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Hepatitis B virus (HBV) remains a major global health concern, with sexual transmission being a 
key driver among adults. This study develops a gender-stratified compartmental model of HBV 
spread that integrates long-term disability through gender-specific parameters. A key contribution 
is the integration of mechanistic modeling with artificial neural networks (ANNs), enabling efficient 
emulation of the model’s nonlinear dynamics. Numerical solutions from the classical Runge-Kutta 
4th-order (RK4) method were used as training data for an ANN optimized with the Levenberg–
Marquardt algorithm (ANN–LMB). The trained ANN accurately reproduces compartmental dynamics 
with minimal error and provides a fast surrogate for sensitivity exploration. Analysis of the basic 
reproduction number (R0) reveals the strong influence of same-sex transmission rates, contact 
patterns, and disability onset parameters. These findings highlight the importance of behavioral 
interventions, vaccination coverage, and early detection of chronic carriers. Overall, the proposed 
ANN–LMB framework enhances computational efficiency and offers a biologically informed approach 
for exploring complex HBV transmission dynamics.
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Hepatitis B virus (HBV) remains a major global health challenge, affecting over two billion individuals 
worldwide and causing nearly 900,000 deaths annually1,2. The virus primarily targets the liver, leading to acute 
and chronic infections that can result in cirrhosis and hepatocellular carcinoma. HBV is transmitted through 
contact with infected blood, semen, or other body fluids, with sexual contact being a major route among 
adults3–5. High-risk behaviors, such as unprotected intercourse and multiple sexual partners, particularly among 
chronically infected individuals, significantly contribute to HBV spread. The virus is estimated to be 50–100 
times more infectious than HIV and exhibits greater environmental stability than hepatitis C virus6,7. Despite 
effective vaccines and antiviral therapies, HBV persists as a serious public health concern due to incomplete 
immunization coverage, behavioral risk factors, and limited access to early diagnosis and treatment8–10. While 
antiviral therapy can suppress viral replication, a complete cure for chronic HBV infection remains elusive11. 
Hence, prevention through vaccination, awareness, and behavioral modification remains central to HBV 
control1. Sexual transmission, both heterosexual and homosexual, continues to drive HBV prevalence among 
adults. Heterosexual contact remains the dominant route, while male-to-male transmission accounts for a 
significant proportion of new infections, particularly in urban and high-risk populations4,9,12. Although less 
common, evidence suggests that female-to-female transmission can occur through close sexual contact and 
shared partners13–15. These behavioral differences underscore the importance of gender-stratified modeling 
approaches for understanding HBV transmission dynamics.
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A robust body of epidemiological evidence demonstrates that chronic hepatitis B virus infection is a 
substantial contributor to population-level disability, as quantified by years lived with disability (YLDs) and 
disability-adjusted life years (DALYs). The Global Burden of Disease Study 2019 estimated that approximately 
316 million individuals were chronically infected with HBV, resulting in 555000 deaths in that year; these deaths 
reflect only part of the health impact, as HBV also causes extended morbidity due to cirrhosis and hepatocellular 
carcinoma (HCC)16,17. The DALY metric, which combines premature mortality with time lived in a disabled 
state, integrates the non-fatal consequences of HBV infection such as prolonged hepatic dysfunction, fatigue, 
and cognitive impairment18. In 2019, an estimated 34.5%, of age-standardized HBV DALYs were attributable 
to modifiable risk factors (alcohol, tobacco, high BMI), suggesting an interplay between HBV progression 
and lifestyle-related disability19. This highlights the potential for prevention strategies to reduce long-term 
disability outcomes among carriers. Geographically, HBV-related disability burden is unequally distributed; low 
and middle-income regions exhibit higher DALY rates, paralleling lower access to vaccination and treatment 
services16,20. Moreover, studies from countries like Brazil and Iran show specific YLD contributions from HBV-
associated cirrhosis. For example, in Brazil in 2008, chronic HBV and its complications caused approximately 
57380 DALYs (5.5 YLDs per 100000), with most of the burden arising from premature death but with a 
measurable YLD component21. Finally, attributing HBV burden to high-risk groups reveals further insights: 
among people who inject drugs, about 1.1,% of HBV-related DALYs were linked directly to injection exposure 
in 2013, underscoring how behavioral risk factors amplify disability risk in vulnerable subpopulations22. Taken 
together, these findings underscore that chronic HBV not only leads to increased mortality but also results 
in measurable disability at population scale. For modelling purposes, parameters reflecting YLDs and DALYs 
enable the translation of carrier prevalence into projected disability burden, guiding planning for health services 
and disability-focused interventions.

Various mathematical frameworks have been developed to investigate the transmission dynamics and 
control strategies of HBV, reflecting decades of global research efforts23–25. For example, age-structured and 
control-based modeling approaches have been applied to examine HBV transmission in specific populations, 
such as those in New Zealand26. The effectiveness of vaccination as a primary control measure has been analyzed 
in several studies27,28, while multi-group and cost-effectiveness formulations have provided further insights into 
the impact of intervention programs29,30. Other models have incorporated time delays and migration effects to 
capture temporal and spatial heterogeneity in HBV dynamics31–33. Although these traditional compartmental 
models have significantly advanced the understanding of HBV spread, they are often limited in their ability 
to represent nonlinear memory effects and parameter uncertainty inherent in biological systems. Recent 
developments have sought to address these challenges through advanced computational paradigms, such as 
stochastic solvers and artificial neural networks. For instance, Anwar et al34. introduced a stochastic Runge–Kutta 
approach for HBV modeling, while related studies extended adaptive neural architectures to computer virus 
propagation35 and nonlinear measles transmission36. Further advancements in autoregressive neural solvers and 
hybrid intelligent frameworks have been reported for multi-delay and biomedical dynamical systems37,38. These 
contributions highlight the growing relevance of AI-assisted numerical modeling in infectious disease research 
and motivate the present study’s use of the ANN–LMB framework for HBV dynamics, incorporating disability 
progression and gender-specific transmission mechanisms.

Artificial Neural Networks are increasingly used in infectious disease research because they can approximate 
highly nonlinear interactions among biological, social, and environmental factors that influence disease 
dynamics. Their data-driven nature allows them to learn from epidemiological observations, such as temporal 
incidence patterns, demographic distributions, climatic variables, and clinical indicators, without the need to 
specify detailed mechanistic equations39. This flexibility makes ANN-based approaches particularly effective 
when data are incomplete, noisy, or uncertain. To strengthen biological interpretability, recent frameworks have 
combined neural computation with traditional compartmental modeling concepts. Rodríguez et al40. proposed 
the concept of Epidemiologically-Informed Neural Networks (EINNs), which integrate SIR and SEIR-type 
dynamics within neural layers, while Rodríguez et al41. expanded this approach through Graph Neural Networks 
(GNNs) that capture spatial, social, and mobility-based interactions. In malaria studies, ANN architectures have 
been adapted for both ecological prediction and diagnostic applications.Rajnarayanan et al42. introduced a hybrid 
structure linking temperature- and altitude-dependent malaria transmission to a combination of ANN, CNN, 
and RNN models for outbreak risk estimation. Similarly, Guedri et al43. demonstrated that coupling stochastic 
solvers with ANNs enhances the accuracy and robustness of malaria forecasts under uncertainty, illustrating 
the strength of hybrid computational techniques in epidemiology. Jalloh et al44. further reported that optimized 
ANN architectures achieved mean absolute percentage errors below 5% for malaria incidence prediction in 
Sierra Leone outperforming conventional regression-based forecasting tools. In diagnostic applications, Soner 
et al45. developed an ANN–CNN–RNN ensemble for automated malaria detection in microscopic images, 
reaching over 97% classification accuracy. The success of these methods highlights the versatility of ANN-
driven modeling in representing disease transmission, guiding surveillance, and improving diagnostic efficiency 
in endemic regions. Beyond infectious diseases, ANN-based systems have been increasingly utilized across 
biomedical and environmental domains, including neural activity modeling46, immune and inflammatory 
responses47, aquatic and ecological systems48, cancer risk prediction49, and tumor therapy modeling50. Together, 
these advances demonstrate that neural computation offers a flexible, accurate, and generalizable framework for 
studying nonlinear processes in biological and health sciences.

