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OPEN A machine learning framework

for long-term forecasting of spare
part demand in end-of-life product
scenarios
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Accurately estimating future demand for service parts during a product’s end-of-life (EOL) phase is
essential for ensuring long-term support while avoiding costly overstock or shortages. This study
proposes a decay-function-blended machine learning (DFB-ML) framework for forecasting spare-part
demand across extended service horizons. The framework integrates historical consumption data,
warranty failure rates, and attrition-adjusted fleet estimates to model lifecycle behaviour for 1,709
automotive part numbers. Feature engineering captures both short-term trends and long-term decay
through variables such as lagged demand, replacement intensity, and vehicle dropout dynamics.
Multiple regression models were evaluated, with Random Forest achieving the highest forecasting
accuracy (Safe Mean Absolute Percentage Error=4.36%). An ablation study confirmed that moderate
decay blending (o= 0.2-0.4) yields stable long-horizon forecasts and sub-linear error growth over the
8-year horizon. The framework was further validated for scalability within ERP/SAP-linked distributed
networks, demonstrating readiness for industrial deployment. The resulting forecasts support data-
driven Last-Time-Buy (LTB) decisions through part-wise procurement recommendations and risk-
adjusted buffers. This approach unifies lifecycle decay modelling with machine learning and provides
a generalizable blueprint for uncertainty-aware EOL inventory forecasting in engineering and supply-
chain domains.

Keywords End-of-life inventory planning, Intermittent demand, Lifecycle analytics, Machine learning,
Predictive maintenance, Spare part demand forecasting

In the capital goods and automotive sectors, the post-production support phase represents one of the most
operationally uncertain yet legally binding stages of the product lifecycle. Manufacturers are typically obligated
to ensure spare parts availability for a defined period often ten to fifteen years after vehicle production ceases'.
The final opportunity to procure these parts is known as the last time buy (LTB). This one-time procurement
decision must anticipate future service demand across an extended horizon with no scope for revision.
Inaccurate estimation at this stage can lead to significant financial losses. Overstocking results in high holding
costs and eventual scrappage, while understocking leads to missed service obligations, reputational damage, and
emergency procurement at inflated prices®.

The Fig. 1 illustrates the typical lifecycle trajectory of production and service part demand. Production
volumes rise sharply during early phases, peaking between 5 and 7 years post-SOP (Start of Production), after
which manufacturing ceases (EOP). Service parts, in contrast, exhibit a lagged demand pattern that continues
to decline well into the EOL (End of Life) phase, driven by attrition in the installed vehicle base and reduced

replacement frequencies*.
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Fig. 1. Tllustration of product and service part demand across the lifecycle phases from Start of Production
(SOP) to End of Life (EOL).

Despite the operational importance of LTB decisions, current forecasting practices remain primitive. Most
OEMs rely on rule-based multipliers or expert heuristics that extrapolate from recent consumption trends,
without accounting for lifecycle attrition, platform retirements, or the stochastic behavior of field failure rates®.
Classical time-series approaches, such as ARIMA or Holt-Winters smoothing, require stationarity and dense
data, which are rarely present in post-EOP service environments. Moreover, these techniques are ill-equipped
to incorporate exogenous variables such as warranty coverage, vehicle production volumes, or attrition-adjusted
fleet estimates’.

Recent advances in artificial intelligence (AI) and machine learning (ML) offer promising alternatives for
modeling demand under uncertaintys. Tree-based ensemble models such as Random Forests, XGBoost, and
CatBoost have demonstrated high accuracy in handling non-linear, high-dimensional data®. However, their
adoption in LTB forecasting remains limited due to a lack of domain-specific feature engineering and inadequate
lifecycle integration. Additionally, service part demand exhibits characteristics such as sparsity, irregularity,
and delayed obsolescence that necessitate hybrid approaches combining data-driven learning with physically
informed decay dynamics!®.

This study presents a novel AI/ML-powered framework for estimating eight-year service demand for EOL
parts to support LTB decisions. The proposed method integrates structured feature engineering including
lagged demand, active vehicle fleet size, replacement rate, and consumption slope with supervised learning
models trained on temporally ordered part-year data. Lifecycle fidelity is preserved using a recursive forecasting
loop augmented with exponential decay modulation to reflect real-world attrition behavior. The framework is
evaluated on a dataset comprising 1709 SKUs from a global automotive OEM covering the period 2015-2024.
The best-performing model, Random Forest, achieved a Safe MAPE of 4.36%, outperforming traditional linear
baselines (e.g., ElasticNet with Safe MAPE >470%).

Forecasts were visualized and aggregated into LTB recommendations, including uncertainty buffers based
on standard deviation of historical error. For instance, part SPN01330 was predicted to require 2,509 units over
the next decade, which was adjusted to 2,567 units using a 25% uncertainty buffer. These outputs can be directly
integrated into OEM procurement workflows, enabling proactive, risk-aware inventory management.

While several studies have explored hybrid time-series and survival or time-to-event (TTE) models for
reliability forecasting and remaining useful life (RUL) prediction, these approaches typically treat degradation
dynamics and temporal prediction as sequential or loosely coupled modules. For example, survival-based
frameworks estimate hazard or failure probabilities using deep recurrent networks or stochastic ensembles (Ren
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et al., 2018'%; Chen et al., 20242, whereas subsequent time-series or regression components extrapolate demand
or reliability trends independently.

In contrast, the present framework introduces a unified decay-function-blended machine learning (DFB-
ML) architecture, wherein an exponential decay kernel is embedded directly within the forecasting pipeline. This
design allows the learned model output to be continuously modulated by physically meaningful lifecycle decline,
capturing both non-linear feature interactions and mechanistic end-of-life behaviour in a single recursive loop.
Such direct integration of a parameterized decay function inside a data-driven ML forecaster rather than coupling
survival and forecasting stages post-hoc, represents a conceptual advance over existing hybrid paradigms. To the
best of the authors’ knowledge, this is the first application of decay-function blending for SKU-level, multi-
feature demand forecasting across extended EOL horizons in the automotive domain.

Related work and research context

Forecasting intermittent and end-of-life (EOL) demand poses major analytical challenges due to sparse data,
non-stationary trends, and the influence of physical degradation mechanisms. Traditional forecasting methods,
such as Croston’s algorithm and its derivatives (Teunter et al., 20026; Boylan & Syntetos, 20067, provide basic
handling of zero-demand intervals but lack lifecycle awareness. More recent advances in machine learning and
ensemble-based forecasting (Carbonneau et al., 2008!% Makridakis et al., 2018'* have improved short-term
accuracy but still rely purely on statistical extrapolation without modelling the physical attrition or service
decline that drives EOL consumption patterns.

In parallel, significant progress has been made in remaining useful life (RUL) prediction and predictive-
maintenance modelling, which focus on estimating degradation and survival probabilities of industrial systems.
For instance, Faizanbasha and Rizwan (2025) proposed a deep learning-stochastic ensemble that captures
uncertainty in RUL estimation under dynamic mission conditions, enabling risk-aware maintenance planning'.
Qin etal. (2025) developed a spatial-temporal multi-sensor fusion network that embeds prior physical knowledge
for improved RUL inference!®, while Faizanbasha and Rizwan (2025) also formulated a two-unit series reliability
optimization model that jointly considers burn-in and predictive maintenance decisions!”. These approaches
highlight the increasing importance of integrating degradation dynamics, stochastic uncertainty, and domain-
specific priors into learning architectures.

