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Hepatitis B virus (HBV) remains a major global health concern, with sexual transmission being a

key driver among adults. This study develops a gender-stratified compartmental model of HBV
spread that integrates long-term disability through gender-specific parameters. A key contribution
is the integration of mechanistic modeling with artificial neural networks (ANNs), enabling efficient
emulation of the model’s nonlinear dynamics. Numerical solutions from the classical Runge-Kutta
4th-order (RK4) method were used as training data for an ANN optimized with the Levenberg—
Marquardt algorithm (ANN-LMB). The trained ANN accurately reproduces compartmental dynamics
with minimal error and provides a fast surrogate for sensitivity exploration. Analysis of the basic
reproduction number (R,) reveals the strong influence of same-sex transmission rates, contact
patterns, and disability onset parameters. These findings highlight the importance of behavioral
interventions, vaccination coverage, and early detection of chronic carriers. Overall, the proposed
ANN-LMB framework enhances computational efficiency and offers a biologically informed approach
for exploring complex HBV transmission dynamics.
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Hepatitis B virus (HBV) remains a major global health challenge, affecting over two billion individuals
worldwide and causing nearly 900,000 deaths annually'. The virus primarily targets the liver, leading to acute
and chronic infections that can result in cirrhosis and hepatocellular carcinoma. HBV is transmitted through
contact with infected blood, semen, or other body fluids, with sexual contact being a major route among
adults®>=°. High-risk behaviors, such as unprotected intercourse and multiple sexual partners, particularly among
chronically infected individuals, significantly contribute to HBV spread. The virus is estimated to be 50-100
times more infectious than HIV and exhibits greater environmental stability than hepatitis C virus®’. Despite
effective vaccines and antiviral therapies, HBV persists as a serious public health concern due to incomplete
immunization coverage, behavioral risk factors, and limited access to early diagnosis and treatment®~'°. While
antiviral therapy can suppress viral replication, a complete cure for chronic HBV infection remains elusive!!.
Hence, prevention through vaccination, awareness, and behavioral modification remains central to HBV
control!. Sexual transmission, both heterosexual and homosexual, continues to drive HBV prevalence among
adults. Heterosexual contact remains the dominant route, while male-to-male transmission accounts for a
significant proportion of new infections, particularly in urban and high-risk populations**!2. Although less
common, evidence suggests that female-to-female transmission can occur through close sexual contact and
shared partners'>~'>. These behavioral differences underscore the importance of gender-stratified modeling
approaches for understanding HBV transmission dynamics.

1Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT),
Bangkok 10140, Thailand. ?Mechanical Engineering Department, College of Engineering and Architecture,
Umm Al-Qura University, P. O. Box 5555, 21955 Mecca, Saudi Arabia. Department of Clinical Microbiology
and Immunology, Faculty of Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia. “King Salman
Center for Disability Research, 11614 Riyadh, Saudi Arabia. *Department of Operations and Management
Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt. “‘email:
rahatmathematicion@gmail.com

Scientific Reports|  (2025) 15:44325 | https://doi.org/10.1038/s41598-025-31252-2 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-31252-2&domain=pdf&date_stamp=2025-12-23

www.nature.com/scientificreports/

A robust body of epidemiological evidence demonstrates that chronic hepatitis B virus infection is a
substantial contributor to population-level disability, as quantified by years lived with disability (YLDs) and
disability-adjusted life years (DALYs). The Global Burden of Disease Study 2019 estimated that approximately
316 million individuals were chronically infected with HBV, resulting in 555000 deaths in that year; these deaths
reflect only part of the health impact, as HBV also causes extended morbidity due to cirrhosis and hepatocellular
carcinoma (HCC)'®7. The DALY metric, which combines premature mortality with time lived in a disabled
state, integrates the non-fatal consequences of HBV infection such as prolonged hepatic dysfunction, fatigue,
and cognitive impairment'®. In 2019, an estimated 34.5%, of age-standardized HBV DALYs were attributable
to modifiable risk factors (alcohol, tobacco, high BMI), suggesting an interplay between HBV progression
and lifestyle-related disability'®. This highlights the potential for prevention strategies to reduce long-term
disability outcomes among carriers. Geographically, HBV-related disability burden is unequally distributed; low
and middle-income regions exhibit higher DALY rates, paralleling lower access to vaccination and treatment
services!®20. Moreover, studies from countries like Brazil and Iran show specific YLD contributions from HBV-
associated cirrhosis. For example, in Brazil in 2008, chronic HBV and its complications caused approximately
57380 DALYs (5.5 YLDs per 100000), with most of the burden arising from premature death but with a
measurable YLD component?!. Finally, attributing HBV burden to high-risk groups reveals further insights:
among people who inject drugs, about 1.1,% of HBV-related DALYs were linked directly to injection exposure
in 2013, underscoring how behavioral risk factors amplify disability risk in vulnerable subpopulations??. Taken
together, these findings underscore that chronic HBV not only leads to increased mortality but also results
in measurable disability at population scale. For modelling purposes, parameters reflecting YLDs and DALYs
enable the translation of carrier prevalence into projected disability burden, guiding planning for health services
and disability-focused interventions.

Various mathematical frameworks have been developed to investigate the transmission dynamics and
control strategies of HBV, reflecting decades of global research efforts®*~2. For example, age-structured and
control-based modeling approaches have been applied to examine HBV transmission in specific populations,
such as those in New Zealand?. The effectiveness of vaccination as a primary control measure has been analyzed
in several studies?”?%, while multi-group and cost-effectiveness formulations have provided further insights into
the impact of intervention programs***. Other models have incorporated time delays and migration effects to
capture temporal and spatial heterogeneity in HBV dynamics®'-%*. Although these traditional compartmental
models have significantly advanced the understanding of HBV spread, they are often limited in their ability
to represent nonlinear memory effects and parameter uncertainty inherent in biological systems. Recent
developments have sought to address these challenges through advanced computational paradigms, such as
stochastic solvers and artificial neural networks. For instance, Anwar et al>*. introduced a stochastic Runge-Kutta
approach for HBV modeling, while related studies extended adaptive neural architectures to computer virus
propagation® and nonlinear measles transmission®. Further advancements in autoregressive neural solvers and
hybrid intelligent frameworks have been reported for multi-delay and biomedical dynamical systems>”*. These
contributions highlight the growing relevance of Al-assisted numerical modeling in infectious disease research
and motivate the present study’s use of the ANN-LMB framework for HBV dynamics, incorporating disability
progression and gender-specific transmission mechanisms.