A key novelty of this study lies in the integration of HBV-induced disability into a transmission model 
that accounts for both heterosexual and homosexual dynamics. By introducing gender-specific disability 
probabilities (θf , θm) and onset rates (δ) directly into the compartmental structure, the model captures long-
term functional impairments resulting from chronic HBV infection without increasing structural complexity. 
Furthermore, this study explores the application of ANNs to enhance the modeling of HBV transmission and 

Scientific Reports |        (2025) 15:44325 2| https://doi.org/10.1038/s41598-025-31252-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


progression. The proposed framework combines data-driven learning with mechanistic disease modeling to 
ensure both computational efficiency and high predictive accuracy. At the core of the methodology is a system of 
nonlinear ODEs that describe HBV dynamics across seven compartments. These ODEs are numerically solved 
using the classical RK4 method to produce high-fidelity solution trajectories. These trajectories are then used 
as reference data for supervised ANN training. The network is trained using the ANN–LMB, which enables 
rapid convergence and accurate prediction of compartmental behaviors, including susceptible, infective, carrier, 
and recovered populations. Several recent studies have applied ANN techniques to complex epidemiological 
systems. For example, Guedri et al51. developed an ANN-based model for Ebola transmission that incorporates 
delay effects and neurological complications. Zarin52 investigated influenza dynamics using a spatially diffused 
SVEIR model coupled with neural networks. Sabir and colleagues further demonstrated the effectiveness 
of Meyer wavelet-based53 and fractional-order neuro-evolutionary solvers54,55 in modeling nonlinear and 
singular epidemic systems. In a related effort, Guedri et al56. modeled syphilis progression by integrating ANN 
frameworks to simulate disability risks within compartmental structures. Building upon these foundations, the 
present study extends ANN–LMB methodologies to HBV modeling with a specific focus on long-term disability 
impacts, sexual transmission heterogeneity, and gender-specific health burdens.
The main contributions of this study are summarized as follows:

•	 Formulation of a nonlinear, gender-stratified HBV transmission model that captures both sexual (heterosex-
ual and homosexual) and non-sexual transmission pathways.

•	 Incorporation of long-term disability effects among carrier populations using fractional disability parameters 
and progression rates.

•	 Use of RK4-based numerical solutions as training targets for supervised ANN learning.
•	 Implementation of the ANN architecture with the Levenberg–Marquardt optimization algorithm to achieve 

fast convergence and accurate compartmental approximation.
•	 Validation of the ANN–LMB framework using mean squared error (MSE), error histograms, and perfor-

mance evaluation plots.

Model formulation
This study focuses on the adult population, which is divided into four main epidemiological compartments: 
susceptible, infective, carrier, and recovered individuals. To capture gender-specific dynamics, the susceptible 
group is subdivided into female susceptibles, denoted by Sf (t), and male susceptibles, denoted by Sm(t). 
Similarly, the infective population is divided into female infectives, If (t), and male infectives, Im(t). The carrier 
class is separated into female carriers, Cf (t), and male carriers, Cm(t). The recovered individuals are collectively 
represented by R(t)57. Accordingly, the total population N(t) at time t is given by:

	 N(t) = Sf (t) + If (t) + Cf (t) + Sm(t) + Im(t) + Cm(t) + R(t).

The model assumes that recovered individuals acquire permanent immunity, with no subsequent loss of 
protection. Migration (both immigration and emigration) is ignored, and population renewal occurs only 
through births. The recruitment rates of females and males are represented by Af  and Am, respectively. Two 
transmission mechanisms are considered: non-sexual and sexual transmission. Sexual transmission is further 
divided into heterosexual and homosexual interactions. The non-sexual transmission rate is denoted by λ, 
while the sexual transmission rates are expressed as λmf , λfm, λff , and λmm, corresponding to the following 
interactions:

•	 λmf : transmission from males to females,
•	 λfm: transmission from females to males,
•	 λff : transmission among females,
•	 λmm: transmission among males.

Following the formulation proposed by Mclean and Blumberg58, these transmission rates are defined as:

	

λfm = 2βfmcfm (If + ϵCf )
N

,

λmf = 2βmf cmf (Im + ϵCm)
N

,

λmm = 2βmmcmm (Im + ϵCm)
N

,

λff = 2βff cff (If + ϵCf )
N

,

λ = β (Im + If ) + ϵβ (Cm + Cf ) .

� (1)

In these expressions, βfm, βmf , βff , and βmm denote the corresponding transmission coefficients, while cfm, 
cmf , cff , and cmm represent the average contact rates. The parameter ϵ accounts for the reduced infectiousness 
of carrier individuals compared with acutely infected individuals. The HBV model developed in57 provides the 
basis for this study; however, it does not include the long-term disability outcomes associated with chronic 
hepatitis B infection. To improve its biological relevance and public health applicability, the model is extended to 
incorporate disability dynamics among carriers. Disability due to chronic HBV infection often results from liver-
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related complications that impair physical function, cause fatigue, and reduce cognitive capacity. To represent 
these effects, two parameters are introduced: θf  and θm, representing the proportions of female and male 
carriers who develop disabling complications, respectively. A new rate parameter, δ, describes the average rate 
at which disability becomes clinically significant among carriers. The resulting extended model, which includes 
both traditional infection dynamics and disability progression, is described by the following system of nonlinear 
differential equations:

	





dSf

dt
= Af − (λ + µ0 + γ3)Sf − a

(
2βmf cmf (Im + ϵCm)

N

)
Sf − (1 − a)

(
2βff cff (If + ϵCf )

N

)
Sf ,

dIf

dt
= λSf + a

(
2βmf cmf (Im + ϵCm)

N

)
Sf + (1 − a)

(
2βff cff (If + ϵCf )

N

)
Sf − (µ0 + γ1)If ,

dCf

dt
= qf γ1If − (µ0 + µ1 + γ2 + θf δ)Cf ,

dSm

dt
= Am − (λ + µ0 + γ3)Sm − b

(
2βfmcfm(If + ϵCf )

N

)
Sm − (1 − b)

(
2βmmcmm(Im + ϵCm)

N

)
Sm,

dIm

dt
= λSm + b

(
2βfmcfm(If + ϵCf )

N

)
Sm + (1 − b)

(
2βmmcmm(Im + ϵCm)

N

)
Sm − (µ0 + γ1)Im,

dCm

dt
= qmγ1Im − (µ0 + µ1 + γ2 + θmδ)Cm,

dR
dt

= γ3(Sf + Sm) + (1 − qf )γ1If + (1 − qm)γ1Im + γ2(Cf + Cm) − µ0R.