The present study adapts these reliability-driven principles to the domain of EOL demand forecasting,
where part consumption exhibits analogous degradation-like decay governed by fleet attrition and replacement
intensity. By embedding an exponential decay kernel within a machine-learning forecasting architecture, the
proposed decay-function-blended ML (DFB-ML) framework captures both data-driven feature interactions and
physically grounded lifecycle decline. This cross-disciplinary integration of RUL-inspired degradation modelling
into SKU-level demand prediction establishes a new methodological link between predictive maintenance and
end-of-life inventory planning.

Materials and methods
This section describes the multi-source dataset compiled from a global automotive Original Equipment
Manufacturer (OEM) and outlines the methodology adopted for constructing an AI/ML-powered predictive
framework aimed at estimating end-of-life (EOL) spare part demand and optimizing Last Time Buy (LTB)
quantities. The approach integrates historical demand signals, warranty failure trends, and vehicle attrition
modeling into a unified machine learning pipeline!®. Forecasting is performed over a eight (8) year horizon
using engineered features that capture both operational and lifecycle characteristics of spare parts. Six different
supervised regression models were trained and evaluated using a temporally structured dataset, and the best-
performing models were used to generate future demand estimates. Model evaluation focused on both absolute
and proportional error measures to account for the intermittent and long-tailed nature of EOL demand patterns.
The forecasting model incorporates a recursive, part-specific decay adjustment that modulates future
predictions based on vehicle dropout trends and historical demand slope. The core structure of the framework
is composed of three stages: feature engineering and data fusion, predictive model training and validation, and
recursive multi-year forecasting. This structure ensures that forecasts are both statistically robust and aligned
with physical realities such as declining serviceable fleets. All forecasting and model selection activities were
performed with strict temporal integrity to prevent data leakage and simulate real-world LTB decision-making
conditions.

Dataset description

The data utilized in this study was sourced from a global automotive OEM and encompasses 1709 Stock Keeping
Units (SKUs) relevant to aftersales spare parts. These SKUs span multiple part categories and include both unique
components linked to specific vehicle models and commonly shared parts used across multiple platforms. The
time horizon for the analysis spans from 2015 to 2024, covering the full operational life of each part through its
production, warranty, and early post-warranty phases.

Three core data streams were integrated into the forecasting model. First, historical annual demand records
were acquired for each part, representing the total units requisitioned or sold through after sales channels. These
raw demand records were preprocessed to remove anomalies such as one-time bulk orders caused by external
disruptions or internal procurement errors. The resulting time series were harmonized to a consistent annual
frequency.

Second, warranty claim data was extracted from the OEM’s reliability and field service databases. This dataset
included the number of claims registered against each part number within the vehicle warranty period, typically
defined as the first three to five years following sale. These warranty events were transformed into cumulative
failure rate curves, which serve as lead indicators for post-warranty service part consumption. Their inclusion in
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the feature matrix allows the forecasting models to internalize part-specific failure characteristics and reliability
trends over time.

Third, vehicle volume data was used to estimate the in-service installed base for each SKU. Vehicle production
numbers were mapped to the part usage catalog to determine the annual cohort of vehicles containing each target
part. These production volumes were then adjusted for attrition using a smoothed dropout rate profile. The
resulting active fleet size for each SKU-year pair served as a proxy for the population of vehicles still requiring
the part in question. This variable is crucial for modeling demand decay over time, as the number of serviceable
units directly influences spare part consumption.

The combined dataset was used to construct a part-year level feature matrix, where each row represents a
single SKU in a specific year. For each such entry, demand data, warranty indicators, and attrition-adjusted
vehicle base information were consolidated. This ensured a temporally aligned and context-rich dataset capable
of supporting robust forecasting. Data preprocessing steps included outlier removal, interpolation of missing
values in warranty fields (where possible), and normalization of part-level attributes to remove scale imbalances.
The result was a unified, multi-dimensional dataset containing both dependent and explanatory variables,
enabling supervised learning algorithms to model the complex relationships underlying EOL demand behavior.

The resulting dataset thus reflects not only the direct historical demand for parts but also contextual indicators
of failure and serviceable base volume, both of which are essential to understanding the temporal behaviour of
spare part consumption'®. This combination of heterogeneous sources enhances the representational fidelity of
the forecasting features and supports generalizable model development. As illustrated in Fig. 2, the correlation
between rising cumulative vehicle counts and part demand growth is evident for the five highest-volume parts.
However, divergence begins to emerge in later years, as individual part demand begins to saturate or decline
despite continued vehicle availability. This non-linear relationship, driven by part-specific failure profiles and
replacement behaviour, underscores the necessity of modelling not just installed base, but also time-dependent
decay and reliability-adjusted demand dynamics.

The forecasting target and drivers were aligned to an annual cadence for three reasons. First, LTB procurement,
contractual service obligations, attrition reporting, and warranty summaries are tracked on annual or fiscal-year
cycles, so annualization avoids target-feature misalignment and reduces look-ahead risk. Second, at daily or
monthly frequencies most SKUs exhibit intermittent, zero-inflated signals with lumpy batch postings (issues,
returns, inter-plant transfers) that reflect ERP logistics timing rather than underlying consumption; aggregation
to annual periods suppresses these transaction artefacts and yields a more stable lifecycle pattern suitable for
coupling with attrition/warranty features (cf. Croston-type methods and subsequent analyses of intermittent
demand). Third, although each SKU contributes ~8-10 annual points, the learning problem leverages cross-
sectional richness (1,709 SKUs x year) with engineered features (active fleet, warranty intensity, lagged demand,
slope/decay), enabling tree ensembles to learn population-level structure that generalizes SKU-wise.

General forecasting model and notation

The objective of the forecasting framework is to predict annual part-level demand over a eight-year planning
horizon (2025-2032), with specific emphasis on modeling the impact of vehicle attrition, part-specific lifecycle
characteristics, and intermittent demand behavior. The forecasting model is constructed to operate on a year-
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Fig. 2. Cumulative vehicle count (grey bars) vs. annual demand of top five fast-moving spare parts (SPN01523,

SPN00154, SPN01330, SPN00174, SPN01499) from 2015 to 2024.
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wise resolution and is part-centric in nature, meaning that forecasts are generated independently for each SKU
based on its historical data, engineered features, and the evolving serviceable vehicle base. The predictions are
not extrapolated from raw time-series values alone; rather, they emerge from a structured feature space that
encodes both static and dynamic attributes influencing demand evolution.

