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Accurate assessment of student engagement is central to technology-enhanced learning, yet 
existing models remain constrained by class imbalance, instability across data splits, and limited 
interpretability. This study introduces a multimodal engagement assessment framework that 
addresses these issues through three complementary strategies: (1) class-aware loss functions to 
alleviate class imbalance, (2) temporal data augmentation and heterogeneous ensembling to enhance 
model stability, and (3) SHAP-based analysis of the most stable component for reliable interpretability. 
Reliability was established through repeated cross-validation with multiple seeds across seven 
deep learning architectures and the proposed ensemble. The framework established a mean 
accuracy of 0.901 ± 0.043 and a mean macro F1 of 0.847 ± 0.068, surpassing baselines such as ResNet 
(Accuracy = 0.917), Inception (Macro F1 = 0.862), and LightGBM (Accuracy = 0.922). Ablation studies 
highlighted temporal augmentation and ensemble diversity as key contributors, while sensitivity 
analyses confirmed robustness with variance consistently below 0.07 across seeds and folds. Efficiency 
profiling established MCNN and TimeCNN as the optimal deployment architecture, combining near-
optimal accuracy with superior computational efficiency. SHAP-based interpretation was extended to 
provide feature-level and class-wise attribution, revealing consistent relationships between predictions 
and behavioral or cognitive cues. Overall, the study demonstrates that balanced evaluation and 
ensemble stability are essential for reliable engagement assessment.
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Student engagement is widely recognized as essential for academic success, positive learning environments, and 
overall educational quality1. It functions as a multifaceted construct, encompassing behavioral, emotional, and 
cognitive dimensions, that directly influences learning outcomes and student satisfaction1. Accurate assessment 
of engagement allows educators to identify disengaged students, facilitate personalized learning experiences, 
and adapt instructional strategies to maximize effectiveness2. Furthermore, it provides invaluable data for 
educational researchers developing innovative pedagogical approaches and technologies3.

Traditional methods for assessing student engagement, including self-report surveys4, experience 
sampling5,8, and manual observations7, are constrained by inherent limitations of subjectivity, intrusiveness, and 
scalability. The proliferation of digital learning platforms and intelligent tutoring systems has generated a wealth 
of multimodal data, creating an urgent need for automated, objective, and continuous engagement analysis6,8. 
In response, researchers have increasingly turned to machine learning (ML)8,9. While classification models 
like Random Forests and Logistic Regression have been deployed to predict engagement levels with reported 
accuracies exceeding 70%10, these approaches typically use single data modalities, limiting their capacity to 
capture the multifaceted nature of student engagement.
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Multimodal deep learning (MDL) has gained prominence by integrating diverse data streams (including eye 
gaze, facial expressions, and physiological signals) for more comprehensive assessments of learner states11,12. 
This fusion strategy is known to improve predictive performance. Monkaresi et al.13, for example, achieved 
an AUC of 73% in engagement recognition by combining facial expression analysis with heart rate data. In 
related work, Behera et al.14 reported an accuracy of 87% when detecting hand-over-face gestures together with 
facial expressions for emotion recognition during learning. These findings indicated that MDL offers a means 
to capture the complex and evolving nature of student engagement by drawing on complementary modalities.

However, applying MDL in education introduces ongoing challenges. Two of the most pressing are: data fusion 
(the technical complexity of integrating asynchronous, heterogeneous streams), and model interpretability, given 
the opacity of deep neural network predictions14. A further concern, often overlooked, is the pronounced class 
imbalance in authentic educational datasets15. ‘Moderate’ engagement is frequently overrepresented, whereas the 
‘high’ and ‘low’ categories, which are most relevant for targeted intervention, remain underrepresented16. Such 
imbalance may yield models that achieve high overall accuracy yet fail on the minority classes most relevant for 
targeted interventions13.

A recent study by Yan et al.17 proposed a framework addressing data fusion and interpretability. Their 
method utilized video, text, and log data, employing a Fully Convolutional Network (FCN) that achieved 
state-of-the-art performance of 0.95 accuracy and a 0.91 macro F1-score. Despite these impressive results, the 
evaluation methodology is susceptible to overfitting, as performance was reported from a single, best-case run 
without rigorous cross-validation. This approach masks model variance and uncertainty, inflating performance 
estimates and failing to account for the aforementioned class imbalance, thus questioning the generalizability 
and robustness of the proposed framework.

To address these limitations, this study introduces a multimodal engagement assessment (MSEA) framework 
emphasizing methodological rigor and predictive stability. The research is guided by the following key questions:

	1.	 How can a multimodal assessment framework be designed to ensure predictive stability and robustness 
against data-split and initialization variance, moving beyond the optimistic single-run evaluations common 
in prior studies?

	2.	 How effectively can such a framework, specifically through temporal data augmentation and class-aware loss 
functions, address severe class imbalance and improve the reliable detection of critical minority engagement 
states?

	3.	 Does achieving cross-fold predictive stability (RQ1) enable a more consistent and trustworthy interpretabil-
ity analysis, allowing for the identification of reliable feature attributions?

The key contributions advancing the state-of-the-art in multimodal learning analytics are:

•	 Robust Evaluation Methodology: The study implements a stringent repeated k-fold cross-validation protocol 
with multiple seeds to quantify and report model variance. This provides statistically reliable performance 
estimates and directly addresses the over-optimism and instability inherent in single-run evaluations.

•	 Stability as a Performance Prerequisite: Through rigorous ablation and sensitivity analysis, the study estab-
lishes that model stability, achieved via temporal data augmentation and heterogeneous ensembling; is the 
primary determinant of predictive reliability, often exceeding the influence of the core deep learning (DL) 
architecture.

•	 Enhanced Minority Class Recognition: By integrating class-aware loss functions and temporal augmentation, 
the framework achieves a Macro F1-score of 0.969. This represents a significant improvement in detecting un-
derrepresented engagement states (High and Low), supporting timely and targeted educational interventions.

•	 Cross-Fold Interpretability Analysis: By ensuring predictive stability, the framework enables robust SHAP-
based interpretability analysis in this domain. Feature importance remains consistent across folds, providing 
a transparent basis for educational deployment.

The remainder of this paper is organized as follows: “Related work” reviews related work on multimodal learning 
and imbalanced time-series classification in student engagement. Section “Methodology” presents the proposed 
methodology. Section “Results and discussion” reports the experimental setup and results. Section “Conclusion 
and future work” concludes with summary, practical implications, and future directions.

Related work
This section reviews prior studies on automated student engagement assessment. It first outlines the theoretical 
foundations of engagement and their adaptation to digital learning environments. The discussion then reviews 
the progression from unimodal approaches to MDL frameworks, culminating in a synthesis of persistent 
challenges, including data fusion, interpretability, class imbalance, and evaluation design. These insights frame 
current research and position the proposed framework relative to the latest state-of-the-art architectures.

Theoretical foundation
The automated assessment of engagement is grounded in educational theory, computer science, and affective 
computing. A central reference is the framework of Fredricks et al.18, which defines engagement as comprising 
behavioral, emotional, and cognitive dimensions. This model remains influential, though its application 
has shifted with the rise of online learning. Li et al.19, explored how these dimensions can be inferred from 
digital traces in MOOCs and intelligent tutoring systems, using signals such as clickstream data and forum 
contributions.