� (2)

The corresponding initial conditions are:

	Sf (0) = S0
f , If (0) = I0

f , Im(0) = I0
m, Sm(0) = S0

m, Cf (0) = C0
f , Cm(0) = C0

m, R(0) = R0 ≥ 0.

Biological interpretation of disability and recovery parameters The parameters θf  and θm, together with 
δ, represent the transition of a subset of carriers into long-term disability states resulting from HBV-related 
complications such as cirrhosis and hepatocellular carcinoma. These individuals are assumed to be non-infectious 
and are therefore removed from the active transmission dynamics. The term γ2 accounts for the rare functional 
recovery observed clinically in a small proportion of chronic HBV cases, corresponding to spontaneous clearance 
of HBsAg. This formulation allows the model to capture both the epidemiologically inactive disabled population 
and the rare but biologically possible recovery pathway without increasing structural complexity. The numerical 
values of the parameters are given in Table 1.

Positivity of solutions
System  (2) models the dynamics of hepatitis B infection across multiple gender-based and sexual contact 
compartments. To guarantee that the state variables Sf (t), If (t), Cf (t), Sm(t), Im(t), Cm(t), R(t) remain 
non-negative for all t ≥ 0, it is essential to establish their positivity throughout the time domain.

Lemma 3.1  Let U ⊆ Rn be an open set, and consider a solution x = (x1, . . . , xn) ∈ C1((0, T ); U) ∩ C([0, T ); U) 
to the ordinary differential equation:

	

{
ẋ(t) = f(t, x(t)),
x(0) = x0,

where the initial condition x0 = (x1,0, . . . , xn,0) ∈ U  satisfies xi,0 > 0 for all i ∈ {1, . . . , n}, and 
f = (f1, . . . , fn) : (0, T ) × U → Rn. Suppose that whenever yi = 0 and all other yk > 0 for k ̸= i, it holds 
that fi(t, y) > 0 for t ∈ (0, T ). Then, the solution x remains positive for all  t ∈ [0, T ), meaning xi(t) > 0 for 
each i ∈ {1, . . . , n} and t ∈ [0, T )60.

Theorem 3.1  The solutions Sf (t), If (t), Cf (t), Sm(t), Im(t), Cm(t), R(t) of system (2) exist for all time and 
are always positive, smooth, and unique for all t > 0, subject to the initial conditions

	 Sf (0), If (0), Cf (0), Sm(0), Im(0), Cm(0), R(0) > 0.

Proof  Consider the state vector and its initial values:

	

x =




Sf

If

Cf

Sm

Im

Cm

R




, x0 =




Sf (0)
If (0)
Cf (0)
Sm(0)
Im(0)
Cm(0)
R(0)




.

Let f = (f1, f2, . . . , f7)T  denote the right-hand side of system (2), where each fi is defined by the corresponding 
ODE. These expressions are smooth, locally Lipschitz, and consist of bilinear or linear combinations of state 
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variables with non-negative coefficients (except for natural mortality or transition outflows). Define the total 
population as:

	 N(t) = Sf + If + Cf + Sm + Im + Cm + R.

Since recruitment terms Af , Am are constant and death terms are proportional to compartments, N(t) is 
bounded above, implying that solutions stay within a closed ball BN ⊂ U . By the Picard–Lindelöf theorem61, 
there exists a unique local solution x(t) ∈ C1((0, T ); U) ∩ C([0, T ); U). To prove positivity, apply Lemma 3.1. 
Each fi remains strictly positive when xi = 0 and the other xj > 0. For instance:

•	 When Sf = 0, we have dSf

dt
= Af > 0;

•	 When If = 0, infection and recruitment terms are positive;
•	 The same holds for Cf , Sm, Im, Cm, R due to the structure of the ODEs.

Hence, x(t) ∈ R7
+ for all t ≥ 0. By Corollary 17.4 in62, the local solution extends globally.

Finally, since f  is infinitely differentiable, the solution satisfies the integral equation:

	
x(t) = x0 +

ˆ t

0
f(x(s)) ds.

A bootstrap argument implies that x(t) ∈ C∞, proving that the solution is smooth, positive, and global. □

Invariant region and boundedness
We examine system (2) within the biologically relevant feasible region DH .

Theorem 4.1  The region

Parameter Value Comments Source

a 0.75 The proportion of heterosex in female susceptibles 57

b 0.75 The proportion of heterosex in male susceptibles 57

Af 8, 304, 000 year−1 Recruitment rate of females 59

Am 8, 304, 000 year−1 Recruitment rate of males 59

µ0 6.9 × 10−3 year−1 Natural mortality rate 57

µ1 2 × 10−3 year−1 HBV-related mortality rate 57

ϵ 0.16 Reduced transmission rate 4

γ1 0.26 year−1 Progress rate from acute to carrier 57

γ2 0.025 year−1 Progress rate from carrier to immune 4

γ3 0.05 year−1 Vaccination rate for adults 59

qf 0.05 Average probability a female adult fails to clear an acute infection and develops to the carrier state 58

qm 0.07 Average probability a male adult fails to clear an acute infection and develops to the carrier state 58

β 3.5 × 10−11 year−1 Transmission rate for non-sexual transmission 57

βmf 2.26 × 10−7 Transmission probability for males per sex contact with females 57

βfm 3.06 × 10−3 Transmission probability for females per sex contact with males 57

βff 0.0142 Transmission probability for females per sex contact with females 57

βmm 9.73 × 10−3 Transmission probability for males per sex contact with males 57

cmf 21.8 year−1 Average number of sex contacts of females with males 57

cfm 21.8 year−1 Average number of sex contacts of males with females 57

cff 21.8 year−1 Average number of sex contacts of females with females 57

cmm 65.4 year−1 Average number of sex contacts of males with males 57

θf 0.10–0.30 Proportion of female carriers developing chronic disability (10–30%) Assumed

θm 0.15–0.35 Proportion of male carriers developing disability (slightly higher due to HBV severity) Assumed

δ 0.05 – 0.10 year−1 Rate of onset of HBV-related disability (10–20 years average latency) Assumed

Table 1.  Model parameters and values.
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DH =

{
(Sf , If , Cf , Sm, Im, Cm, R) ∈ R7

+ : N (t) ≤ Af + Am

µ0

}

is positively invariant and attracting for system (2) for all t ≥ 0, where N (t) = Sf + If + Cf + Sm + Im + Cm + R.

Proof  Define the total population size:

	 N (t) = Sf + If + Cf + Sm + Im + Cm + R.

