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Accurate assessment of student engagement is central to technology-enhanced learning, yet

existing models remain constrained by class imbalance, instability across data splits, and limited
interpretability. This study introduces a multimodal engagement assessment framework that
addresses these issues through three complementary strategies: (1) class-aware loss functions to
alleviate class imbalance, (2) temporal data augmentation and heterogeneous ensembling to enhance
model stability, and (3) SHAP-based analysis of the most stable component for reliable interpretability.
Reliability was established through repeated cross-validation with multiple seeds across seven

deep learning architectures and the proposed ensemble. The framework established a mean

accuracy of 0.901+0.043 and a mean macro F1 of 0.847 +0.068, surpassing baselines such as ResNet
(Accuracy =0.917), Inception (Macro F1=0.862), and LightGBM (Accuracy =0.922). Ablation studies
highlighted temporal augmentation and ensemble diversity as key contributors, while sensitivity
analyses confirmed robustness with variance consistently below 0.07 across seeds and folds. Efficiency
profiling established MCNN and TimeCNN as the optimal deployment architecture, combining near-
optimal accuracy with superior computational efficiency. SHAP-based interpretation was extended to
provide feature-level and class-wise attribution, revealing consistent relationships between predictions
and behavioral or cognitive cues. Overall, the study demonstrates that balanced evaluation and
ensemble stability are essential for reliable engagement assessment.

Keywords Multimodal learning analytics, Student engagement assessment, Temporal data augmentation,
Ensemble learning, Interpretability, Educational data mining

Student engagement is widely recognized as essential for academic success, positive learning environments, and
overall educational quality'. It functions as a multifaceted construct, encompassing behavioral, emotional, and
cognitive dimensions, that directly influences learning outcomes and student satisfaction!. Accurate assessment
of engagement allows educators to identify disengaged students, facilitate personalized learning experiences,
and adapt instructional strategies to maximize effectiveness®. Furthermore, it provides invaluable data for
educational researchers developing innovative pedagogical approaches and technologies.

Traditional methods for assessing student engagement, including self-report surveys?, experience
sampling®®, and manual observations’, are constrained by inherent limitations of subjectivity, intrusiveness, and
scalability. The proliferation of digital learning platforms and intelligent tutoring systems has generated a wealth
of multimodal data, creating an urgent need for automated, objective, and continuous engagement analysis®S.
In response, researchers have increasingly turned to machine learning (ML)3°. While classification models
like Random Forests and Logistic Regression have been deployed to predict engagement levels with reported
accuracies exceeding 70%!°, these approaches typically use single data modalities, limiting their capacity to
capture the multifaceted nature of student engagement.
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Multimodal deep learning (MDL) has gained prominence by integrating diverse data streams (including eye
gaze, facial expressions, and physiological signals) for more comprehensive assessments of learner states'!"12,
This fusion strategy is known to improve predictive performance. Monkaresi et al.!’, for example, achieved
an AUC of 73% in engagement recognition by combining facial expression analysis with heart rate data. In
related work, Behera et al.* reported an accuracy of 87% when detecting hand-over-face gestures together with
facial expressions for emotion recognition during learning. These findings indicated that MDL offers a means
to capture the complex and evolving nature of student engagement by drawing on complementary modalities.

However, applying MDL in education introduces ongoing challenges. Two of the most pressing are: data fusion
(the technical complexity of integrating asynchronous, heterogeneous streams), and model interpretability, given
the opacity of deep neural network predictions'®. A further concern, often overlooked, is the pronounced class
imbalance in authentic educational datasets'”. ‘Moderate’ engagement is frequently overrepresented, whereas the
‘high’ and ‘low’ categories, which are most relevant for targeted intervention, remain underrepresented'®. Such
imbalance may yield models that achieve high overall accuracy yet fail on the minority classes most relevant for
targeted interventions'.

A recent study by Yan et al.!” proposed a framework addressing data fusion and interpretability. Their
method utilized video, text, and log data, employing a Fully Convolutional Network (FCN) that achieved
state-of-the-art performance of 0.95 accuracy and a 0.91 macro Fl1-score. Despite these impressive results, the
evaluation methodology is susceptible to overfitting, as performance was reported from a single, best-case run
without rigorous cross-validation. This approach masks model variance and uncertainty, inflating performance
estimates and failing to account for the aforementioned class imbalance, thus questioning the generalizability
and robustness of the proposed framework.

To address these limitations, this study introduces a multimodal engagement assessment (MSEA) framework
emphasizing methodological rigor and predictive stability. The research is guided by the following key questions:

1. How can a multimodal assessment framework be designed to ensure predictive stability and robustness
against data-split and initialization variance, moving beyond the optimistic single-run evaluations common
in prior studies?

2. How effectively can such a framework, specifically through temporal data augmentation and class-aware loss
functions, address severe class imbalance and improve the reliable detection of critical minority engagement
states?

3. Does achieving cross-fold predictive stability (RQ1) enable a more consistent and trustworthy interpretabil-
ity analysis, allowing for the identification of reliable feature attributions?

The key contributions advancing the state-of-the-art in multimodal learning analytics are:

« Robust Evaluation Methodology: The study implements a stringent repeated k-fold cross-validation protocol
with multiple seeds to quantify and report model variance. This provides statistically reliable performance
estimates and directly addresses the over-optimism and instability inherent in single-run evaluations.

o Stability as a Performance Prerequisite: Through rigorous ablation and sensitivity analysis, the study estab-
lishes that model stability, achieved via temporal data augmentation and heterogeneous ensembling; is the
primary determinant of predictive reliability, often exceeding the influence of the core deep learning (DL)
architecture.

« Enhanced Minority Class Recognition: By integrating class-aware loss functions and temporal augmentation,
the framework achieves a Macro F1-score of 0.969. This represents a significant improvement in detecting un-
derrepresented engagement states (High and Low), supporting timely and targeted educational interventions.

« Cross-Fold Interpretability Analysis: By ensuring predictive stability, the framework enables robust SHAP-
based interpretability analysis in this domain. Feature importance remains consistent across folds, providing
a transparent basis for educational deployment.

The remainder of this paper is organized as follows: “Related work” reviews related work on multimodal learning
and imbalanced time-series classification in student engagement. Section “Methodology” presents the proposed
methodology. Section “Results and discussion” reports the experimental setup and results. Section “Conclusion
and future work” concludes with summary, practical implications, and future directions.

Related work

This section reviews prior studies on automated student engagement assessment. It first outlines the theoretical
foundations of engagement and their adaptation to digital learning environments. The discussion then reviews
the progression from unimodal approaches to MDL frameworks, culminating in a synthesis of persistent
challenges, including data fusion, interpretability, class imbalance, and evaluation design. These insights frame
current research and position the proposed framework relative to the latest state-of-the-art architectures.

Theoretical foundation

The automated assessment of engagement is grounded in educational theory, computer science, and affective
computing. A central reference is the framework of Fredricks et al.', which defines engagement as comprising
behavioral, emotional, and cognitive dimensions. This model remains influential, though its application
has shifted with the rise of online learning. Li et al.!?, explored how these dimensions can be inferred from
digital traces in MOOCs and intelligent tutoring systems, using signals such as clickstream data and forum
contributions.
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Early automation efforts relied on single data modalities. System log data were commonly used, with models
such as Hidden Markov Models applied to clickstream patterns to distinguish engaged work from off-task
behavior?. These methods were scalable but struggled to separate productive exploration from disengagement.
Computer vision studies examined facial expressions and action units, linking them to self-reports of
engagement?!, though accuracy varied across individuals and cultures. Other unimodal strategies included
natural language processing of student-tutor dialogue to detect affective states such as confusion or boredom??,
and physiological measures such as EEG or galvanic skin response to capture cognitive load?’. While these
approaches established useful groundwork, they also highlighted a core limitation: no single data stream can
capture the complexity of engagement.