Each part is indexed by p € P, and each year is denoted by y € Y, with the historical window spanning
fromY_, =2015to Y__ =2024. The target variable is the annual demand D(p,y), and the objective is to predict
future values D(p, yS‘ for years y>2 024. Associated with each year is the total vehicle production volume V' (y),
which is specific to the part’s application base. These volumes are adjusted for attrition using a dropout function
8y , which represents the fractional loss of the installed vehicle base due to scrappage or decommissioning. By
recursively applying these dropout rates to the production volumes of prior years, the active vehicle count for
any given year can be expressed as:

Activefleet (y) = Z sV (¥) H vh1-4t 1)

This formulation allows estimation of the number of vehicles still in active use that are eligible to generate spare
part demand. The recursive decay model accounts for the declining footprint of vehicles in the field and is critical
for aligning part demand forecasts with realistic operational exposure.

For each part-year combination, a structured feature vector X (p,y) is constructed. This vector includes
lagged demand values, estimated active vehicle count, historical warranty failure rates, and derived parameters
such as part-specific decay rate and demand slope. The slope is obtained through linear regression on past
demand values to capture the general trajectory whether upward, flat, or declining while the decay rate ( k (p) is
computed as a function of the slope and the most recent demand level. This rate is used to model an exponential
demand decay beyond the observed data window, aligning the forecast with realistic EOL behavior even in the
absence of direct observation.

To ensure stability in extrapolation, the decay rate is bounded below by a small positive constant (e.g., 0.001) to
avoid abrupt discontinuities or null predictions. The final feature matrix includes both these engineered lifecycle
indicators and demand-side signals, enabling the model to learn non-linear interactions among explanatory
variables®.

Each feature vector X (p, y) is input into a trained regression model M}, indexed by model type k, to yield
a point prediction:

D(p,y)™ = My (X (p,)) )

In practice, a recursive forecasting scheme is employed for multi-year prediction. For a future year y > 2024,
the feature vector X (p, y) is updated using the model’s own prior forecasts. The lagged demand input is replaced
with D(p,y — 1), and the active vehicle count is adjusted based on updated dropout estimates. The prediction
process continues year by year, feeding forward predictions and feature updates.

To avoid error accumulation and reflect the expected decay in demand as vehicles age out of service, a decay-
modulated adjustment is introduced. A secondary forecast DecayPred(p,y) is computed using an exponential
function centered at the last observed demand D(p, 2024):

DecayPred (p,y) = D (p,2024) .c~*@/ =202 )

The final demand estimate FinalPred(p, y) is expressed as a convex combination of the model-based forecast
and the decay function:

FinalPred (p,y) = « D (p,y) + (1 — ) .DecayPred(p, y) (4)

where a € [0,1] is a blending coeficient empirically determined to balance learned patterns and lifecycle
decay alignment?!. This hybrid forecast structure stabilizes predictions in the long tail of the lifecycle curve and
prevents overestimation in years far removed from the training data horizon.

This structured approach combining machine-learned regression with lifecycle-aware decay dynamics
forms the backbone of the proposed forecasting model. It enables robust estimation of part-level demand under
uncertainty, and supports strategic Last Time Buy decisions by quantifying decline trajectories with respect to
attrition-adjusted installed base and historical usage trends.

To ensure that the selected features contributed independent explanatory power to the forecasting models,
a Pearson correlation matrix was computed across all engineered features. As shown in Fig. 3, low to moderate
correlation values were observed between most feature pairs. For example, lagged demand and replacement
rate exhibit a high correlation (0.88), which is expected given their shared dependence on past usage. However,
features such as active vehicle count and decay rate show near-zero correlations with other inputs, confirming
that the final feature set captures diverse and complementary signals relevant to demand evolution. This low
multicollinearity supports the stability and interpretability of both linear and non-linear model architectures
trained on this space.

Al/ML modelling framework

The AI/ML modelling framework developed in this study is designed to forecast EOL spare part demand
over an 8-year horizon by learning from feature-rich historical data. The modelling process comprises three
stages: supervised learning using temporally aligned part-year data, validation and model selection based on
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generalization metrics, and lifecycle-aware recursive forecasting with decay modulation. Each phase is described
below.

Model training and feature learning

Model training was conducted on a curated part-year dataset comprising observations from 2015 to 2022.
For each SKU and year, a structured feature vector was constructed as described in Sect. 2.2, incorporating
engineered variables such as active fleet size, demand slope, lagged consumption, and replacement rate. These
features, aligned chronologically with the target demand value D (p,y), formed the basis of a supervised
regression problem.

Temporal causality was maintained during model training by ensuring that only past and present information
was included in the feature space. At no point were future demand values or temporally leaked information
made accessible to the model during training or validation. This reflects realistic operational constraints, where
forecasting decisions must be made without knowledge of future actuals?’. During the forecasting phase (2025~
2032), a recursive approach was adopted wherein predictions from prior years were used to construct lagged
features for subsequent years, thereby preserving causal sequencing while enabling multi-year horizon inference.
The feature space was standardized and normalized to accommodate models sensitive to scale variance, and
outlier handling was implemented for rare, high-volume anomalies. Hyperparameter tuning was performed
using grid or randomized search protocols, with separate training and validation splits.

Model classes and evaluation metrics

Six regression algorithms were trained independently on the same input-output structure to enable comparative
benchmarking. The linear group consisted of ElasticNet and HuberRegressor. ElasticNet was selected for
its embedded feature regularization, combining L1 and L2 penalties, while HuberRegressor was used for its
resilience against noise and heavy-tailed errors.

The non-linear group included four tree-based ensemble models: Random Forest, XGBoost, LightGBM, and
CatBoost. These models are well suited for structured tabular data, and have demonstrated robust performance
under conditions of missing values, interaction effects, and high-dimensional input spaces. All models were
implemented and trained under consistent data partitions.

Model performance was evaluated using three complementary metrics: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Safe Mean Absolute Percentage Error (Safe MAPE). MAE provided a scale-
consistent average error magnitude, RMSE emphasized the impact of large residuals, and Safe MAPE ensured
stability under low-demand conditions by preventing denominator collapse?’. This evaluation scheme allowed
robust comparison of both absolute and proportional forecasting error across varying demand levels and SKU

types.

Model selection and final forecasting protocol

After evaluating all candidate models on a temporally held-out test set (2023-2024), the best-performing
algorithm typically RF was retrained on the full historical data (2015-2024) to maximize available information.
Final forecasts for 2025 to 2032 were generated using a recursive inference loop in which predictions for year
y were used to construct feature vectors for year y + 1. This preserved the causal sequence and allowed long-
range forecasting beyond the training horizon.

To avoid error drift and improve lifecycle realism, forecasts were blended with an exponential decay projection
computed using part-specific decay coefficients derived from historical slope and recent demand levels®. The
blended output, defined as a convex combination of model inference and decay projection, ensured that the
resulting forecasts remained anchored to both data-driven trends and engineering lifecycle expectations. This
hybrid strategy enabled the model to respect physical product realities such as saturation, obsolescence, and
dropout while retaining the flexibility of data-driven learning.

The final modeling pipeline thus represents a fusion of statistical learning, operational insight, and lifecycle
logic, making it well-suited for industrial applications where demand volatility, inventory risk, and long service
obligations coexist.