Differentiating with respect to time and summing all equations from system (2), we obtain:

	
dN
dt

= dSf

dt
+ dIf

dt
+ dCf

dt
+ dSm

dt
+ dIm

dt
+ dCm

dt
+ dR

dt
.

Substituting from system (2), and observing that all terms involving transmission, recovery, and progression 
cancel internally, we get:

	
dN
dt

= Af + Am − µ0 (Sf + If + Cf + Sm + Im + Cm + R) − µ1(Cf + Cm) − δ(θfCf + θmCm).

Dropping the non-negative mortality and disability terms (for a bound), we get:

	
dN
dt

≤ Af + Am − µ0N .

Now apply an integrating factor If = eµ0t, giving:

	
d

dt

[
N (t)eµ0t

]
≤ (Af + Am)eµ0t.

Integrating from 0 to t, we obtain:

	
N (t)eµ0t − N (0) ≤ Af + Am

µ0

(
eµ0t − 1

)
,

which simplifies to:

	
N (t) ≤ Af + Am

µ0
+

[
N (0) − Af + Am

µ0

]
e−µ0t.

Therefore, if N (0) ≤ Af +Am

µ0
, then N (t) ≤ Af +Am

µ0
 for all t ≥ 0, showing positive invariance. If 

N (0) >
Af +Am

µ0
, then N (t) monotonically decreases and asymptotically approaches this upper bound. Hence, 

the region DH  is both positively invariant and attracting, ensuring the biological and mathematical well-
posedness of system (2). □

Basic reproduction number
The model (2) has a disease-free equilibrium given by:

	 E0 =
(
S0

f , 0, 0, S0
m, 0, 0, R0)

,� (3)

where:

	
S0

f = Af

µ0 + γ3
, S0

m = Am

µ0 + γ3
, R0 =

γ3
(
S0

f + S0
m

)
µ0

= γ3 (Af + Am)
µ0 (µ0 + γ3) .

We calculate the basic reproduction number R0 using the methods in63,64. Let:

	

X =




If

Im

Cf

Cm

Sf

Sm

R




, and rewrite the system as: X = F − V ,

where:
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F =




λSf + aλmfSf + (1 − a)λffSf

λSm + bλfmSm + (1 − b)λmmSm

0
0
0
0
0




,

V =




(µ0 + γ1)If

(µ0 + γ1)Im

(µ0 + µ1 + γ2 + θf δ)Cf − qf γ1If

(µ0 + µ1 + γ2 + θmδ)Cm − qmγ1Im

−Af + (λ + µ0 + γ3)Sf + aλmfSf + (1 − a)λffSf

−Am + (λ + µ0 + γ3)Sm + bλfmSm + (1 − b)λmmSm

−γ3(Sf + Sm) − (1 − qf )γ1If − (1 − qm)γ1Im − γ2(Cf + Cm) + µ0R




.

The disease-free equilibrium is:

	 Ē0 =
(
0, 0, 0, 0, S0

f , S0
m, R0)

.

The Jacobian matrix at Ē0 is given by:

	
DF

(
Ē0

)
− DV

(
Ē0

)
=

[
F − V 0

−H J

]
,

where H  and J  are 3 × 3 matrices, and:

	
F =

[
F1 F2
0 0

]
, F1 =

[
A B
C D

]
, F2 = ϵF1.

The matrix V  is given by:

	
V =

[
D1 0

−D2 V2

]
,

where:

	
D1 = (µ0 + γ1)I2×2, D2 =

[
qf γ1 0

0 qmγ1

]
, V2 = (µ0 + µ1 + γ2 + θf δ)I2×2.

Additionally:

	
A = βS0

f +
2(1 − a)βff cffS0

f

N0 , B = βS0
f +

2aβmf cmfS0
f

N0 ,

	
C = βS0

m + 2bβfmcfmS0
m

N0 , D = βS0
m + 2(1 − b)βmmcmmS0

m

N0 .

Following63,64, the basic reproduction number R0 is the spectral radius of the matrix F V −1, denoted as 
ρ(F V −1). After calculation:

	
R0 =

r2 +
√

r2
2 − 4r1r3

2r1
,

where:

	 r1 = (γ1 + µ0)2(µ0 + µ1 + γ2 + θf δ)2(µ0 + γ3)2,

	
r2 = (γ1 + µ0)(µ0 + µ1 + γ2 + θf δ)(µ0 + γ3)

[
Af

(
β + 2(1 − a)βff cff

N0

)
(µ0 + µ1 + γ2 + θf δ + ϵqf γ1)

	
+Am

(
β + 2(1 − b)βmmcmm

N0

)
(µ0 + µ1 + γ2 + θmδ + ϵqmγ1)

]
,

	
r3 = Af Am(µ0 + µ1 + γ2 + θf δ + ϵqf γ1)(µ0 + µ1 + γ2 + θmδ + ϵqmγ1)

[(
β + 2(1 − a)βff cff

N0

) (
β + 2(1 − b)βmmcmm

N0

)

	
−

(
β + 2aβmf cmf

N0

) (
β + 2bβfmcfm

N0

) ]
,

and:
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N0 = S0

f + S0
m + R0 = Af + Am

µ0
.

	
R0 =




(γ1 + µ0)(µ0 + µ1 + γ2 + θf δ)(µ0 + γ3)

[
Af

(
β + 2(1 − a)βff cff

N0

)
(µ0 + µ1 + γ2 + θf δ + ϵqf γ1)

+ Am

(
β + 2(1 − b)βmmcmm

N0

)
(µ0 + µ1 + γ2 + θmδ + ϵqmγ1)

]

+

([
(γ1 + µ0)(µ0 + µ1 + γ2 + θf δ)(µ0 + γ3)

(
Af

(
β + 2(1 − a)βff cff

N0

)
(µ0 + µ1 + γ2 + θf δ + ϵqf γ1)

+ Am

(
β + 2(1 − b)βmmcmm

N0

)
(µ0 + µ1 + γ2 + θmδ + ϵqmγ1)

)]2

− 4(γ1 + µ0)2(µ0 + µ1 + γ2 + θf δ)2

(µ0 + γ3)2 × Af Am(µ0 + µ1 + γ2 + θf δ + ϵqf γ1)(µ0 + µ1 + γ2 + θmδ + ϵqmγ1)

×
[ (

β + 2(1 − a)βff cff

N0

) (
β + 2(1 − b)βmmcmm

N0

)
−

(
β + 2aβmf cmf

N0

) (
β + 2bβfmcfm

N0

) ]) 1
2




2(γ1 + µ0)2(µ0 + µ1 + γ2)2(µ0 + γ3)2 .

� (4)

Sensitivity analysis
Sensitivity analysis is a key tool used in infectious disease modeling to identify which parameters most 
significantly affect disease transmission and control. In particular, forward sensitivity analysis helps determine 
how small changes in parameters influence key epidemiological outcomes such as the basic reproduction 
number R0. Although the computation can become challenging for complex biological models, this technique 
remains essential. Sensitivity analysis of R0 has been widely employed by ecologists and epidemiologists to guide 
effective intervention strategies.

Definition 6.1  The normalized forward sensitivity index of R0 that depends differentiably on a parameter Ω̄ is 
defined as

	
SΩ = Ω̄

R0

∂R0

∂Ω̄
.