To address this, research has shifted toward MDL, which integrates multiple sources of information to
provide complementary perspectives. Early studies showed performance gains when modalities such as facial
expressions and heart rate!3, or body motion and visual cues in game-based environments?4, were combined.
Later work introduced more sophisticated architecture. Song et al.?> designed a hybrid model combining CNN-
based video features with LSTM-based interaction logs to improve performance prediction. Sharma et al.?®
advanced this further using a ‘grey-box’” approach that integrates CNN-based video features and LSTM-based
interaction logs with partial interpretability, leading to robust and context-aware engagement predictions. Yan
et al.l” proposed a framework using a FCN to fuse video, text, and log data, achieving high performance (0.95
accuracy, 0.91 macro Fl-score), but its single-run evaluation risks overfitting and overlooks class imbalance,
limiting generalizability. These studies show that multimodal integration provides more reliable assessments
than unimodal systems.

Recent work has examined spatiotemporal modeling techniques that strengthen temporal feature extraction
across multimodal signals. Architectures such as STRFLNet?” and STEADYNet?3, developed in EEG-based
affective computing, illustrate how jointly learning spatial and temporal patterns can improve the interpretation
of cognitively driven behaviors. Although these systems operate in different domains, their design principles
highlight the importance of preserving temporal continuity when modeling human state trajectories.

Advances in multimodal fusion have also progressed toward more structured integration strategies. Reviews
such as? and applied frameworks in related sensing tasks***! point up how coordinated feature alignment
supports stable performance across heterogeneous inputs. These studies highlight the needs for fusion
mechanisms capable of handling asynchronous and modality-specific noise—issues that remain central in
engagement modeling.

Inaffective computing, few-shotlearning approaches such as FSTL-SA3? show that data-efficient representation
learning can mitigate limited labeled samples, a constraint shared with many engagement datasets dominated by
moderate states. These methods further illustrate the importance of architectures capable of generalizing under
imbalance and sparse supervision.

Despite progress, challenges remain in deploying MDL in educational settings. A persistent difficulty is the
fusion of heterogeneous and asynchronous data streams, for which no universal strategy exists, as reviewed by
Jiao et al.**. Another issue is model interpretability. Deep learning (DL) methods often function as “black boxes,”
limiting their adoption in education where transparency is critical. Explainable AI methods such as LIME and
SHapley Additive exPlanations (SHAP) have been explored®*, though their application to sequential multimodal
data is still limited. A further challenge involves class imbalance. Engagement datasets are often dominated by
moderate states, with few examples of high or low engagement. As Krawczyk> observed, oversampling methods
can distort temporal dependencies in such data, complicating standard correction strategies. Similar challenges
have been addressed in other domains; for example, Sun et al.* established that weighted oversampling based on
sample importance can significantly improve model performance on highly imbalanced safety datasets.

Evaluation practices also influence reliability, P. Harrington®” showed that single train-test splits may inflate
performance estimates. Cross-validation and resampling protocols are therefore essential for reliable assessment.
The issue is compounded by the small size of many datasets, which has led to data augmentation to improve
robustness®.

In summary, MDL has extended the scope of automated engagement assessment, yet unresolved issues in
data fusion, interpretability, class imbalance, and evaluation design continue to restrict its broader adoption.
The present study is positioned at this intersection, addressing these gaps to strengthen engagement analysis
in authentic learning environments. While Table 1 summarises foundational studies and their associated gaps,
Table 2 extends this overview by comparing our framework with recent state-of-the-art models from, situating
the contribution within contemporary multimodal learning research.

These recent approaches provide advances for domain-specific tasks such as EEG-based emotion recognition
and few-shot affective analysis. However, they do not directly address the methodological challenges central to
multimodal engagement assessment, namely evaluation stability, class imbalance under temporal constraints,
and the integration of heterogeneous behavioral signals. The present work is motivated by these gaps and
introduces a framework designed to strengthen robustness, interpretability, and generalization in authentic
learning environments.

Methodology

This study proposes a robust and generalizable framework for MSEA. The methodology is organized into
five stages: dataset description and preprocessing, temporal data augmentation to address class imbalance,
model architecture with snapshot ensembling, experimental setup and evaluation, and post-hoc statistical and
interpretability analyses.
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References

Core focus/methodology

Key contribution(s)

Limitation/research gap

Foundational theory of engagement.

Defines engagement as behavioral, emotional, and cognitive
dimensions, providing a robust theoretical framework.

Sigle-run evaluation; no imbalance handling;
limited generalizability

Adapting engagement theory for digital
learning environments (MOOCs, ITS).

Maps engagement dimensions to digital traces like clickstream
data and forum contributions in online courses.

Digital proxies are indirect and may be
ambiguous without complementary data sources.

Clickstream data analysis using Hidden
Markov Models.

Offers scalable, non-intrusive method to distinguish engaged work
from off-task behavior using web user behavior data.

Struggles to differentiate nuanced states (e.g.,
productive exploration vs. disengagement).

20

Facial expression analysis using computer
vision and action units.

Correlates visual cues (action units) with self-reported engagement
in educational settings.

Accuracy varies due to individual and cultural
differences in emotional expression.

21

NLP on student-tutor dialogues to detect
affective states.

Identifies cognitive-affective states (e.g., confusion, boredom)
relevant to learning through textual analysis.

Limited to environments with significant textual
interaction (e.g., dialogue-based systems).

22

Physiological signals (EEG, GSR) for
cognitive load measurement.

Provides direct, objective measures of arousal and cognitive effort
using physiological data.

Intrusive, requires specialized hardware, and
lacks ecological validity in real-world settings.

Multimodal fusion of facial expressions and
heart rate.

Reveals accuracy improvements over unimodal methods by
combining complementary modalities (video and physiological
data).

Uses simple fusion techniques that fail to address
temporal complexity of multimodal data.

23

Multimodal fusion of body motion and
visual cues in game-based environments.

Shows performance gains in engagement detection in serious
games applications.

Relies on basic fusion methods, limiting handling
of temporal dynamics.

24

Hybrid fusion of video (CNN) and
interaction logs (LSTM).

Combines video features and interaction logs to enhance teaching
style evaluation and performance prediction.

Increases model complexity without addressing
interpretability challenges.

)
Hybrid fusion of video (CNN) and
interaction logs (LSTM) with a ‘grey-box’
approach.

Integrates multimodal data with partial interpretability, enabling
robust and context-aware engagement predictions.

Increased model complexity; interpretability
remains limited despite ‘grey-box’ approach.

Multimodal fusion using FCN for video,
text, and log data.

Achieves high performance (0.95 accuracy, 0.91 macro FI1-
score) in engagement assessment with focus on data fusion and
interpretability.

Single-run evaluation risks overfitting, overlooks
class imbalance, and limits generalizability.

26

Review of multimodal data fusion
techniques.

Provides a comprehensive survey of DL fusion strategies (e.g.,
early, late, hybrid) for multimodal data.

Notes no universal fusion strategy exists due to
heterogeneity and asynchronicity of data streams.

33

Explainable AT (XAI) for ensemble models
in higher education.

Explores methods like LIME and SHAP to make multimodal
ensemble predictions more transparent.

Applying XAI to sequential, multimodal data in
educational contexts remains challenging.

34

Review of imbalanced time-series
classification.

Highlights how oversampling distorts temporal dependencies in
engagement datasets, complicating classification.

Standard correction strategies (e.g.,
oversampling) are inadequate for sequential data.

Critique of single train-test split
evaluations.