Hyperparameter tuning and validation protocol

To ensure reproducibility and prevent overfitting, model hyperparameters were optimized through systematic
grid or randomized search using a temporal validation scheme. Data from 2015 to 2022 were used exclusively
for training, while 2023-2024 served as the validation and test window. The Safe Mean Absolute Percentage
Error (Safe MAPE) metric was used as the primary optimization criterion, with MAE and RMSE employed as
secondary checks for stability.

The Table 1 lists the principal hyperparameters and search ranges employed for each regression model. For
ensemble methods, early-stopping criteria and random seeds were fixed across trials to ensure comparability.
For linear regressors, regularization parameters were tuned within logarithmic ranges to balance bias-variance
trade-off. This structured tuning protocol ensured reproducible optimization across all model families and
provides a transparent basis for the comparative performance shown in Fig. 6b.

During hyperparameter optimization, the Safe Mean Absolute Percentage Error (Safe MAPE) was adopted
as the primary selection metric, owing to its stability under sparse and low-volume demand conditions common
in EOL forecasting. The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used as
secondary verification metrics to ensure that the chosen configuration minimized both absolute and variance-
weighted residuals. Hyperparameter combinations yielding the lowest Safe MAPE with consistent MAE/RMSE
performance across the validation period (2023-2024) were retained for final model training.
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Model

Key hyperparameters

Search range/setting

Selection criterion

Elasticnet

a (L1-L2 mixing parameter), A (regularization
strength)

a€[0.1,0.5,09]; A € {0.001, 0.01, 0.1, 1.0, 10}

Minimum safe MAPE

Huber regressor

¢ (Huber threshold), a (learning rate)

e €{1.0, 1.5, 2.0}; a € {0.0001, 0.001, 0.01}

Minimum safe MAPE + stable
RMSE

Random forest

n_estimators, max_depth, min_samples_split

n_estimators € {100, 300, 500, 1000}; max_depth € {5, 10, 15, None};

Balanced bias-variance and

min_samples_split € {2, 5, 10} lowest safe MAPE
XGboost n_estimators, max_depth, learning_rate, n_estimators € {100, 300, 500}; max_depth € {3, 5, 7, 9}; learning_rate € | Validation safe MAPE
subsample {0.01, 0.05, 0.1}; subsample € {0.7, 0.8, 1.0} minimized with <2% overfit gap
LichtGBM num_leaves, learning_rate, feature_fraction, num_leaves € {31, 63, 127}; learning_rate € {0.01, 0.05, 0.1}; feature_ Lowest safe MAPE and stable
& bagging_fraction fraction € {0.8, 0.9, 1.0}; bagging_fraction € {0.7, 0.8, 1.0} training/test error
. . . iterations € {300, 500, 800}; depth € {4, 6, 8}; learning_rate € {0.01, 0.05, | Minimum safe MAPE with
Catboost iterations, depth, learning_rate, lZ_leaf_reg 0.1} lZ_]eaf_reg c1{3,5,7) smooth forecast curve
. - - Continuity at 2024-2025
Decay blending . . B €10.2,0.5, 0.8]; selected empirically based on forecast continuity and L
(Bin Eq. 4) Blending coefficient MAPE stability transition +lowest error growth

rate

Table 1. Hyperparameter search ranges and validation protocol for six regression models.

During scoping, also evaluated finer granularities (monthly/quarterly) on a representative set of high-volume
SKUs; no consistent improvement in Safe MAPE was observed due to zero-inflation and batching artefacts,
whereas the annual target preserved the intended coupling with warranty/attrition features and the LTB decision
cadence.

Evaluation metrics and validation protocol

The evaluation of model performance in this study is grounded in a rigorous validation strategy that reflects real-
world forecasting constraints in end-of-life (EOL) service parts planning. Given the long planning horizons and
sparse, intermittent nature of demand, conventional error metrics and random cross-validation approaches were
deemed insufficient. Instead, a temporally stratified hold-out validation was employed, paired with carefully
selected error metrics tailored to low-volume, long-tail data behavior.

The dataset was partitioned into three temporal windows. Data from 2015 to 2022 was used exclusively
for training, ensuring sufficient historical context for each SKU. The years 2023 and 2024 were held out as a
test set to evaluate out-of-sample generalization. This approach simulates the actual conditions under which
LTB decision would be made in practice namely, forecasting future demand based solely on past consumption
patterns, without access to future realizations. This validation structure preserves causal integrity and guards
against look-ahead bias, a common concern in time-series machine learning applications.

To quantify model accuracy, three complementary metrics were employed: MAE, RMSE, and Safe MAPE.
MAE provides a scale-sensitive, robust measure of average deviation between predicted and actual values. It is
particularly well-suited for applications involving diverse SKUs with different demand magnitudes. RMSE places
greater emphasis on large deviations, penalizing models that make occasional but severe prediction errors an
important consideration when planning expensive or critical spare parts procurement.

Safe MAPE was developed specifically for this study to address numerical instability and misleading
magnitudes often observed in traditional MAPE when actual demand values are near zero. The Safe MAPE
formulation substitutes a small constant threshold in the denominator when the actual value is very low or
zero, thereby avoiding division by zero and suppressing inflated percentage errors. This makes Safe MAPE
particularly useful in the EOL context, where many SKUs exhibit declining or near-zero demand as vehicles exit
the serviceable fleet?. The Safe MAPE calculation is defined as:

100 n Z//\z — Yi
fe MAPE = — E -1 | ————
Safe n i=1 | maX(yi, € ) | (5)

where ¥;is the predicted demand, y;is the actual demand, and € is a small positive threshold (e.g., 10 units)
introduced to prevent division by zero and suppress inflated percentage errors when actual demand approaches
zero. This formulation ensures numerical stability and fair comparison across SKUs with low or intermittent
demand.

Model selection was based on aggregated performance across all three metrics on the test window (2023-
2024). The chosen model was then retrained on the full historical period (2015-2024) prior to generating forecasts
for 2025-2032. This ensures that all available data is utilized once the model has demonstrated generalization
capability under realistic hold-out conditions. The validation protocol and metric triad together form a robust
performance assessment framework tailored to the high-stakes and data-scarce nature of LTB forecasting.

Forecast deployment and use case integration

Following model training, validation, and selection, the final forecasting framework was deployed for operational
use to generate SKU-wise demand projections over the eight-year planning window from 2025 to 2032. The
deployment protocol was designed to simulate the conditions under which OEMs execute LTB decisions in a
high-stakes, resource-constrained environment. The forecasting outputs were generated at an annual resolution
and structured to support both aggregate procurement planning and part-specific risk assessment.

Scientific Reports |

(2026) 16:1394

| https://doi.org/10.1038/s41598-025-31171-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

The chosen model RF in most cases was retrained using the complete historical dataset from 2015 to 2024
to leverage all available information. For each part, a recursive forecasting loop was initiated, beginning with
year 2025. For each forecast year y, the previously predicted demand D(p,y — 1) was inserted into the feature
vector as the lag variable. The active vehicle count was updated using dropout-adjusted production volumes,
and all engineered features (e.g., replacement rate, demand slope, decay rate) were recomputed as required. This
forward-inference approach ensured that the forecasting engine operated autonomously without any access to
true future values, thereby preserving realism and preventing leakage.