Artificial Neural Networks are increasingly used in infectious disease research because they can approximate
highly nonlinear interactions among biological, social, and environmental factors that influence disease
dynamics. Their data-driven nature allows them to learn from epidemiological observations, such as temporal
incidence patterns, demographic distributions, climatic variables, and clinical indicators, without the need to
specify detailed mechanistic equations®. This flexibility makes ANN-based approaches particularly effective
when data are incomplete, noisy, or uncertain. To strengthen biological interpretability, recent frameworks have
combined neural computation with traditional compartmental modeling concepts. Rodriguez et al*’. proposed
the concept of Epidemiologically-Informed Neural Networks (EINNs), which integrate SIR and SEIR-type
dynamics within neural layers, while Rodriguez et al*!. expanded this approach through Graph Neural Networks
(GNNs) that capture spatial, social, and mobility-based interactions. In malaria studies, ANN architectures have
been adapted for both ecological prediction and diagnostic applications.Rajnarayanan et al*2. introduced a hybrid
structure linking temperature- and altitude-dependent malaria transmission to a combination of ANN, CNN,
and RNN models for outbreak risk estimation. Similarly, Guedri et al*’. demonstrated that coupling stochastic
solvers with ANNs enhances the accuracy and robustness of malaria forecasts under uncertainty, illustrating
the strength of hybrid computational techniques in epidemiology. Jalloh et al*4. further reported that optimized
ANN architectures achieved mean absolute percentage errors below 5% for malaria incidence prediction in
Sierra Leone outperforming conventional regression-based forecasting tools. In diagnostic applications, Soner
et al®. developed an ANN-CNN-RNN ensemble for automated malaria detection in microscopic images,
reaching over 97% classification accuracy. The success of these methods highlights the versatility of ANN-
driven modeling in representing disease transmission, guiding surveillance, and improving diagnostic efficiency
in endemic regions. Beyond infectious diseases, ANN-based systems have been increasingly utilized across
biomedical and environmental domains, including neural activity modeling’®, immune and inflammatory
responses*’, aquatic and ecological systems*®, cancer risk prediction*®, and tumor therapy modeling. Together,
these advances demonstrate that neural computation offers a flexible, accurate, and generalizable framework for
studying nonlinear processes in biological and health sciences.

A key novelty of this study lies in the integration of HBV-induced disability into a transmission model
that accounts for both heterosexual and homosexual dynamics. By introducing gender-specific disability
probabilities (8¢, 0,,) and onset rates (&) directly into the compartmental structure, the model captures long-
term functional impairments resulting from chronic HBV infection without increasing structural complexity.
Furthermore, this study explores the application of ANNSs to enhance the modeling of HBV transmission and
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progression. The proposed framework combines data-driven learning with mechanistic disease modeling to
ensure both computational efficiency and high predictive accuracy. At the core of the methodology is a system of
nonlinear ODE:s that describe HBV dynamics across seven compartments. These ODEs are numerically solved
using the classical RK4 method to produce high-fidelity solution trajectories. These trajectories are then used
as reference data for supervised ANN training. The network is trained using the ANN-LMB, which enables
rapid convergence and accurate prediction of compartmental behaviors, including susceptible, infective, carrier,
and recovered populations. Several recent studies have applied ANN techniques to complex epidemiological
systems. For example, Guedri et al*!. developed an ANN-based model for Ebola transmission that incorporates
delay effects and neurological complications. Zarin® investigated influenza dynamics using a spatially diffused
SVEIR model coupled with neural networks. Sabir and colleagues further demonstrated the effectiveness
of Meyer wavelet-based®® and fractional-order neuro-evolutionary solvers’*> in modeling nonlinear and
singular epidemic systems. In a related effort, Guedri et al*®. modeled syphilis progression by integrating ANN
frameworks to simulate disability risks within compartmental structures. Building upon these foundations, the
present study extends ANN-LMB methodologies to HBV modeling with a specific focus on long-term disability
impacts, sexual transmission heterogeneity, and gender-specific health burdens.

The main contributions of this study are summarized as follows:

« Formulation of a nonlinear, gender-stratified HBV transmission model that captures both sexual (heterosex-
ual and homosexual) and non-sexual transmission pathways.

« Incorporation of long-term disability effects among carrier populations using fractional disability parameters
and progression rates.

 Use of RK4-based numerical solutions as training targets for supervised ANN learning.

 Implementation of the ANN architecture with the Levenberg-Marquardt optimization algorithm to achieve
fast convergence and accurate compartmental approximation.

« Validation of the ANN-LMB framework using mean squared error (MSE), error histograms, and perfor-
mance evaluation plots.

Model formulation

This study focuses on the adult population, which is divided into four main epidemiological compartments:
susceptible, infective, carrier, and recovered individuals. To capture gender-specific dynamics, the susceptible
group is subdivided into female susceptibles, denoted by S;(¢), and male susceptibles, denoted by S, (t).
Similarly, the infective population is divided into female infectives, I (¢), and male infectives, I, (¢). The carrier
class is separated into female carriers, C ¢ (¢), and male carriers, Cyy, (t). The recovered individuals are collectively
represented by R(¢)*’. Accordingly, the total population N(¢) at time ¢ is given by:

N(t) =Sy (t) + L (t) + Cy(t) + S (t) + Ln(t) + Crm(t) + R(2).

The model assumes that recovered individuals acquire permanent immunity, with no subsequent loss of
protection. Migration (both immigration and emigration) is ignored, and population renewal occurs only
through births. The recruitment rates of females and males are represented by Ay and A, respectively. Two
transmission mechanisms are considered: non-sexual and sexual transmission. Sexual transmission is further
divided into heterosexual and homosexual interactions. The non-sexual transmission rate is denoted by A,
while the sexual transmission rates are expressed as Ay g, Afm, Aff, and Apmm, corresponding to the following
interactions:

o Apmy: transmission from males to females,
o Afm:transmission from females to males,
o Ajsy:transmission among females,
o Amm: transmission among males.

Following the formulation proposed by Mclean and Blumberg®®, these transmission rates are defined as:

28fmerm (Iy +€Cy)

Af7n = N ’
Q/B'ancmf (Im + ecm)
)\mf = N k]
A _ 2ﬁnnnc'mxrm (Im + Ecm) (1)
mm = N )

N, = 2Brrers Ay 4 €Cy)
ff= N bl
A=B(Im +15) + € (Cm +Cy).

