completed by the “GSVA” R 
package (v 1.46.0)23 (P < 0.05), and the “c2.cp.kegg.v7.5.1.symbols.gmt” from the MSigDB database was selected 
as the reference gene set. Moreover, GSEA was also conducted to evaluate the differences in biological function 
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with the DEGs in the different clusters. In this process, the “limma” R package was used primarily to acquire the 
DEGs in the different clusters, and then the “clusterProfiler” R package was applied to perform GSEA with the 
DEGs (FDR < 0.25, P < 0.05 and |NES|) > 1).

The analysis SsGSEA for 28 immune cells
The immune cell infiltration was brought into by ssGSEA for 28 immune cells24 in GSE49036. Then, the 
differences in immune cells between different clusters were compared by the Wilcoxon test (P < 0.05). Besides, 
the relationship between biomarkers and immune cells was carried out using Spearman correlation analysis by 
“psych” R package (v 2.2.9)25. (|cor| > 0.3, P < 0.05).

Prediction of proteins, miRNAs, and drugs
Several public databases were included in this study to identify proteins, miRNAs, and drugs associated with 
biomarkers. The STRING database was used to obtain interaction protein (combined score > 0.75), the miRwalk 
was used to predict the microRNAs (miRNA), and the DGIdb dataset was adopted to scour the drug with 
biomarkers. based on the above results, A network was constructed by Cytoscape software (v 3.9.1)16.

The assessment of biomarkers expression
The assessment of biomarker expression was conducted on clinical blood samples using RT-qPCR. A total of 
5 pairs of blood samples were obtained from Guangxi Jiangbin Hospital, including 5 PD and 5 control. All 
participants needed to sign and fill out the informed consent form. This study was performed in accordance 
with the Declaration of Helsinki and approved by the Ethics Committee of the Jiangbin Hospital (LW-2025-007). 
Firstly, the total RNA of 5 pairs of tissue samples was derived by TRizol reagent (Vazyme, China). The RNA 
concentrations were computed by NanoPhotometer N50. Secondly, mRNA was reversely transcribed into cDNA 
utilizing a SureScript-First-strand-cDNA-synthesis-CREB5B test kit (Yesen, Shanghai, China). Finally, the RT-
qPCR was conducted. The expression levels of biomarkers between PD and control samples were calculated 
by 2−ΔΔCt, and the expression differences of these genes were measured by the student’s t-test (P < 0.05). The 
internal reference gene was GAPDH, which was employed to normalize the results. Finally, GraphPad Prism 5 (v 
8.0)26 was adopted to achieve statistical analysis and visualization. Detailed information on primers and machine 
testing conditions is listed in Table S6.

Statistical analyses
Bioinformatics analyses were performed using the R programming language (v 4.2.2). Wilcoxon tests were used 
to compare the differences between the two groups. P < 0.05 represented statistically significant.

Results
Identification and exploration of candidate genes
In the GSE49036 dataset, a total of 1,355 DEGs were identified. The 906 genes behind them were upregulated, 
and 449 were down-regulated in the PD group compared to the control sample (Fig. 1a). After that, 61 candidate 
genes were obtained by the intersection of DEGs and GPCRs-RGs (Fig. 1b).

In GO analysis of the candidate genes, 287 BP pathways, 45 CC pathways, and 46 MF pathways were obtained. 
In terms of BP, such adenylate cyclase-modulating G protein-coupled receptor signaling pathways were enriched 
with the genes. In CC, candidate genes were significantly enriched in the dendritic spine and neuron spine. In 
MF, G protein-coupled peptide receptor activity and GTPase activator activity were the top three enrichment 

Fig. 1.  The differentially expressed genes (DEGs) of PD in GSE49036. (a) Volcano plot of all DEGs. Red nodes 
indicate upregulated DEGs, green nodes indicate downregulated DEGs, and gray nodes indicate genes that are 
not significantly differentially expressed. (b) Venn diagram of DEGs and G protein-coupled receptors-related 
genes (GPCRs-RGs)
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pathways (Fig. 2a) (Table S1). Subsequently, the 61 candidate genes were enriched in 74 pathways, such as the 
phospholipase D signaling pathway, upon KEGG pathway analysis (Fig. 2b) (Table S2).