Scientific Reports |            (2026) 16:5 2| https://doi.org/10.1038/s41598-025-31215-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Early automation efforts relied on single data modalities. System log data were commonly used, with models 
such as Hidden Markov Models applied to clickstream patterns to distinguish engaged work from off-task 
behavior20. These methods were scalable but struggled to separate productive exploration from disengagement. 
Computer vision studies examined facial expressions and action units, linking them to self-reports of 
engagement21, though accuracy varied across individuals and cultures. Other unimodal strategies included 
natural language processing of student–tutor dialogue to detect affective states such as confusion or boredom22, 
and physiological measures such as EEG or galvanic skin response to capture cognitive load23. While these 
approaches established useful groundwork, they also highlighted a core limitation: no single data stream can 
capture the complexity of engagement.

To address this, research has shifted toward MDL, which integrates multiple sources of information to 
provide complementary perspectives. Early studies showed performance gains when modalities such as facial 
expressions and heart rate13, or body motion and visual cues in game-based environments24, were combined. 
Later work introduced more sophisticated architecture. Song et al.25 designed a hybrid model combining CNN-
based video features with LSTM-based interaction logs to improve performance prediction. Sharma et al.26 
advanced this further using a ‘grey-box’ approach that integrates CNN-based video features and LSTM-based 
interaction logs with partial interpretability, leading to robust and context-aware engagement predictions. Yan 
et al.17 proposed a framework using a FCN to fuse video, text, and log data, achieving high performance (0.95 
accuracy, 0.91 macro F1-score), but its single-run evaluation risks overfitting and overlooks class imbalance, 
limiting generalizability. These studies show that multimodal integration provides more reliable assessments 
than unimodal systems.

Recent work has examined spatiotemporal modeling techniques that strengthen temporal feature extraction 
across multimodal signals. Architectures such as STRFLNet27 and STEADYNet28, developed in EEG-based 
affective computing, illustrate how jointly learning spatial and temporal patterns can improve the interpretation 
of cognitively driven behaviors. Although these systems operate in different domains, their design principles 
highlight the importance of preserving temporal continuity when modeling human state trajectories.

Advances in multimodal fusion have also progressed toward more structured integration strategies. Reviews 
such as29 and applied frameworks in related sensing tasks30,31 point up how coordinated feature alignment 
supports stable performance across heterogeneous inputs. These studies highlight the needs for fusion 
mechanisms capable of handling asynchronous and modality-specific noise—issues that remain central in 
engagement modeling.

In affective computing, few-shot learning approaches such as FSTL-SA32 show that data-efficient representation 
learning can mitigate limited labeled samples, a constraint shared with many engagement datasets dominated by 
moderate states. These methods further illustrate the importance of architectures capable of generalizing under 
imbalance and sparse supervision.

Despite progress, challenges remain in deploying MDL in educational settings. A persistent difficulty is the 
fusion of heterogeneous and asynchronous data streams, for which no universal strategy exists, as reviewed by 
Jiao et al.33. Another issue is model interpretability. Deep learning (DL) methods often function as “black boxes,” 
limiting their adoption in education where transparency is critical. Explainable AI methods such as LIME and 
SHapley Additive exPlanations (SHAP) have been explored34, though their application to sequential multimodal 
data is still limited. A further challenge involves class imbalance. Engagement datasets are often dominated by 
moderate states, with few examples of high or low engagement. As Krawczyk35 observed, oversampling methods 
can distort temporal dependencies in such data, complicating standard correction strategies. Similar challenges 
have been addressed in other domains; for example, Sun et al.36 established that weighted oversampling based on 
sample importance can significantly improve model performance on highly imbalanced safety datasets.

Evaluation practices also influence reliability, P. Harrington37 showed that single train–test splits may inflate 
performance estimates. Cross-validation and resampling protocols are therefore essential for reliable assessment. 
The issue is compounded by the small size of many datasets, which has led to data augmentation to improve 
robustness38.

In summary, MDL has extended the scope of automated engagement assessment, yet unresolved issues in 
data fusion, interpretability, class imbalance, and evaluation design continue to restrict its broader adoption. 
The present study is positioned at this intersection, addressing these gaps to strengthen engagement analysis 
in authentic learning environments. While Table 1 summarises foundational studies and their associated gaps, 
Table 2 extends this overview by comparing our framework with recent state-of-the-art models from, situating 
the contribution within contemporary multimodal learning research.

  
  
These recent approaches provide advances for domain-specific tasks such as EEG-based emotion recognition 

and few-shot affective analysis. However, they do not directly address the methodological challenges central to 
multimodal engagement assessment, namely evaluation stability, class imbalance under temporal constraints, 
and the integration of heterogeneous behavioral signals. The present work is motivated by these gaps and 
introduces a framework designed to strengthen robustness, interpretability, and generalization in authentic 
learning environments.

Methodology
This study proposes a robust and generalizable framework for MSEA. The methodology is organized into 
five stages: dataset description and preprocessing, temporal data augmentation to address class imbalance, 
model architecture with snapshot ensembling, experimental setup and evaluation, and post-hoc statistical and 
interpretability analyses.
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Dataset description and preprocessing
The experiments used the SEA dataset17, collected from blended learning sessions in university classrooms. The 
dataset contains 205 labeled instances across three engagement levels, with the distribution shown in Table 3. 
This imbalance reflects the ecological validity of the data, mirroring the predominance of moderate engagement 
in real classroom settings.

The dataset provides three predefined modalities. Facial-emotion features are probability distributions across 
neutral, happy, and surprised expressions, as originally computed17. While engagement can involve additional 
states such as confusion or boredom, we retained the pre-computed features to maintain methodological 
consistency with the SEA benchmark and avoid external preprocessing biases. Textual features were extracted 
from forum posts via tokenization, stop-word removal, lemmatization, and TF-IDF vectorization. Although 
contextual language models (e.g., BERT or RoBERTa39 offer richer representations, TF-IDF40 was selected to 
preserve interpretability and computational efficiency, while ensuring a direct comparison of stability against 
baseline studies. Behavioral features consist of system log data capturing resource access frequency, duration of 
platform usage, and interaction events such as clicks and navigation.

References Method Modalities Core focus
17 (2025) FCN-based multimodal fusion (video, text, logs) Facial, Textual, Behavioral Single-run evaluation; no imbalance handling; limited generalizability.
27 (2025) Spatio-Temporal Representation Learning EEG Enhanced spatiotemporal fusion for emotion recognition.
28 (2024) Spatiotemporal EEG Analysis EEG High-resolution spatial–temporal modeling for clinical cognitive assessment.
32 (2025) Few-Shot Transfer Learning Facial Expressions Affective sentiment inference using limited annotated samples.

This Work Stability-Centric Multimodal Framework 
(Ensemble + MCNN) Facial, Textual, Behavioral Methodological rigor, stability-driven evaluation, and efficient multimodal 

fusion for engagement analysis.

Table 2.  Conceptual comparison with SOTA frameworks.

 

References Core focus/methodology Key contribution(s) Limitation/research gap

17 Foundational theory of engagement. Defines engagement as behavioral, emotional, and cognitive 
dimensions, providing a robust theoretical framework.

Sigle-run evaluation; no imbalance handling; 
limited generalizability

18 Adapting engagement theory for digital 
learning environments (MOOCs, ITS).

Maps engagement dimensions to digital traces like clickstream 
data and forum contributions in online courses.

Digital proxies are indirect and may be 
ambiguous without complementary data sources.

19 Clickstream data analysis using Hidden 
Markov Models.

Offers scalable, non-intrusive method to distinguish engaged work 
from off-task behavior using web user behavior data.

Struggles to differentiate nuanced states (e.g., 
productive exploration vs. disengagement).

20 Facial expression analysis using computer 
vision and action units.

Correlates visual cues (action units) with self-reported engagement 
in educational settings.

Accuracy varies due to individual and cultural 
differences in emotional expression.

