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Enhancing the weed segmentation
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with convolutional block attention
module
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Weeds are one of the primary factors that reduce crop productivity by competing for nutrients and
water, causing the plant to lose weight and resulting in reduced grain yield. Traditional agricultural
practices often rely on uniform herbicide application, which can contaminate soil and raise costs. On
agricultural land, selective weed treatment are an efficient and cost-effective way to control weeds
that require a deep learning-based crop and weed segmentation system. Many existing crop and weed
segmentation research works focus on achieving precise crop and weed segmentation results, rather
than building lightweight models to deploy on edge devices. To attain this, we develop an effective and
efficient convolutional neural network, namely the Concatenated Attention U-Net with Convolutional
Block Attention Module (CAUC). By integrating Linear Concatenated Blocks (LCB), Attention Gate

(AG) connections, and Convolutional Block Attention Module (CBAM), the proposed model efficiently
utilizes feature maps among its architectural components to achieve superior performance. Depth-wise
convolution layers and 1 x 1 convolution layers in LCBs reduce computational complexity. To enable the
proposed model to identify the weed portions in multiple crop fields, we integrated three datasets in
this research work, namely the Crop/Weed Field Image Dataset (CWFID), Sugar Beet, and Sunflower
datasets. Experimental results on carrot, sugar beet, and sunflower crop datasets demonstrate high
Accuracy (99.09%), MioU (81.02%), and F1-score (99.06%), with a modest model size (5.6 MB) and
computational parameters (0.377 million). We developed a lightweight computer vision application
(13.7 MB) to demonstrate the model’s efficacy on low-computational devices.
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An increasing population requires India to accelerate the production of crops. Weeds are a big obstacle to higher
yields since they complicate farm operations as well as damage rural economies. Because they are competitive,
tenacious, and non-edible plants, the weeds compete badly with crops for vital resources such as sunlight,
nutrients, water, as well as space. Crop standards as well as farm productivity are both decreased due to this
competition. India will be able to significantly increase crop yields as well as food security by addressing these
problems as well as implementing effective weed control measures.

Although weeds are randomly spread across the fields, customary agriculture treats the whole field equally
to the infested part to address the issues created by the weeds. Application of herbicides, beyond some specific
limit, may also pollute the land as well as the soil and increase the cost of cultivation. Thus, an efficient crop-weed
detection system must be developed to eliminate weeds selectively and reduce herbicide usage.
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A few shortcomings of approaches based on machine learning include the requirement for feature engineering
before training and the requirement for sizable, manually created, or well-structured datasets'. On the other
hand, deep learning automatically extracts features during training, if sufficient data is available, eliminating the
need for human feature engineering. Deep learning algorithms are excellent at handling complicated tasks like
object detection, image recognition, image classification, and natural language processing than typical machine
learning models®>>%,

The main use of a Convolutional Neural Network (CNN), a deep learning model, is the interpretation
of visual input, including images and videos. CNNs can create object detection models to find and identify
many things in an image and classification models to classify images by automatically extracting significant
characteristics™. However, identifying and differentiating crop and weed areas in the image at the pixel level
is necessary for an efficient crop-weed segmentation system. Traditional classification and object identification
models are not up to the challenge.

This is possible by creating a CNN-based segmentation model with pixel-wise labeling, where a pixel is labeled
with a particular category®. The model separates the input image into different classes, like crops and weeds, to
enable accurate detection of weed-infested regions. With pixel-wise labeling, a crop-weed segmentation system
facilitates selective weed management, enhancing efficiency in farming operations.

The segmentation models, such as SegNet5127, UNet?, AgNet’, and RRUDC', are utilized for crop-weed
segmentation. All these models use the encoder and decoder-based structure, where each encoder block
corresponds to a decoder block!!. Many of the existing crop and weed segmentation works are about single crops
in nature. Because weeds and crops found in different crop fields have fewer distinctive features and more similar
ones, designing a multi crop weed segmentation model is challenging. Hence, an efficient model is necessary to
extract these distinct features among the crops and weeds. It can be achieved with dense connection'?, residual
connection'®>!, Convolutional Block Attention Module (CBAM)', and Attention Gate connection!®!”. But, at
the same time, building a computationally smaller model is also essential to increase the usability of the model,
which was accomplished by including the depth-wise separable convolution and 1 x 1 convolution layers in the
proposed model.

Literature survey

The literature review for this research work is centered on three main points. The first investigates ways of
creating computationally effective models without loss of performance. The second looks at current research on
crop-weed segmentation. Lastly, the third point reviews attention mechanisms applied in different tasks.

Building of computationally less complex model

Sun et al. (2023) constructed a light semantic segmentation model, namely RL-DeepLabv3+, to deploy on an
unmanned rice harvester for rice lodging detection'®. The most interesting aspect of this work is the application
of depth-wise separable convolution methods in the backbone network to provide efficiency enhancement and
a residual network to enhance the utilization of feature maps. Likewise, to solve issues in precisely segmenting
ocular areas, Naqvi et al. (2020) proposed Ocular-Net, a combination of residual skip connections’ strengths
with the SegNet model'.

Jang et al. (2023) suggested FALCON, a compression algorithm to compress the size of CNN models without
degrading performance®. The algorithm applies depth-wise convolution operations and channel concatenation
to provide stability with effective model performance. Hossain et al. (2022) introduced RA-CNN, a two-
domain deep learning method for MRI image reconstruction®!. RA-CNN is based on the UNet architecture
and incorporates residual connectivity and an attention mechanism to facilitate improved feature use across
architectural components.