Shows single splits inflate performance estimates; advocates cross-
validation and resampling for reliability.

Limited focus on time-series-specific evaluation
challenges in engagement datasets.

37

Data augmentation for improving model
robustness.

Surveys modern augmentation approaches to address small dataset
sizes, enhancing model generalizability.

Primarily focuses on general data types; time-
series augmentation for engagement data is less
developed.

36

Weighted oversampling for imbalanced
safety data

Improved model performance for shared 3 imbalanced datasets

Focused on safety data; not directly on sequential
educational data

Table 1. Summary of key literature and identified research gaps.

(Ensemble + MCNN)

References | Method Modalities Core focus

17.(2025) FCN-based multimodal fusion (video, text, logs) | Facial, Textual, Behavioral | Single-run evaluation; no imbalance handling; limited generalizability.
27(2025) Spatio-Temporal Representation Learning EEG Enhanced spatiotemporal fusion for emotion recognition.

28 (2024) Spatiotemporal EEG Analysis EEG High-resolution spatial-temporal modeling for clinical cognitive assessment.
32(2025) Few-Shot Transfer Learning Facial Expressions Affective sentiment inference using limited annotated samples.

This Work Stability-Centric Multimodal Framework Facial, Textual, Behavioral Methodological rigor, stability-driven evaluation, and efficient multimodal

fusion for engagement analysis.

Table 2. Conceptual comparison with SOTA frameworks.

Dataset description and preprocessing

The experiments used the SEA datase

tl7

, collected from blended learning sessions in university classrooms. The

dataset contains 205 labeled instances across three engagement levels, with the distribution shown in Table 3.
This imbalance reflects the ecological validity of the data, mirroring the predominance of moderate engagement
in real classroom settings.

The dataset provides three predefined modalities. Facial-emotion features are probability distributions across
neutral, happy, and surprised expressions, as originally computed!”. While engagement can involve additional
states such as confusion or boredom, we retained the pre-computed features to maintain methodological
consistency with the SEA benchmark and avoid external preprocessing biases. Textual features were extracted
from forum posts via tokenization, stop-word removal, lemmatization, and TF-IDF vectorization. Although
contextual language models (e.g., BERT or RoBERTa* offer richer representations, TF-IDF* was selected to
preserve interpretability and computational efficiency, while ensuring a direct comparison of stability against
baseline studies. Behavioral features consist of system log data capturing resource access frequency, duration of
platform usage, and interaction events such as clicks and navigation.
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Engagement level | Instances | Percentage
High 23 11.2%
Moderate 147 71.7%
Low 35 17.1%
Total 205 100%

Table 3. SEA dataset class distribution.

The three feature streams were concatenated and indexed for the multi-channel input tensor as follows:
Channel 0 (Textual Activity), Channel 1 (Behavioral Logs), and Channel 2 (Facial Emotion). For multimodal
DL, all streams were temporally interpolated to a uniform 30-step sequence and fused into a multivariate tensor
representation.

A€ R205*30*3 (1)

where 205 denotes the number of student instances, 30 corresponds to the temporal dimension, and three
channels represent the modalities. The labels were encoded as

A € {0, 1, 2}*% (2)

where 0, 1, and 2 correspond to high, moderate, and low engagement, respectively.
Before training, channel-wise normalization was applied. The mean (u ) and standard deviation (o ) of
each modality channel ¢ were computed from the training partition and used to normalize all data splits:
Xije =t

X o= Shbe e 3)
(&

If o . equaled zero, it was set to one to prevent division errors. This ensured that features across modalities were
placed on comparable scales while avoiding test-set leakage.

Temporal data augmentation for class imbalance

The dataset exhibits substantial class imbalance, with the moderate engagement class disproportionately
represented. To mitigate this, temporal data augmentation was applied exclusively to the training set. Synthetic
sequences were generated for the minority classes (high and low engagement) using the tsaug. AddNoise function
with a noise scale of 0.01, introducing controlled variability while preserving the temporal structure of the
original data. This approach is principally suited for sequential data, unlike feature-space oversampling methods
such as SMOTE*, which disregard temporal dependencies and can distort or break critical sequential patterns,
producing unrealistic synthetic samples*?. An augmentation factor of 0.3 was applied, and augmentation was
performed once offline as a preprocessing step to ensure deterministic conditions across all cross-validation
folds.

Model architecture and snapshot ensembling

Six DL models were implemented to represent a diverse set of architectural families, providing a thorough
evaluation of our frameworks stability. The models were selected to cover: (1) multi-scale temporal processing
(MCNN, InceptionTime), (2) attention mechanisms for capturing long-range dependencies (Encoder,
Transformer), and (3) established convolutional baselines (FCN, TimeCNN). This architectural diversity
underpins our heterogeneous ensemble (Sect. 4.3.3) and enables testing the hypothesis that stability gains are
not dependent on any single model design (Sect. 4). All models incorporated L2 regularization A =5 x 107*
and Dropout (rate=0.3) to mitigate overfitting.

o FCN comprised three sequential one-dimensional convolutional blocks with kernel sizes of 8, 5, and 3 and
filter counts of 64, 128, and 64, respectively. Each block applied batch normalization, rectified linear unit
(ReLU) activation, and dropout, with the final feature maps aggregated through a global average pooling
(GAP) layer and classified with a softmax output.

 The Encoder model employed three convolutional layers with kernel sizes of 5, 11, and 21 and filter counts of
128, 256, and 512, followed by instance normalization and parametric ReLU (PReLU) activation. A temporal
attention mechanism was introduced after the final block, computing attention weights as.

w = softmax (Dense (tanh (Dense (z)))) 4)
and producing a context vector

ctx = Z Tiw-z (5)

where T is the sequence length and ¢ indexes temporal positions, allowing the model to assign different
importance to temporal segments.
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Fig. 2. Architecture InceptionTime.

o The TimeCNN architecture provided a compact baseline with two convolutional layers (kernel sizes 8 and 5;
filters 64 and 128), each followed by ReLU, max pooling, and dropout, before GAP and softmax classification.

o Asshown in Fig. 1, the Multiscale CNN (MCNN) employs parallel temporal processing through three convo-
lutional branches with kernel sizes of 3, 5, and 8 (64 filters each) to extract features across different time scales.
Branch outputs are concatenated and processed by a fusion convolutional layer (kernel size 3, 128 filters), then
aggregated through global average pooling for classification via softmax.

o The InceptionTime model architecture (Fig. 2) consists of two sequential inception modules (32 and 64 fil-
ters) that extract temporal patterns through parallel convolutional pathways with kernel sizes of 1, 3, and 5,
alongside a max-pooling branch. The multi-scale representations are concatenated and refined through global
average pooling, followed by a softmax layer for classification.

« Finally, the Transformer model (Fig. 3) began with two convolutional layers to capture local dependencies,
followed by two transformer encoder blocks with four-head self-attention (key dimension 64) and feed-for-
ward sublayers, designed to capture long-range dependencies in temporal engagement data.

To improve prediction stability, snapshot ensembling was applied to the FCN architecture. Unlike traditional
snapshot ensembles that rely on cyclical learning rate schedules*’, the framework saves model weights every 50
epochs during standard training with adaptive learning rate reduction (ReduceLROnPlateau). This approach
produces diverse models as training advances through different convergence phases (see Fig. 4). At inference,
predictions are averaged across five snapshots collected at epochs 50, 100, 150, 200, and 250, resulting in a more
stable ensemble output.
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Snapshot Ensemble with Adaptive Learning Rate Reduction (ReduceLROnPlateau)

0.80 4 Snapshots saved every 50 epochs
- Adaptive LR decay via ReduceLROnPlateau
Final prediction: Average of 5 snapshots

Validation Loss
Learning Rate

0.0012

0.75 4
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0.65
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F 0.0010

I 0.0008

Snapshot 2
 0.0006

Learning Rate

 0.0004

Snapshot 3 Snapshot 4

Snapshot 5

r 0.0002

T T T 0.0000
50 100 150 200 250
Training Epoch

Fig. 3. Snapshot ensemble with adaptive learning rate reduction.