In these expressions, Sfm, Bmf, Bff> and Bmm denote the corresponding transmission coefficients, while ¢,
Cmf> Cff>and cmm represent the average contact rates. The parameter € accounts for the reduced infectiousness
of carrier individuals compared with acutely infected individuals. The HBV model developed in*” provides the
basis for this study; however, it does not include the long-term disability outcomes associated with chronic
hepatitis B infection. To improve its biological relevance and public health applicability, the model is extended to
incorporate disability dynamics among carriers. Disability due to chronic HBV infection often results from liver-
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related complications that impair physical function, cause fatigue, and reduce cognitive capacity. To represent
these effects, two parameters are introduced: 6 and 6,,, representing the proportions of female and male
carriers who develop disabling complications, respectively. A new rate parameter, J, describes the average rate
at which disability becomes clinically significant among carriers. The resulting extended model, which includes
both traditional infection dynamics and disability progression, is described by the following system of nonlinear
differential equations:

de N N
dI 2Bm tCmt(Im Com 2 I C
(TZ:/\Sera( Bmsc f(N te ))Ser(l*a) (—Bffcff(Nf+€ f))sf*(ll0+71)1f»

dC
(th = qrmly — (po + p1 + 72 + 0£5)Cy,

B A = (At 10 +7)Sm — b (—Qﬁfmcf"ﬁf * ECf)) Sm—(1-b) (wm’”cmm(lm as 6Cm)> Sm, (@)

i:Af*()\JF,UJOJF'YS)Sf*(Z( Brmgcms(Im + €C )>Sf7(17a)( ﬁffcff(f+ecf))sf?

dt N

dlm _ 2B¢merm(ly +€Cy) 2BmmCmm (Lm + €Cn)
W_)\Sm+b(+ Sm+(1-0) N Sm — (o +71)Im,
dC,,

T = q7n'lem/ - (,U,() +p1+ 2 + em,(s)cm,,

dR

g = 368s +5m) + (1= gr)nls + (1 = gm)7ilm +72(Cr + Cm) — poR.

The corresponding initial conditions are:
S;(0) =83, I;(0) =13, In(0) =13, Swm(0)=S5, Cs(0)=C}, Cn(0)=C), R(0)=R">0.

Biological interpretation of disability and recovery parameters The parameters 67 and 6,,, together with
0, represent the transition of a subset of carriers into long-term disability states resulting from HBV-related
complications such as cirrhosis and hepatocellular carcinoma. These individuals are assumed to be non-infectious
and are therefore removed from the active transmission dynamics. The term 72 accounts for the rare functional
recovery observed clinically in a small proportion of chronic HBV cases, corresponding to spontaneous clearance
of HBsAg. This formulation allows the model to capture both the epidemiologically inactive disabled population
and the rare but biologically possible recovery pathway without increasing structural complexity. The numerical
values of the parameters are given in Table 1.

Positivity of solutions

System (2) models the dynamics of hepatitis B infection across multiple gender-based and sexual contact
compartments. To guarantee that the state variables Sy (t),17(t), Cs(t), Sm(t), Im(t), Cm(t), R(t) remain
non-negative for all t > 0, it is essential to establish their positivity throughout the time domain.

Lemma3.1 LetU C R™beanopenset,andconsiderasolutione = (1, ...,xn) € C*((0,T7);U) N C([0,T);U)
to the ordinary differential equation:

{ x(t) = f(t,z(1)),
z(0) = o,

where the initial condition o = (1,0,...,%n,0) € U satisfies x;0 >0 for all i €{1,...,n}, and
F=01,---,fn): (0,T) x U — R"™. Suppose that whenever y; = 0 and all other yi, > 0 for k # i, it holds
that fi(t,y) > 0 fort € (0,T). Then, the solution x remains positive for all ¢t € [0,T), meaning z;(t) > 0 for
eachi € {1,...,n}andt € [0,T)%.

Theorem 3.1 The solutions S¢(t),1(t), C¢(t), Sm(t), Imn(t), Cim(t), R(t) of system (2) exist for all time and
are always positive, smooth, and unique for allt > 0, subject to the initial conditions

S7(0),1£(0),Cs(0), Sm(0),1m(0), Cin (0), R(0) > 0.

Proof Consider the state vector and its initial values:

Sy S¢(0)
Ly 1;(0)
Cy Cy(0)
z=|Sm |, zo=| Sw(0)
I, I (0)
Crn Con (0)
R R(0)

Let f = (f1, f2,..., fr)T denotethe right-hand side of system (2), where each f; is defined by the corresponding
ODE. These expressions are smooth, locally Lipschitz, and consist of bilinear or linear combinations of state
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Parameter | Value Comments Source

a 0.75 The proportion of heterosex in female susceptibles 57

b 0.75 The proportion of heterosex in male susceptibles 57

Ay 8,304, 000 year ! Recruitment rate of females B

Am 8,304, 000 year ™! Recruitment rate of males »

1o 6.9 x 103 year™! | Natural mortality rate 57

11 2 x 1072 year™? HBV-related mortality rate 57

€ 0.16 Reduced transmission rate 4

1 0.26 year™ ! Progress rate from acute to carrier 57

Y2 0.025 year™ L Progress rate from carrier to immune 4

3 0.05 year ! Vaccination rate for adults »

qf 0.05 Average probability a female adult fails to clear an acute infection and develops to the carrier state | °8

qm 0.07 Average probability a male adult fails to clear an acute infection and develops to the carrier state | >

B 3.5 x 10711 year™ 1| Transmission rate for non-sexual transmission 57

Bmf 2.26 x 1077 Transmission probability for males per sex contact with females 57

Bym 3.06 x 1073 Transmission probability for females per sex contact with males 57

Brr 0.0142 Transmission probability for females per sex contact with females 57

Bmm 9.73 x 1073 Transmission probability for males per sex contact with males 57

Cmf 21.8 year ' Average number of sex contacts of females with males 57

Cfm 21.8 year ! Average number of sex contacts of males with females 57

crf 21.8 year ! Average number of sex contacts of females with females 57

Crm 65.4 year™ 1 Average number of sex contacts of males with males 57

O 0.10-0.30 Proportion of female carriers developing chronic disability (10-30%) Assumed
O 0.15-0.35 Proportion of male carriers developing disability (slightly higher due to HBV severity) Assumed
1 0.05-0.10 year ! Rate of onset of HBV-related disability (10-20 years average latency) Assumed

Table 1. Model parameters and values.

variables with non-negative coefficients (except for natural mortality or transition outflows). Define the total
population as:

N(t)=S;+I; +C;+Sm +Ln+Crn +R.

Since recruitment terms Ay, A, are constant and death terms are proportional to compartments, N(t) is
bounded above, implying that solutions stay within a closed ball By C U. By the Picard-Lindelsf theorem®!,
there exists a unique local solution z(t) € C*((0,T); U) N C ([0, T); U). To prove positivity, apply Lemma 3.1.
Each f; remains strictly positive when ; = 0 and the other =; > 0. For instance:

o When Sy :0,wehaved§—tf =A; >0

o WhenI; = 0, infection and recruitment terms are positive;
o The same holds for Cs, Sy, Lni, Cin, R due to the structure of the ODEs.