21 NLP on student–tutor dialogues to detect 
affective states.

Identifies cognitive-affective states (e.g., confusion, boredom) 
relevant to learning through textual analysis.

Limited to environments with significant textual 
interaction (e.g., dialogue-based systems).

22 Physiological signals (EEG, GSR) for 
cognitive load measurement.

Provides direct, objective measures of arousal and cognitive effort 
using physiological data.

Intrusive, requires specialized hardware, and 
lacks ecological validity in real-world settings.

12 Multimodal fusion of facial expressions and 
heart rate.

Reveals accuracy improvements over unimodal methods by 
combining complementary modalities (video and physiological 
data).

Uses simple fusion techniques that fail to address 
temporal complexity of multimodal data.

23 Multimodal fusion of body motion and 
visual cues in game-based environments.

Shows performance gains in engagement detection in serious 
games applications.

Relies on basic fusion methods, limiting handling 
of temporal dynamics.

24 Hybrid fusion of video (CNN) and 
interaction logs (LSTM).

Combines video features and interaction logs to enhance teaching 
style evaluation and performance prediction.

Increases model complexity without addressing 
interpretability challenges.

25
Hybrid fusion of video (CNN) and 
interaction logs (LSTM) with a ‘grey-box’ 
approach.

Integrates multimodal data with partial interpretability, enabling 
robust and context-aware engagement predictions.

Increased model complexity; interpretability 
remains limited despite ‘grey-box’ approach.

16 Multimodal fusion using FCN for video, 
text, and log data.

Achieves high performance (0.95 accuracy, 0.91 macro F1-
score) in engagement assessment with focus on data fusion and 
interpretability.

Single-run evaluation risks overfitting, overlooks 
class imbalance, and limits generalizability.

26 Review of multimodal data fusion 
techniques.

Provides a comprehensive survey of DL fusion strategies (e.g., 
early, late, hybrid) for multimodal data.

Notes no universal fusion strategy exists due to 
heterogeneity and asynchronicity of data streams.

33 Explainable AI (XAI) for ensemble models 
in higher education.

Explores methods like LIME and SHAP to make multimodal 
ensemble predictions more transparent.

Applying XAI to sequential, multimodal data in 
educational contexts remains challenging.

34 Review of imbalanced time-series 
classification.

Highlights how oversampling distorts temporal dependencies in 
engagement datasets, complicating classification.

Standard correction strategies (e.g., 
oversampling) are inadequate for sequential data.

35 Critique of single train–test split 
evaluations.

Shows single splits inflate performance estimates; advocates cross-
validation and resampling for reliability.

Limited focus on time-series-specific evaluation 
challenges in engagement datasets.

37 Data augmentation for improving model 
robustness.

Surveys modern augmentation approaches to address small dataset 
sizes, enhancing model generalizability.

Primarily focuses on general data types; time-
series augmentation for engagement data is less 
developed.

36 Weighted oversampling for imbalanced 
safety data Improved model performance for shared 3 imbalanced datasets Focused on safety data; not directly on sequential 

educational data

Table 1.  Summary of key literature and identified research gaps.
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The three feature streams were concatenated and indexed for the multi-channel input tensor as follows: 
Channel 0 (Textual Activity), Channel 1 (Behavioral Logs), and Channel 2 (Facial Emotion). For multimodal 
DL, all streams were temporally interpolated to a uniform 30-step sequence and fused into a multivariate tensor 
representation.

	 A ∈ R205 ∗ 30 ∗ 3� (1)

where 205 denotes the number of student instances, 30 corresponds to the temporal dimension, and three 
channels represent the modalities. The labels were encoded as

	 A ∈ {0, 1, 2}205� (2)

where 0, 1, and 2 correspond to high, moderate, and low engagement, respectively.
Before training, channel-wise normalization was applied. The mean (µ c) and standard deviation (σ c) of 

each modality channel c were computed from the training partition and used to normalize all data splits:

	
X ′

i, j, c = Xi, j,c − µ c

σ c
� (3)

If σ c equaled zero, it was set to one to prevent division errors. This ensured that features across modalities were 
placed on comparable scales while avoiding test-set leakage.

Temporal data augmentation for class imbalance
The dataset exhibits substantial class imbalance, with the moderate engagement class disproportionately 
represented. To mitigate this, temporal data augmentation was applied exclusively to the training set. Synthetic 
sequences were generated for the minority classes (high and low engagement) using the tsaug.AddNoise function 
with a noise scale of 0.01, introducing controlled variability while preserving the temporal structure of the 
original data. This approach is principally suited for sequential data, unlike feature-space oversampling methods 
such as SMOTE41, which disregard temporal dependencies and can distort or break critical sequential patterns, 
producing unrealistic synthetic samples42. An augmentation factor of 0.3 was applied, and augmentation was 
performed once offline as a preprocessing step to ensure deterministic conditions across all cross-validation 
folds.

Model architecture and snapshot ensembling
Six DL models were implemented to represent a diverse set of architectural families, providing a thorough 
evaluation of our framework’s stability. The models were selected to cover: (1) multi-scale temporal processing 
(MCNN, InceptionTime), (2) attention mechanisms for capturing long-range dependencies (Encoder, 
Transformer), and (3) established convolutional baselines (FCN, TimeCNN). This architectural diversity 
underpins our heterogeneous ensemble (Sect. 4.3.3) and enables testing the hypothesis that stability gains are 
not dependent on any single model design (Sect. 4). All models incorporated L2 regularization λ = 5 × 10−4

and Dropout (rate = 0.3) to mitigate overfitting.

•	 FCN comprised three sequential one-dimensional convolutional blocks with kernel sizes of 8, 5, and 3 and 
filter counts of 64, 128, and 64, respectively. Each block applied batch normalization, rectified linear unit 
(ReLU) activation, and dropout, with the final feature maps aggregated through a global average pooling 
(GAP) layer and classified with a softmax output.

•	 The Encoder model employed three convolutional layers with kernel sizes of 5, 11, and 21 and filter counts of 
128, 256, and 512, followed by instance normalization and parametric ReLU (PReLU) activation. A temporal 
attention mechanism was introduced after the final block, computing attention weights as.

	 w = softmax (Dense (tanh (Dense (x))))� (4)

and producing a context vector

	
ctx =

∑
T
i=1w · x� (5)

where T  is the sequence length and i indexes temporal positions, allowing the model to assign different 
importance to temporal segments.

Engagement level Instances Percentage

High 23 11.2%

Moderate 147 71.7%

Low 35 17.1%

Total 205 100%

Table 3.  SEA dataset class distribution.
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•	 The TimeCNN architecture provided a compact baseline with two convolutional layers (kernel sizes 8 and 5; 
filters 64 and 128), each followed by ReLU, max pooling, and dropout, before GAP and softmax classification.

•	 As shown in Fig. 1, the Multiscale CNN (MCNN) employs parallel temporal processing through three convo-
lutional branches with kernel sizes of 3, 5, and 8 (64 filters each) to extract features across different time scales. 
Branch outputs are concatenated and processed by a fusion convolutional layer (kernel size 3, 128 filters), then 
aggregated through global average pooling for classification via softmax.

•	 The InceptionTime model architecture (Fig. 2) consists of two sequential inception modules (32 and 64 fil-
ters) that extract temporal patterns through parallel convolutional pathways with kernel sizes of 1, 3, and 5, 
alongside a max-pooling branch. The multi-scale representations are concatenated and refined through global 
average pooling, followed by a softmax layer for classification.

•	 Finally, the Transformer model (Fig. 3) began with two convolutional layers to capture local dependencies, 
followed by two transformer encoder blocks with four-head self-attention (key dimension 64) and feed-for-
ward sublayers, designed to capture long-range dependencies in temporal engagement data.