Three methods are commonly used to calculate sensitivity indices: (i) by direct differentiation, (ii) by a Latin 
hypercube sampling method, and (iii) by linearizing the system (2) and then solving the obtained set of linear 
algebraic equations. We will apply the direct differentiation method as it provides analytical expressions for the 
indices. The indices not only show us the influence of various aspects associated with the spread of infectious 
diseases but also provide important information regarding the comparative change between R0 and different 
parameters. Consequently, it helps in developing effective control strategies.

Table 2 shows that the parameters Af , Am, β, qf , qm, ϵ, βff , βmm, cff , cmm, θm, and δ positively 
influence the reproduction number R0. This implies that a 10% increase or decrease in these parameters 
will proportionally increase or decrease R0 by 3.6726%, 6.3274%, 2.6193%, 0.21231%, 0.50053%, 0.71284%, 
2.3779%, 5.0025%, 2.3779%, 5.0025%, 2.7142%, and 0.22253%, respectively. On the other hand, the indices 

Parameter SIndex Value Parameter SIndex Value

a Sa −0.71338 b Sb −1.5007

Af SAf 0.36726 Am SAm 0.63274

β Sβ 0.26193 γ1 Sγ1 −1.3793

γ2 Sγ2 −0.41326 γ3 Sγ3 −1.3085

µ0 Sµ0 −0.33313 µ1 Sµ1 −0.033061

qf Sqf 0.021231 qm Sqm 0.050053

ϵ Sϵ 0.071284 βff Sβff 0.23779

βmm Sβmm 0.50025 βmf Sβmf 3.3145e−09

βfm Sβfm 2.0515e−05 cmf Scmf 3.3145e−09

cfm Scfm 2.0515e−05 cff Scff 0.23779

cmm
Scmm 0.50025 θf Sθf −0.24917

θm Sθm 0.27142 δ Sδ 0.022253

Table 2.  Sensitivity indices of the reproduction number R0 against mentioned parameters, including disability 
dynamics.
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for parameters a, b, γ1, γ2, γ3, µ0, µ1, βmf , βfm, cmf , cfm, and θf  indicate that increasing their values by 
10% will reduce R0 by 7.1338%, 15.007%, 13.793%, 4.1326%, 13.085%, 3.3313%, 0.33061%, 3.3145 × 10−8%, 
2.0515 × 10−4%, 3.3145 × 10−8%, 2.0515 × 10−4%, and 2.4917%, respectively. These results underscore the 
importance of prioritizing interventions that target the most sensitive parameters, such as b, γ1, γ3, and now θf  
and θm, to effectively manage R0 and control HBV transmission.

Analysis and discussion of sensitivity results
The apparent sensitivity analysis performed on the basic reproduction number R0 aids in comprehending the 
dynamics of the transmission of the HBV in the population under consideration which has been modelled. In 
this section, the important parameters regulating R0 are detailed and their physical and biological roles are 
discussed from the context of public health policy-making.

Key influencing parameters
The results clearly show that a few parameters increase the R0 considerably. Gender-based recruitment rates 
(Am and Af ), probabilities of transmission (βmf , βfm, βmm, βff ), and contact rates (cmf , cfm, cmm, cff ) 
exhibit a strong positive correlation with R0. These parameters are directly related to the sexual activity involved 
in having may be children of susceptible parents hence increasing the size of a group of infected:

•	 Recruitment rates The sensitivity indices related to Am and Af  suggest that increasing the flow of susceptible 
into the population considerably increases R0. This points to the need of dealing with factors that explain the 
increase in the size of the population like immigration and recruitment some more.

•	 Transmission probabilities The high sensitivity of R0 to βmm and βff  highlights the significant risk posed 
by male-to-male and female-to-female sexual transmission pathways. This aligns with epidemiological stud-
ies indicating that these pathways often have higher efficiency and transmission dynamics.

•	 Contact rates The parameters cmm and cff  represent the frequency of sexual contacts in specific sub-pop-
ulations. The high sensitivity index for cmm, in particular, suggests the importance of targeted behavioral 
interventions within male-to-male sexual networks.

Mitigating factors
Several parameters in the model exhibit a negative influence on the basic reproduction number (R0), 
effectively acting as control levers for reducing disease transmission. These include traditional epidemiological 
interventions such as vaccination rates, disease progression rates, reduced transmission rates, and disability-
related parameters.

•	 Vaccination (γ3) Among all mitigating factors, γ3 has the strongest suppressive effect on R0. This emphasizes 
the critical role of adult vaccination campaigns in interrupting HBV transmission chains and decreasing the 
pool of susceptible individuals.

•	 Disease progression (γ1, γ2) The progression parameters impact the transition from acute infection to carri-
er state and from carrier to recovered state. Early diagnosis and clinical interventions that accelerate recovery 
or limit chronic progression contribute significantly to reducing long-term infectivity.

•	 Reduced transmission rate (ϵ) This parameter captures the effectiveness of behavioral and biomedical in-
terventions, such as condom use, education, and antiretroviral therapies, that reduce the probability of virus 
transmission per contact.

•	 Female disability rate (θf ) A novel addition, θf  reflects the proportion of female carriers who develop 
HBV-related disability. Its negative influence on R0 suggests that disability shortens the functional infectious 
period, thereby indirectly reducing secondary infections.

•	 Male disability rate (θm) Interestingly, θm has a slight positive effect on R0. This may point to gender-based 
differences in disease progression, behavior, or access to healthcare, wherein male carriers may continue to 
contribute to transmission before experiencing debilitating symptoms.

•	 Disability onset speed (δ) The parameter δ quantifies how quickly disability becomes clinically evident in 
carriers. Higher values of δ modestly reduce R0, underscoring the importance of timely detection and sup-
port for affected individuals to limit their transmission potential.

From an epidemiological standpoint, the parameters θf , θm, and δ jointly capture the complex interplay 
between biological progression and social factors influencing HBV transmission. A higher value of θf  implies 
that female carriers are more likely to develop disability earlier, shortening their infectious period and thereby 
reducing R0. Conversely, the mild positive sensitivity of R0 to θm may reflect delayed clinical progression and 
prolonged infectious activity among males, who often experience slower onset of HBV-related complications 
and may engage in riskier sexual behavior or face barriers to early medical care. The parameter δ modulates the 
overall speed of disability onset across both genders, indicating that rapid progression to advanced disease states 
diminishes the duration of infectiousness and hence suppresses transmission potential. These findings reinforce 
the importance of gender-sensitive clinical management and early diagnosis in limiting the long-term burden 
of HBV.

Graphical interpretations
The graphical representations in Figs. 1, 2, and 3 provide a comprehensive view of the parameter interplay:
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•	 Bar graphs Figures 1 clearly illustrate the relative sensitivity of R0 to each parameter. Positive bars indicate 
parameters that increase R0, while negative bars highlight parameters that reduce it. The steep gradients in 
parameters such as γ3 and cmm demonstrate their critical role in transmission dynamics.

•	 3D contours Figures 2 and 3 depict the interactions between pairs of parameters. For instance, the combina-
tion of γ3 and ϵ shows a synergistic effect in reducing R0, providing actionable insights for optimizing public 
health interventions.