Hence, z(t) € RY, forall t > 0. By Corollary 17.4 in®%, the local solution extends globally.
Finally, since f is infinitely differentiable, the solution satisfies the integral equation:

xz(t) = xo +/0 f(x(s))ds.

A bootstrap argument implies that x(t) € C'°°, proving that the solution is smooth, positive, and global. (]

Invariant region and boundedness
We examine system (2) within the biologically relevant feasible region Dy;.

Theorem 4.1 The region
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Dy = {(Sf,lf,cf,sm,lm,cm,m ERT:N(1) < Af:f“}
0

ispositivelyinvariantandattractingforsystem(2)forallt > 0,whereN (t) = Sy + Iy + Cf + Sm + Im + Cm + R.

Proof Define the total population size:
N(t) =S +15+Cs+Sm +1In+Cm +R.

Differentiating with respect to time and summing all equations from system (2), we obtain:

AN _dS; dly  dCy  dS,  dl,  dCn  dR
dt — dt dt dt dt dt dt dt’

Substituting from system (2), and observing that all terms involving transmission, recovery, and progression
cancel internally, we get:

dN
o= Af+Am —po (Sy +1y +Cs + Sy + 1 + Ci + R) — 1 (Cy + Cin) = 3(05Cy + 0, Crra).

Dropping the non-negative mortality and disability terms (for a bound), we get:

d
%gAf+Am—MoN.

Now apply an integrating factor I; = e°*, giving:

% [N(t)e"o"] < (Af + Am)e".

Integrating from 0 to ¢, we obtain:

Nt —(0) < SLE (@ 1),
0

which simplifies to:

Af+An Ar+Am |
N(t) < HTAm (o) - AL EAm | ot
Ho Ho
Therefore, if N(0) < AtAm - then N (t) < ArtAm for all ¢ >0, showing positive invariance. If
1o #o

N(0) > %, then A/ (¢) monotonically decreases and asymptotically approaches this upper bound. Hence,

the region Dy is both positively invariant and attracting, ensuring the biological and mathematical well-
posedness of system (2). [J

Basic reproduction number
The model (2) has a disease-free equilibrium given by:

EO = (8070,07 S?H,O,O,RO) ) (3)
where:
q0 — Ag 0o _ Am RO — 3 (S(} + S9n) _ s (Af + Am)
! o + 3’ ™ o+’ o wo (o +73)

We calculate the basic reproduction number Ry using the methods in®*¢4, Let:

Iy
Ly,
Cy
X = %m , and rewrite the system as: X =.% — ¥,
S
R

where:
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AS/‘ + a)\mef + (1 — a))\ffo
ASmr 4 b fmSm + (1 — b) A Srm

0
F = 0 ,

0

0

0
(po +y1)Iy
(po + 71)Im

(o + 1 + 2 + 070)Cp — qsmly
W = (to + p1 + 72 + 00)Crn — gmy1Im

— Ay 4+ A+ po +73)Sy + aAmpSy + (1 —a) XSy
—73(S¢ +Sm) — (1 —gr)nly — (1 = gm)v1lm — 72(Cs + Cin) + poR

The disease-free equilibrium is:
Eo = (0,0,0,0,8%,8,,,R°).
The Jacobian matrix at Ej is given by:
7 (B) -0y (Bo) = [ 9],

where H and .J are 3 X 3 matrices, and:

F= [%1 %2], = [é g], Fo = cFy.
The matrix V is given by:
[ D1 0
V=[5, vl
where:
D1 = (o +m)lex2, D2 = |:Qf0’Yl qn?%} s Vo= (po+ p1+v2 +050)Iaxo.
Additionally:
2(1 — (z)ﬁffofSO QaﬂmfcmeO
A=y 2 urersS) gy 200mronsS)
2681 CmSmn 2(1 — b) Brrm Comm St
C:ﬁS?nJrﬂfNiof, D=pso, + 2 WNO .

Following®>%, the basic reproduction number Ry is the spectral radius of the matrix FV ™!, denoted as
p(FV 1), After calculation:

T2 4+ /T2 — 41173

Ry= 2TV
0 27"1 )
where:
r1 = (1 + po)” (po + p1 + 72 + 058)* (o +73)?,
2(1 —
T2 = (71 + po) (ko + pa + vz + 056) (o + 73) [Af <B + W) (o + p1 +v2 + 00 + egpy1)

+Am <,6’ + (3506> (o + p1 42 + 0md + eqm%)},

2(1 — 2(1 — b)Brum Cm,
T;s=AfAm(/1«0+,“1+72+9f5+6qf‘/1)(#0+l‘«1+"{2+9m6+€CIm’}/1)|:<ﬁ+ ( 7\;?”0”> <ﬁ+ ( 350 = >

(o ) (- 2]

and:
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Af +Am

N°=5%+ Sy, + R’ =
1o

(71 + po) (po + p1 +v2 + 050) (po + v3)

2(1 —a)Brscrs
Ag <ﬁ+ %) (o + p1 +v2 + 056 + eqrm)

2(1 = b)Bmmcmm
+ Am (/3 + %) (o + p1 + 72 + Omd + fqmvl)}
2 1 — FFCF P
+ < (71 + po) (o + pa 4+ v2 + 056) (o + 73) (Af (ﬁ + %) (o + p1 + 72 + 070 + €qpm)

(1 = b)BrnmCmm

2
2
+ A </3 + O ) (o + p1 +v2 + 0md + 6qm”/1)):| —4(y1 + po)?(po + p1 + 32 + 658)°

(o 4+ 73)% X Af A (po + 11 + 2 + 058 + eqsy1) (o + p1 + 72 + Omd + €qmm1)

1

y [ <ﬂ+ 2(1 —7\?(]@”(3”) <ﬁ+ 2(1 — b)/ﬁmmcmm> B (,@+ 2aﬁmfcmf> (ﬂ+ 2bgfmcfm> D 2

N(] N() Nl]

Ro = : -
0 2(m1 + po)?(po + p1 + 72)2 (1o + v3)?

Sensitivity analysis

Sensitivity analysis is a key tool used in infectious disease modeling to identify which parameters most
significantly affect disease transmission and control. In particular, forward sensitivity analysis helps determine
how small changes in parameters influence key epidemiological outcomes such as the basic reproduction
number Ro. Although the computation can become challenging for complex biological models, this technique
remains essential. Sensitivity analysis of R has been widely employed by ecologists and epidemiologists to guide
effective intervention strategies.

Definition 6.1 The normalized forward sensitivity index of Ry that depends differentiably on a parameter € is
defined as

Q ORo
So =5 —=.