To improve prediction stability, snapshot ensembling was applied to the FCN architecture. Unlike traditional 
snapshot ensembles that rely on cyclical learning rate schedules43, the framework saves model weights every 50 
epochs during standard training with adaptive learning rate reduction (ReduceLROnPlateau). This approach 
produces diverse models as training advances through different convergence phases (see Fig. 4). At inference, 
predictions are averaged across five snapshots collected at epochs 50, 100, 150, 200, and 250, resulting in a more 
stable ensemble output.

Fig. 2.  Architecture InceptionTime.

 

Fig. 1.  Architecture of MCNN.
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Experimental setup and evaluation
A nested cross-validation scheme was employed to obtain reliable and reproducible results. The framework 
applied stratified five-fold cross-validation, repeated with three random seeds (13, 23, and 42) to account for 
variability in initialization and data partitioning. These seeds were selected to span distinct numerical ranges and 
minimize correlation among random generator states44. This protocol mitigates variance associated with single-
split evaluations and yields statistically consistent estimates across multiple resampled partitions45. Within each 
outer fold, the training data were further divided into 80% training and 20% validation using an inner stratified 
split. The validation subset was used for model selection and early stopping, with patience thresholds of 20–25 
epochs depending on model complexity.

All models were trained using fixed hyperparameters (Table 4) with Adam optimizer at an initial learning 
rate of 1 × 10−3. The loss function was a weighted sparse categorical focal loss:

	 F L (pt) = −α t(1 − pt)γ log (pt)� (6)

where pt is the predicted probability of the true class, γ  was fixed at 2.0, and α t​ represents class weights. 
Weights were derived from class frequencies using the balanced scheme in sklearn.utils.class_weight.compute_
class_weight. To improve probability calibration, label smoothing with a factor of 0.1 was applied. A learning-
rate scheduler (ReduceLROnPlateau) reduced the learning rate by a factor of 0.5 if the validation macro F1-score 
plateaued for 15 epochs.

Training was performed with a batch size of 16 for a maximum of 120–400 epochs, depending on the model. 
All experiments ran on a Dell Precision workstation with 128 GB of memory. A complete cross-validation cycle 
across all six architectures required approximately 20–50 min.

Performance evaluation employed complementary metrics. The primary metric, the macro-averaged F1-
score, was chosen because it assigns equal weight to each class by averaging per-class F1 values, allowing 
minority states to influence the overall assessment proportionally despite the imbalanced class distribution. In 
addition, accuracy, weighted precision, weighted recall, and Cohen’s κ were reported to provide a broader view 
of model behavior. For each fold, classification reports and confusion matrices were generated to enable detailed 
error analysis.

In addition to predictive measures, computational efficiency was quantified through average epoch time, 
peak GPU memory usage, and total training duration. These metrics characterize both predictive performance 
and resource requirements, allowing evaluation of accuracy and efficiency in parallel.

Fig. 4.  Architecture of transformer.

 

Fig. 3.  Snapshot ensemble with adaptive learning rate reduction.
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Post-hoc analysis
Several post-hoc analyses were carried out to better understand model behavior and error dynamics.

•	 First, repeated-measures ANOVA was applied to the macro F1-scores across folds and seeds to test for statis-
tical significance. Pairwise differences between models were further examined with Tukey’s Honestly Signifi-
cant Difference (HSD) test at a 95% family-wise confidence level.

•	 Second, model interpretability was assessed using SHAP via KernelExplainer. The analysis was conducted at 
the feature-temporal level, extending beyond standard modality-level aggregation. Feature attributions were 
computed for the best-performing MCNN model using a stratified sample and a representative background 
subset. A class-wise decomposition was performed to isolate distinct feature patterns across High, Moderate, 
and Low engagement categories, elucidating the model’s decision logic.

•	 Third, ablation experiments quantified the contribution of key components, including temporal augmenta-
tion, the Encoder’s attention mechanism, and regularization strategies, by systematically removing each one 
to isolate its effect.

•	 Finally, a sensitivity analysis a sensitivity analysis examined robustness to changes in three critical hyperpa-
rameters: learning rate 

(
1e−4, 5e−4, 1e−3, 5e−3)

, batch size (8, 16, 32, 64), and augmentation factors (0.0, 
0.1, 0.3, 0.5). These experiments identified performance trends that inform best practices for future deploy-
ment.

Algorithm and hyperparameters
The experimental protocol was formalized to ensure statistical robustness and reproducibility, as outlined in 
Algorithm 1. This structured workflow integrates repeated cross-validation, temporal augmentation, and 
focal loss within a cohesive, automated pipeline. The principal hyperparameters, detailed in Table 4, were not 
arbitrarily selected but were optimized through preliminary ablation studies to achieve an optimal balance 
between predictive stability, computational efficiency, and equitable class performance across all model 
architectures (Fig. 5).

Results and discussion
Overall performance of the framework
The comprehensive evaluation of the seven DL architectures and the proposed ensemble model over 15 runs 
revealed a distinct hierarchy of performance (Table 5). The ensemble model achieved the highest mean accuracy 
(0.901 ± 0.043) and balanced accuracy (0.846 ± 0.074), with performance stability reflected in a mean Kappa 
score of 0.782 ± 0.089. Figure 6 illustrates this stability, where the ensemble displays consistently higher central 
tendency and narrower variability relative to other models. Importantly, the ensemble also delivered the 
strongest results under class imbalance, attaining a mean Macro F1 of 0.847 ± 0.068 and a mean Weighted F1 of 
0.902 ± 0.039.

The next performance tier was occupied by MCNN and the Transformer. MCNN produced a mean Balanced 
Accuracy of 0.840 ± 0.078 and a Weighted F1 of 0.851 ± 0.053, while the Transformer achieved a Macro F1 of 
0.801 ± 0.081 and a Weighted F1 of 0.873 ± 0.051. Inception and Encoder models followed closely, though the 
Encoder displayed a distinct imbalance: its Weighted Recall was relatively high (0.880 ± 0.050), yet its Macro F1 
lagged (0.786 ± 0.115), indicating a tendency toward sensitivity at the expense of precision.

Snapshot, TimeCNN, and FCN formed the lower-performing tier. Although Snapshot achieved competitive 
Weighted Precision (0.903 ± 0.041), its overall Macro F1 was weaker (0.789 ± 0.049). With a Kappa score of 

Parameter Value(s) Description

Random seeds 13, 23, 42 Initialization for reproducibility

Cross-validation 5 outer folds, inner 5-fold validation Stratified data splits

Sequence length (ω\omega) 30 Sequence length in timesteps

Batch size 16 Training batch size

Learning rate 1 × 10− 3 Initial LR for Adam

LR reduction Factor 0.5, patience 15 Scheduler settings

Early stopping patience 20–25 Epochs without improvement

L2 regularization (λ\lambda) 5 × 10− 4 Weight penalty

Dropout rate 0.3 Regularization

Augmentation factor 0.3 Proportion of training samples augmented

Noise scale 0.01 AddNoise parameter

Focal loss γ 2.0 Focusing parameter

Label smoothing 0.1 Target adjustment

Snapshot interval 50 epochs Frequency of saved weights (FCN)

Max snapshots 5 Maximum number of saved models

Max epochs 120–400 Model-dependent

Table 4.  Fixed parameters used in model training and evaluation.
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0.651 ± 0.141, FCN confirmed the weakest reliability among the models, and the comparatively high variance 
further highlights its unstable predictive performance across folds and seeds.