Chen et al. (2020) used a soft attention mechanism and residual connections to the UNet model for building
the Residual Attention UNet to obtain accurate multi-class segmentation on a dataset of CT images®. Rampriya
& Suganya (2021) utilized the CBAM module in their RSNet to improve railroad segmentation?.

Yang et al. (2019) presented the Residual Dense UNet (RDUN), a semantic segmentation network used in
detecting road defects. RDUN combines residual learning and dense connections with the UNet architecture
to better extract features®*. Likewise, Li et al. (2019) presented fire-FRDCNN and mobile-FRD-CNN, which
apply full concatenation paths to reuse feature maps and include 1 x 1 convolution layers to lower computational
costs?.

Existing crop and weed segmentation works

Carbone et al. (2022) utilized the deep learning model Bonnet for sunflower crop field image segmentation of
plants and weeds?®. With the help of RGB and NIR images, the Bonnet model was trained to segment weeds
and crops according to semantic areas. Although the method attained 78.98% IoU in crop-weed segmentation,
it was not generalizable across sunflower crops. Fawakherji et al. (2021) investigated some of the most popular
encoder-decoder models, such as SegNet, UNet, UNet-ResNet, and Bonnet, for crop-weed segmentation of
sugar beet crops based on semantic segmentation methods?’. To improve the accuracy of segmentation, the
authors employed efficient augmentation methods, producing synthetic images by utilizing a conditional GAN
(cGAN).

For segmenting the crop and weed segmentations, Hashemi-Beni et al. (2022) investigated various CNN
models, namely UNet, SegNet, DepLabV3+, FCN-8s, FCN-16s, and FCN-32s in their research work?®. These
experiments were carried out on two UAS imagery Datasets, the CWFID and the Sugar Cane Orthomosaic
datasets, where the DepLabV3+ (84.3%) and FCN-8s (76.62%) outperformed others in terms of overall
classification accuracy on the CWFID and Sugar Cane datasets, respectively. The models’ overall classification
accuracy could have been more significant, and the proposed approach was single-crop-based.
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Nasiri et al. (2022) used ResNet50 as the encoder in their proposed UNet model for crop-weed segmentation?’.
The images taken from the sugar beet agricultural fields are used to train their proposed UNet model, and they
attained an accuracy of 96.06% with an IoU value of 84.23%. The proposed model was not, however, made
computationally efficient or to handle multiple crops.

Wang et al. (2020) suggested an encoder-decoder model with pixel-wise labeling to segment crop and weed
areas in sugar beet fields!. For the sake of efficiency, the computational parameters of the model were minimized
through depth-wise convolution methods. This method was restricted to the sugar beet dataset. Likewise, Zou
et al. (2021) utilized the UNet model for crop-weed segmentation and used efficient augmentation methods to
increase the training dataset™.

Fawakherji et al. (2019) suggested a deep-learning approach for efficient crop and weed classification of real-
world field images®!. The method employed two sequential CNNs: VGG-UNet for vegetation segmentation and
VGGI6 to distinguish the crop and weed patches. Nevertheless, the approach is time and computationally costly
because of the application of two VGG16 models in a two-stage process.

Exploring attention mechanisms in diverse applications

To identify image anomalies, Zhang and Tian (2023) developed a Transformer model with mutual attention™.
Their method enhances the interaction among image regions, allowing for easier identification of anomalies.
Mutual attention aids by taking into account relationships among different image features. In virtual reality (VR)
applications, Xiao et al. (2024) built a Multi-Scale Spatio-Temporal Attention Network (MSSTANet) to enhance
human action recognition (HAR)*?. The approach overcomes issues in the precise recognition of user actions by
extracting both spatial and temporal features from action signals. Liu et al. (2021) presented NHBS-Net in their
work>!, which is a dedicated neural network that is meant to improve the segmentation of ultrasound images
of neonatal hip bones. The network has a feature fusion attention mechanism for enhancing the accuracy and
robustness of segmentation.

Lin et al. (2021) presented the Efficient Attention Pyramid Transformer (EAPT), an attention-based
hierarchical model for image classification, object detection, and semantic segmentation. The innovation of EAPT
is its multi-scale attention mechanism, which effectively captures both global context and local dependencies in
images®. Nazir et al. (2021) proposed ECSU-Net, a neural network that enhances intervertebral disc (IVD)
segmentation and classification from CT images. The model addresses spinal analysis difficulties by employing
specific modules to optimize accuracy and efficiency.

Materials and methodology

The primary goal of this work is to design a CNN-based deep model for crop and weed segmentation in farmland
with pixel-wise labeling. The model will also label crops and weeds into distinct categories for various fields. The
model should correctly identify them while being efficient enough to be executed in low-power devices.

Data pre-processing

Building a precise deep learning model requires a rich training dataset. Most high-performance models are not
successful in actual farms due to their training on lab images. To succeed in the real world, all training images
should be from actual farms. For this reason, this study applies only actual agricultural field images. Sample
images are presented in Fig. 1.

A dataset that comprises various crops and their potential weeds is required to build a multi-crop weed
detection model. We have combined three existing datasets to create the necessary dataset for this research, since
any such dataset that includes multiple crops and weeds is not currently present. The three datasets utilized are
the Crop/Weed Field Image Dataset (CWFID)¥, the Sugar Beet (SB) dataset®, and the Sunflower (SF) Dataset?’,
where the crops are carrot, sugar beet, and sunflower. All these datasets contain actual crop field images and their
corresponding target label images. Both of these actual and label images are required for training a vision-based
segmentation model since they enable supervised learning. A sample of the actual agricultural field image and
the corresponding label image of each dataset is visualized in Fig. 2(al, b1, c1) and 2(a2, b2, c2), respectively.