Ro 90
Three methods are commonly used to calculate sensitivity indices: (i) by direct differentiation, (ii) by a Latin
hypercube sampling method, and (iii) by linearizing the system (2) and then solving the obtained set of linear
algebraic equations. We will apply the direct differentiation method as it provides analytical expressions for the
indices. The indices not only show us the influence of various aspects associated with the spread of infectious
diseases but also provide important information regarding the comparative change between Ry and different
parameters. Consequently, it helps in developing effective control strategies.

Table 2 shows that the parameters A¢, Am, 5, qf, ¢m> & Bff> Bmms Cff> Cmm,> Om, and & positively
influence the reproduction number Ry. This implies that a 10% increase or decrease in these parameters
will proportionally increase or decrease Ry by 3.6726%, 6.3274%, 2.6193%, 0.21231%, 0.50053%, 0.71284%,
2.3779%, 5.0025%, 2.3779%, 5.0025%, 2.7142%, and 0.22253%, respectively. On the other hand, the indices

Parameter | Sindex | Value Parameter | Sy, 40, | Value

a S, -0.71338 | b Sy ~1.5007
Af Say 0.36726 A Sam 0.63274

B Sp 0.26193 " Sy -1.3793

Y2 Syg 041326 | 5 Srya -1.3085

1o Spuo -033313 |y Spq -0.033061
as Sqf 0021231 | gy, Sqm 0.050053

e Se 0071284 | Bss Sgrp 023779
Bmm SBmm | 0.50025 B g S8y | 3.3145¢-09
Bm SBm | 20515605 | Cmy Sems | 3.3145e-09
Cfm Scfm | 2.0515e-05 | csr Secrs 0.23779
Comm Semm | 0.50025 Oy So -0.24917
Om So.m, 0.27142 5 Ss 0.022253

Table 2. Sensitivity indices of the reproduction number Ry against mentioned parameters, including disability
dynamics.

Scientific Reports |

(2025) 15:44325

| https://doi.org/10.1038/s41598-025-31252-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

for parameters a, b, Y1, Y2, V3> 10> 141> Bmfs> Bfms Cmyg> Crm, and Oy indicate that increasing their values by
10% will reduce Ro by 7.1338%, 15.007%, 13.793%, 4.1326%, 13.085%, 3.3313%, 0.33061%, 3.3145 x 10_8%,
2.0515 x 107*%, 3.3145 x 1078%, 2.0515 x 10™*%, and 2.4917%, respectively. These results underscore the
importance of prioritizing interventions that target the most sensitive parameters, such as b, y1, 3, and now 0 I
and 6., to effectively manage Ro and control HBV transmission.

Analysis and discussion of sensitivity results

The apparent sensitivity analysis performed on the basic reproduction number Ry aids in comprehending the
dynamics of the transmission of the HBV in the population under consideration which has been modelled. In
this section, the important parameters regulating Ro are detailed and their physical and biological roles are
discussed from the context of public health policy-making.

Key influencing parameters

The results clearly show that a few parameters increase the R considerably. Gender-based recruitment rates
(A, and Ay), probabilities of transmission (Bum £, Bfm> Bmm, Bff), and contact rates (Cmf, Cfm»> Cmm, Cf§)
exhibit a strong positive correlation with Ro. These parameters are directly related to the sexual activity involved
in having may be children of susceptible parents hence increasing the size of a group of infected:

« Recruitment rates The sensitivity indices related to A,,, and Ay suggest that increasing the flow of susceptible
into the population considerably increases Rg. This points to the need of dealing with factors that explain the
increase in the size of the population like immigration and recruitment some more.

« Transmission probabilities The high sensitivity of Ro to 8,mm and By highlights the significant risk posed
by male-to-male and female-to-female sexual transmission pathways. This aligns with epidemiological stud-
ies indicating that these pathways often have higher efficiency and transmission dynamics.

« Contact rates The parameters c;nm and cys represent the frequency of sexual contacts in specific sub-pop-
ulations. The high sensitivity index for c¢um, in particular, suggests the importance of targeted behavioral
interventions within male-to-male sexual networks.

Mitigating factors

Several parameters in the model exhibit a negative influence on the basic reproduction number (Ro),
effectively acting as control levers for reducing disease transmission. These include traditional epidemiological
interventions such as vaccination rates, disease progression rates, reduced transmission rates, and disability-
related parameters.

« Vaccination (73) Among all mitigating factors, 3 has the strongest suppressive effect on Ro. This emphasizes
the critical role of adult vaccination campaigns in interrupting HBV transmission chains and decreasing the
pool of susceptible individuals.

« Disease progression (71, y2) The progression parameters impact the transition from acute infection to carri-
er state and from carrier to recovered state. Early diagnosis and clinical interventions that accelerate recovery
or limit chronic progression contribute significantly to reducing long-term infectivity.

o Reduced transmission rate (¢) This parameter captures the effectiveness of behavioral and biomedical in-
terventions, such as condom use, education, and antiretroviral therapies, that reduce the probability of virus
transmission per contact.

o Female disability rate (6¢) A novel addition, 0 reflects the proportion of female carriers who develop
HBV-related disability. Its negative influence on Ro suggests that disability shortens the functional infectious
period, thereby indirectly reducing secondary infections.

+ Male disability rate (0,.) Interestingly, 0., has a slight positive effect on Ro. This may point to gender-based
differences in disease progression, behavior, or access to healthcare, wherein male carriers may continue to
contribute to transmission before experiencing debilitating symptoms.

« Disability onset speed (&) The parameter § quantifies how quickly disability becomes clinically evident in
carriers. Higher values of 6 modestly reduce Ro, underscoring the importance of timely detection and sup-
port for affected individuals to limit their transmission potential.

From an epidemiological standpoint, the parameters 8¢, 6,,, and ¢ jointly capture the complex interplay
between biological progression and social factors influencing HBV transmission. A higher value of 6 implies
that female carriers are more likely to develop disability earlier, shortening their infectious period and thereby
reducing Ro. Conversely, the mild positive sensitivity of R to 6, may reflect delayed clinical progression and
prolonged infectious activity among males, who often experience slower onset of HBV-related complications
and may engage in riskier sexual behavior or face barriers to early medical care. The parameter 6 modulates the
overall speed of disability onset across both genders, indicating that rapid progression to advanced disease states
diminishes the duration of infectiousness and hence suppresses transmission potential. These findings reinforce
the importance of gender-sensitive clinical management and early diagnosis in limiting the long-term burden
of HBV.

Graphical interpretations
The graphical representations in Figs. 1, 2, and 3 provide a comprehensive view of the parameter interplay:
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Fig. 1. Sensitivity analysis of the basic reproduction number (Ro) with respect to model parameters. Positive
and negative bars indicate the parameters that increase or decrease Ry, respectively, highlighting their relative
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« Bar graphs Figures 1 clearly illustrate the relative sensitivity of Ro to each parameter. Positive bars indicate
parameters that increase Ro, while negative bars highlight parameters that reduce it. The steep gradients in
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parameters such as 3 and ¢,nm demonstrate their critical role in transmission dynamics.