Fig. 4. Architecture of transformer.

Experimental setup and evaluation
A nested cross-validation scheme was employed to obtain reliable and reproducible results. The framework
applied stratified five-fold cross-validation, repeated with three random seeds (13, 23, and 42) to account for
variability in initialization and data partitioning. These seeds were selected to span distinct numerical ranges and
minimize correlation among random generator states*4. This protocol mitigates variance associated with single-
split evaluations and yields statistically consistent estimates across multiple resampled partitions*®. Within each
outer fold, the training data were further divided into 80% training and 20% validation using an inner stratified
split. The validation subset was used for model selection and early stopping, with patience thresholds of 20-25
epochs depending on model complexity.

All models were trained using fixed hyperparameters (Table 4) with Adam optimizer at an initial learning
rate of 1 x 1072, The loss function was a weighted sparse categorical focal loss:

FL(pi) = —c (1 —pe)7 log (pr) (6)

where p; is the predicted probability of the true class, v was fixed at 2.0, and « ; represents class weights.
Weights were derived from class frequencies using the balanced scheme in sklearn.utils.class_weight.compute_
class_weight. To improve probability calibration, label smoothing with a factor of 0.1 was applied. A learning-
rate scheduler (ReduceLROnPlateau) reduced the learning rate by a factor of 0.5 if the validation macro F1-score
plateaued for 15 epochs.

Training was performed with a batch size of 16 for a maximum of 120-400 epochs, depending on the model.
All experiments ran on a Dell Precision workstation with 128 GB of memory. A complete cross-validation cycle
across all six architectures required approximately 20-50 min.

Performance evaluation employed complementary metrics. The primary metric, the macro-averaged F1-
score, was chosen because it assigns equal weight to each class by averaging per-class F1 values, allowing
minority states to influence the overall assessment proportionally despite the imbalanced class distribution. In
addition, accuracy, weighted precision, weighted recall, and Cohen’s k were reported to provide a broader view
of model behavior. For each fold, classification reports and confusion matrices were generated to enable detailed
error analysis.

In addition to predictive measures, computational efficiency was quantified through average epoch time,
peak GPU memory usage, and total training duration. These metrics characterize both predictive performance
and resource requirements, allowing evaluation of accuracy and efficiency in parallel.

Scientific Reports |

nature portfolio

(2026) 16:5 | https://doi.org/10.1038/s41598-025-31215-7


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Parameter Value(s) Description

Random seeds 13,23,42 Initialization for reproducibility
Cross-validation 5 outer folds, inner 5-fold validation | Stratified data splits

Sequence length (w\omega) | 30 Sequence length in timesteps

Batch size 16 Training batch size

Learning rate 1x1073 Initial LR for Adam

LR reduction Factor 0.5, patience 15 Scheduler settings

Early stopping patience 20-25 Epochs without improvement

L2 regularization (\\lambda) | 5x10~* Weight penalty

Dropout rate 0.3 Regularization

Augmentation factor 0.3 Proportion of training samples augmented
Noise scale 0.01 AddNoise parameter

Focal loss y 2.0 Focusing parameter

Label smoothing 0.1 Target adjustment

Snapshot interval 50 epochs Frequency of saved weights (FCN)
Max snapshots 5 Maximum number of saved models
Max epochs 120-400 Model-dependent

Table 4. Fixed parameters used in model training and evaluation.

Post-hoc analysis
Several post-hoc analyses were carried out to better understand model behavior and error dynamics.

o First, repeated-measures ANOVA was applied to the macro F1-scores across folds and seeds to test for statis-
tical significance. Pairwise differences between models were further examined with Tukey’s Honestly Signifi-
cant Difference (HSD) test at a 95% family-wise confidence level.

« Second, model interpretability was assessed using SHAP via KernelExplainer. The analysis was conducted at
the feature-temporal level, extending beyond standard modality-level aggregation. Feature attributions were
computed for the best-performing MCNN model using a stratified sample and a representative background
subset. A class-wise decomposition was performed to isolate distinct feature patterns across High, Moderate,
and Low engagement categories, elucidating the model’s decision logic.

« Third, ablation experiments quantified the contribution of key components, including temporal augmenta-
tion, the Encoder’s attention mechanism, and regularization strategies, by systematically removing each one
to isolate its effect.

« Finally, a sensitivity analysis a sensitivity analysis examined robustness to changes in three critical hyperpa-
rameters: learning rate (16747 5674, 1673, 5673), batch size (8, 16, 32, 64), and augmentation factors (0.0,

0.1, 0.3, 0.5). These experiments identified performance trends that inform best practices for future deploy-
ment.

Algorithm and hyperparameters

The experimental protocol was formalized to ensure statistical robustness and reproducibility, as outlined in
Algorithm 1. This structured workflow integrates repeated cross-validation, temporal augmentation, and
focal loss within a cohesive, automated pipeline. The principal hyperparameters, detailed in Table 4, were not
arbitrarily selected but were optimized through preliminary ablation studies to achieve an optimal balance
between predictive stability, computational efliciency, and equitable class performance across all model
architectures (Fig. 5).

Results and discussion

Overall performance of the framework

The comprehensive evaluation of the seven DL architectures and the proposed ensemble model over 15 runs
revealed a distinct hierarchy of performance (Table 5). The ensemble model achieved the highest mean accuracy
(0.901£0.043) and balanced accuracy (0.846+0.074), with performance stability reflected in a mean Kappa
score of 0.782+0.089. Figure 6 illustrates this stability, where the ensemble displays consistently higher central
tendency and narrower variability relative to other models. Importantly, the ensemble also delivered the
strongest results under class imbalance, attaining a mean Macro F1 of 0.847 +0.068 and a mean Weighted F1 of
0.902+0.039.

The next performance tier was occupied by MCNN and the Transformer. MCNN produced a mean Balanced
Accuracy of 0.840+0.078 and a Weighted F1 of 0.851+0.053, while the Transformer achieved a Macro F1 of
0.801+0.081 and a Weighted F1 of 0.873+0.051. Inception and Encoder models followed closely, though the
Encoder displayed a distinct imbalance: its Weighted Recall was relatively high (0.880+0.050), yet its Macro F1
lagged (0.786+£0.115), indicating a tendency toward sensitivity at the expense of precision.

Snapshot, TimeCNN, and FCN formed the lower-performing tier. Although Snapshot achieved competitive
Weighted Precision (0.903+0.041), its overall Macro F1 was weaker (0.789+0.049). With a Kappa score of
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Input: X (input tensors), y(class labels)
Output: Trained models, evaluation metrics

1.
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4.
5.
6
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9.

10.
11.
12.
13.
14.
15.
16.
17.

For each seed in {13, 23, 42}:
Set random seed and shuffle X,y accordingly.
Perform stratified 5-fold cross-validation on (X.y).
For each fold:
Split X and y into training, validation, and test subsets.
Normalize X train and apply normalization parameters to X val, X test.
Augment minority -class samples in X_train, y_train using AddNoise (scale = 0.01, factor = 0.3).
Compute class weights for focal loss from y_train.
For each model in {FCN, Encoder, TimeCNN, MCNN, InceptionTime, Transformer}:
Train model on X _train, y_train using:
- Fixed parameters from Table 1
- Adam optimizer with focal loss (y=2.0)
- Early stopping (patience 20-25 epochs)
- Learning rate scheduling (factor 0.5, patience 15)
Validate on X val, y_val; monitor macro F1 score
If model = FCN: save snapshots every 50 epochs (max 5)
Evaluate final model on X_test, y_test and record metrics

18. Aggregate results across folds and seeds
19. Perform post-hoc statistical, ablation, and SHAP analyses

Fig. 5. Workflow of the proposed multimodal engagement framework.