The problem with merging three datasets is that crop and weed areas in the target label images are not marked
with different colors. For instance, crops in CWFID (Fig. 2.a2) are marked red, but weeds in SB (Fig. 2.b2) and SF
(Fig. 2.c2) are marked red as well. In the same manner, weeds in CWFID (Fig. 2.a2) are colored green, whereas
crops in SB (Fig. 2.b2) and SF (Fig. 2.c2) are also colored green. Direct use may lead to misclassification of crops
and weeds by the model. To correct this, all target label images were normalized with varying colors: carrot
(blue), sugar beet (green), sunflower (turquoise), and weeds (red), as depicted in Fig. 2.a3, b3, c3. This is the
initial and most crucial step of data pre-processing, which maintains consistency for training.

Another problem with merging the datasets is the imbalanced number of images. CWFID contains 60
images, Sugar Beet has 1800, and Sunflower has 146. If used directly, the model would be biased in favor of the
class with the most images. To correct this, CWFID and Sunflower datasets are augmented to be up-sampled,
and the Sugar Beet dataset was down-sampled to balance the dataset. This technique, referred to as resampling,
provides balanced class distribution. All three data sets were, before re-sampling, divided into 90% training and
10% testing in the hold-out strategy using random sub-sampling® to enhance the model to learn new data.

During the resampling procedure, random sub-sampling is used to reduce the Sugar Beet dataset to 1100
images, which includes 1000 training images and 100 test images. As mentioned earlier, the augmentation
operations are applied to the CWFID and Sunflower datasets. Augmentation techniques such as rotation,
zooming, shearing, horizontal and vertical flipping, width and height shifting, and others are applied to both
real and target labels in the same order to maintain valid training and testing pairs. Augmentation operations
also reduce the likelihood of overfitting by adding variety to the training instances in addition to maintaining
an equal distribution of data. As a result of augmentation operations, 54 and 6 images in the training and testing
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Fig. 1. The sample images from the dataset used for training the model. (a,b) Carrot crop field images, (c,d)
Sugar Beet crop field images, and (e,f) Sunflower crop field images.

sets of the CWFID dataset were increased to 1000 and 100 images, and 131 and 15 images were increased in
the training and testing sets of the Sunflower dataset to 1000 and 100 images, respectively. Hence, with these
resampling operations, the number of instances in the three datasets is equalized. Figure 3 shows the effect of
these augmentation operations.

The training set is split into an 8:2 proportion using a k-fold cross-validation approach with k = 5 (5-fold
cross-validation) to assess the learning progress of each epoch. For each run, four (k-1) of the five parts of the
data set are utilized for training, while one is used for validation’. Without interfering with the training process,
this maintains the model trained on every image. Table 1 lists the characteristics of the multi-crop weed dataset
used in this study.

Proposed concatenated attention UNet with CBAM (CAUC) model

The proposed Concatenated Attention UNet with CBAM (CAUC) model uses the UNet model as the base
structure, an encoder, and a decoder-based model*'. The proposed model’s structure is depicted in Fig. 4. Linear
Concatenated Block (LCB), Convolutional Block Attention Module (CBAM), and Attention Gate (AG) attached
skip connections are the key elements of the proposed model and are crucial for extracting the significant
features of various crops and weeds. The detailed description and key functionality of the proposed model’s key
elements are provided under the following sub-section.

(1) Encoder-decoder structure of the proposed CAUC model.
(2) Linear concatenated block (LCB).

(3) Convolutional block attention module (CBAM).

(4) Attention gate (AG) connections.

(5) Pixel-wise labelling.

Encoder-decoder structure of the proposed CAUC model

The proposed CAUC model incorporates 7x7, 3x3, and 1x 1 convolution layers, with 4, 27, and 32 layers,
respectively. The 3 x 3 and 1 x 1 convolution layers are predominantly in 8 LCB units and 4 AG components. To
alleviate computational complexity, 24 of the 3 x 3 layers in LCB units employ depth-wise separable convolution.
The 7% 7 convolution layers are included in 4 CBAM components. Section 3.2.2 discusses how depth-wise
separable convolution alleviates computational complexity.

The two primary blocks of the proposed architectures are the encoder and decoder structures, with a middle
block connecting them. The encoder reduces the resolution of important features and extracts them, and the
decoder up-samples and restores them to produce the desired segmented image. Both sections have four LCB
blocks. The filters of the encoder increase to 12, 32, 64, and 128, and the decoder takes the opposite order. The
middle layer includes 256 filters. Unlike RRUDC'’, an AG-attached skip connection is employed to combine
feature maps of encoder and decoder parts, with details in Sect. 4.3.1. To avoid overfitting, a dropout layer is
appended after every LCB component, similar to the drop channel method*2.
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Fig. 2. The sample actual field images, target label images, and re-colored target label images of the three
datasets. (al,bl,cl) actual field images (a2,b2,c2) original target label images, and (a3,b3,c3) re-colored target
label images of CWFID, Sugar Beet, and Sunflower datasets.

Instead of depending on the last LCB component on the decoder side, each LCB component directly
contributes to the final output. The CBAM component in the Feature Fusion stage, which collects the most
crucial information from the decoder-side LCB feature maps, is used to accumulate the outputs of all LCB
components. Section 3.2.4 provides a full description of the CBAM procedure. To precisely segment the crop
and weed areas present in the agricultural image, the Softmax layer receives the fused feature maps from the
decoder’s LCB components. Table 2 displays the suggested CAUC model’s real design structure.