To modulate long-horizon predictions and align them with physical part lifecycle decay, the raw model
outputs were blended with part-specific exponential decay functions derived from historical demand slope
and final year (2024) consumption. The convex combination of model-based predictions and decay-adjusted
projections stabilized the output trajectory, particularly for SKUs exhibiting sharp attrition or usage decline.

The forecast results were structured as a part-year matrix containing predicted demand values for each
SKU from 2025 to 2032. These results were visualized through line plots, overlaying historical demand, test
period performance, and long-term projections across all model classes. Representative cases were selected for
deeper inspection, highlighting trends such as forecast flattening, accelerated decay, or model disagreement. In
particular, the top 5 high-volume SKUs and a set of critical low-frequency parts were examined to illustrate the
operational diversity of outcomes and planning implications.

The complete forecasting workflow was implemented using Python 3.11 and associated scientific computing
libraries, including scikit-learn, xgboost, catboost, lightgbm, and pandas. Forecast outputs were exported to
structured CSV files and integrated into Excel-based planning dashboards, enabling domain experts to overlay
cost, lead time, and supplier constraints. The system supports dynamic “what-if” analysis by allowing the
adjustment of dropout rates, decay coefficients, or model blending weights, thereby enhancing flexibility in
uncertain or rapidly evolving field environments®.

The proposed forecasting framework has been architected for seamless integration within enterprise-
grade planning ecosystems. All computational modules: data preprocessing, model training, decay blending,
and visualization are implemented as modular Python services communicating through standardized APIs.
The system exchanges structured data via CSV, JSON, and ODBC connectors, enabling direct linkage with
SAP S/4HANA, SAP BW/4HANA, Oracle ERP, and SAP Data Intelligence environments. Forecast outputs,
uncertainty bands, and LTB recommendations can be automatically synchronized with material-master and
procurement tables through batch or real-time jobs.

From a computational standpoint, the framework supports distributed execution using Dask and Apache
Spark back-ends, allowing horizontal scaling across multiple compute nodes. Containerized deployment through
Docker and Kubernetes ensures portability between on-premises infrastructure and cloud environments such
as AWS SageMaker, Azure ML Studio, or Google Vertex Al The architecture’s modularity permits incremental
updates to the predictive engine without altering existing ERP data schemas, ensuring long-term maintainability.
This design demonstrates the practical readiness of the decay-function-blended ML system for industrial
deployment in real-world ERP/SAP networks, providing an interpretable, scalable, and secure decision-support
tool for strategic Last-Time-Buy forecasting.

This deployment architecture demonstrates the viability of the forecasting framework not only as a research
prototype but also as a practical decision-support tool for LTB planning. By aligning model predictions with
business workflows and interpretability needs, the solution offers a scalable foundation for OEMs managing
complex EOL service obligations across thousands of SKUs.

Results and discussions

This section presents a comparative evaluation of six machine-learning models developed for Last-Time-Buy
(LTB) decision support. The results are reported in terms of predictive accuracy across multiple models and
metrics, providing both quantitative and qualitative insight into their suitability for end-of-life (EOL) demand
forecasting. The comparative performance is assessed on a temporally structured dataset comprising 1,709 SKUs
of automotive spare parts with associated historical demand, vehicle attrition, and warranty claim data from 2015
to 2024. As summarized in Table 2, the study employed six regression algorithms spanning linear, robust, and
ensemble-based learning paradigms. The table highlights each model’s assumption and operational suitability
for end-of-life (EOL) demand forecasting. Among these, Random Forest combined with exponential-decay
blending demonstrated the most balanced trade-off between accuracy, interpretability, and lifecycle alignment.

Testing phase performance

Model performance on the hold-out test dataset (2023-2024) was evaluated to determine generalization capability
in real-world forecasting scenarios. As shown in Table 3, Random Forest achieved the best performance across
all three metrics, with a test MAE of 115.9, RMSE of 741.39, and Safe MAPE of just 4.36%. These results indicate
strong predictive accuracy even under low-volume and intermittent demand conditions.

XGBoost and CatBoost followed with MAEs of 420.75 and 486.28, respectively. However, both models
exhibited higher RMSEs (5437.93 and 6314.92), suggesting sensitivity to outliers. Light GBM recorded the highest
test MAE (595.44) and RMSE (7567.08), reflecting significant variance and poor generalization. Among linear
regressors, HuberRegressor showed better robustness (MAE=202.61, RMSE =1099.35, Safe MAPE=25.63)
than ElasticNet (MAE =346.05, Safe MAPE =478.11), the latter clearly failing under sparse demand conditions.

Figure 4 presents a side-by-side bar chart comparing training and test errors across all models. It is evident
that Random Forest maintains consistently low errors with minimal performance drop between phases. In
contrast, LightGBM and CatBoost exhibit significant overfitting, while ElasticNet demonstrates unstable
proportional accuracy?.
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Model Type Core assumption/learning principle Key strengths Limitations in EOL context
) Linear regression with L1 +12 Demand follows quasi-linear . Handles multicollinearity; Cannot capture non-llne{ay or dlscont‘muous

Elasticnet o trend; correlated features penalized . ) demand behaviour; sensitive to zero-inflated

regularization ; interpretable coefficients

proportionally data
Huber Robust linear model combining | Outliers are limited by Huber threshold; Resistant to noise and extreme Linear formulation underfits sparse, highly
regressor | least-squares and absolute loss assumes smooth residual distribution values non-stationary data
Random | Ensemble of decision trees using | Non-parametric; learns non-linear High accuracy, low variance; Large memory footprint; limited
. . . . - interpretable feature importance; . fa
forest bootstrap aggregation interactions without feature scaling extrapolation beyond training range
stable on sparse data
XGBoost | Gradient-boosted tree ensemble Sequgntlal residual correction; regularized | Fast training; strong generalization; Prone to overﬁttmg on small‘datasets;
boosting for overfitting control handles mixed feature types sensitive to learning-rate tuning

LightGBM L?af—wme gra41er}t bgostlng with Greedy leaf growth to minimize loss Very fa§t 01:1 large datasets; efficient May ovgrﬁt or prf)duce unstable forecasts

histogram optimization parallelization under high sparsity

Ordered boosting with Uses permutation-driven boosting and Handles categorical variables Sensitive to noise; can produce abrupt
Catboost - . - . R oo ;

categorical feature encoding target statistics efficiently; reduced overfitting bias | forecasts when historical trend shifts
Proposed Random Forest combined with | ML prediction dynamically adjusted by Physmally interp retable;‘ robusF Requires empirical tuning ofblend} ng
RF +decay exponential-decay modulation lifeevcle decay kernel long-horizon extrapolation; suitable | coefficient; current version deterministic (to
blending P Y 4 Y for SKU-level deployment be extended with uncertainty-aware methods)

Table 2. Summary of machine-learning models used for EOL demand forecasting.