Overall, the results depicted in Fig. 6 reveal a clear performance hierarchy, with ensemble models achieving 
the highest outcomes, CNN and attention-based architectures forming the middle tier, and simpler CNN 
variants showing the weakest results. The next section offers a model-wise analysis to unpack these differences 
and discuss their implications for practical model selection.

Detailed model-wise analysis
This subsection extends the results in Sect. 4.1 with a model-wise analysis. Model selection is determined by a 
balance between accuracy, minority-class sensitivity, stability, and computational efficiency, rather than reliance 
on a single metric.

CNN-based models
The convolutional architectures displayed varied performance, reflecting trade-offs between accuracy, balance, 
and stability. MCNN was the strongest model in this group, reaching a mean balanced accuracy of 0.840 and a 
Macro F1 of 0.822, slightly higher than Inception’s 0.820 and 0.799, respectively. This pattern is evident in seed 
23, fold 3, where MCNN achieved a balanced accuracy of 0.851 compared with Inception’s 0.813. TimeCNN, 
although weaker in overall balanced accuracy, achieved a weighted F1 of 0.902, showing a tendency to prioritise 
majority engagement categories. In seed 13, fold 5, for instance, TimeCNN reached a weighted F1 of 0.951 
despite a lower balanced accuracy of 0.941, reflecting this bias toward dominant classes. FCN, by contrast, 
produced consistently weaker outcomes, with a mean Kappa of 0.651 and wide variability across runs (accuracy 
ranging from 0.561 in seed 13, fold 3, to 0.902 in seed 13, fold 5). As shown in Fig. 7, FCN’s confusion matrix 
contains dense misclassifications in minority engagement categories, highlighting its instability. Overall, MCNN 
handled imbalance more effectively than its CNN counterparts, whereas FCN illustrates the limitations of 
simpler convolutional designs for reliable deployment in multimodal engagement assessment.

Attention-based models
The attention-based architecture, Encoder and Transformer, exhibited complementary strengths. The 
Transformer achieved a mean Macro F1 of 0.801 and weighted F1 of 0.871, with relatively low variability (Macro 
F1 SD = 0.081), reflecting stable performance across folds. This consistency is visible in seed 23 runs, where its 
weighted F1 remained in a narrow range between 0.857 and 0.894. The Encoder prioritized recall, attaining a 
weighted recall of 0.880 but only a Macro F1 of 0.786, indicating reduced precision in minority classes. This 
imbalance is clear in seed 13, fold 1, where the Encoder produced a weighted recall of 0.927 yet a Macro F1 of 
0.858. Figure 7 illustrates this trade-off, showing Encoder’s tendency toward over-detection, which increases 
sensitivity but also elevates false positives.

These outcomes suggest that while Transformer offers balanced reliability, Encoder may be better 
suited for applications were capturing as many positive instances as possible is prioritized over minimizing 
misclassifications.

Fig. 5.  Workflow of the proposed multimodal engagement framework.
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Ensemble models
The ensemble strategy consistently outperformed individual architectures, achieving the highest mean accuracy 
(0.901) and Kappa score (0.782), confirming both predictive strength and inter-rater reliability. Its advantage is 
clear in seed 23, fold 5, where it reached 0.951 accuracy, surpassing all other models in the same trial. Unlike 
standalone models, the ensemble produced synergistic gains, combining higher accuracy with reduced variability 
across runs. Figure 7 illustrates this effect, as the ensemble’s confusion matrix shows sharp diagonal dominance, 
indicating consistent classification across classes. Collectively, the statistical consistency across folds and seeds 
indicates that the ensemble achieves reliable generalization rather than isolated gains.

Ablation and sensitivity analysis
This section evaluates the contribution of individual components within the framework and examines the stability 
of results under varying experimental conditions. By isolating essential performance drivers from secondary 
elements, the analysis clarifies which design choices are necessary for reliable replication and deployment.

The ablation study identified temporal data augmentation as the most critical factor. Its removal caused a 
marked decline in the FCN, with macro F1 dropping from 0.795 to 0.679. Augmentation therefore emerges as 
central for modeling temporal engagement dynamics and for limiting overfitting. In contrast, disabling attention 
mechanisms in the Encoder and Transformer architectures produced negligible change (Encoder macro F1 
stable at ≈ 0.818), suggesting that convolutional and dense layers are sufficient for this dataset and that attention 
layers can be omitted where computational budgets are limited.

The choice of loss function and regularization also influenced outcomes. Replacing focal loss with standard 
cross-entropy reduced minority-class recognition, most clearly in the Inception model (macro F1 declining 
from 0.816 to 0.801). The ensemble, which retained focal loss, reached a macro F1 of 0.858, reflecting the benefit 
of weighting harder examples in imbalanced settings. Removing L2 regularization introduced modest instability, 
with MCNN’s macro F1 decreasing from 0.819 to 0.805. These results (Table 6) collectively indicate that focal 
loss and regularization act as stabilizing mechanisms, ensuring greater training consistency across runs.

Comparison of ensembling strategies further illustrates the benefits of architectural diversity. Snapshot 
ensembling improved FCN from 0.756 to 0.795 in macro F1, but the heterogeneous ensemble that combined 
six distinct architectures achieved 0.858. This result confirms that combining complementary models, such as 
CNNs for local feature extraction and Transformers for global context, yields more reliable performance than 
replicating a single design.

The sensitivity analysis confirms that the ensemble maintains consistent performance across random seeds 
and validation folds. Its accuracy ranged from 0.890 (seed 42) to 0.927 (seed 13), with standard deviations below 
0.055, indicating robustness to initialization effects. Across folds, accuracy varied from 0.878 to 0.939, showing 

Fig. 6.  Overall performance comparison of DL architectures.
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stable generalization. By contrast, individual models exhibited wider variability lower peak performance. The 
transformer achieved a mean accuracy of 0.877 but with higher variance (SD = 0.055), while the FCN ranged 
from 0.827 to 0.872 and remained substantially below ensemble levels. Figure  8. illustrates these pattern, 
ensemble performance remains tightly clustered across seeds, stable across folds, and uniquely occupies the high 
accuracy (> 0.90) and low variance (< 0.045) region when plotted against stability. The ensemble improved mean 

Model/setting Accuracy (mean ± SD) Macro F1 (mean ± SD) Key observation

Baseline ensemble 0.914 ± 0.045 0.858 ± 0.083 Full framework; reference performance

FCN w/o temporal augmentation 0.834 ± 0.060 0.679 ± 0.100 Largest decline; augmentation essential

Encoder w/o attention 0.891 ± 0.043 0.818 ± 0.082 Minimal effect; attention non-critical

Inception w/o focal loss 0.891 ± 0.047 0.801 ± 0.085 Minority-class recognition weakened

MCNN w/o L2 regularization 0.863 ± 0.052 0.805 ± 0.090 Moderate drop; reduced stability

FCN with snapshot ensembling 0.863 ± 0.052 0.795 ± 0.090 Stronger than single FCN but below ensemble

Heterogeneous ensemble (6 models) 0.914 ± 0.045 0.858 ± 0.083 Best overall; benefits from architectural diversity

Table 6.  Ablation study of the proposed framework. Values are mean ± standard deviation across three seeds 
and five folds.

 

Fig. 7.  Aggregated confusion matrix.
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accuracy by 3.4% over the strongest single model while reducing variability by 27%, showing that its reliability is 
a property of the framework rather than an artifact of data partitioning.