Linear concatenated block (LCB)

The Linear Concatenated Block (LCB) is an crucial component of the CAUC model. It comprises two 1x1
and three 3 x 3 convolutional layers, with subsequent ReLU activation and Batch Normalization (BN). The LCB
architecture facilitates the efficient utilization of feature maps at minimal computational expense. This is done
through linear concatenation of convolution layers and application of 1 x 1 convolutions combined with depth-
wise separable convolution to minimize complexity. The LCB’s internal structural components are depicted in
Fig. 5, and its mathematical model in Egs. 1-7 and LCB64 configuration in Table 3.

Linear concatenation is an efficient computation method for employing feature maps in a CNN model as
opposed to global concatenation. Every LCB level consists of two concatenation units (CU1, CU2) (Fig. 5), which
enable the C2 and C3 convolution layers to take in both the input and output of the preceding component (Eqs. 4
and 7). This helps in segmenting the crop and weed portions in the agricultural field images. Yet, concatenation
adds computational parameters by increasing the channel size (Egs. 2 and 5).

C1 = W1 ®X(Size of C1: Hx W x Chy) (1)
CU; = ConCat (C,Cy) (Size of CULl: H x W x (Ch + Ch;)) (2)
P1 =W, ® CU; (Size of P1: Hx W x N) 3)
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Fig. 3. The effect of different augmentation operations on actual field and target label images. (a) Original, (b)
Rotation, (¢) Horizontal flip, (d) Vertical flip, (¢) Width shift, (f) Height shift, (g) Zooming, (h) Shearing.

Train and After

test split resampling
S.no | Name of the dataset | Actual count | Train | Test | Train | Test
1 Sugar Beet 1800 1620 | 180 | 1000 | 100
2 CWFID 60 54 6 1000 | 100
3 Sunflower 146 131 15 1000 | 100
Total 3000 | 300

Table 1. The details of the multi-crop weed datasets used in this research work.

Cz; = W2 ®P1 (Size of C2: H x W x Chy)

=W ® (W.oCUl) (4)
=W; ® (W, ® ConCat (C,Cy))

CU; = ConCat (P1,Cs) (Size of CU2: H x W x (N + Ch2) (5)
P2 = Wy, ® CUs(Size of P2 : Hx W x N) ©)
Cs = W3 ®P2(Size of C3 Hx W x Chs)
=W;3 @ (W, ® CUz) (7)

=W3® (W, ® ConCat (P1,C2))

where, C,, C,, C,, - the convolution layers’ outcome, PC, PC, - the 1x1 convolution layers’ outcome, W,
W,, W, - Weights of the convolution layers, W, W, - Weights of the 1x 1 convolution layers, CU,, CU, - the
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Linear Concatenated Convolutional Block
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Attention Gate Drop Channel n Down Sampling - Up Sampling

Fig. 4. The structure of concatenated attention UNet with CBAM (CAUC).

Concatenation layers’ outcome, H, W — Feature map Height and Width, Ch,, Ch,, Ch, — Channel size of the
generated feature maps, C - input feature map for the respective LCB, Ch - the respective input feature map’s
Channel size of the LCB component, © —1x 1 convolution operator, ® - convolution operator, ConCat() -
Concatenation operations.

The overall number of computational parameters present in the model decides its computational complexity.
Consequently, as the model’s computational parameters are reduced, its computational complexity and size fall
automatically. This is accomplished in two ways in this research work: Parameter Reduction through depth-wise
separable convolution layers - PR1 and Parameter Reduction through 1x 1 convolution layers - PR2.

The fundamental operation of CNN is the convolution operation. Larger filter sizes in convolution aid in
extracting discriminative features from intricate objects, enhancing performance. But the drawback of regular
convolution is the increased computational cost with filters of size KxKXIC, where K is the Kernel Size and IC is
the Number of Channels in the feature map. A more effective method of decreasing computational parameters
without impacting performance is depth-wise separable convolution (DSC) operations. Thus, the middle layer
and all 3x3 convolution layers in LCB components are designed as depth-wise separable convolution layers,
which constitute the first parameter reduction strategy.

The DSC operation can be achieved in two steps to reduce the computational parameters. In the initial step,
features at the spatial level are obtained through depth-wise convolution operations, and in the second step,
features at the channel level are obtained through point-wise convolution operations*®. Through this strategy,
the expensive convolution filter KxKxIC is decomposed into two components, KxKx1 for the first step and 1
x 1XIC for the second step of the DSC operation. The mathematical notation for the number of computational
parameters produced by the regular convolution and DSC computations, as well as parameter decrease per layer
employing DSC layers, is illustrated in Eqs. 8-11.

NPsc = K x K x IC x NF (8)
NPpsc = (K x K x IC) + (IC X N) 9)

Total number of computational parameters produced by
a depth — wise separable convolution layer (NPpsc)

PR, = Total number of computational parameters produced by
a standard convolution layer (NPgc)
(K? x 1C) + (IC x N)
B K2 x ICx N
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Sec Input Component/layer | Kernel size | No of comps /filters | Output and its size
Image IP_Conv 3x3 64 El | 224x224x64
El LCB16 1x1,3x3 |8,16 E2 | 224x224x16
E2 Down-Sampl 2x2 1 E3 112x112x 16
E3 Drop Chanel Dropout_rate = 0.2 E4 | 112x112x16
E4 LCB32 1x1,3x3 | 16,32 E5 112x112x32
E5 Down-Samp2 2x2 1 E6 | 56x56x32