The PPI network is crucial for comprehending the structure and function of cellular networks and the basis 
for the occurrence and development of diseases27. The PPI results indicated that 39 genes had an interactive 
relationship after removing isolated genes. Among them, GNB5 and GNA13 had interaction relationships with 
multiple genes (Fig. 3).

Identification of NTSR1 and GPR161 as biomarkers
Based on the 39 genes from the PPI network, LASSO and SVM-RFE algorithms were used to obtain the candidate 
biomarkers. In LASSO model, 8 genes such as ARRB1, CXCR2, NTSR1, GPR161, PIK3CA, HTR2A, LPAR5, 
CXCL12 were selected while the thresholds was lambda=−2.5846. (Fig. 4a, b). In the SVM-RFE model, 16 genes 
were selected (Fig. 4c). Finally, three candidate biomarkers, ARRB1, NTSR1, and GPR161, were obtained from 
the intersection between the two algorithms (Fig. 4d).

In the GSE49036 and GSE26927 datasets, only two candidate biomarkers had significant differences in 
expression and consistent trends (Fig. 4e, f), while the AUC of them was also greater than 0.7 (Fig. 4g, h). So the 
two genes (NTSR1, GPR161) were regarded as biomarkers.

Fig. 2.  Enrichment analysis of GPCRs-RGs in PD. (a) Functional enrichment of Gene Ontology (GO); (b) 
Result of Kyoto Encyclopedia of Genes and Genomes (KEGG).
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High accuracy of the nomogram
As shown in Fig.  5a, a nomogram was created based on the expression of NTSR1 and GPR161 to predict 
the prevalence of PD in patients. The calibration curves revealed that the nomogram had high accuracy in 
predicting PD (P = 0.506, MAE = 0.079) (Fig. 5b). The net benefit of biomarkers and nomograms in the DCA 
curve was better than that in the None, which indicated that decision-making based on the nomogram could 
benefit patients with PD (Fig. 5c).

Enrichment pathways of biomarkers
The signaling pathways link to NTSR1 and GPR161 via GSEA. The results showed that the number of significant 
pathways enriched by NTSR1 and GPR161 were 32 and 34, respectively, while the top 5 signaling pathways were 
displayed in Fig. 6a and b (FDR < 0.05) (Table S3 and S4). NTSR1 and GPR161 were significantly correlated 
with 26 common pathways, such as oxidative phosphorylation, Parkinson’s disease, Huntington’s disease, cardiac 
muscle contraction, Alzheimer’s disease (AD), proteasome, and pathways in cancer.

Immune cells associated with biomarkers
As shown in Fig. 7a-c, the highest correlation was observed within the community, while intergroup correlations 
were minimal when k = 2. Consequently, the PD samples in the GSE49036 data were divided into two clusters 
(PD1 and 2). The differential expression analysis showed that both NTSR1 and GPR161 were highly expressed 
in PD1, and the results were significant (P < 0.05) (Fig. 7d). Moreover, the scores of 10 kinds of immune cells 
were significantly different (P < 0.05) (Fig. 7e). The scores of the 10 cells (activated B cells, CD56 bright natural 
killer cells, effector memory CD8 T cells, mast cells, monocytes, natural killer T cells, natural killer cells, 
plasmacytoid dendritic cells, T follicular helper cells, and type 17 T helper cells) in PD1 were all lower than PD 
2. The correlations analysis showed that NTSR1 was negatively correlated with activated B cells (cor = −0.56, 
P = 0.03), mast cell (cor = −0.56, P = 0.03), CD56 bright natural killer cell (cor = −0.54, P = 0.04) and effector 
memory CD8 T cell (cor = −0.54, P = 0.04) while GPR161 was negatively correlated with natural killer cell (cor 
= −0.66, P = 0.01), T follicular helper cell (cor = −0.64, P = 0.01), effector memeory CD8 T cell (cor = −0.63, 
P = 0.01), monocyte (cor = −0.61, P = 0.02), activated B cells (cor = −0.60, P = 0.02), plasmacytoid dendritic cell 
(cor = −0.57, P = 0.03), CD56 bright natural killer cell (cor = −0.57, P = 0.03), and natural killer T cell (cor = 
−0.57, P = 0.03) (Fig. 7f, g) (Table S5).