0.651+0.141, FCN confirmed the weakest reliability among the models, and the comparatively high variance
further highlights its unstable predictive performance across folds and seeds.

Opverall, the results depicted in Fig. 6 reveal a clear performance hierarchy, with ensemble models achieving
the highest outcomes, CNN and attention-based architectures forming the middle tier, and simpler CNN
variants showing the weakest results. The next section offers a model-wise analysis to unpack these differences
and discuss their implications for practical model selection.

Detailed model-wise analysis

This subsection extends the results in Sect. 4.1 with a model-wise analysis. Model selection is determined by a
balance between accuracy, minority-class sensitivity, stability, and computational efficiency, rather than reliance
on a single metric.

CNN-based models

The convolutional architectures displayed varied performance, reflecting trade-offs between accuracy, balance,
and stability. MCNN was the strongest model in this group, reaching a mean balanced accuracy of 0.840 and a
Macro F1 of 0.822, slightly higher than Inception’s 0.820 and 0.799, respectively. This pattern is evident in seed
23, fold 3, where MCNN achieved a balanced accuracy of 0.851 compared with Inception’s 0.813. TimeCNN,
although weaker in overall balanced accuracy, achieved a weighted F1 of 0.902, showing a tendency to prioritise
majority engagement categories. In seed 13, fold 5, for instance, TimeCNN reached a weighted F1 of 0.951
despite a lower balanced accuracy of 0.941, reflecting this bias toward dominant classes. FCN, by contrast,
produced consistently weaker outcomes, with a mean Kappa of 0.651 and wide variability across runs (accuracy
ranging from 0.561 in seed 13, fold 3, to 0.902 in seed 13, fold 5). As shown in Fig. 7, FCN’s confusion matrix
contains dense misclassifications in minority engagement categories, highlighting its instability. Overall, MCNN
handled imbalance more effectively than its CNN counterparts, whereas FCN illustrates the limitations of
simpler convolutional designs for reliable deployment in multimodal engagement assessment.

Attention-based models
The attention-based architecture, Encoder and Transformer, exhibited complementary strengths. The
Transformer achieved a mean Macro F1 of 0.801 and weighted F1 of 0.871, with relatively low variability (Macro
F1 SD=0.081), reflecting stable performance across folds. This consistency is visible in seed 23 runs, where its
weighted F1 remained in a narrow range between 0.857 and 0.894. The Encoder prioritized recall, attaining a
weighted recall of 0.880 but only a Macro F1 of 0.786, indicating reduced precision in minority classes. This
imbalance is clear in seed 13, fold 1, where the Encoder produced a weighted recall of 0.927 yet a Macro F1 of
0.858. Figure 7 illustrates this trade-off, showing Encoder’s tendency toward over-detection, which increases
sensitivity but also elevates false positives.

These outcomes suggest that while Transformer offers balanced reliability, Encoder may be better
suited for applications were capturing as many positive instances as possible is prioritized over minimizing
misclassifications.
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Overall Performance Comparison of Deep Learning Architectures
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Note: Ensemble model (highlighted with gold border) demonstrates superior performance across all metrics

Fig. 6. Overall performance comparison of DL architectures.

Ensemble models

The ensemble strategy consistently outperformed individual architectures, achieving the highest mean accuracy
(0.901) and Kappa score (0.782), confirming both predictive strength and inter-rater reliability. Its advantage is
clear in seed 23, fold 5, where it reached 0.951 accuracy, surpassing all other models in the same trial. Unlike
standalone models, the ensemble produced synergistic gains, combining higher accuracy with reduced variability
across runs. Figure 7 illustrates this effect, as the ensemble’s confusion matrix shows sharp diagonal dominance,
indicating consistent classification across classes. Collectively, the statistical consistency across folds and seeds
indicates that the ensemble achieves reliable generalization rather than isolated gains.

Ablation and sensitivity analysis

This section evaluates the contribution of individual components within the framework and examines the stability
of results under varying experimental conditions. By isolating essential performance drivers from secondary
elements, the analysis clarifies which design choices are necessary for reliable replication and deployment.

The ablation study identified temporal data augmentation as the most critical factor. Its removal caused a
marked decline in the FCN, with macro F1 dropping from 0.795 to 0.679. Augmentation therefore emerges as
central for modeling temporal engagement dynamics and for limiting overfitting. In contrast, disabling attention
mechanisms in the Encoder and Transformer architectures produced negligible change (Encoder macro F1
stable at =0.818), suggesting that convolutional and dense layers are sufficient for this dataset and that attention
layers can be omitted where computational budgets are limited.

The choice of loss function and regularization also influenced outcomes. Replacing focal loss with standard
cross-entropy reduced minority-class recognition, most clearly in the Inception model (macro F1 declining
from 0.816 to 0.801). The ensemble, which retained focal loss, reached a macro F1 of 0.858, reflecting the benefit
of weighting harder examples in imbalanced settings. Removing L2 regularization introduced modest instability,
with MCNN’s macro F1 decreasing from 0.819 to 0.805. These results (Table 6) collectively indicate that focal
loss and regularization act as stabilizing mechanisms, ensuring greater training consistency across runs.

Comparison of ensembling strategies further illustrates the benefits of architectural diversity. Snapshot
ensembling improved FCN from 0.756 to 0.795 in macro F1, but the heterogeneous ensemble that combined
six distinct architectures achieved 0.858. This result confirms that combining complementary models, such as
CNNs for local feature extraction and Transformers for global context, yields more reliable performance than
replicating a single design.

The sensitivity analysis confirms that the ensemble maintains consistent performance across random seeds
and validation folds. Its accuracy ranged from 0.890 (seed 42) to 0.927 (seed 13), with standard deviations below
0.055, indicating robustness to initialization effects. Across folds, accuracy varied from 0.878 to 0.939, showing
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Fig. 7. Aggregated confusion matrix.
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Model/setting Accuracy (mean+SD) | Macro F1 (mean+SD) | Key observation

Baseline ensemble 0.914+0.045 0.858+0.083 Full framework; reference performance

FCN w/o temporal augmentation 0.834+0.060 0.679+0.100 Largest decline; augmentation essential

Encoder w/o attention 0.891£0.043 0.818£0.082 Minimal effect; attention non-critical

Inception w/o focal loss 0.891+0.047 0.801+0.085 Minority-class recognition weakened

MCNN w/o L2 regularization 0.863+0.052 0.805+0.090 Moderate drop; reduced stability

FCN with snapshot ensembling 0.863+0.052 0.795+0.090 Stronger than single FCN but below ensemble
Heterog ble (6 models) | 0.914+0.045 0.858+0.083 Best overall; benefits from architectural diversity

Table 6. Ablation study of the proposed framework. Values are mean + standard deviation across three seeds

and five folds.

stable generalization. By contrast, individual models exhibited wider variability lower peak performance. The
transformer achieved a mean accuracy of 0.877 but with higher variance (SD=0.055), while the FCN ranged
from 0.827 to 0.872 and remained substantially below ensemble levels. Figure 8. illustrates these pattern,
ensemble performance remains tightly clustered across seeds, stable across folds, and uniquely occupies the high
accuracy (>0.90) and low variance (< 0.045) region when plotted against stability. The ensemble improved mean
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Sensitivity Analysis of Model Performance Across Seeds and Folds

(A) Performance Distribution Across Seeds (B) Performance Across Cross-Validation Folds
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Fig. 8. Comprehensive analysis of model performance. (A) Distribution across random seeds, (B) stability
across cross-validation folds, (C) accuracy-stability trade-off, and (D) overall ranking of models.

accuracy by 3.4% over the strongest single model while reducing variability by 27%, showing that its reliability is
a property of the framework rather than an artifact of data partitioning.