Encoder SIDE E6 Drop Chanel Dropout_rate = 0.2 E7 | 56x56x32
E7 LCB64 1x1,3x3 |32,64 E8 56X 56 x 64
E8 Down-Samp3 2x2 1 E9 | 28x28x64
E9 Drop Chanel Dropout_rate = 0.5 E10 | 28x28x64
E10 LCB128 1x1,3x3 | 64,128 E11 | 28x28x128
Ell Down-Samp3 2x2 1 E12 | 14x14x128
E12 Drop Chanel Dropout_rate = 0.5 E13 | 14x14x128
E13 Middle Layer 3x3 256 M 14 x14x256
M Up-Samp1 2x2 1 D1 | 28x28x256
D1 Drop Chanel Dropout_rate = 0.5 D2 | 28x28x256
El1l,M AGI128 1x1 128 D3 | 28x28x128
D2,D3 ConCat-1 - 1 D3 | 28x28x384
D3 LCB128 1x1,3x3 | 64,128 D4 | 28x28x128
D4 Up-Samp2 2x2 1 D5 | 56x56x128
D5 Drop Chanel Dropout_rate = 0.5 D6 | 56x56x128
E8, D4 AG64 1x1 64 D7 | 56x56x64
D6, D7 ConCat-2 - 1 D8 | 56x56x192

Decoder side D8 LCB64 1x1,3x3 |32,64 D9 | 56x56x64
D9 Up-Samp3 2x2 1 D10 | 112x112x64
D10 Drop Chanel Dropout_rate = 0.2 D11 | 112x112x64
E5,D9 AG32 1x1 32 D12 | 112x112x32
D11,D12 ConCat-3 - 1 D13 | 112x112x96
D13 LCB32 1x1,3x3 16, 32 D14 | 112x112x32
D14 Up-Samp4 2x2 1 D15 | 224 x224x32
D15 Drop Chanel Dropout_rate = 0.2 D16 | 224x224x32
E2,D14 AGl6 1x1 32 D17 | 224x224x16
D16,D17 ConCat-4 - 1 D18 | 224x224x48
D18 LCB16 1x1,3x3 |8.16 D19 | 224x224x16
D4 CBAMI + UpSmap | 7x7,8x8 |1 F1 224x224x16
D9 CBAM2+ UpSmap | 7x7,4x4 1 F2 224 x224x 64
D14 CBAM3+ UpSmap | 7x7,2x2 |1 F3 224x224x32

Feature fusion | D19 CBAM6 7x7 1 F4 | 224x224x16
F1, F2, F3, F4 | ConCat-5 - 1 F5 224 x224 %240
F5 OP_Conv 3x3 5 F6 224x224 x5
F6 Softmax Layer - - F7 | 224x224x5

Table 2. The architectural configuration of the proposed CAUC model.

C1 DC » C2 DC » C3

. . oo i n ﬂ R e S

Fig. 5. The structure of linear concatenated block (LCB).

Scientific Reports | (2026) 16:1774 | https://doi.org/10.1038/s41598-025-31285-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Section | I/P Component/ layer | Kernel size | No of components/filters | Output size
IF=56x56x32 | Tres_DSC1 3x3 64 L1 | 56 x56 x 64
IEL1 ConCatl - 1 L2 | 56x56x96
L2 Unus_SC1 1x1 32 L3 | 56x56x32
L3 Drop_Layer Dropout_rate=0.1 L4 | 56x 56 x 32

LCB64 |14 Tres_DSC2 3x3 64 L5 | 56x56x 64
L3, L5 ConCatl - 1 L6 | 56x56x96
L6 Unus_SC2 1x1 32 L7 | 56 x56 x 32
L7 Drop_Layer dropout_rate=0.1 L8 | 56x56x32
L8 Tres_DSC3 3x3 64 L9 | 56 x56 x 64

Table 3. The architectural configuration of LCB64. Tres_DSC : 3 x 3 DSC layer, Unus_SC: 1x 1 Standard
Convolution layer.

_ IC(K®+N)
~ K®*x ICx N
1 1
e + N(Smce, 3)
1 1
_1. 1 10
PR: 9 + N (10)
i1 PRy
APR,; = M (11)
m

where PR, - Parameter Reduction rate per layer using the DSC operation, APR, — Average Parameter Reduction
rate using the DSC layer, K - Kernel size, IC - Input feature map’s Channels size, and N - the convolution layers’
filters size, m — Number of convolution layers used in the LCB components and middle layer. The lowest and
highest numbers of filters used in CAUC are 16 and 256, respectively. Hence, the maximum and minimum
parameter reduction per layer using the DSC layer (PR)) can be achieved in the range of 12% to 17% on N=256
and N=16, respectively. The Average Parameter Reduction using DSC operation (APR,) of ~ 14% is achieved on
the proposed CAUC model with these DSC layers.

The computational parameters are linearly proportional to the input feature map’s channels. Feature maps
are used efficiently by the concatenation unit, but they raise channel size, resulting in increased computational
complexity (given in Eqs. 2 and 5). For this, a 1x1 convolution layer is introduced after the concatenation
unit for cross-channel down-sampling, making the second parameter reduction (PR2) strategy in this work.
Consequently, the output of the concatenation unit is passed through the 1x 1 layer to restrict channel size (in
Egs. 3 and 6). For further computational complexity reductions, the 1 x 1 convolution layer’s number of filters is
fixed at fewer than the input feature map’s channels. Hence, the filters in the 1 x 1 convolution are maintained at
half (N/2) of the allocated filters per LCB unit. The parameter reduction rate for each LCB component (PR2) is
computed mathematically in Eq. 12.