Different pathways in the two PD clusters
The results of GSVA indicated that various pathways, such as Parkinson’s disease, had an enrichment difference 
between the two clusters (Fig. 8a). In addition, the results of GSEA showed that the DEGs in PD1 and 2 were 
significantly enriched in multiple pathways, such as synaptic vesicle cycle, oxidative phosphorylation, and 
pathways of neurodegeneration-multiple diseases (Fig. 8b).

Drugs, proteins, and MiRNAs associated with biomarkers
As shown in Figs. 9a and 15 miRNAs were found to be associated with biomarkers. The miRNAs related to 
GPR161 include hsa-miR-140-5p and hsa-miR-373-3p, while those related to NTSR1 include hsa-miR-149-
3p and hsa-miR-6742-3p. Furthermore, 10 proteins were found to be associated with biomarkers, of which 
β-arrestin 1 (ARRB1) and β-arrestin 2 (ARRB2) were associated with both biomarkers (Fig.  9b). The drugs 
associated with NTSR1 included meclinertant, sorafenib, thimerosal, chembl548458, chembl493863, and 
chembl532160 (Fig. 9c). Variously, no drugs related to GPR161 were predicted. These results indicated that the 
above proteins, drugs, and miRNAs also potentially affect on PD.

Fig. 3.  Protein-protein interaction (PPI) network of GPCRs-RGs in PD
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The expression analysis of biomarkers in the clinical samples
As shown in Figs.  10a and b, the RT-qPCR results showed that the expression of GPR161 and NTSR1 had 
significant differences between controls and PD samples (P < 0.05). The expression of 2 biomarkers were all 
downregulated in the PD group. The results were consistent with the the bioinformatics analysis, indicating that 
preliminary results were reliable in our study.

Fig. 4.  Identification biomarkers of GPCRs-RGs in PD. (a, b) Screening of gene signatures using the LASSO 
algorithm; (c) Number of features predicted by SVM-RFE; (d) Venn diagram of LASSO and SVM-RFE; (e,f) 
Expression of intersecting genes; (g,h) ROC evaluation of intersecting genes
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Fig. 6.  Gene set enrichment analysis. (a) Pathways enriched by GPR161. (b) Pathways enriched by NTSR1

 

Fig. 5.  Nomogram plots (Line graphs). (a) Nomogram of predicted risk scores in the diagnosis of PD patients. 
(b) Nomo model evaluation, where the diagnostic model is in better agreement with the ideal model. (c) 
Establishment of the decision curve analysis (DCA)
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Discussion
PD is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, leading to 
motor impairment. Although no treatment currently exists to halt the progression of PD, dopamine replacement 
therapy, including dopamine precursors, can alleviate motor symptoms28. However, treatment options for non-

Fig. 7.  Immune characteristics between two different immune patterns. (a) Consensus clustering matrix at k 
= 2. (b) Cumulative distribution function (CDF) plot. (c) Relative change in area under CDF delta curves. (d) 
Expression levels of NTSR1 and GPR161 in the two clusters. (e) Boxplots of the immune score of each immune 
cell in the two clusters. Correlation analysis between immune cell content and GPR161 (f) and NTSR1 (g) 

 

Scientific Reports |         (2026) 16:1651 8| https://doi.org/10.1038/s41598-025-31148-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


motor symptoms, such as neuropsychiatric disturbances and cognitive impairment, remain limited. GPCRs, 
which are highly druggable cell surface proteins, have been identified as potential disease-modifying targets 
with neuroprotective effects in PD29. In the present study, two key genes (NTSR1 and GPR161) were identified 
as being associated with GPCRs, demonstrating high accuracy in differentiating patients with PD from healthy 
controls. The expression of NTSR1 and GPR161 was further validated by RT-qPCR, confirming the results. Both 
biomarkers were significantly correlated with several pathways, including oxidative phosphorylation and PD. 
Additionally, the DEGs in the two PD clusters were notably enriched in multiple pathways, such as the synaptic 
vesicle cycle and oxidative phosphorylation. Moreover, 6 drugs, 10 proteins, and 15 miRNAs were identified as 
being associated with these biomarkers.