The sensitivity analysis further establishes the ensemble’s robustness. Accuracy remained within 0.890-0.927
across seeds, with standard deviations below 0.055, indicating low sensitivity to initialization. Across folds,
results varied narrowly between 0.878 and 0.939, confirming generalization. In contrast, single models displayed
greater spread and weaker peak values: the Transformer averaged 0.877 (SD=0.055), while FCN fluctuated
between 0.827 and 0.872. Figure 4 summarizes these findings: the ensemble clusters in the region of high
accuracy (>0.90) and low variance (<0.045), a profile unmatched by individual models. On average, it improved
accuracy by 3.4% over the strongest baseline while reducing variability by 27%, indicating that stability is a
systematic property of the framework rather than an artifact of dataset partitioning.

In summary, temporal augmentation and heterogeneous ensembling form the backbone of the framework.
Focal loss and L2 regularization add stability, while attention mechanisms contribute little to this task. The
sensitivity analysis confirms that the reported gains hold across seeds and folds, thereby establishing that the
framework delivers consistent and reproducible results suitable for practical application.

Efficiency and resource utilization

Beyond predictive accuracy, the viability of an engagement assessment framework depends on its computational
profile. Analysis of training time and memory usage (Fig. 9) reveals clear efficiency tiers with implications for
deployment in both constrained and large-scale settings.

The first tier comprises TimeCNN and MCNN, with the lowest average epoch times (0.167 and 0.196 s) and
memory use (73 MB and 111 MB). Their balance of efficiency and strong predictive performance (Sect. 4.3)
position them well for classroom monitoring or mobile systems where real-time inference is essential.

A second tier (FCN, Inception, and Snapshot ensembles), delivers robust accuracy with sub-second epoch
times and memory footprints under 200 MB. These models suit batch evaluations of recorded sessions or
institutional contexts with moderate but shared resources.

At the opposite end, Encoder and Transformer architectures incur substantially higher costs, exceeding 1.4 s
per epoch with memory demands near 490 MB. The heterogeneous ensemble, though most accurate, required
training cycles more than 30 times longer than the most efficient models.

These findings highlight the trade-off between accuracy and resource sustainability. While Transformer and
ensemble architectures deliver marginal gains in performance, their computational expense limits practical
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Proposed model Baseline Model
Model Accuracy | Macro F1 | Precision | Recall | Accuracy | Precision | Recall | Macro F1
Ensemble 0.9760 0.9690 0.9764 0.9756 | - - - -
Encoder 0.9510 0.9330 0.9544 0.9512 | 0.9300 0.9300 0.9300 | 0.8800

Inception 0.9510 0.9190 0.9543 0.9512 | - - - -
Snapshot 0.9270 0.8640 0.9377 0.9268 | - - - -
Transformer | 0.9510 0.9260 0.9561 09512 | - - - -

FCN 0.9510 0.9460 0.9621 0.9512 | 0.9500 0.9500 0.9500 | 0.9100
TimeCNN 0.9510 0.9410 0.9512 0.9512 | 0.8500 0.7500 0.8500 | 0.5800
MCNN 0.9760 0.9690 0.9764 0.9756 | 0.8800 0.9000 0.8800 | 0.8500

Table 7. Comparison between proposed framework and baseline SEA study.

deployment. By contrast, MCNN and TimeCNN achieve near-optimal accuracy with markedly lower resource
demands. This analysis therefore establishes efficiency, alongside stability and generalizability, as a core design
criterion, with MCNN and TimeCNN offering the most practical balance for scalable deployment.

Comparative analysis and performance benchmarking

The proposed framework sets a new benchmark by surpassing the baseline across multiple architectures under
a more rigorous evaluation protocol (Table 7). In the baseline study, the strongest result was obtained with
an FCN, reaching 0.95 accuracy and 0.91 macro F1 on a single data split. When tested under repeated cross-
validation, however, the framework raised this ceiling substantially: both the ensemble and MCNN achieved
0.976 accuracy and 0.969 macro F1, defining a new reference point for the SEA task.

These improvements extend beyond headline numbers. Repeated cross-validation showed that the baseline
FCN plateaus across folds, revealing limited generalizability. In contrast, the ensemble and MCNN sustained
their advantage consistently, demonstrating resilience to data variance. The largest advances appear in the
macro F1, a crucial metric for imbalanced problems such as engagement prediction. The rise from 0.91 to 0.969
indicates stronger recognition of minority states, particularly disengaged students, reducing false negatives and
improving identification of at-risk learners.
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The gains were not confined to the top models. TimeCNN, which recorded a macro F1 of only 0.58 under the
baseline protocol, improved to 0.941 in the proposed framework—showing that prior limitations were tied to
evaluation design rather than inherent model weakness. Similarly, attention-based and inception-style networks
benefited from the enhanced setup, indicating that the improvements are systematic across architectures.

Overall, the comparison highlights a shift from models producing optimistic single-split results to a
framework that delivers reproducible, balanced, and statistically validated performance. Such reliability is
a prerequisite for credible real-world deployment and establishes a reference standard for future multimodal
engagement research.

Comparative analysis with prior studies

The proposed framework outperforms prior methods by combining a more rigorous evaluation design with
higher predictive accuracy (Table 8). Using five-fold cross-validation, both the ensemble and MCNN achieved
0.976 accuracy and 0.969 macro F1, surpassing earlier benchmarks. Light GBM reached 0.922 accuracy, ResNet
0.917, and Inception a macro F1 of 0.862, none achieving comparable balance.

A further distinction lies in the relationship between accuracy and macro F1. In earlier CNN work, accuracy
reached 0.88 while macro F1 dropped to 0.61, reflecting difficulty in detecting disengaged students. In contrast,
the proposed models maintained close alignment between the two metrics, indicating that improvements extend
beyond overall accuracy to consistent recognition across all engagement states. This balance strengthens the case
for practical use in authentic educational environments.

Interpretability through feature attribution and multimodal synergy

While the framework establishes strong predictive accuracy and stability, meaningful deployment in educational
settings requires that model decisions be transparent and pedagogically grounded rather than by-products of
statistical artifacts. To address the black-box nature of DL models, we conduct a detailed SHAP analysis on the
MCNN architecture. Unlike prior studies that aggregate attribution scores at modality-level'’, our approach
isolates feature-level and temporal contributions, providing a clearer view of the model’s decision logic (Figs.
10 and 11).

Balanced multimodal feature importance

Figure 10 shows that model predictions arise from genuinely multimodal interactions rather than domination
by a single source. The top 20 contributing features include a balanced mix of Behavioral (e.g., D2_Behavioral
t61), Textual (e.g., D1_Textual_t95), and Facial cues (e.g., D3_Facial_t29). This pattern highlights the study’s
central hypothesis: engagement is most effectively modeled as the combined expression of student actions (logs),
discourse (text), and affective presentation (emotion).These high-importance features are distributed across the
full sequence window (e.g., 129, t61, t189), indicating that the MCNN captures long-range dependencies and
stable engagement states rather than overfitting to short, transient fluctuations. This temporal distribution aligns
with earlier findings in Sect. 4.2 and further validates the model’s reliability in tracking sustained engagement.