Physical interpretation and public health implications
From a physical standpoint, the parameters act as forces driving or dampening the transmission dynamics. For 
example:

•	 Parameters such as βmm and cmm serve as driving forces, accelerating the spread of the virus by increasing 
the number of effective contacts.

•	 Conversely, vaccination (γ3) and reduced transmission (ϵ) act as dissipative forces, stabilizing the system and 
driving it toward a disease-free equilibrium.

Fig. 1.  Sensitivity analysis of the basic reproduction number (R0) with respect to model parameters. Positive 
and negative bars indicate the parameters that increase or decrease R0, respectively, highlighting their relative 
influence on disease transmission dynamics.
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Fig. 2.  3D surface and contour plots showing the influence of various parameter pairs on R0 in the proposed 
HBV model. Subfigures (a) and (b) illustrate the joint impact of the male infection clearance probability 
qm and the male-to-female contact rate cmf . Subfigures (c) and (d) analyze how the natural mortality rate 
µ0 and non-sexual transmission rate β shape R0. Subfigures (e) and (f) explore the sensitivity of R0 to the 
interaction between male-to-female contact rate cmf  and male-to-female transmission probability βmf . These 
visualizations help identify key drivers in transmission dynamics and potential intervention targets.
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Fig. 3.  3D surface and contour plots demonstrating the influence of selected parameter pairs on R0 in the 
HBV model. Subfigures (a) and (b) illustrate the interaction between the acute-to-carrier progression rate γ1 
and the non-sexual transmission rate β. Subfigures (c) and (d) show the combined effect of the probabilities 
of failed infection clearance in females and males (qf , qm). Subfigures (e) and (f) depict the impact of reduced 
transmission rate ϵ and the male-to-male contact rate cmm. These plots highlight the parameter dependencies 
and nonlinear sensitivities in the transmission dynamics.
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These findings underline the necessity of prioritizing high-impact interventions, such as scaling up vaccination 
efforts, promoting safe sex practices, and implementing targeted behavioral interventions for high-risk 
populations. By addressing the most sensitive parameters, policymakers can achieve significant reductions in 
R0 and effectively curb the spread of HBV.

ANN error analysis and training via LM algorithm
To improve computational efficiency in solving the proposed HBV model, we integrate an ANN framework 
with the LMB optimization algorithm. This section outlines the reference numerical method used for generating 
training data, the ANN training procedure, and the optimization strategy employed.

Numerical reference using Runge-Kutta method
The RK4 scheme is adopted to generate high-accuracy numerical solutions of the system of differential equations 
governing HBV transmission. For an ordinary differential equation of the form

	
dY

dt
= F (t, Y ),

the solution at the next time step is approximated as

	
Yn+1 = Yn + h

6 (G1 + 2G2 + 2G3 + G4),

where

	 G1 = F (tn, Yn), G2 = F
(
tn + h

2 , Yn + h
2 G1

)
,

	 G3 = F
(
tn + h

2 , Yn + h
2 G2

)
, G4 = F (tn + h, Yn + hG3) .

Here h denotes the step size and F(t, Y) represents the right–hand side of the HBV system. These RK4 outputs 
act as reference solutions, which are later used to train the ANN.

Rationale for synthetic data use The ANN in this study was trained on numerical solutions generated 
by the differential-equation model rather than on field observations. This design was chosen to evaluate the 
network’s ability to emulate the mechanistic model dynamics under controlled, noise-free conditions. Training 
on synthetic data ensures that reference outputs fully reflect model assumptions and parameter interactions, 
providing a precise benchmark for assessing the ANN’s approximation capability. Accordingly, the ANN 
functions as a computational surrogate that accelerates model evaluation and sensitivity exploration, rather 
than as a forecasting tool for real-world HBV outbreaks. Future work will extend this framework to integrate 
empirical or surveillance data for predictive validation.

Training strategy and dataset partitioning
The ANN is trained to approximate the trajectories of each epidemiological compartment by learning from the 
RK4 solutions. To avoid overfitting and ensure generalization, the dataset is divided into:

•	 Training set: used to update network weights and biases,
•	 Validation set: monitors model generalization and halts training when overfitting is detected,
•	 Testing set: reserved for final evaluation of predictive performance.

The accuracy of the ANN predictions is quantified using the mean squared error (MSE):

	
MSE = 1

n

n∑
i=1

(
yi − ŷi

)2
,

where yi are the RK4 reference values and ŷi = O(θ) denotes the ANN output corresponding to network 
parameters θ.

Levenberg–Marquardt optimization
The LMB algorithm is employed to minimize the prediction error of the ANN. The error function is expressed as

	
E(θ) = 1

2

n∑
i=1

(yi − ŷi)2.

The parameter update rule is given by

	 θnew = θold − (JT J + λI)−1JT e,

where J is the Jacobian matrix of partial derivatives of the error with respect to θ, e = y − ŷ is the error vector, 
λ is a damping factor regulating the step size, and I is the identity matrix. This hybrid approach combines the 
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speed of the Gauss–Newton method with the stability of gradient descent, making it well suited for nonlinear 
problems such as Lassa HBV dynamics.

Scientific role of the ANN In this framework, the ANN does not function as a forecasting tool for real 
epidemics but as a computational surrogate that emulates the numerical behavior of the HBV transmission 
model. By replacing repeated numerical integrations with rapid neural approximations, the ANN enables efficient 
exploration of parameter sensitivities and transmission pathways. This approach provides indirect biological 
insights by revealing how model dynamics respond to variations in key epidemiological and disability-related 
parameters without relying on empirical data.

Model validation and scope The present work focuses on validating the ANN’s ability to emulate the 
mechanistic HBV model under controlled, noise-free conditions using synthetic data generated via the RK4 
solver. Although the framework was not trained on real epidemiological or cohort data, this design provides a 
precise computational benchmark for assessing numerical fidelity and parameter sensitivity. Integration with 
empirical datasets is identified as an important direction for future work, which will allow direct performance 
comparison between the surrogate ANN model and traditional mechanistic or statistical approaches in real-
world settings.

Error distribution via histograms
To evaluate how well the ANN reproduces the compartmental trajectories of the HBV model, error histograms 
are constructed. These plots highlight how prediction errors are distributed across the training, validation, and 
testing sets. For each time point t, the error is defined as

	 e(t) = y(t) − ŷ(t),

where y(t) denotes the RK4 reference solution and ŷ(t) = O(θ, t) is the ANN output generated with parameters 
θ. A narrow, symmetric distribution of e(t) values around zero indicates accurate approximation and good 
generalization.

Regression analysis and correlation assessment
The consistency between ANN predictions and RK4 reference values is further assessed through regression 
analysis. The correlation coefficient (R) is computed as

	

R =
∑n

i=1

(
yi − ȳ

)(
ŷi − ¯̂y

)
√∑n

i=1(yi − ȳ)2
√∑n

i=1(ŷi − ¯̂y)2
,

where yi represents the RK4 reference values, ŷi are the ANN predictions, and ȳ, ¯̂y denote their respective means. 
An R value close to 1 demonstrates that the ANN is able to closely track the underlying epidemic trajectories.