NTSR1, a canonical GPCR, signals through the neuropeptide neurotensin (NTS) to regulate various 
physiological processes, including blood pressure, blood glucose levels, body temperature, antinociception, and 
neuronal injury repair30. Its primary function is closely linked to the regulation of GPCR signaling pathways and 
is directly modulated by GRK2 and GRK5. NTSR1 has been validated as a critical pharmacological target for 
neurological diseases, including PD31,32. Extensive research has documented the role of NTSR1 in PD. Studies 
by Duan et al. demonstrated that activation of NTSR1 can initiate signaling pathways through the recruitment 
of GRK2. The arrestin-biased ligand SBI-553 exerts neuroprotective effects by activating the arrestin pathway. 

Fig. 8.  Identification of different pathways in the two PD clusters. (a) Heat map of the different pathways in 
the two clusters. (b) Enrichment difference of the DEGs in the two clusters via gene set enrichment analysis 
(GSEA) 
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This receptor’s involvement in neuronal injury repair further supports its potential as a therapeutic target for 
PD33. GPR161 is another GPCR implicated in various intracellular signaling processes, influencing cellular 
physiological functions34. It has been linked to cancer pathogenesis and neurulation, though the underlying 
molecular mechanisms are not yet fully understood35,36. While direct studies of GPR161 in PD are limited, 
research in other neurodegenerative diseases, such as Huntington’s disease, suggests that alterations in GPR161 

Fig. 9.  Prediction of miRNAs, proteins, and drugs. (a) The orange edge represents the miRNAs associated 
with the biomarkers. (b) The gray edge denotes the proteins associated with the biomarkers. (c) The green edge 
indicates the drugs associated with the biomarkers.
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expression may contribute to disease pathogenesis, implying potential neuroprotective functions37. Given its role 
in cellular signaling and neurodevelopment, GPR161 may be indirectly involved in PD pathogenesis through 
the regulation of neural cellular homeostasis. This hypothesis warrants further investigation in future studies34.

An inverse correlation was observed between the expression levels of NTSR1/GPR161 and immune cells, such 
as activated B cells and CD56 bright natural killer cells. This finding offers crucial insights into the regulatory 
mechanisms of the PD immune microenvironment and highlights potential therapeutic targets. Previous studies 
have shown that changes in the count of B-lymphocytes and the percentage of regulatory B cells are linked 
to the progression of PD38. The downregulation of NTSR1 may lead to the derepression of activated B cells, 
thereby exacerbating the inflammatory cascade. Interestingly, GPR161 serves as a key negative regulator of the 
Sonic hedgehog (Shh) signaling pathway, and its aberrant activation is associated with dopaminergic neuronal 
repair in PD. Thus, the downregulation of GPR161 may result in excessive Shh pathway activation, which could 
influence immune cell infiltration34,39. Moreover, CD56 bright NK cells are elevated in PD and contribute to 
disease progression through the secretion of cytokines like IL-1β and TNF-α, with their abundance correlating 
positively with PD severity40,41. The decreased expression of GPR161 correlates with an increase in CD56 bright 
NK cells, suggesting its role in modulating the infiltration of this cellular subset through signaling pathway 
regulation.

Beyond NTSR1 and GPR161, numerous studies have explored the roles of GPCR family members in 
neurodegenerative diseases. For example, reduced cortical muscarinic M1 receptor binding to G-proteins 
has been identified as a neurochemical alteration underlying the limited efficacy of presynaptic cholinergic 
replacement therapy in AD42. Additionally, genetic variations in the ADORA2A gene have been shown to 
influence the age of onset in Huntington’s disease43. These findings highlight the central regulatory role of 
GPCRs in neurodegenerative diseases and provide valuable context for investigating the functions of the two 
genes examined in this study.