Total number of compuational parameters produced in a LC' B unit

that employs 1 X 1 convolution layer

Total number of computational parameters produced in a LC B unit
that does not employ 1 x 1 convolution layer

_ N(C1) + N (P1) + N (C2) + N (P2) 4+ N (C3)
- N (CI) + N (C2) + N (C3)
[[(K*x Ni)+ (NNi)] + [(N+Ni) x ]+ [((K*x §)+(Z x N)]+ [ x E]+ (K> x ¥)+ (& x V)]
[[(K* x Ni)+ (NNi)| + [(K* x (N + Ni)) + (N + Ni)N]+ [[(K* x (2N + Ni)) + (N + Ni)N|

PR. =

__ NXK?+ (NNp|+ SOG4 N 4 4 0 4 B+
NK? + NNi + K? (N + Ni) + N (N + Ni) + K? (2N + Ni) + N (2N + Ni)
_ K?*(N+Ni) 4+ 2N? + 3N? + INNi
~ 3K?(N 4 Ni) 4 3N(N + Ni)

K? (N + Ni) + 2 (N + Ni) + 2N
3(N+Ni) (K* +N)

K? + 3N N2
6(K2+N)  4(N + Ni)(K?+ N)
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1 N N2

PR: = o m Gty Y ima )

(12)
where PR, — Parameter Reduction Rate per LCB component using the 1x 1 convolution layer, K - Kernel size,
IC - Input feature map’s Channels size, N - the convolution layers’ filters size, Ni - Input channel size of the initial
input feature map for an LCB component. The Ni is derived from the number of filters employed in the earlier
LCB part of the model. The filter allocation of the LCB part is 16, 32, 64, and 128 on the encoder side, and the
same pattern is mirrored on the decoder side. We therefore assume that Ni and N are X and 2X on the encoder
side and 2X and X on the decoder side. The PR2 equation described in Eq. 12 is again given as PR2E (encoder
side) and PR2D (decoder side) as described in Eqgs. 13 and 14. The mathematical formula for the Average
Parameter Reduction rate (APR2) per LCB component through the 1 1 convolution layer is given in Eq. 15.

1 4
P - 2 Ny=z, N=2
Rop (9+2x)+ <3+$+12a7) (where T T
1 2z (13)
=37 30+20)
z oz’
P - ror N; = 22, N =
Rop 012 + (3 + 3 + Tom (where x x)
L . (14)
BERETCE)
APR.p — Z NEPRap: + Z ;'V:L{PRQD]' (15)

NE + ND

where, APR, — Average Parameter Reduction rate using per LCB component using the 1 x 1 convolution layer,
and NE, ND - Number of LCB components present in the encoder and decoder side, respectively. The APR, of
~ 58% is achieved in the proposed CAUC model using the 1 x 1 convolution layer, where APR,. and APR, are
~ 63.5% and ~ 52.5%, respectively. To restrain the model from overfitting, a dropout layer is added after the 1 x
1 convolution layer as a drop-layer mechanism*2.

The LCB component is playing a significant role in computational complexity reductions by preserving
performance through the use of lightweight depthwise separable convolution operations instead of standard
convolution operations (APR, =~ 14%). Further, the design choice includes the integration of a 1 x 1 convolution
layer after the concatenation operations, streamlining feature integration and minimizing computational
overhead (APR, of =~ 58%).

Attention gate (AG) attached skip connections

The standard UNet typically integrates feature maps produced by encoder blocks with the corresponding decoder
blocks via the skip connection, which adds minimal redundant spatial information from the encoder side. In
view of overcoming this issue, an Attention Gate (AG) attached a skip connection is used in this proposed
CAUC model. Soft attention is used in this case to minimize redundant features and suppress the activations of
irrelevant regions. Furthermore, the AG-attached skip connection in the proposed CAUC model integrates the
feature maps generated by the encoder-side LCB Unit and the corresponding lower-side decoder’s LCB unit with
the respective decoder-side LCB unit. It helps to enhance the representation ability of the model. The structure
of the AG attached skip connection is shown in Fig. 6.

1 X (NxN M) RF (NXNxM)
LCB >| AG —> cu —{ LCB
M-Size 'y M-Size
Encoder Side Y (N/2xN/2%x2M) Corresponding
LCB Unit Decoder Side
Lower side LCB LCB Unit

Decoder’s LCB 2M-Size
Unit 1

Fig. 6. The structure of the AG attached skip connection that connects the encoder and decoder blocks.
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Input: Feature maps X (NXNxM) and Y( §X§X2M ) received from the encoder and

decoder, respectively.
Output: Refined feature map RF (NXNxM).

Begin:
1: X* =Conv[S=2, K=1](X)
2:' Y =Conv[S=1,K=1](Y)
3: Z =add([X', Y]
4: 72 = ReLU(Z)
5: Z = Conv[S=1, F=1,K=1|(Z")
6: Z©° = Sigmoid(Z")
7: 77" = Up-sample(Z™")
8 M =multiply([Z, X])

9: RF =Conv[S=1, F=M, K=1](Y)
10: RF = BN(RF)
11: return RF

End

Note:
S: Stride value, F = Number of filters, K: Kernel size, BN: Batch Normalization, Conv: Convolution operation

Algorithm 1 Attention Gate.

There are two inputs, X and Y, for an attention gate (AG), in which Y is received from the deeper part of the
model and its smaller size ( %x %x 2M) when compared to X (NxNxM). The detailed functionality of AG is
mentioned in Algorithm 1 and also represented in Fig. 7. The significant activations in the input feature maps are
highlighted after the various stages of refinement described in Algorithm 1, and the refined feature map is then
provided to the appropriate decoder blocks through the concatenation unit. It assists the proposed CAUC model
in focusing on significant features specific to the task*+>.

Overall, the AG-attached nested skip connections present in the proposed CAUC model significantly help
to attain better performance on multi-crop segmentation by transferring the distinct crops (Carrot, SugarBeet,
and Sunflower) and weed-specific features and filtering out irrelevant background details when compared to
conventional skip connections.