« 3D contours Figures 2 and 3 depict the interactions between pairs of parameters. For instance, the combina-
tion of 3 and € shows a synergistic effect in reducing Ro, providing actionable insights for optimizing public

health interventions.

Physical interpretation and public health implications

From a physical standpoint, the parameters act as forces driving or dampening the transmission dynamics. For
example:

« Parameters such as Smm and cpm serve as driving forces, accelerating the spread of the virus by increasing

the number of effective contacts.

« Conversely, vaccination (73) and reduced transmission (e) act as dissipative forces, stabilizing the system and
driving it toward a disease-free equilibrium.
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Fig. 2. 3D surface and contour plots showing the influence of various parameter pairs on Ry in the proposed
HBV model. Subfigures (a) and (b) illustrate the joint impact of the male infection clearance probability

¢m and the male-to-female contact rate ¢, y. Subfigures (c) and (d) analyze how the natural mortality rate
1o and non-sexual transmission rate 3 shape Rg. Subfigures (e) and (f) explore the sensitivity of Ry to the

interaction between male-to-female contact rate ¢,y and male-to-female transmission probability 5y, s. These
visualizations help identify key drivers in transmission dynamics and potential intervention targets.
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HBYV model. Subfigures (a) and (b) illustrate the interaction between the acute-to-carrier progression rate y;

and the non-sexual transmission rate 3. Subfigures (c) and (d) show the combined effect of the probabilities

of failed infection clearance in females and males (gy, ¢m ). Subfigures (e) and (f) depict the impact of reduced
transmission rate € and the male-to-male contact rate ¢;n,,. These plots highlight the parameter dependencies

and nonlinear sensitivities in the transmission dynamics.
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These findings underline the necessity of prioritizing high-impact interventions, such as scaling up vaccination
efforts, promoting safe sex practices, and implementing targeted behavioral interventions for high-risk
populations. By addressing the most sensitive parameters, policymakers can achieve significant reductions in
Rp and effectively curb the spread of HBV.

ANN error analysis and training via LM algorithm

To improve computational efficiency in solving the proposed HBV model, we integrate an ANN framework
with the LMB optimization algorithm. This section outlines the reference numerical method used for generating
training data, the ANN training procedure, and the optimization strategy employed.

Numerical reference using Runge-Kutta method
The RK4 scheme is adopted to generate high-accuracy numerical solutions of the system of differential equations
governing HBV transmission. For an ordinary differential equation of the form

dy
— =F(t,Y
dt (t7 )7

the solution at the next time step is approximated as
h
Yo =Yn + E(Gl +2G2 + 2G3 + Gy),

where
GIZF(tn,Yn)y G2:F(tn+%7y’n+%Gl)7

G3=F(tn+ 5, Y0 +5G2), Ga=F(tn+h,Ya + hGs).

Here h denotes the step size and F(t, Y) represents the right-hand side of the HBV system. These RK4 outputs
act as reference solutions, which are later used to train the ANN.

Rationale for synthetic data use The ANN in this study was trained on numerical solutions generated
by the differential-equation model rather than on field observations. This design was chosen to evaluate the
networK’s ability to emulate the mechanistic model dynamics under controlled, noise-free conditions. Training
on synthetic data ensures that reference outputs fully reflect model assumptions and parameter interactions,
providing a precise benchmark for assessing the ANN’s approximation capability. Accordingly, the ANN
functions as a computational surrogate that accelerates model evaluation and sensitivity exploration, rather
than as a forecasting tool for real-world HBV outbreaks. Future work will extend this framework to integrate
empirical or surveillance data for predictive validation.

Training strategy and dataset partitioning
The ANN is trained to approximate the trajectories of each epidemiological compartment by learning from the
RK4 solutions. To avoid overfitting and ensure generalization, the dataset is divided into:

« Training set: used to update network weights and biases,
« Validation set: monitors model generalization and halts training when overfitting is detected,
« Testing set: reserved for final evaluation of predictive performance.

The accuracy of the ANN predictions is quantified using the mean squared error (MSE):

n

MSE = %Z (vi —9:)°,

i=1

where y; are the RK4 reference values and §; = O(6) denotes the ANN output corresponding to network
parameters 6.

Levenberg-Marquardt optimization
The LMB algorithm is employed to minimize the prediction error of the ANN. The error function is expressed as

n

BO) =1 (i)

=1
The parameter update rule is given by
enew — eold _ (JTJ+ )\I)ilJTe,

where ] is the Jacobian matrix of partial derivatives of the error with respect to 6, e = y — ¢ is the error vector,
A is a damping factor regulating the step size, and I is the identity matrix. This hybrid approach combines the
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speed of the Gauss—Newton method with the stability of gradient descent, making it well suited for nonlinear
problems such as Lassa HBV dynamics.

Scientific role of the ANN In this framework, the ANN does not function as a forecasting tool for real
epidemics but as a computational surrogate that emulates the numerical behavior of the HBV transmission
model. By replacing repeated numerical integrations with rapid neural approximations, the ANN enables efficient
exploration of parameter sensitivities and transmission pathways. This approach provides indirect biological
insights by revealing how model dynamics respond to variations in key epidemiological and disability-related
parameters without relying on empirical data.

Model validation and scope The present work focuses on validating the ANN’s ability to emulate the
mechanistic HBV model under controlled, noise-free conditions using synthetic data generated via the RK4
solver. Although the framework was not trained on real epidemiological or cohort data, this design provides a
precise computational benchmark for assessing numerical fidelity and parameter sensitivity. Integration with
empirical datasets is identified as an important direction for future work, which will allow direct performance
comparison between the surrogate ANN model and traditional mechanistic or statistical approaches in real-
world settings.

Error distribution via histograms

To evaluate how well the ANN reproduces the compartmental trajectories of the HBV model, error histograms
are constructed. These plots highlight how prediction errors are distributed across the training, validation, and
testing sets. For each time point ¢, the error is defined as

e(t) = y(t) — 9(b),

where y(t) denotes the RK4 reference solution and §j(t) = O(0, t) is the ANN output generated with parameters
0. A narrow, symmetric distribution of e(t) values around zero indicates accurate approximation and good
generalization.

Regression analysis and correlation assessment
The consistency between ANN predictions and RK4 reference values is further assessed through regression
analysis. The correlation coefficient (R) is computed as

e i (v —9) (5 —9)
Do (i = 9)2 /200 (5 — 9)?

where y; represents the RK4 reference values, J; are the ANN predictions, and ¥, 75 denote their respective means.
An R value close to 1 demonstrates that the ANN is able to closely track the underlying epidemic trajectories.