The co-enrichment of NTSR1 and GPR161 in the oxidative phosphorylation pathway, as highlighted by 
the GSEA analysis, is of significant relevance. This suggests that mitochondrial dysfunction is prevalent in 
patients with PD, with impaired oxidative phosphorylation serving as a key mechanism contributing to the 
vulnerability of dopaminergic neurons44. NTSR1 is believed to sustain mitochondrial function by regulating 
energy metabolism in dopaminergic neurons, and its downregulation may worsen the decline in oxidative 
phosphorylation efficiency, leading to the accumulation of reactive oxygen species (ROS) and subsequent 
neuronal death45. Although direct evidence for GPR161’s involvement in mitochondrial dysfunction is lacking, 
it is hypothesized that disruptions in its signaling pathway may indirectly affect the mitochondrial respiratory 
chain, potentially acting synergistically with NTSR1 downregulation to exacerbate pathological damage46. The 
enrichment of pathways related to Huntington’s disease and AD further suggests that NTSR1 and GPR161 may 
be implicated in shared pathological mechanisms in neurodegenerative diseases, such as protein misfolding 
and neuroinflammation47–49. Additionally, the enrichment of the cardiac muscle contraction pathway may be 
associated with autonomic nervous system dysfunction in patients with PD, indicating that the downregulation 
of these genes may also impact peripheral tissue function, providing molecular insights into the non-motor 
symptoms of PD50.

Based on the consensus clustering analysis of NTSR1 and GPR161, PD samples were divided into two 
distinct subgroups, PD1 and PD2. The relationship between these subgroups and established PD subtypes 

Fig. 10.  The expression of biomarkers validated by qRT-PCR. (a) The expression of GPR161 in PD patients 
and controls. (b) The expression of NTSR1 in PD patients and controls
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facilitates an exploration of disease heterogeneity. PD is widely recognized as a heterogeneous disorder with 
distinct subtypes51.

Patients with PD are commonly classified according to motor characteristics into tremor-dominant, 
akinetic-rigid, postural instability/gait difficulty (PIGD), and mixed subtypes. Among these, the PIGD subtype 
is associated with faster progression of both motor and cognitive decline52. Since the advent of PD subtyping 
research, various classification systems have been proposed, incorporating factors such as age and progression 
rate53. In the present study, the PD1 cluster showed significant enrichment in pathways related to PD, 
oxidative phosphorylation, and Huntington’s disease, along with high expression of NTSR1 and GPR161—key 
regulators of mitochondrial function. These findings suggest that the core pathology of the PD1 cluster involves 
mitochondrial respiratory chain dysfunction and impaired oxidative phosphorylation in dopaminergic neurons. 
Furthermore, the co-enrichment of neurodegenerative pathways indicates a clinical phenotype characterized 
by rapid motor symptom progression, primarily driven by disrupted energy metabolism. In contrast, the PD2 
cluster demonstrated significant enrichment in inflammation-related pathways, including the complement 
and coagulation cascades, cytokine-cytokine receptor interactions, and leukocyte transendothelial migration. 
Immune infiltration analysis revealed lower immune cell levels in PD1, supporting the notion that the PD1 
cluster is predominantly associated with an activated immune-inflammatory pathology.

As miRNAs are well-known post-transcriptional gene regulators involved in various pathological conditions. 
They bind to specific regions in the 3’ untranslated region (3’ UTR) of target mRNA, leading to translation 
suppression and degradation of the mRNA’s adenylation and capping structures54,55. Additionally, miRNAs 
can bind to other regions of mRNA, such as the 5’ UTR, coding sequence (CDS), and promoter regions55. 
While binding to the 5’ UTR or CDS typically represses gene expression, binding to the gene promoter region is 
associated with transcriptional activation56,57.