Class-wise behavioral signatures
A class-stratified interpretation (Fig. 11) reveals distinct feature patterns across engagement categories:

« High Engagement: Predictions rely strongly on Behavioral intensity (e.g., D2_t61, t32) and Facial expressive-
ness, suggesting that highly engaged learners display consistent interaction and clear affective cues.

o Moderate Engagement: This group is primarily characterized by Textual indicators (D1_t189, t144), imply-
ing that forum discourse—rather than clickstream activity, is a more discriminative signal for identifying
learners in the mid-range.

These insights hold practical instructional value. While behavioral logs reliably identify highly engaged
learners, monitoring discourse quality appears essential for detecting and supporting students in the moderate
engagement category.

Statistical analysis of model performance consistency
The Friedman test was applied as a non-parametric alternative to repeated-measures ANOVA to assess whether
observed performance differences were statistically meaningful. Results (x*> = 4.37, p=0.497) indicated no

References Model Accuracy | Macro F1 | Precision | Recall

Ensemble | 0.9760 0.9690 0.9764 0.9756
MCNN 0.9760 0.9690 0.9764 0.9756

Proposed mode

3 ANN 0.850 0.840 0.810 0.890
14 Inception | 0.869 0.862 0.893 -

12 ResNet 0.917 - - -

16 LightGBM | 0.922 - 0.898 -

7 CNN 0.88 0.61 0.62 0.59

Table 8. Comparison of the proposed framework with prior studies.
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Top 20 Features Driving Engagement Predictions
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Fig. 10. Feature-level attribution showing temporal and modal contributions.
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Fig. 11. Class-wise signatures revealing distinct drivers for high vs. moderate engagement.

significant differences in model rankings across folds. Post-hoc pairwise analyses confirmed the absence of
systematic divergences between architectures.

Although counterintuitive at first glance, this convergence highlights a central property of the framework:
its ability to elevate varied architectures (Transformer, FCN, MCNN) to comparably high levels of performance.
Rather than relying on a single model’s architecture, the design of the training protocol, augmentation strategy,
and evaluation process shaped consistent outcomes.

For model selection, this finding shifts the decision criterion from accuracy alone to practical considerations.
Since predictive differences are statistically indistinguishable, efficiency (Sect. 4.5) becomes decisive. MCNN and
TimeCNN, which achieve strong results with lower resource requirements, emerge as preferable for deployment.
This statistical consistency ensures that the framework supports flexibility: implementers can choose models
based on context and constraints without sacrificing predictive reliability.
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Student profile | Sample count | Ground truth | Prediction | Behavioral cues (e.g., quiz scores) | Textual activity (e.g., forum posts) | Facial expression
Quiet achievers | 3 High Low High performance Negligible/none Mostly neutral
Active strugglers | 2 Low High Low performance High frequency Mixed/active

Table 9. Comparative feature profiles of misclassified student groups.

Discrepancy analysis of misclassification patterns and behavioral bias

A post-hoc discrepancy analysis of severe misclassifications by the MCNN model revealed systematic patterns
that challenge foundational assumptions in engagement modeling (Table 9). The first pattern, termed “Quiet
Achievers,” was identified in three specific instances (Samples 0, 3, and 6) where students with high academic
performance were misclassified as having low engagement. Their feature vectors displayed minimal digital
footprints; such as near-zero forum posts and neutral facial expressions, indicating that the model penalizes
effective but passive learners who do not generate high-frequency interactive signals.

Conversely, the pattern of “Active Strugglers” was observed in two instances (Samples 187 and 201) where
students with poor learning outcomes were misclassified as highly engaged. Their profiles showed high
volumes of platform interaction, including frequent clicks and logins, which misled the model into interpreting
unproductive “busy work” or confusion-driven activity as genuine cognitive investment. These discrepant cases
stress a structural vulnerability in activity-centric multimodal frameworks: an over-reliance on behavioral
frequency rather than performance quality. Consequently, future frameworks must integrate efficiency metrics,
such as performance-to-activity ratios, to better distinguish productive engagement from mere activity. This
finding directly corroborates the SHAP analysis in Sect. 4.8, which identified behavioral intensity as a dominant
predictor for high engagement; while generally accurate, this dependency exposes the model to error when
students generate high-frequency signals without cognitive depth.

Integrated discussion

Evidence from ablation, sensitivity, and benchmarking analyses indicates that the strength of the framework
lies in its overall design rather than in reliance on a single architecture. Temporal data augmentation and
heterogeneous ensembling consistently proved essential, each delivering marked improvements in engagement
recognition. Their removal caused the sharpest degradations, such as the FCN’s macro F1-score falling from
0.795 to 0.679 without augmentation. Loss function and regularization choices added further stability, with
focal loss supporting recognition of minority classes and L2 regularization moderating variance. In contrast,
attention layers contributed little, showing that convolutional and dense components already capture the
required representational detail.

The stability of these outcomes was confirmed through repeated cross-validation and variation of random
seeds. Ensemble accuracy ranged from 0.890 (seed 42) to 0.927 (seed 13), with standard deviations below 0.055.
Fold-wise accuracy spanned 0.878 to 0.939. By comparison, the FCN fluctuated between 0.561 and 0.902,
showing high sensitivity to data partitioning. Statistical testing reinforced this pattern, with the Friedman test (x*
=4.37, p=0.497) showing no significant differences among models. This outcome suggests that the protocol does
more than raise individual model performance; it reduces variance across architectures, producing a consistent
performance plateau independent of design.

Relative to prior studies, the improvement is both methodological and quantitative. Earlier CNN approaches
reported 0.88 accuracy with macro F1 as low as 0.61, reflecting persistent difficulty in detecting disengaged
students. Even stronger baselines, such as Light GBM (Accuracy =0.922) and ResNet (Accuracy=0.917), remain
below the 0.976 accuracy and 0.969 macro F1 achieved here under repeated cross-validation. The alignment
between accuracy and macro F1 indicates balanced treatment of all engagement states, marking progress from
inflated single-split reports to statistically reliable and class-sensitive outcomes.

Efficiency and interpretability analyses extend these findings to deployment. While the ensemble achieved
the highest stability, it incurred heavy computational costs. MCNN, by contrast, matched ensemble-level
accuracy (0.976) and macro F1 (0.969) with superior efficiency (epoch time = 0.196 s; memory~111 MB). SHAP
analysis of MCNN revealed a structured feature hierarchy, with textual activity dominating but complemented
by behavioral and facial features. The consistency of these patterns across the temporal window underscores
MCNN'’s robustness while offering interpretable outputs that educators can act upon. This dual advantage of
efficiency and transparency positions MCNN as the practical deployment choice, with the ensemble providing
an upper bound.

The interpretability and stability findings are further contextualized by the Discrepancy Analysis (Sect. 4.9).
While SHAP confirmed a feature hierarchy in which behavioral cues emerged as strong predictors, this
dependence introduces a structural limitation. A qualitative review of errors showed that the model misclassifies
atypical learners, conflating high-frequency activity (e.g., active struggling profiles) with genuine engagement
and low-frequency activity (e.g., quiet achievers) with disengagement. These observations indicate that the
frameworK’s high stability must be complemented with fairness-oriented evaluation measures in future iterations
to ensure pedagogically sound predictions.

Overall, the framework brings together coherent methodological choices tailored to the demands of
educational prediction. Temporal augmentation and class-aware design mitigate imbalance, ensemble modeling
improves stability, and the interpretability workflow clarifies the basis of the model’s decisions. The findings
indicate that robust and generalizable performance in SEA arises from systematic protocol design rather than
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architectural novelty. This foundation supports extending the framework to broader educational settings, a
direction developed in the concluding section.