Performance metrics and error evolution

Training performance is monitored through the evolution of the mean squared error (MSE) over epochs.
Tracking the decline of MSE provides insight into convergence behavior and the network’s ability to learn the
nonlinear dynamics of HBV transmission. The instantaneous absolute error at time ¢ is given by

which can be examined to identify periods where the ANN performs less accurately, such as during epidemic
peaks or rapid transitions in the system.

Proposed methodology: ANN-LMB approach

To complement the analytical results and accelerate simulations of the HBV model, we employ an ANN trained
with the LMB algorithm. The ANN-LMB framework is designed to approximate the nonlinear dynamics of the
compartmental system while reducing computational cost compared to repeated numerical integration. The
methodology consists of two main stages: (i) generation of training data from the RK4 solutions of the HBV
equations, and (ii) supervised learning of the ANN using the LMB optimization routine. All computations were
performed in MATLAB (Neural Fitting tool). The dataset was randomly partitioned into three subsets: 85% for
training, 10% for validation, and 5% for testing. This partitioning strategy ensures that the network is exposed to
diverse epidemic scenarios during training, while validation and testing safeguard against overfitting and provide
an unbiased measure of predictive accuracy. The proposed ANN-LM model consists of an input layer, a single
hidden layer with 10 neurons, and an output layer. This simple but flexible structure was sufficient to capture
the nonlinear relationships among model compartments. The number of hidden neurons (10) was selected
after several trial configurations (5-15 neurons), with this setup providing the most stable convergence and
minimal mean-squared error, while maintaining computational efficiency. Figure 4 illustrates the architecture
of the network. The interconnected layers collectively approximate the progression of HBV across different
compartments, offering insight into both epidemic growth and control interventions.
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Fig. 5. Schematic representation of a single artificial neuron, illustrating how weighted inputs are combined
with a bias and passed through an activation function to produce an output®.

Artificial neuron structure

The elementary computational unit of the ANN is the artificial neuron, originally introduced by McCulloch and
Pitts®®. A neuron receives multiple inputs, applies a weighted sum, and passes the result through an activation
function to generate its output. Mathematically, this is expressed as

Y=¢p Zwixifﬁ , (5)
i=1

where ¢ is the activation function, 6 is the threshold, and w;, x; denote the weight and the input of the i-th
connection. Including a bias term b in place of the threshold gives

Y=¢ Zwixi—l—b . (6)

i=1

Both linear and nonlinear activation functions may be employed; in practice, nonlinear choices such as the
hyperbolic tangent sigmoid (k) = tanh(k) are favored for capturing complex epidemic patterns. Figure 5
shows a schematic diagram of an artificial neuron.

Simulation results and discussion

This section presents the computational analysis of the hepatitis B virus transmission model, incorporating
the effects of disability progression, sex-specific compartments, and long-term health impact. Model solutions
were obtained using the parameter values outlined in Table 1. To evaluate the model’s robustness and predictive
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capability, simulations were performed using two complementary numerical approaches: the classical RK4
method and an ANN framework trained via the LMB algorithm. Figures 6, 7, 8, and 10 provide comparative
visualizations of the RK4 numerical solutions and the corresponding ANN-LMB predictions across various
epidemiological compartments, including susceptible, infected, chronic, and recovered populations. The
associated absolute error plots are shown in Figs. 9, 11, and 12, confirming the high predictive accuracy of
the ANN model. Across all compartments, the ANN approach exhibits excellent agreement with the RK4
benchmark, with absolute errors remaining consistently low throughout the simulation horizon. To assess the
epidemiological implications of HBV-induced disability, additional simulations were conducted under varying
values of the disability-related parameters 6y, 6., and 6. The results show that increasing the probabilities 6 ¢
and 0,, leads to a reduction in the number of functionally healthy carriers, despite the total carrier population
remaining constant. This decline in the functional carrier pool reflects a hidden burden of disease not typically
captured in standard compartmental models. Moreover, higher values of §, representing faster progression to
disability, further shorten the duration during which carriers remain productive, emphasizing the need for
timely medical intervention and preventive care.

We simulate the mathematical model (2) to analyze the impact of specific parameters on the dynamics of
HBV transmission. Simulations are conducted over a period of 100 days to observe the system’s long-term
behavior and stability. To track the dynamics of infected individuals in both adult female and male populations,
we define the following normalized state variables:

Effect of O.and 6 on Female Carriers (Cf) Effect of 6.and 6 on Male Carriers (Cm)
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Fig. 6. Influence of disability onset probabilities ¢ and 6,, on final disease outcomes. Subfigures show the
long-term values of (a) female carriers C'f, (b) male carriers Cyy, and (c) the recovered population R(f). As 8¢
and 0, increase, both Cy and C,,, decrease due to earlier disability onset, while R(#) exhibits modest nonlinear
variation.
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Fig. 7. Comparison between the numerical solutions of the proposed HBV model 2 using the Runge-Kutta
method and the corresponding predictions generated by the ANN-LMB model.
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Fig. 8. Function fitting results comparing the true ODE-based solutions and the ANN-LMB predictions for

each compartment. The plots include outputs from training, validation, and testing subsets. Bar plots indicate
corresponding prediction errors across the time horizon.
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Fig. 9. ANN-LMB training diagnostics and performance evaluation. (a) Error histogram displaying
prediction residuals across training, validation, and test sets. (b) Mean squared error (MSE) over training
epochs, highlighting the best validation performance at epoch 511. (¢) Convergence metrics including gradient
norm, damping parameter y, and validation checks. (d) Regression plots showing the correlation between
target and predicted values for training, validation, test, and combined datasets with R = 1 in all cases.
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The initial values of these variables are specified as:
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0) = = 0.47 0) = ——= = 0.000575071 0) = =73x10".

:C4( ) N(O) ) $5( ) N 0) ) m6( ) N(O) X

The total initial population is taken as N(0) = 931, 400, 000. These initial conditions, where applicable, are
optimized using MATLAB and derived from data provided by the CDC®’. The numerical values of all parameters
used in the simulations are presented in Table 1.

Figure 7 presents a comparative analysis of the numerical solutions obtained from the proposed HBV
model (2) using the classical Runge-Kutta method and the predictions generated by the ANN-LMB framework.
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Fig. 10. Comparison of numerical solutions (ODE) and ANN predictions for different values of the natural
mortality rate z10. Each subfigure shows how increasing j1o influences the compartmental dynamics, with solid
lines representing RK4 solutions and dashed lines denoting ANN outputs.