In this study, several miRNAs, including hsa-miR-140-5p and hsa-miR-149-3p, were identified as being 
associated with GPR161 and NTSR1. These findings offer new insights into the miRNA-mediated regulation of 
GPR161/NTSR1 in PD, providing valuable clues for further exploration of their regulatory mechanisms.

Hsa-miR-140-5p and hsa-miR-149-3p may suppress the expression of GPR161 and NTSR1 by binding 
to their 3’ UTRs or CDS, thereby diminishing neuroprotective effects and contributing to the pathological 
progression of PD. However, the potential regulatory interactions between these miRNAs and GPR161/NTSR1 
need to be further validated. This validation should include confirming the binding sites through dual-luciferase 
reporter assays and investigating their specific effects on neuronal survival and inflammatory responses using 
cellular functional experiments.

In terms of protein interactions, ARRB1 and ARRB2 were found to be related to NTSR1 and GPR161. 
Previous studies have shown that ARRB1 and ARRB2 play opposing roles in PD pathogenesis, mediated in part 
by nitrogen permease regulator-like 3 (Nprl3). ARRB2 knockout exacerbates neuroinflammation, dopaminergic 
neuron loss, microglia activation in vivo, and neuron damage mediated by microglia in vitro, while ARRB1 
ablation has protective effects58. Mendelian randomization studies also suggest that reduced ARRB2 expression 
is closely associated with an increased risk of PD59. These findings offer novel insights into PD pathogenesis and 
treatment strategies.

In this study, NTSR1 was used to predict drug-gene interactions, while no drugs were identified for GPR161. 
Six potential drugs were predicted for PD treatment, with sorafenib emerging as a ferroptosis inducer. Growing 
evidence suggests that iron deposition in the brain contributes to dopaminergic neuron degeneration60,61. 
Therefore, sorafenib may be considered a potential target for PD treatment. However, significant barriers remain 
in its clinical application, particularly with regard to its ability to cross the blood-brain barrier (BBB). Preclinical 
studies have shown that sorafenib has limited penetration through an intact BBB into brain tissue62. Given that 
PD therapies require precise drug delivery to specific brain regions, the insufficient concentration of sorafenib in 
the brain may undermine its neuroprotective efficacy.

Thimerosal (THIM) is a well-known oxidizing agent. Studies have demonstrated its neurotoxic effects, 
including dysfunction of the monoaminergic system. The THIM-induced tyrosine hydroxylase (DmTyrH) 
lesion impairs dopamine function and induces behavioral abnormalities, ultimately leading to oxidative stress-
related neurotoxicity. Mitigating these neurotoxic effects could be beneficial in the prevention and treatment of 
PD. However, research on the roles of meclinertant, chembl548458, chembl493863, and chembl532160 in PD 
therapy remains limited. RT-qPCR experiments revealed that both NTSR1 and GPR161 were downregulated in 
the PD group, aligning with the results of bioinformatics analyses, thereby supporting the preliminary validity 
of this study.

As this study primarily involves bioinformatics analysis, it has certain inherent limitations. While no 
correlation was established between peripheral blood expression of GPCR-RGs and cerebral pathology, our 
findings complement existing PD biomarkers and provide a foundation for further exploration of the target 
genes. Additionally, the RT-qPCR validation phase included a relatively small sample size. Although the RT-
qPCR results suggest that the expression trends of the target indicators align with prior findings, the limited 
sample size restricts the ability to offer a comprehensive and objective assessment of the markers’ true expression 
patterns in the target population. To overcome this limitation, further research will expand the validation cohort 
in future studies, using more stringent sample matching and incorporating power analysis for sample size 
estimation. This will enhance the statistical robustness and clinical relevance of the findings. Notably, the RT-
qPCR results from this study are intended to provide preliminary insights into the target genes. Their definitive 
expression patterns and clinical significance will require further validation through independent, large-scale 
cohort studies.

In conclusion, this study identified NTSR1 and GPR161 as GPCR-related biomarkers in PD, offering novel 
approaches for disease diagnosis and therapeutic monitoring.
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