Convolutional block attention module (CBAM)
CBAM is one of the lightweight and effective attention modules that can be attached to any CNN model without
significantly increasing its computational complexity. The key role of the CBAM module is to interpret the

Sigmoid

RelLU

sampling

Fig. 7. The structure of the Attention Gate(AG) used in the AG-attached skip connection of the proposed
CAUC model. The size of X, Y, and RF are (NxNxM), ( %x %x 2M) and (NXNxM), respectively.
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input feature map spatially and channel-wise and finally multiply these interpretations to produce the most
distinguishable refined feature map*®. It makes the proposed model focus on significant features.

The two attention modules, i.e., the Channel Attention Module (CAM) and the Spatial Attention Module
(SAM), are put sequentially?>. The organization of CBAM and its sequential arrangement of the attention
modules are depicted in Fig. 8. The mechanism of CBAM is explained in Algorithm 2 and mathematically
formulated in Egs. 16-18.

OP (CBAM) = SAM (CAM (F))
CAM (F) = F'

=Mcu (F)OF = F/

SAM (CAM (F)) = F?

= SAM (F') = Msp (F') @ F*

OP (CBAM) = Msp (F') ® Mcn (F) © F (16)
Mcn (F) = o(MLP (F"avg) + MLP (F iy (17)
Msp (Fl) =0(7Tx7—Conv (FP.s; FPnax) (18)

where, O — Output of a CBAM, F - dimension of input Feature map (HxWxC), My - dimension of channel
attention map (1 x 1xC), M, - dimension of spatial attention map (HxWx1), © - Element-wise multiplication,
MLP - Shared multi-layer perceptron with one hidden layer, F“havg, Feh - Average and max pooling of channel
attention map, F*? _, F¥ - Average and max pooling of spatial attention map, o - Sigmoid function, 7 x 7-Conv
- Convolution operation of kernel size 7.

As visualized in Fig. 4, employing CBAM after each of the decoder blocks (LCB16, LCB32, LCB64, and
LCB128) facilitates the proposed CAUC to process the best discriminative spatial and channel features at various
levels of decoding rather than using the output of the final decoder block alone (LCB16) like the standard UNet.
By fusing the CBAM-refined feature maps from every decoder block, the framework can take advantage of rich
multi-scale contextual information in such a way that fine-grained crop-weed boundaries and large structural
patterns are preserved. This design choice helps to generate a more accurate and robust multi-crops and weed
segmentation than generating the segmented image only from the final decoder block.

Input Feature Refined Feature
map map

Fig. 8. The structure of the convolutional block attention module (CBAM) used in the proposed CAUC
model.
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Imput: Feature map of X (NXNxM)
Output: Refined feature map Y (NXNxM).
Begin:
/I Generation of channel attention from the input feature map (CAM)
D1= Dense (M/8, ReLU)
D2 =Dense (M, ReLU)
C-Avg = AVGpoo(X)
Z =Reshape (1, 1, M) (C-Avg)
Z'=DI1(Z)
C-Avg =D2(Z")
C-Max = MAX;00(X)
W = Reshape (1, 1, M) (C-Max)
W'=DI(W)
:C-Max™ =D2(W")
:RF =add (|C-Avg', CMax’])
: CAM = Sigmoid(RF) = F!
13: Input-SAM = multiply ([RF, X])

R o9X N NRwN =

// Generation of spatial attention from the channel attention (SAM)
14: S-Avg = Avgpool(Ip SAM)
15: S-Max = Maxpool( CAM)
16: C = ConCat ([S-Avg, S-Max])
17: C* = Conv[S=1, F=1, K=7](C)
18: SAM = Sigmoid(C") = F?
/I Generation of CBAM feature
19. CBAM = multiply ([F', F%, X])

End

Note:

S: Stride value, F = Number of filters, K: Kernel size, BN: Batch Normalization, Conv: Convolution operation,
AVGpooi - Average Pooling of features, MAXpoo1- MAX Pooling of features, ConCat- Concatenation.

Algorithm 2 CBAM.

Pixel-wise labelling

A technique for examining and categorizing each pixel in an image is called “pixel-wise labeling,” in which each
pixel is given a unique interpretation and class***”. Effective crop and weed segmentation requires the use of
this approach. Five types of objects may be found in the images utilized in this study: background soil, weeds,
sunflower crops, sugar beet crops, and carrot crops. Thus, {carrot, sugar beet, sunflower, weed, soil} = {0, 1, 2, 3,
4} are the class values for these objects, and the model predictions fall into one of these classes. This technique
is made easier by converting the label images into a one-hot encoding format, which allows field images to be
precisely segmented into crop and weed sections.

Building a computer vision application

Using the proposed CAUC model as an underlying core component, a computer vision application for a multi-
crop and weed segmentation model is developed. The proposed CAUC model has been designed in such a
way as to produce a better performance at a lesser computational complexity, where the final model size and
the number of computational parameters generated by the model are ~5.6 MB and 0.37 million, respectively.
The design of this computer vision app utilizes the resources of mobile devices to run the computer vision
application. This design method helps to assess how fast the proposed model works on resource-restricted edge/
devices.
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TensorFlow Lite is one of the cross-platform frameworks for building deep learning-based computer vision
applications to deploy on resource-restricted devices like mobile phones and other embedded devices*®. In
addition to TensorFlow Lite conversion, with the quantization techniques, the model size gets reduced further
without affecting its performance. Finally, the reduced size is 1.5 MB. With this CAUC model in TensorFlow Lite
format, a DL-based multi-crop weed segmentation App of 13.7 MB is developed. Its memory consumption on
the mobile device is shown in Fig. 9.