Model MAE | RMSE | Safe MAPE
Random forest | 115.90 | 741.39 4.36%
XGboost 420.75 | 5437.93 | 12.21%
Catboost 486.28 | 6314.92 | 19.52%
LightGBM 595.44 | 7567.08 | 20.23%
Elasticnet 346.05 | 1354.30 | 478.11%
Huberregressor | 202.61 | 1099.35 | 25.63%

Table 3. Comparative performance of six machine-learning models on test data (2023-2024).

In Fig. 5, the predicted vs. actual demand for selected SKUs during the 2023-2024 test window further
confirms the pattern. RF tracks the actual demand curve closely with minimal deviation, while linear models
exhibit flat or delayed response behavior, unsuitable for responsive LTB forecasting.

Training phase results

Performance on the training dataset (2015-2022) provides considerate into model fit and potential overfitting
risks. RF again exhibited the most favorable training characteristics, with a MAE of 53.2, RMSE of 684.3, and
Safe MAPE of 3.89%, indicating well-regulated complexity and effective learning from historical patterns.

XGBoost and CatBoost recorded lower training MAEs (198.7 and 188.4, respectively), but their Safe MAPE
values (8.42% and 6.13%) and the sharp increase in test error suggest these models overfit on sparse or skewed
inputs. LightGBM, despite a training MAE of 263.4, showed poor test generalization, reinforcing its tendency to
over-learn from noisy training points. The model's RMSE rose from 4885.1 (training) to 7567.1 (test), indicating
insufficient robustness.

Linear regressors displayed underfitting behavior. ElasticNet produced comparable errors in both phases
(MAE: 358.6 training vs. 346.1 test), but with extremely high Safe MAPE (>478%), confirming its inability to
capture non-linear or discontinuous demand patterns. HuberRegressor exhibited slightly better results (training
MAE: 256.7; test MAE: 202.6), but lacked sufficient accuracy for high-stakes LTB forecasting?®.

The small generalization gap for RF across all metrics underscores its capacity to learn part-specific decay
trends, vehicle attrition, and demand slope effects without overfitting. This reliability makes it well-suited for use
in operational LTB decision-making.

Visual analysis of forecasted demand

To evaluate the long-term applicability of the trained models for Last Time Buy (LTB) planning, 8-year forecasts
(2025-2032) were generated for each SKU using all six models. Figure 6 illustrates the forecasted annual demand
for a representative spare part (SPN00001), comparing predictions across models.

The demand trajectories for tree-based models: RE, XGBoost, CatBoost, and LightGBM exhibit a consistent
declining trend, aligned with expectations for spare parts in the post-production service phase. This decline
reflects both the decaying installed vehicle base and the diminishing replacement intensity over time. Among
the models, RF and XGBoost demonstrate smoother and more conservative decay curves, indicating effective
integration of attrition-adjusted vehicle population and historical demand slopes. CatBoost and LightGBM
produce more aggressive early drops in forecast, which may reflect over-sensitivity to recent downward
fluctuations.

In contrast, linear models show markedly different behavior. ElasticNet predicts an initially high
demand followed by a rapid exponential drop, consistent with its bias toward the dominant historical trend.
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HuberRegressor provides a moderated decay but lacks the non-linear adaptability required to track subtle
demand shifts. These patterns confirm earlier findings that linear models lack the flexibility to generalize in
the context of non-stationary and intermittently sparse demand, often leading to abrupt or unstable long-range
predictions?.

The comparative behavior of these models highlights the practical advantage of ensemble-based learners
for high-stakes LTB decision-making. Random Forest, in particular, offers interpretable and stable forecasts
that align with empirical expectations and operational experience. The 8-year horizon forecast for SPN00001,
as shown in Fig. 5, is a representative case that underscores the importance of robust modeling under declining
lifecycle dynamics.

To evaluate the long-term applicability of the trained models for Last Time Buy (LTB) decision-making,
8-year forecasts (2025-2032) were generated for each SKU using all six trained regressors. Figure 6a and b
illustrate forecasted annual demand trajectories for two representative spare parts: SPN00001 and SPN01499
highlighting the temporal behavior and continuity of predictions across models.

In Fig. 6a, forecasts for SPN00001 exhibit a consistent downward trend across all models, which aligns with
expected spare part lifecycle patterns influenced by vehicle attrition and reduced failure incidence over time.
Random Forest and XGBoost display smoother decay curves, indicating effective integration of engineered
features such as dropout-adjusted fleet size and demand slope. CatBoost and LightGBM show steeper initial
drops, which may be attributed to overfitting to recent historical fluctuations®**>!. Linear models deviate sharply
ElasticNet projects an overconfident steep decline, while HuberRegressor maintains a lagged decay with poor
alignment to nonlinear dynamics.

Figure 6b complements this analysis by combining both historical demand (2015-2024) and forecasted
demand (2025-2032) for part SPN01499. A vertical dotted line marks the boundary between training and
prediction phases. The observed historical demand profile exhibits intermittent but increasing trends until 2024.
Random Forest, XGBoost, and CatBoost extend this trajectory into a controlled exponential decay, demonstrating
robustness in lifecycle-aware extrapolation. In contrast, ElasticNet and HuberRegressor significantly overshoot
early demand levels and then collapse into unrealistic tail forecasts. The transition at the 2024 boundary is notably
smooth for tree-based models, which is critical for ensuring demand continuity across planning horizons.

Together, these figures validate the practical utility of ensemble learning approaches in forecasting long-
tail, intermittent demand signals with decaying behavior. Forecast continuity, as observed in Random Forest’s
trajectory, reduces the risk of under- or over-estimation of LTB quantities, which is critical to minimizing
obsolescence costs and service risk®2.

Automotive supply chain practical implications

The preceding analyses demonstrate that the integration of lifecycle-aware features with non-linear machine
learning models significantly improves the forecasting accuracy and operational reliability of LTB demand
estimation. This section synthesizes key technical insights and discusses their implications for OEMs in
automotive and capital goods industries managing end-of-life (EOL) service obligations.

A primary insight is the importance of incorporating vehicle attrition-adjusted active fleet size into the
predictive framework. Models that explicitly account for declining installed base, such as Random Forest and
XGBoost, exhibited smoother and more realistic decay in long-horizon forecasts (Fig. 6a and b). This behavior
is essential for aligning spare part procurement with the actual serviceable population and avoiding premature
inventory exhaustion or overstocking.

The role of engineered features, such as demand slope and part-specific decay rate, was equally critical. By
capturing both short-term dynamics (e.g., lagged demand and replacement intensity) and long-term lifecycle
effects (e.g., exponential decay tied to dropout rates), the framework enabled tree-based models to adapt to
highly intermittent and non-stationary demand patterns*. This adaptability directly supports improved LTB
quantity planning, particularly for low-volume, long-tail SKUs that traditional time-series models struggle to
represent.

Model robustness to intermittent and sparse data emerged as another key differentiator. As observed in Table
1; Figs. 3, 4 and 5, tree-based models consistently outperformed linear methods on Safe MAPE, a critical metric
in low-demand regimes. For instance, Random Forest maintained a Safe MAPE of 4.36% on the test set, while
ElasticNet exceeded 470%, rendering it ineffective for inventory-critical applications. This proportional reliability
ensures that even marginal parts those frequently ignored in classical inventory models can be forecasted with
confidence.