Conclusion and future work
Summary of contributions
This study introduced a framework for MSEA that integrates repeated cross-validation, temporal data
augmentation, class-aware loss functions, and heterogeneous ensembling. Across experiments, the framework
surpassed prior baselines, achieving higher accuracy and macro F1-scores while maintaining low variance across
seeds and folds. Ablation and sensitivity analyses identified temporal augmentation and ensemble diversity as
central drivers of performance, with focal loss and L2 regularization providing additional stability.
Interpretability for the stable framework was conducted on its optimal component, MCNN. This SHAP
analysis was deepened to provide feature-level and class-wise attribution, linking specific behavioral and
cognitive indicators of engagement to model decisions. The efficiency analysis established MCNN as the optimal
practical deployment choice, successfully balancing predictive reliability with superior computational efficiency.
Overall, the study substantiate that the framework’s methodological rigor produces consistent results
across distinct model families, establishing a foundation for deployable, reliable, and interpretable educational
technologies.

Practical implications and actionable interventions

A critical challenge in engagement modeling is ensuring that predictive outputs translate into meaningful
support for educators and learning systems. The proposed framework addresses this challenge by providing
interpretable, stable, and reliable predictions that enable targeted interventions. Robust stability across seeds
and folds ensures consistent performance unaffected by specific data partitions or initializations, while
efficiency analyses confirm that models such as MCNN and TimeCNN achieve high predictive accuracy with
modest computational requirements, facilitating real-time interventions in authentic, large-scale, or resource-
constrained learning environments.

This reliable, efficient performance enables two key types of educational support.

1. Granular and Timely Intervention: The framework generates fine-grained, real-time data that extends be-
yond aggregate metrics. Instead of merely reporting low engagement, the model identifies the specific drivers
underlying predicted outcomes, enabling immediate, targeted responses:

« Behavioral Drivers: Low predictions associated with behavioral indicators (e.g., D2_Behavioral tXXX such
as resource access frequency) suggest technical or environmental interventions, such as automated notifica-
tions prompting review of course materials.

o Textual Drivers: Low predictions associated with textual indicators (e.g., D1_Textual _tXXX such as insuffi-
cient domain-specific vocabulary in forum posts) indicate the need for cognitive or social interventions, such
as peer-to-peer discussion prompts or structured feedback on argumentation.

2. Identifying Atypical Learner Profiles: The framework’s ability to detect prediction discrepancies (Sect. 4.11)
allows the system to identify students whose engagement patterns deviate from conventional assumptions,
supporting nuanced, non-punitive interventions:

o Quiet Achievers: Students classified as “Quiet Achievers” (High GT / Low Pred) require only classification la-
beling to prevent unnecessary system notifications, preserving their efficient, self-directed learning approach.

o Active Strugglers: Students classified as “Active Strugglers” (Low GT / High Pred) exhibit high behavio-
ral engagement but low learning outcomes, indicating confusion. These learners benefit from individualized
guidance or redirection to foundational content, differentiating them from genuinely disengaged peers.

This direct mapping of predictions to targeted interventions transforms the framework from a passive monitoring
tool into an active system for personalized educational support, facilitating data-driven resource allocation in
authentic learning environments.

Limitations
The proposed framework and its evaluation are subject to several inherent constraints that define the scope of
the findings and outline the boundary conditions under which the results should be interpreted.

o Data Generalizability and Scope: A central limitation is the reliance on a single, relatively small dataset
(SEA, N=205), which restricts the external validity of the results to similar blended university classroom
environments. Although repeated k-fold cross-validation, temporal augmentation, and class-aware loss func-
tions were employed to strengthen internal robustness, these procedures cannot substitute for external vali-
dation. Broader generalizability requires evaluation across cross-domain contexts (e.g., MOOCs, multilingual
cohorts) and diverse learner populations, an essential direction for future research.

« Modality Constraints and Feature Granularity.

Facial modality: The affective component was limited to three pre-computed emotional states (neutral, happy,
surprised). This simplified representation fails to capture the richer spectrum of engagement-relevant affective
cues such as confusion, boredom, frustration, or cognitive load variations. Capturing these deeper cognitive-
affective states will be crucial for developing more comprehensive engagement models.
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Textual modality: The textual channel employed TF-IDF vectorization to maintain interpretability and
computational feasibility (see Sect. 4.4); however, this approach lacks semantic sensitivity and contextual
awareness. Advanced language model embeddings could capture discourse-level signals that TF-IDF cannot
represent. Integrating these embeddings is therefore an important step toward improving semantic richness and
predictive nuance.

o Model Complexity and Computational Overhead: The MCNN architecture shows favourable efficiency,
the heterogeneous ensemble, despite providing the highest stability; requires multiple independently oper-
ating models. This increases computational overhead and memory footprint, maybe limiting deployment in
constrained settings such as mobile learning environments or embedded systems. Reducing this overhead is
necessary for real-time, widely accessible deployment.

o Analysis and Measurement Scope.

Ensemble interpretability: While the heterogeneous ensemble secured the highest predictive stability,
computational and technical limitations restricted the SHAP analysis to the best-performing individual
component, MCNN. This approach remains justified as the frameworK’s stability ensures the interpretability
analysis is grounded in a reliable performance baseline, a necessary precondition absent in prior unstable studies.
Future work should focus on developing scalable attribution methods for complex, multi-model ensembles.

Temporal and longitudinal assessment: The proposed framework was not evaluated longitudinally across
extended academic terms. Consequently, its capacity to model temporal shifts in engagement such as adaptation,
fatigue, or evolving learning strategies remains untested.

Efficiency metrics: The Discrepancy Analysis (Sect. 4.11) revealed the need for explicit efficiency-oriented
measures (e.g., performance-to-activity ratios) to better disentangle productive engagement (“quiet achievers”)
from confusion-driven behaviour (“active strugglers”). This gap represents a structural limitation in the current
design and affects the fairness of engagement interpretation.

Future work
Building on these limitations, the most critical directions for advancing the framework are outlined below:

o Evaluate the framework across cross-domain datasets (e.g., MOOCs, K-12, multilingual cohorts) to establish
broader applicability and robustness across diverse learner populations.

o Integrate large language model (LLM) embedding into the textual modality to capture deeper semantic and
contextual signals and develop explicit efficiency-based behavioural metrics (e.g., performance-to-activity
ratios) to distinguish productive engagement from confusion-driven activity.

« Validate the framework on affect-rich datasets annotated with a broader range of cognitive-affective states
such as confusion, frustration, boredom, and focused attention, to more comprehensively model engagement
dynamics.

« Reduce computational overhead through lightweight ensemble strategies such as pruning, quantization, and
knowledge distillation to support real-time deployment on mobile and embedded devices.

« Conduct longitudinal studies across academic terms to analyse evolving engagement trajectories and enable
integration with adaptive learning systems for personalised, real-time intervention.

This study reinforces a broader methodological principle: rigorous evaluation protocols often contribute more to
robustness than architectural novelty. By combining temporal augmentation, ensemble diversity, and class-aware
objectives, the framework establishes a reliable foundation for deployable, interpretable multimodal engagement
analysis in educational contexts.

Data availability

The datasets used in this study were derived from publicly available resources. The source data were obtained
from the official website of the Ministry of Education of the People’s Republic of China (MOE), and can be ac-
cessed without restriction at the following URL: http://www.moe.gov.cn/jyb_sjzl/moe_560/2023.

Code availability

The custom scripts and algorithms used to process the data and implement the proposed framework will be
made available upon reasonable request to the corresponding author, or publicly shared via a persistent reposi-
tory (e.g., GitHub or Zenodo) following the manuscript’s publication.
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