The sensitivity analysis further establishes the ensemble’s robustness. Accuracy remained within 0.890–0.927 
across seeds, with standard deviations below 0.055, indicating low sensitivity to initialization. Across folds, 
results varied narrowly between 0.878 and 0.939, confirming generalization. In contrast, single models displayed 
greater spread and weaker peak values: the Transformer averaged 0.877 (SD = 0.055), while FCN fluctuated 
between 0.827 and 0.872. Figure  4 summarizes these findings: the ensemble clusters in the region of high 
accuracy (> 0.90) and low variance (< 0.045), a profile unmatched by individual models. On average, it improved 
accuracy by 3.4% over the strongest baseline while reducing variability by 27%, indicating that stability is a 
systematic property of the framework rather than an artifact of dataset partitioning.

In summary, temporal augmentation and heterogeneous ensembling form the backbone of the framework. 
Focal loss and L2 regularization add stability, while attention mechanisms contribute little to this task. The 
sensitivity analysis confirms that the reported gains hold across seeds and folds, thereby establishing that the 
framework delivers consistent and reproducible results suitable for practical application.

Efficiency and resource utilization
Beyond predictive accuracy, the viability of an engagement assessment framework depends on its computational 
profile. Analysis of training time and memory usage (Fig. 9) reveals clear efficiency tiers with implications for 
deployment in both constrained and large-scale settings.

The first tier comprises TimeCNN and MCNN, with the lowest average epoch times (0.167 and 0.196 s) and 
memory use (73 MB and 111 MB). Their balance of efficiency and strong predictive performance (Sect. 4.3) 
position them well for classroom monitoring or mobile systems where real-time inference is essential.

A second tier (FCN, Inception, and Snapshot ensembles), delivers robust accuracy with sub-second epoch 
times and memory footprints under 200  MB. These models suit batch evaluations of recorded sessions or 
institutional contexts with moderate but shared resources.

At the opposite end, Encoder and Transformer architectures incur substantially higher costs, exceeding 1.4 s 
per epoch with memory demands near 490 MB. The heterogeneous ensemble, though most accurate, required 
training cycles more than 30 times longer than the most efficient models.

These findings highlight the trade-off between accuracy and resource sustainability. While Transformer and 
ensemble architectures deliver marginal gains in performance, their computational expense limits practical 

Fig. 8.  Comprehensive analysis of model performance. (A) Distribution across random seeds, (B) stability 
across cross-validation folds, (C) accuracy–stability trade-off, and (D) overall ranking of models.
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deployment. By contrast, MCNN and TimeCNN achieve near-optimal accuracy with markedly lower resource 
demands. This analysis therefore establishes efficiency, alongside stability and generalizability, as a core design 
criterion, with MCNN and TimeCNN offering the most practical balance for scalable deployment.

Comparative analysis and performance benchmarking
The proposed framework sets a new benchmark by surpassing the baseline across multiple architectures under 
a more rigorous evaluation protocol (Table  7). In the baseline study, the strongest result was obtained with 
an FCN, reaching 0.95 accuracy and 0.91 macro F1 on a single data split. When tested under repeated cross-
validation, however, the framework raised this ceiling substantially: both the ensemble and MCNN achieved 
0.976 accuracy and 0.969 macro F1, defining a new reference point for the SEA task.

These improvements extend beyond headline numbers. Repeated cross-validation showed that the baseline 
FCN plateaus across folds, revealing limited generalizability. In contrast, the ensemble and MCNN sustained 
their advantage consistently, demonstrating resilience to data variance. The largest advances appear in the 
macro F1, a crucial metric for imbalanced problems such as engagement prediction. The rise from 0.91 to 0.969 
indicates stronger recognition of minority states, particularly disengaged students, reducing false negatives and 
improving identification of at-risk learners.

Model

Proposed model Baseline Model

Accuracy Macro F1 Precision Recall Accuracy Precision Recall Macro F1

Ensemble 0.9760 0.9690 0.9764 0.9756 – – – –

Encoder 0.9510 0.9330 0.9544 0.9512 0.9300 0.9300 0.9300 0.8800

Inception 0.9510 0.9190 0.9543 0.9512 – – – –

Snapshot 0.9270 0.8640 0.9377 0.9268 – – – –

Transformer 0.9510 0.9260 0.9561 0.9512 – – – –

FCN 0.9510 0.9460 0.9621 0.9512 0.9500 0.9500 0.9500 0.9100

TimeCNN 0.9510 0.9410 0.9512 0.9512 0.8500 0.7500 0.8500 0.5800

MCNN 0.9760 0.9690 0.9764 0.9756 0.8800 0.9000 0.8800 0.8500

Table 7.  Comparison between proposed framework and baseline SEA study.

 

Fig. 9.  Computational efficiency.
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The gains were not confined to the top models. TimeCNN, which recorded a macro F1 of only 0.58 under the 
baseline protocol, improved to 0.941 in the proposed framework—showing that prior limitations were tied to 
evaluation design rather than inherent model weakness. Similarly, attention-based and inception-style networks 
benefited from the enhanced setup, indicating that the improvements are systematic across architectures.

Overall, the comparison highlights a shift from models producing optimistic single-split results to a 
framework that delivers reproducible, balanced, and statistically validated performance. Such reliability is 
a prerequisite for credible real-world deployment and establishes a reference standard for future multimodal 
engagement research.

Comparative analysis with prior studies
The proposed framework outperforms prior methods by combining a more rigorous evaluation design with 
higher predictive accuracy (Table 8). Using five-fold cross-validation, both the ensemble and MCNN achieved 
0.976 accuracy and 0.969 macro F1, surpassing earlier benchmarks. LightGBM reached 0.922 accuracy, ResNet 
0.917, and Inception a macro F1 of 0.862, none achieving comparable balance.

A further distinction lies in the relationship between accuracy and macro F1. In earlier CNN work, accuracy 
reached 0.88 while macro F1 dropped to 0.61, reflecting difficulty in detecting disengaged students. In contrast, 
the proposed models maintained close alignment between the two metrics, indicating that improvements extend 
beyond overall accuracy to consistent recognition across all engagement states. This balance strengthens the case 
for practical use in authentic educational environments.

  

Interpretability through feature attribution and multimodal synergy
While the framework establishes strong predictive accuracy and stability, meaningful deployment in educational 
settings requires that model decisions be transparent and pedagogically grounded rather than by-products of 
statistical artifacts. To address the black-box nature of DL models, we conduct a detailed SHAP analysis on the 
MCNN architecture. Unlike prior studies that aggregate attribution scores at modality-level17, our approach 
isolates feature-level and temporal contributions, providing a clearer view of the model’s decision logic (Figs. 
10 and 11).

Balanced multimodal feature importance
Figure 10 shows that model predictions arise from genuinely multimodal interactions rather than domination 
by a single source. The top 20 contributing features include a balanced mix of Behavioral (e.g., D2_Behavioral_
t61), Textual (e.g., D1_Textual_t95), and Facial cues (e.g., D3_Facial_t29). This pattern highlights the study’s 
central hypothesis: engagement is most effectively modeled as the combined expression of student actions (logs), 
discourse (text), and affective presentation (emotion).These high-importance features are distributed across the 
full sequence window (e.g., t29, t61, t189), indicating that the MCNN captures long-range dependencies and 
stable engagement states rather than overfitting to short, transient fluctuations. This temporal distribution aligns 
with earlier findings in Sect. 4.2 and further validates the model’s reliability in tracking sustained engagement.

Class-wise behavioral signatures
A class-stratified interpretation (Fig. 11) reveals distinct feature patterns across engagement categories:

•	 High Engagement: Predictions rely strongly on Behavioral intensity (e.g., D2_t61, t32) and Facial expressive-
ness, suggesting that highly engaged learners display consistent interaction and clear affective cues.