Performance metrics and error evolution
Training performance is monitored through the evolution of the mean squared error (MSE) over epochs. 
Tracking the decline of MSE provides insight into convergence behavior and the network’s ability to learn the 
nonlinear dynamics of HBV transmission. The instantaneous absolute error at time t is given by

	 e(t) =
∣∣y(t) − ŷ(t)

∣∣,

which can be examined to identify periods where the ANN performs less accurately, such as during epidemic 
peaks or rapid transitions in the system.

Proposed methodology: ANN-LMB approach
To complement the analytical results and accelerate simulations of the HBV model, we employ an ANN trained 
with the LMB algorithm. The ANN–LMB framework is designed to approximate the nonlinear dynamics of the 
compartmental system while reducing computational cost compared to repeated numerical integration. The 
methodology consists of two main stages: (i) generation of training data from the RK4 solutions of the HBV 
equations, and (ii) supervised learning of the ANN using the LMB optimization routine. All computations were 
performed in MATLAB (Neural Fitting tool). The dataset was randomly partitioned into three subsets: 85% for 
training, 10% for validation, and 5% for testing. This partitioning strategy ensures that the network is exposed to 
diverse epidemic scenarios during training, while validation and testing safeguard against overfitting and provide 
an unbiased measure of predictive accuracy. The proposed ANN-LM model consists of an input layer, a single 
hidden layer with 10 neurons, and an output layer. This simple but flexible structure was sufficient to capture 
the nonlinear relationships among model compartments. The number of hidden neurons (10) was selected 
after several trial configurations (5–15 neurons), with this setup providing the most stable convergence and 
minimal mean-squared error, while maintaining computational efficiency. Figure 4 illustrates the architecture 
of the network. The interconnected layers collectively approximate the progression of HBV across different 
compartments, offering insight into both epidemic growth and control interventions.
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Artificial neuron structure
The elementary computational unit of the ANN is the artificial neuron, originally introduced by McCulloch and 
Pitts65. A neuron receives multiple inputs, applies a weighted sum, and passes the result through an activation 
function to generate its output. Mathematically, this is expressed as

	
Y = φ

(
n∑

i=1

wixi − θ

)
,� (5)

where φ is the activation function, θ is the threshold, and wi, xi denote the weight and the input of the i-th 
connection. Including a bias term b in place of the threshold gives

	
Y = φ

(
n∑

i=1

wixi + b

)
.� (6)

Both linear and nonlinear activation functions may be employed; in practice, nonlinear choices such as the 
hyperbolic tangent sigmoid φ(k) = tanh(k) are favored for capturing complex epidemic patterns. Figure  5 
shows a schematic diagram of an artificial neuron.

Simulation results and discussion
This section presents the computational analysis of the hepatitis B virus transmission model, incorporating 
the effects of disability progression, sex-specific compartments, and long-term health impact. Model solutions 
were obtained using the parameter values outlined in Table 1. To evaluate the model’s robustness and predictive 

Fig. 5.  Schematic representation of a single artificial neuron, illustrating how weighted inputs are combined 
with a bias and passed through an activation function to produce an output65.

 

Fig. 4.  Structural layout of the ANN-LMB model, comprising input, hidden (10 neurons), and output layers.
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capability, simulations were performed using two complementary numerical approaches: the classical RK4 
method and an ANN framework trained via the LMB algorithm. Figures 6, 7, 8, and 10 provide comparative 
visualizations of the RK4 numerical solutions and the corresponding ANN–LMB predictions across various 
epidemiological compartments, including susceptible, infected, chronic, and recovered populations. The 
associated absolute error plots are shown in Figs.  9, 11, and  12, confirming the high predictive accuracy of 
the ANN model. Across all compartments, the ANN approach exhibits excellent agreement with the RK4 
benchmark, with absolute errors remaining consistently low throughout the simulation horizon. To assess the 
epidemiological implications of HBV-induced disability, additional simulations were conducted under varying 
values of the disability-related parameters θf , θm, and δ. The results show that increasing the probabilities θf  
and θm leads to a reduction in the number of functionally healthy carriers, despite the total carrier population 
remaining constant. This decline in the functional carrier pool reflects a hidden burden of disease not typically 
captured in standard compartmental models. Moreover, higher values of δ, representing faster progression to 
disability, further shorten the duration during which carriers remain productive, emphasizing the need for 
timely medical intervention and preventive care.

We simulate the mathematical model (2) to analyze the impact of specific parameters on the dynamics of 
HBV transmission. Simulations are conducted over a period of 100 days to observe the system’s long-term 
behavior and stability. To track the dynamics of infected individuals in both adult female and male populations, 
we define the following normalized state variables:

Fig. 6.  Influence of disability onset probabilities θf  and θm on final disease outcomes. Subfigures show the 
long-term values of (a) female carriers Cf , (b) male carriers Cm, and (c) the recovered population R(t). As θf  
and θm increase, both Cf  and Cm decrease due to earlier disability onset, while R(t) exhibits modest nonlinear 
variation.
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Fig. 7.  Comparison between the numerical solutions of the proposed HBV model 2 using the Runge–Kutta 
method and the corresponding predictions generated by the ANN–LMB model.
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Fig. 8.  Function fitting results comparing the true ODE-based solutions and the ANN–LMB predictions for 
each compartment. The plots include outputs from training, validation, and testing subsets. Bar plots indicate 
corresponding prediction errors across the time horizon.
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x1 = Sf

N
, x2 = If

N
, x3 = Cf

N
, x4 = Sm

N
, x5 = Im

N
, x6 = Cm

N
, x7 = R

N
.

The initial values of these variables are specified as:

	
x1(0) = Sf (0)

N(0) = 0.42, x2(0) = If (0)
N(0) = 0.000296771, x3(0) = Cf (0)

N(0) = 8.09 × 10−3,

	
x4(0) = Sm(0)

N(0) = 0.47, x5(0) = Im(0)
N(0) = 0.000575071, x6(0) = Cm(0)

N(0) = 7.3 × 10−4.

The total initial population is taken as N(0) = 931, 400, 000. These initial conditions, where applicable, are 
optimized using MATLAB and derived from data provided by the CDC57. The numerical values of all parameters 
used in the simulations are presented in Table 1.

Figure  7 presents a comparative analysis of the numerical solutions obtained from the proposed HBV 
model (2) using the classical Runge–Kutta method and the predictions generated by the ANN–LMB framework. 