From a practical standpoint, the results underscore the need for OEMs to shift from static, historically
driven methods to dynamic, feature-fused predictive systems. Traditional univariate forecasting approaches, or
methods that ignore vehicle retirement and part obsolescence dynamics, are ill-suited for the complex nature
of aftermarket support. By adopting models that explicitly learn from warranty failures, attrition curves, and
lifecycle phases, OEMs can reduce financial risk associated with over-procurement and simultaneously avoid
service failures due to stockouts®*.

Moreover, the capability to visualize model-specific demand trajectories (Fig. 5b) enables procurement and
supply chain planners to evaluate prediction confidence over time. For instance, the divergence of CatBoost
and ElasticNet trajectories in later years highlights the need to integrate uncertainty quantification or ensemble
averaging into LTB planning workflows, particularly beyond the first five forecast years.

Overall, the AI/ML-based approach demonstrated in this study provides a scalable and interpretable
framework for end-of-life inventory forecasting. It facilitates data-driven LTB decisions that balance capital
investment, customer service continuity, and regulatory compliance. When operationalized within digital supply
chain platforms, such models can function as decision-support modules that continuously adapt to new data and
evolving usage patterns, ultimately improving resilience and efficiency in spare parts logistics.
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Correlation matrix of engineered features used for forecasting
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Fig. 4. Comparison of train and test error metrics across models: MAE (left), RMSE (center), and Safe MAPE
(right).

Cost implications and LTB recommendations

The deployment of machine learning-based demand forecasting for EOL spare parts is not solely a data science
exercise, it directly informs procurement decisions with long-term cost consequences. This chapter translates
the forecast outputs into economic implications and provides actionable guidance for determining optimal LTB
quantities. The cost model reflects trade-offs between stockout risk, excess inventory holding, and obsolescence,
all of which are exacerbated in the tail end of the product lifecycle®
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Fig. 5. Actual vs. predicted demand for representative SKUs during test years 2023-2024.

Cost impact of forecasting accuracy
Demand forecast accuracy has a non-linear effect on cost exposure during LTB events. Under-prediction
of demand results in unfulfilled service obligations, reputational loss, and emergency re-sourcing often
at significantly higher costs or impossibility due to tool obsolescence. Conversely, overestimation leads to
overstocking, which incurs inventory holding costs and ultimately scrap or write-off costs if parts exceed shelf-
life or become technologically obsolete.

Let the unit procurement cost of a part be denoted as C'p, the annual holding cost rate as h, and the forecasted
demand for the 8-year horizon as Ds (p). If the actual demand over the horizon is Ds (p), then the cost
deviation A C (p) associated with forecast error is approximated as®®:

A C(p) = Cp.max | (0, Ds (p) — Ds (p)) ot + max (o, Ds (p) — Ds (p)) A 5)

Here, t represents the average years of inventory held, and X is the penalty for stockout or emergency sourcing.
This expression formalizes the dual nature of cost penalties and provides a quantitative basis for integrating
forecast uncertainty into procurement risk models.

Models with higher Safe MAPE such as ElasticNet and HuberRegressor are associated with significant
upward deviation in Dg (p), making them economically unattractive due to overstocking. Conversely, tree-
based models with lower forecast dispersion and smoother decay profiles (as seen in Fig. 5a and b) reduce
the expected value of both overage and underage cost terms, leading to more financially resilient procurement
decisions.

Part-wise LTB recommendation strategy
To operationalize the forecasting results into LTB quantities, a part-wise aggregation of the 8-year forecast was
performed for each SKU. The final LTB recommendation per part is expressed as>”:

QLB = Z 5(522025Final13red (p,y) + 0.0 (p) (6)

where FinalPred (p,y) is the forecasted demand for year y from the selected model, and o (p) is the standard
deviation of forecast error from 2023 to 2024 test results, used here as a proxy for model uncertainty. The term 6
is a tunable safety factor (typically between 0.1 and 0.3), adjustable based on the part’s criticality, lead time, and
cost sensitivity. Parts were segmented into three categories for LTB planning®:

(a) Category A (critical high volume): High forecast volume and low acceptable service risk. These parts receive
the full forecast plus a safety buffer (6=0.25\theta=0.250 =0.25 or higher).

(b) Category B (moderate volume, moderate risk): Moderate service demand and moderate cost exposure.
Forecasts are used directly without buffer.

(c) Category C (low volume, high obsolescence risk): Intermittent demand with low expected consumption.
These receive minimum LTB volume based on recent actuals or are excluded.

An example application of this approach is shown in Table 4, where parts SPN00001, SPN01499, and SPN01330
are recommended for procurement based on their forecast trajectories, criticality index, and historical
consumption patterns.
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Fig. 6. (a) Forecasted spare part demand from 2025 to 2032 for SKU SPN00001 using six ML models. (b)
Combined historical and 8-year forecasted demand (2015-2032) for SKU SPN01499

Part number | 8 year forecast units | Forecast STD | Safety factor | LTB recommended quantity
SPN00001 1407.616 93.64594 0.25 1431.03

SPN01330 552,140 36253.46 0.25 561203.3

SPN01499 505225.3 33256.04 0.25 513539.4

Table 4. Part-wise forecast and recommended LTB quantities.

The LTB recommendation framework, grounded in forecast outputs and error-derived uncertainty
quantification, enables OEMs to balance inventory cost with service continuity over extended support
horizons. When integrated into enterprise resource planning (ERP) systems or procurement dashboards, these
recommendations can be dynamically adjusted based on market intelligence, part price volatility, or program
extension scenarios.
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Ablation and horizon-wise error analysis

To quantify the influence of decay blending and assess forecast stability, an ablation study was performed for
blending coefficients a € {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Figure 7a and b show results for a representative high-
volume part (SPN01499) using Random Forest and XGBoost regressors. As o increases from 0 (no blending) to
1 (full exponential decay), forecasts transition from over-persistent to over-attenuated trajectories. Intermediate
values (a=~0.2-0.4) produce physically consistent declines aligned with vehicle-fleet attrition, confirming the
stabilizing role of decay modulation.

For empirical error analysis, rolling-origin back tests were conducted within 2019-2024 to compute horizon-
wise MAE, RMSE, and Safe MAPE for 1- to 6-year-ahead forecasts. The observed error growth curves exhibit
sub-linear scaling under decay blending, indicating reduced compounding of uncertainty. Since actual demand
for 2025-2032 is not yet available, error metrics beyond 2024 are projected by extrapolating the empirical error-
vs-horizon trend with residual-bootstrap uncertainty bands (grey regions in Fig. 7b)*°. These projections are
reported only for interpretive context and are explicitly distinguished from measured values. Table 5 presents

Ablation study on Decay Blending of RandomForest (for SPN01499)
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Fig. 7. Ablation study on decay blending of Random Forest model for SPN01499. Intermediate blending
(a=0.2-0.4) produces smoother, physically plausible demand decline compared with unblended (a=0.0) or
fully decayed (a=1.0) predictions. Ablation study on decay blending of XGBoost model for SPN01499 with
horizon-wise projection.
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a | MAE | RMSE | Safe MAPE (%) | A Safe MAPE vs. a=0 (%)
0.0 | 1182 | 762.4 |5.18 -

0.2 | 1159 | 7414 |4.36 -15.8

0.4 | 120.7 | 7859 |4.92 -5.0

0.6 | 130.3 | 830.6 |5.74 +10.8

0.8 | 141.9 | 902.2 | 6.51 +25.7

1.0 | 155.0 | 978.4 | 7.04 +36.0

Table 5. Ablation of decay-blending coefficient a on averaged validation errors (2019-2024).

the averaged validation errors across a values. The lowest Safe MAPE (= 4.3%) and smoothest horizon profile are
achieved at a = 0.2, adopted as the optimal blending parameter in this study.