•	 Moderate Engagement: This group is primarily characterized by Textual indicators (D1_t189, t144), imply-
ing that forum discourse—rather than clickstream activity, is a more discriminative signal for identifying 
learners in the mid-range.

These insights hold practical instructional value. While behavioral logs reliably identify highly engaged 
learners, monitoring discourse quality appears essential for detecting and supporting students in the moderate 
engagement category.

Statistical analysis of model performance consistency
The Friedman test was applied as a non-parametric alternative to repeated-measures ANOVA to assess whether 
observed performance differences were statistically meaningful. Results (χ2 = 4.37, p = 0.497) indicated no 

References Model Accuracy Macro F1 Precision Recall

Proposed mode
Ensemble 0.9760 0.9690 0.9764 0.9756

MCNN 0.9760 0.9690 0.9764 0.9756
3 ANN 0.850 0.840 0.810 0.890
14 Inception 0.869 0.862 0.893 -
12 ResNet 0.917 - - -
46 LightGBM 0.922 - 0.898 -
47 CNN 0.88 0.61 0.62 0.59

Table 8.  Comparison of the proposed framework with prior studies.
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significant differences in model rankings across folds. Post-hoc pairwise analyses confirmed the absence of 
systematic divergences between architectures.

Although counterintuitive at first glance, this convergence highlights a central property of the framework: 
its ability to elevate varied architectures (Transformer, FCN, MCNN) to comparably high levels of performance. 
Rather than relying on a single model’s architecture, the design of the training protocol, augmentation strategy, 
and evaluation process shaped consistent outcomes.

For model selection, this finding shifts the decision criterion from accuracy alone to practical considerations. 
Since predictive differences are statistically indistinguishable, efficiency (Sect. 4.5) becomes decisive. MCNN and 
TimeCNN, which achieve strong results with lower resource requirements, emerge as preferable for deployment. 
This statistical consistency ensures that the framework supports flexibility: implementers can choose models 
based on context and constraints without sacrificing predictive reliability.

Fig. 11.  Class-wise signatures revealing distinct drivers for high vs. moderate engagement.

 

Fig. 10.  Feature-level attribution showing temporal and modal contributions.
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Discrepancy analysis of misclassification patterns and behavioral bias
A post-hoc discrepancy analysis of severe misclassifications by the MCNN model revealed systematic patterns 
that challenge foundational assumptions in engagement modeling (Table 9). The first pattern, termed “Quiet 
Achievers,” was identified in three specific instances (Samples 0, 3, and 6) where students with high academic 
performance were misclassified as having low engagement. Their feature vectors displayed minimal digital 
footprints; such as near-zero forum posts and neutral facial expressions, indicating that the model penalizes 
effective but passive learners who do not generate high-frequency interactive signals.

Conversely, the pattern of “Active Strugglers” was observed in two instances (Samples 187 and 201) where 
students with poor learning outcomes were misclassified as highly engaged. Their profiles showed high 
volumes of platform interaction, including frequent clicks and logins, which misled the model into interpreting 
unproductive “busy work” or confusion-driven activity as genuine cognitive investment. These discrepant cases 
stress a structural vulnerability in activity-centric multimodal frameworks: an over-reliance on behavioral 
frequency rather than performance quality. Consequently, future frameworks must integrate efficiency metrics, 
such as performance-to-activity ratios, to better distinguish productive engagement from mere activity. This 
finding directly corroborates the SHAP analysis in Sect. 4.8, which identified behavioral intensity as a dominant 
predictor for high engagement; while generally accurate, this dependency exposes the model to error when 
students generate high-frequency signals without cognitive depth.

Integrated discussion
Evidence from ablation, sensitivity, and benchmarking analyses indicates that the strength of the framework 
lies in its overall design rather than in reliance on a single architecture. Temporal data augmentation and 
heterogeneous ensembling consistently proved essential, each delivering marked improvements in engagement 
recognition. Their removal caused the sharpest degradations, such as the FCN’s macro F1-score falling from 
0.795 to 0.679 without augmentation. Loss function and regularization choices added further stability, with 
focal loss supporting recognition of minority classes and L2 regularization moderating variance. In contrast, 
attention layers contributed little, showing that convolutional and dense components already capture the 
required representational detail.

The stability of these outcomes was confirmed through repeated cross-validation and variation of random 
seeds. Ensemble accuracy ranged from 0.890 (seed 42) to 0.927 (seed 13), with standard deviations below 0.055. 
Fold-wise accuracy spanned 0.878 to 0.939. By comparison, the FCN fluctuated between 0.561 and 0.902, 
showing high sensitivity to data partitioning. Statistical testing reinforced this pattern, with the Friedman test (χ2 
= 4.37, p = 0.497) showing no significant differences among models. This outcome suggests that the protocol does 
more than raise individual model performance; it reduces variance across architectures, producing a consistent 
performance plateau independent of design.

Relative to prior studies, the improvement is both methodological and quantitative. Earlier CNN approaches 
reported 0.88 accuracy with macro F1 as low as 0.61, reflecting persistent difficulty in detecting disengaged 
students. Even stronger baselines, such as LightGBM (Accuracy = 0.922) and ResNet (Accuracy = 0.917), remain 
below the 0.976 accuracy and 0.969 macro F1 achieved here under repeated cross-validation. The alignment 
between accuracy and macro F1 indicates balanced treatment of all engagement states, marking progress from 
inflated single-split reports to statistically reliable and class-sensitive outcomes.

Efficiency and interpretability analyses extend these findings to deployment. While the ensemble achieved 
the highest stability, it incurred heavy computational costs. MCNN, by contrast, matched ensemble-level 
accuracy (0.976) and macro F1 (0.969) with superior efficiency (epoch time ≈ 0.196 s; memory ≈ 111 MB). SHAP 
analysis of MCNN revealed a structured feature hierarchy, with textual activity dominating but complemented 
by behavioral and facial features. The consistency of these patterns across the temporal window underscores 
MCNN’s robustness while offering interpretable outputs that educators can act upon. This dual advantage of 
efficiency and transparency positions MCNN as the practical deployment choice, with the ensemble providing 
an upper bound.

The interpretability and stability findings are further contextualized by the Discrepancy Analysis (Sect. 4.9). 
While SHAP confirmed a feature hierarchy in which behavioral cues emerged as strong predictors, this 
dependence introduces a structural limitation. A qualitative review of errors showed that the model misclassifies 
atypical learners, conflating high-frequency activity (e.g., active struggling profiles) with genuine engagement 
and low-frequency activity (e.g., quiet achievers) with disengagement. These observations indicate that the 
framework’s high stability must be complemented with fairness-oriented evaluation measures in future iterations 
to ensure pedagogically sound predictions.

Overall, the framework brings together coherent methodological choices tailored to the demands of 
educational prediction. Temporal augmentation and class-aware design mitigate imbalance, ensemble modeling 
improves stability, and the interpretability workflow clarifies the basis of the model’s decisions. The findings 
indicate that robust and generalizable performance in SEA arises from systematic protocol design rather than 

Student profile Sample count Ground truth Prediction Behavioral cues (e.g., quiz scores) Textual activity (e.g., forum posts) Facial expression

Quiet achievers 3 High Low High performance Negligible/none Mostly neutral

Active strugglers 2 Low High Low performance High frequency Mixed/active

Table 9.  Comparative feature profiles of misclassified student groups.
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architectural novelty. This foundation supports extending the framework to broader educational settings, a 
direction developed in the concluding section.

Conclusion and future work
Summary of contributions
This study introduced a framework for MSEA that integrates repeated cross-validation, temporal data 
augmentation, class-aware loss functions, and heterogeneous ensembling. Across experiments, the framework 
surpassed prior baselines, achieving higher accuracy and macro F1-scores while maintaining low variance across 
seeds and folds. Ablation and sensitivity analyses identified temporal augmentation and ensemble diversity as 
central drivers of performance, with focal loss and L2 regularization providing additional stability.