Fig. 9.  ANN–LMB training diagnostics and performance evaluation. (a) Error histogram displaying 
prediction residuals across training, validation, and test sets. (b) Mean squared error (MSE) over training 
epochs, highlighting the best validation performance at epoch 511. (c) Convergence metrics including gradient 
norm, damping parameter µ, and validation checks. (d) Regression plots showing the correlation between 
target and predicted values for training, validation, test, and combined datasets with R ≈ 1 in all cases.
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As illustrated in Fig. 7a, the susceptible female population Sf (t) exhibits an exponential rise that eventually 
levels off, indicating a reduction in infection pressure or increasing immunity over time. The ANN prediction 
aligns closely with the ODE solution, with minimal error evident from the error subplot. In subfigure 7b, the 
infected female class If (t) rapidly declines toward zero within the first 20 days, reflecting swift progression out 
of the acute infection state, either to recovery or chronic infection. The ANN model accurately reproduces this 

Fig. 10.  Comparison of numerical solutions (ODE) and ANN predictions for different values of the natural 
mortality rate µ0. Each subfigure shows how increasing µ0 influences the compartmental dynamics, with solid 
lines representing RK4 solutions and dashed lines denoting ANN outputs.
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decay, with error remaining consistently low beyond the early transient phase. Figure 7c shows the dynamics 
of the chronically infected female population Cf (t), which decreases gradually over time, capturing the slow 
recovery or mortality dynamics associated with chronic HBV infection. The ANN closely mimics this trajectory, 
indicating strong generalization performance. Similarly, the susceptible male population Sm(t), shown in Fig. 
7d, follows the same exponential growth trend as females, emphasizing demographic symmetry under equal 
exposure assumptions. Again, the ANN prediction maintains excellent agreement. In Fig. 7e, the infected male 

Fig. 11.  Absolute errors between ANN predictions and ODE solutions for varying natural mortality rates µ0. 
The results highlight the influence of µ0 on prediction accuracy across different compartments.
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population Im(t) mirrors the female infection dynamics, with a steep initial drop followed by stabilization at 
low levels. This behavior is well captured by the ANN with small and rapidly diminishing prediction errors. 
The chronically infected male population Cm(t), shown in Fig. 7f, also exhibits a slow decline consistent with 
the chronic progression of HBV, and the ANN model successfully approximates this behavior. Finally, Fig. 7g 
presents the recovered class R(t), which increases almost linearly as recovered individuals accumulate over 
time. The ANN prediction remains closely aligned with the ODE solution, and the residual error remains small 
throughout the time horizon.

Figures 8 and 9 illustrate the performance of the proposed ANN–LMB model in both the function fitting 
phase and during training diagnostics. Each subfigure in Figure 8 demonstrates a high-fidelity match between 
the true ODE-based numerical solutions and the ANN predictions across all state compartments. For instance, 
Figure 8a,d show that both the susceptible female and male populations (Sf (t) and Sm(t)) increase over time 
and asymptotically approach a saturation level, reflecting natural herd immunity as infection pressures decline. 
In contrast, Figure  8b,e indicate an exponential decline in the infected compartments (If (t) and Im(t)), 
consistent with effective recovery and/or progression into chronic states. The chronic compartments (Cf (t), 
Cm(t)) depicted in Fig. 8c,f also decrease steadily, suggesting that individuals either recover or exit due to HBV-

Fig. 12.  ANN–LMB training diagnostics for the HBV model with varying natural mortality rate µ0. (a) 
Histogram showing error distribution across training, validation, and test sets. (b) MSE performance over 
21 training epochs, with best validation performance achieved at epoch 15. (c) Training convergence metrics 
including gradient norm, damping parameter µ, and validation checks. (d) Regression plots for training, 
validation, test, and all datasets, each showing strong correlation (R ≈ 1) between predicted and target values.
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related mortality. The recovered population R(t), shown in Fig. 8g, demonstrates a nearly linear increase, 
confirming that the recovery rate is significant in the model’s progression. Notably, in all these subfigures, the 
ANN predictions overlap almost perfectly with the ODE trajectories, and the prediction error bar plots show 
only small and random deviations, affirming model accuracy and generalizability across training, validation, and 
testing phases. Figure 9 further supports these findings with diagnostic plots from the ANN training. Figure 9a 
shows an error histogram where most errors are centered around zero with minimal dispersion, highlighting 
balanced prediction performance across data splits. In Figure 9b, the MSE plot shows a sharp drop in error 
within the first few hundred epochs, with best validation performance achieved at epoch 511, demonstrating 
rapid and stable convergence. Figure 9c tracks optimization indicators such as the gradient norm, learning rate 
µ, and validation checks, all of which confirm smooth training without overfitting. Finally, Figure 9d presents 
regression analyses, with all subsets, training, validation, test, and combined, yielding correlation coefficients 
R ≈ 1. This signifies that the ANN–LMB model is both highly predictive and robust, faithfully capturing the 
nonlinear HBV dynamics governed by the original system of differential equations.

Limitations
While the proposed ANN–LMB framework successfully reproduces the nonlinear dynamics of the HBV model 
and captures the epidemiological influence of disability parameters, several limitations should be acknowledged. 

	1.	 The model relies on parameter assumptions and literature-based estimates that may differ across populations 
and epidemiological settings.

	2.	 The ANN was trained exclusively on synthetic data generated by the Runge–Kutta solver. While this ensures 
numerical precision, it does not account for noise, reporting errors, or incomplete observations typical of 
real surveillance data.

	3.	 The current analysis assumes homogeneous mixing within gender-defined subpopulations and does not ex-
plicitly incorporate stochastic variability or age-structured heterogeneity.

	4.	 The present implementation serves as a computational surrogate for the mechanistic model rather than a 
forecasting tool for real epidemics.

These factors should be considered when interpreting the results. Future extensions will focus on integrating 
empirical datasets and incorporating demographic and stochastic components to improve real-world 
applicability.

Conclusion
This study presents a novel gender-stratified mathematical model to explore the heterosexual and homosexual 
transmission dynamics of HBV, incorporating HBV-induced disability into a classical compartmental framework. 
A key contribution of this work is the inclusion of disability-related parameters θf , θm, and δ, which capture 
the onset and progression of long-term functional impairments in chronic HBV carriers. This enhancement 
adds biological realism and enables a more comprehensive evaluation of the broader disease burden without 
altering the model’s structural simplicity. To improve computational efficiency, we employed an artificial neural 
network (ANN) trained on numerical solutions from the classical RK4 method. The ANN–LMB framework acts 
as a computational surrogate for the mechanistic HBV model, efficiently emulating system dynamics rather than 
forecasting real-world epidemics. By approximating the numerical solutions of the differential equations, the 
ANN accelerates parameter exploration and sensitivity analysis while preserving the model’s epidemiological 
integrity. Comparative results confirm that the ANN closely replicates the RK4 outputs with minimal 
approximation error. Sensitivity analysis of the basic reproduction number (R0) identifies key transmission 
drivers such as recruitment rates (Af , Am), sexual transmission probabilities (βmm, βff ), and contact rates 
(cmm, cff ). Mitigating factors, including vaccination rate (γ3), disease progression rates (γ1, γ2), and disability-
related parameters θf  and δ, are shown to suppress R0 significantly. Interestingly, θm exhibits a mild positive 
influence on R0, potentially reflecting behavioral asymmetries in male carriers prior to functional decline. 
Graphical analyses highlight the nonlinear interplay between these parameters and reveal that incorporating 
disability unveils a hidden epidemiological burden not captured in traditional models. Future extensions of this 
work will focus on coupling the ANN–LMB surrogate with surveillance or cohort-based HBV data to evaluate 
real-world performance and enhance predictive generalization.

Data availability
All data generated or analyzed during this study are included in this article.
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