As illustrated in Fig. 7a, the susceptible female population Sy (¢) exhibits an exponential rise that eventually
levels off, indicating a reduction in infection pressure or increasing immunity over time. The ANN prediction
aligns closely with the ODE solution, with minimal error evident from the error subplot. In subfigure 7b, the
infected female class I5(t) rapidly declines toward zero within the first 20 days, reflecting swift progression out
of the acute infection state, either to recovery or chronic infection. The ANN model accurately reproduces this
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Fig. 11. Absolute errors between ANN predictions and ODE solutions for varying natural mortality rates jio.
The results highlight the influence of 1o on prediction accuracy across different compartments.

decay, with error remaining consistently low beyond the early transient phase. Figure 7c shows the dynamics
of the chronically infected female population Cy¢(t), which decreases gradually over time, capturing the slow
recovery or mortality dynamics associated with chronic HBV infection. The ANN closely mimics this trajectory,
indicating strong generalization performance. Similarly, the susceptible male population Sy, (t), shown in Fig.
7d, follows the same exponential growth trend as females, emphasizing demographic symmetry under equal
exposure assumptions. Again, the ANN prediction maintains excellent agreement. In Fig. 7e, the infected male
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Fig. 12. ANN-LMB training diagnostics for the HBV model with varying natural mortality rate 1o. (a)
Histogram showing error distribution across training, validation, and test sets. (b) MSE performance over

21 training epochs, with best validation performance achieved at epoch 15. (¢) Training convergence metrics
including gradient norm, damping parameter 1, and validation checks. (d) Regression plots for training,
validation, test, and all datasets, each showing strong correlation (R ~ 1) between predicted and target values.

population L, () mirrors the female infection dynamics, with a steep initial drop followed by stabilization at
low levels. This behavior is well captured by the ANN with small and rapidly diminishing prediction errors.
The chronically infected male population Cy,(t), shown in Fig. 7f, also exhibits a slow decline consistent with
the chronic progression of HBV, and the ANN model successfully approximates this behavior. Finally, Fig. 7g
presents the recovered class R(t), which increases almost linearly as recovered individuals accumulate over
time. The ANN prediction remains closely aligned with the ODE solution, and the residual error remains small
throughout the time horizon.

Figures 8 and 9 illustrate the performance of the proposed ANN-LMB model in both the function fitting
phase and during training diagnostics. Each subfigure in Figure 8 demonstrates a high-fidelity match between
the true ODE-based numerical solutions and the ANN predictions across all state compartments. For instance,
Figure 8a,d show that both the susceptible female and male populations (S¢(t) and Sy, (¢)) increase over time
and asymptotically approach a saturation level, reflecting natural herd immunity as infection pressures decline.
In contrast, Figure 8b,e indicate an exponential decline in the infected compartments (I;(¢) and Ip,(t)),
consistent with effective recovery and/or progression into chronic states. The chronic compartments (C'f(t),
Cm (t)) depicted in Fig. 8¢,f also decrease steadily, suggesting that individuals either recover or exit due to HBV-

Scientific Reports |

(2025) 15:44325

| https://doi.org/10.1038/s41598-025-31252-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

related mortality. The recovered population R(t), shown in Fig. 8g, demonstrates a nearly linear increase,
confirming that the recovery rate is significant in the model’s progression. Notably, in all these subfigures, the
ANN predictions overlap almost perfectly with the ODE trajectories, and the prediction error bar plots show
only small and random deviations, affirming model accuracy and generalizability across training, validation, and
testing phases. Figure 9 further supports these findings with diagnostic plots from the ANN training. Figure 9a
shows an error histogram where most errors are centered around zero with minimal dispersion, highlighting
balanced prediction performance across data splits. In Figure 9b, the MSE plot shows a sharp drop in error
within the first few hundred epochs, with best validation performance achieved at epoch 511, demonstrating
rapid and stable convergence. Figure 9c tracks optimization indicators such as the gradient norm, learning rate
1, and validation checks, all of which confirm smooth training without overfitting. Finally, Figure 9d presents
regression analyses, with all subsets, training, validation, test, and combined, yielding correlation coefficients
R ~ 1. This signifies that the ANN-LMB model is both highly predictive and robust, faithfully capturing the
nonlinear HBV dynamics governed by the original system of differential equations.

Limitations
While the proposed ANN-LMB framework successfully reproduces the nonlinear dynamics of the HBV model
and captures the epidemiological influence of disability parameters, several limitations should be acknowledged.

1. The model relies on parameter assumptions and literature-based estimates that may differ across populations
and epidemiological settings.

2. The ANN was trained exclusively on synthetic data generated by the Runge-Kutta solver. While this ensures
numerical precision, it does not account for noise, reporting errors, or incomplete observations typical of
real surveillance data.

3. The current analysis assumes homogeneous mixing within gender-defined subpopulations and does not ex-
plicitly incorporate stochastic variability or age-structured heterogeneity.

4. The present implementation serves as a computational surrogate for the mechanistic model rather than a
forecasting tool for real epidemics.

These factors should be considered when interpreting the results. Future extensions will focus on integrating
empirical datasets and incorporating demographic and stochastic components to improve real-world
applicability.

Conclusion

This study presents a novel gender-stratified mathematical model to explore the heterosexual and homosexual
transmission dynamics of HBV, incorporating HBV-induced disability into a classical compartmental framework.
A key contribution of this work is the inclusion of disability-related parameters 8¢, 6,,, and d, which capture
the onset and progression of long-term functional impairments in chronic HBV carriers. This enhancement
adds biological realism and enables a more comprehensive evaluation of the broader disease burden without
altering the model’s structural simplicity. To improve computational efficiency, we employed an artificial neural
network (ANN) trained on numerical solutions from the classical RK4 method. The ANN-LMB framework acts
as a computational surrogate for the mechanistic HBV model, efficiently emulating system dynamics rather than
forecasting real-world epidemics. By approximating the numerical solutions of the differential equations, the
ANN accelerates parameter exploration and sensitivity analysis while preserving the model’s epidemiological
integrity. Comparative results confirm that the ANN closely replicates the RK4 outputs with minimal
approximation error. Sensitivity analysis of the basic reproduction number (Ro) identifies key transmission
drivers such as recruitment rates (As, A ), sexual transmission probabilities (8mm, By ), and contact rates
(cmm. 5 r). Mitigating factors, including vaccination rate (73), disease progression rates (1, y2), and disability-
related parameters 65 and J, are shown to suppress Ry significantly. Interestingly, 6,,, exhibits a mild positive
influence on Ro, potentially reflecting behavioral asymmetries in male carriers prior to functional decline.
Graphical analyses highlight the nonlinear interplay between these parameters and reveal that incorporating
disability unveils a hidden epidemiological burden not captured in traditional models. Future extensions of this
work will focus on coupling the ANN-LMB surrogate with surveillance or cohort-based HBV data to evaluate
real-world performance and enhance predictive generalization.

Data availability
All data generated or analyzed during this study are included in this article.
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