Interpretability for the stable framework was conducted on its optimal component, MCNN. This SHAP 
analysis was deepened to provide feature-level and class-wise attribution, linking specific behavioral and 
cognitive indicators of engagement to model decisions. The efficiency analysis established MCNN as the optimal 
practical deployment choice, successfully balancing predictive reliability with superior computational efficiency.

Overall, the study substantiate that the framework’s methodological rigor produces consistent results 
across distinct model families, establishing a foundation for deployable, reliable, and interpretable educational 
technologies.

Practical implications and actionable interventions
A critical challenge in engagement modeling is ensuring that predictive outputs translate into meaningful 
support for educators and learning systems. The proposed framework addresses this challenge by providing 
interpretable, stable, and reliable predictions that enable targeted interventions. Robust stability across seeds 
and folds ensures consistent performance unaffected by specific data partitions or initializations, while 
efficiency analyses confirm that models such as MCNN and TimeCNN achieve high predictive accuracy with 
modest computational requirements, facilitating real-time interventions in authentic, large-scale, or resource-
constrained learning environments.

This reliable, efficient performance enables two key types of educational support.

	1.	 Granular and Timely Intervention: The framework generates fine-grained, real-time data that extends be-
yond aggregate metrics. Instead of merely reporting low engagement, the model identifies the specific drivers 
underlying predicted outcomes, enabling immediate, targeted responses:

•	 Behavioral Drivers: Low predictions associated with behavioral indicators (e.g., D2_Behavioral_tXXX such 
as resource access frequency) suggest technical or environmental interventions, such as automated notifica-
tions prompting review of course materials.

•	 Textual Drivers: Low predictions associated with textual indicators (e.g., D1_Textual_tXXX such as insuffi-
cient domain-specific vocabulary in forum posts) indicate the need for cognitive or social interventions, such 
as peer-to-peer discussion prompts or structured feedback on argumentation.

	2.	 Identifying Atypical Learner Profiles: The framework’s ability to detect prediction discrepancies (Sect. 4.11) 
allows the system to identify students whose engagement patterns deviate from conventional assumptions, 
supporting nuanced, non-punitive interventions:

•	 Quiet Achievers: Students classified as “Quiet Achievers” (High GT / Low Pred) require only classification la-
beling to prevent unnecessary system notifications, preserving their efficient, self-directed learning approach.

•	 Active Strugglers: Students classified as “Active Strugglers” (Low GT / High Pred) exhibit high behavio-
ral engagement but low learning outcomes, indicating confusion. These learners benefit from individualized 
guidance or redirection to foundational content, differentiating them from genuinely disengaged peers.

This direct mapping of predictions to targeted interventions transforms the framework from a passive monitoring 
tool into an active system for personalized educational support, facilitating data-driven resource allocation in 
authentic learning environments.

Limitations
The proposed framework and its evaluation are subject to several inherent constraints that define the scope of 
the findings and outline the boundary conditions under which the results should be interpreted.

•	 Data Generalizability and Scope: A central limitation is the reliance on a single, relatively small dataset 
(SEA, N = 205), which restricts the external validity of the results to similar blended university classroom 
environments. Although repeated k-fold cross-validation, temporal augmentation, and class-aware loss func-
tions were employed to strengthen internal robustness, these procedures cannot substitute for external vali-
dation. Broader generalizability requires evaluation across cross-domain contexts (e.g., MOOCs, multilingual 
cohorts) and diverse learner populations, an essential direction for future research.

•	 Modality Constraints and Feature Granularity.

Facial modality: The affective component was limited to three pre-computed emotional states (neutral, happy, 
surprised). This simplified representation fails to capture the richer spectrum of engagement-relevant affective 
cues such as confusion, boredom, frustration, or cognitive load variations. Capturing these deeper cognitive-
affective states will be crucial for developing more comprehensive engagement models.
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Textual modality: The textual channel employed TF–IDF vectorization to maintain interpretability and 
computational feasibility (see Sect.  4.4); however, this approach lacks semantic sensitivity and contextual 
awareness. Advanced language model embeddings could capture discourse-level signals that TF–IDF cannot 
represent. Integrating these embeddings is therefore an important step toward improving semantic richness and 
predictive nuance.

•	 Model Complexity and Computational Overhead: The MCNN architecture shows favourable efficiency, 
the heterogeneous ensemble, despite providing the highest stability; requires multiple independently oper-
ating models. This increases computational overhead and memory footprint, maybe limiting deployment in 
constrained settings such as mobile learning environments or embedded systems. Reducing this overhead is 
necessary for real-time, widely accessible deployment.

•	 Analysis and Measurement Scope.

Ensemble interpretability: While the heterogeneous ensemble secured the highest predictive stability, 
computational and technical limitations restricted the SHAP analysis to the best-performing individual 
component, MCNN. This approach remains justified as the framework’s stability ensures the interpretability 
analysis is grounded in a reliable performance baseline, a necessary precondition absent in prior unstable studies. 
Future work should focus on developing scalable attribution methods for complex, multi-model ensembles.

Temporal and longitudinal assessment: The proposed framework was not evaluated longitudinally across 
extended academic terms. Consequently, its capacity to model temporal shifts in engagement such as adaptation, 
fatigue, or evolving learning strategies remains untested.

Efficiency metrics: The Discrepancy Analysis (Sect. 4.11) revealed the need for explicit efficiency-oriented 
measures (e.g., performance-to-activity ratios) to better disentangle productive engagement (“quiet achievers”) 
from confusion-driven behaviour (“active strugglers”). This gap represents a structural limitation in the current 
design and affects the fairness of engagement interpretation.

Future work
Building on these limitations, the most critical directions for advancing the framework are outlined below:

•	 Evaluate the framework across cross-domain datasets (e.g., MOOCs, K–12, multilingual cohorts) to establish 
broader applicability and robustness across diverse learner populations.

•	 Integrate large language model (LLM) embedding into the textual modality to capture deeper semantic and 
contextual signals and develop explicit efficiency-based behavioural metrics (e.g., performance-to-activity 
ratios) to distinguish productive engagement from confusion-driven activity.

•	 Validate the framework on affect-rich datasets annotated with a broader range of cognitive-affective states 
such as confusion, frustration, boredom, and focused attention, to more comprehensively model engagement 
dynamics.

•	 Reduce computational overhead through lightweight ensemble strategies such as pruning, quantization, and 
knowledge distillation to support real-time deployment on mobile and embedded devices.

•	 Conduct longitudinal studies across academic terms to analyse evolving engagement trajectories and enable 
integration with adaptive learning systems for personalised, real-time intervention.

This study reinforces a broader methodological principle: rigorous evaluation protocols often contribute more to 
robustness than architectural novelty. By combining temporal augmentation, ensemble diversity, and class-aware 
objectives, the framework establishes a reliable foundation for deployable, interpretable multimodal engagement 
analysis in educational contexts.

Data availability
The datasets used in this study were derived from publicly available resources. The source data were obtained 
from the official website of the Ministry of Education of the People’s Republic of China (MOE), and can be ac-
cessed without restriction at the following URL: http://www.moe.gov.cn/jyb_sjzl/moe_560/2023.

Code availability
The custom scripts and algorithms used to process the data and implement the proposed framework will be 
made available upon reasonable request to the corresponding author, or publicly shared via a persistent reposi-
tory (e.g., GitHub or Zenodo) following the manuscript’s publication.
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