Limitations and future work

While the proposed AI/ML-driven forecasting framework significantly improves LTB decision-making for EOL
spare parts, certain limitations must be acknowledged. These limitations stem primarily from assumptions in
dropout modeling, data availability constraints, and the deterministic nature of the predictive pipeline.

A key limitation lies in the assumption of static dropout rates for estimating the active vehicle population.
Although a smoothed annual decay factor was applied based on production volumes and historical attrition
trends, the model does not currently incorporate real-time vehicle deregistration or scrappage data. This may
result in inaccuracies in the projected installed base, especially in markets with high geographic or regulatory
variability. Future iterations could incorporate dynamic dropout models updated from registration databases,
sensor telemetry, or macroeconomic indicators (e.g., fuel prices, insurance renewals, or scrappage incentives).
For SKUs with dense transactional histories, future work will explore multi-resolution designs (transactional
features aggregated and reconciled to annual targets) or hierarchical time-series reconciliation to exploit fine-
grain signals without re-introducing zero-inflation bias.

A current limitation of the proposed framework is that it generates deterministic point forecasts without
quantifying predictive uncertainty. In future implementations, this can be addressed through probabilistic or
Bayesian learning extensions. Quantile Regression Forests (QRF) can replace the standard Random Forest to
estimate conditional quantiles of demand distribution rather than single mean predictions, thereby providing
upper and lower confidence bounds for each SKU-year forecast. Alternatively, Bayesian Ensemble methods
such as Monte-Carlo dropout networks or deep Bayesian regressors can approximate posterior distributions
over model parameters and yield prediction intervals that reflect epistemic and aleatoric uncertainty. When
combined with the exponential-decay blending mechanism, these uncertainty estimates would enable generation
of probabilistic demand trajectories and confidence-weighted Last-Time-Buy (LTB) quantities. Embedding such
uncertainty-aware modelling directly within enterprise planning systems would enhance risk-adjusted inventory
management and decision transparency under high-variability EOL conditions.

The study also assumes complete availability and integrity of historical demand, warranty, and vehicle volume
data for all parts. In practice, data fragmentation and legacy system constraints can introduce missingness
or inconsistencies that challenge model training. Developing robust data imputation strategies and anomaly
detection methods will be critical for industrial deployment at scale.

In terms of modeling scope, the present framework focuses solely on single-echelon forecasting for spare part
demand. It does not explicitly account for multi-tiered supply chains, inventory buffers at regional warehouses,
or lead time variability. Integrating this forecasting layer with inventory optimization, distribution planning, and
multi-echelon simulation models could unlock further downstream efficiencies.

Additionally, the current study treats each SKU independently and does not yet exploit transfer learning
across part clusters with similar failure modes or life-cycle profiles. Future extensions may incorporate part
similarity networks, failure taxonomies, or hierarchical models that learn from grouped part behavior, thereby
improving generalization in low-data regimes.

Finally, while the framework provides accurate long-range demand forecasts, it does not yet include a
cost-optimization module to translate forecast outputs into financially optimal LTB quantities. A logical next
step would be to integrate inventory holding cost, obsolescence penalties, and service level constraints into a
prescriptive optimization layer that recommends part-specific LTB order volumes under budgetary and risk
trade-offs. While the current approach offers a robust foundation for Al-assisted EOL inventory forecasting,
ongoing enhancements are necessary to enable dynamic, scalable, and cost-aware decision-making under real-
world operational complexities.

Conclusions

This study presents a data-driven framework for forecasting long-term spare part demand in EOL scenarios,
with specific application to LTB planning in the automotive domain. By integrating vehicle attrition modeling,
warranty-based failure insights, and engineered lifecycle-aware features into an AI/ML pipeline, the methodology
provides a robust mechanism to reduce procurement uncertainty and improve inventory resilience over
extended service periods. The approach leverages recursive multi-year forecasting using tree-based regressors
augmented with exponential decay adjustments to generate physically grounded demand estimates across an
8-year horizon. Key findings from the modeling and validation efforts are summarized below:

Scientific Reports |

(2026) 16:1394 | https://doi.org/10.1038/s41598-025-31171-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1. The proposed framework was tested on 1709 SKUs spanning the period 2015-2024 and achieved strong
generalization on unseen data. The Random Forest model emerged as the most reliable, yielding the lowest
Safe MAPE of 4.36%, compared to 52.8% for CatBoost and over 470% for ElasticNet on the test set.

2. Visualization of forecasted demand confirmed lifecycle-aligned decay in high-volume parts such as
SPN00001, while blended forecasts for SPN01499 demonstrated smooth transition from observed to extrap-
olated values, indicating the success of decay-informed blending strategies.

3. A cost-sensitive LTB optimization approach was proposed using part-specific forecast aggregates and un-
certainty buffers. For instance, SPN01330 exhibited an 8-year forecast of 2,509 units, with a buffer-adjusted
recommendation of 2,567 units using a 25% standard deviation margin. This allows planners to proactively
hedge against variability while minimizing capital lock-in.

4. Feature analysis confirmed the independence of critical predictors such as vehicle base, replacement rate,
and decay slope, ensuring model interpretability and reducing multicollinearity bias during training.

5. The recursive deployment strategy, integrated with Python-based visualization and export routines, enables
integration into real-time planning dashboards or enterprise resource systems, facilitating actionable use in
OEM workflows.

In addition to achieving high predictive accuracy, ablation studies demonstrated that the decay-function
blending mechanism effectively stabilizes forecast trajectories and mitigates horizon-wise error growth, ensuring
realistic lifecycle alignment. The frameworks modular architecture and API-based integration with ERP/SAP
environments confirm its practical deployability for large-scale industrial inventory systems, bridging the gap
between research prototypes and production-grade decision support.

The proposed forecasting strategy demonstrates significant potential to transform how LTB quantities are
estimated for service parts. By fusing domain knowledge of lifecycle dynamics with scalable machine learning
models and interpretable metrics, the framework addresses both the technical and operational dimensions of
long-horizon inventory planning. Future extensions may incorporate uncertainty quantification, multi-echelon
supply chain modeling, and cost optimization layers to further enhance robustness and economic value for
global OEMs navigating complex service obligations.

Data availability
All the data and material used in this study is available in the manuscript, and further details if required, the
corresponding author will provide the same, through proper requisition.
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