Brendon Boshell states that the average mobile app published on the app stores is between 11.5 MB and 14.6
MB®. The size of the proposed DL-based computer mobile application lies within this range, that is, 13.7 MB.

Design of experimental settings and evaluation strategies

Experimental settings

The proposed CAUC model and the other state-of-the-art CNN models utilized in this study are implemented
using the Keras and TensorFlow frameworks on the Google Colab platform. Google Colab is an online Jupyter
Notebook that runs the code on the cloud through the browser. It offers CUDA Version 11.2, NVIDIA Tesla T4
GPU, 13 GB of RAM, and 68 GB of virtual disc space. It can, therefore, be operated on any computer with an
internet connection and is not hardware-restricted.

The dataset used to build and train the proposed CAUC and other state-of-the-art CNN models is created by
integrating the three datasets, namely CWFID?’, Sugar Beet*®, and Sunflower?’. Initially, the dataset is split into
a 9:1 ratio for building training and testing datasets using the holdout strategy before the resampling process.
Following the split of the train and test datasets, the resampling process brings all three datasets to the desired
and equal numbers. During this resampling process, the augmentation process is applied to the CWFID and
Sunflower datasets, and random sub-sampling is applied to the Sugar Beet dataset, to increase and decrease
the instances of the dataset, respectively. Later, to assess the performance in every training epoch, the training
dataset is further divided into train and validation datasets using the cross-validation strategy with a validation
split of 0.2. A pair of actual crop field images and their corresponding target label images present in the training
dataset is used to train the proposed CAUC model, and all these images are resized to the size of 224 x 224 x
3. The proposed CAUC and other deep learning models implemented in this work for performance evaluation,
such as SegNet512, UNet, RRUDC, UNet++, and DeepLabV 3+, are trained for 50 epochs, where batch_size is 8.

Drop-layer and drop-channel are two algorithms used to add dropout layers to avoid overfitting*2. A 10%
dropout rate is implemented within each LCB component in the drop-layer method. In the drop-channel
approach, the top and bottom levels of the LCB components in the proposed CAUC model are followed by
dropout rates of 10% and 20%, respectively.

The cross-entropy loss between the pixel values present in the target label and the generated segmented image
is measured using the categorical cross-entropy loss function. To do so, all the label images are converted into
one-hot encoding form. To optimize these deviations between the target label and the generated segmented
image, the ADAM optimizer with a learning rate of 0.001 is used. Using the TensorFlow Lite converter, the

1247 m @@

<~ Storage usage

e DL-based Multi-crop and weed

segmentation App

Fig. 9. The memory consumption of the developed DL-based multi-crop and weed segmentation App on a
mobile device.
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trained CAUC model is converted into TensorFlow Lite format. Later, a computer vision application is developed
from this converted CAUC model using the Android Studio IDE.

Evaluation metrics
In terms of the model’s efficiency comparison, we evaluate its performance in segmenting crop and weed portions
and its suitability for resource-restricted devices using the following eight metrics. There are.

Accuracy (A).

Loss (L).

Precision (P).

Recall (R).

F1 score (FS).

Mean IoU (MIoU).

Mean response time (MRT).

Number of parameters generated by the model (NPM).
Model size (S).

O PO NN W

Accuracy(A) states that the ratio of correctly classified pixels in the crop and weed segmented images is identified
correctly to the total number of pixels in the crop and weed segmented images. Using the cross-entropy loss
function, the loss (L) is determined by the difference between the actual target pixel value and the pixel value
predicted by the model. The precision (P) is expressed as the fraction of correctly identified images’ pixels to
the actual images’ positive pixels. The ratio between the actual positive predicted pixels and the identified pixels
correctly is expressed as Recall (R). F1-score (FS) is a metric that combines precision and recall produced by
the model, also called the harmonic mean of both values. The MIoU is the mean of IoU’s overall area of interest.
An ToU measure assesses how well the generated crop and weed-segmented images correspond to the target
labels of the crop and weed portions. The Mean Response Time (MRT) has been referred to as the average of the
response time taken for segmenting the crop and weed pixels in the actual crop field images. The overall number
of parameters generated by each layer of the model is termed the Number of Parameters Generated by the Model
(NPM). The size of the final trained model is called Model Size(S). The mathematical form of the metrics are
shown in Egs. (19)-(26).

TP + TN
A = 1
TP +FP + TN +FN (19)

L = 72 }\le ?ilAij X IOgPij (20)

TP
b= TP 4 FP @1
TP
_ 22
R TP + FN @2
Px R
FS=2 23
S X PIR (23)
. 1 ~ L; N PL;
N
N RT;
MRT = 231—71]% (25)
N
NPM = Z INP; (26)

where, TP - True Positive, FP - False Positive, TN - True Negative, FN - False Negative, P - Precision, R — Recall,

RT; - Response Time for segmenting i crop field image, N P; - Number of parameters generated by the it?
layer, P;; — The predicted pixel value by the model, A;; — The actual pixel value in the target label, N - Total
number of samples, M - Total number of classes, L — Total number of layers present in the model.

Results and discussion
The evaluation and comparison of the performance of the proposed model are done in four different categories,
which are.

(1) Performance comparison of the proposed model on multi-weed segmentation.

(2) Performance comparison between the proposed model vs. existing state-of-the-art works.
(3) Ablation analysis for component-wise evaluation of the proposed model.

(4) Evaluating the suitability of the proposed model on Mobile/Edge devices.

Performance comparison of the proposed model on multi-weed segmentation
This study uses deep learning models like SegNet5127, U-Net, RRUDC, UNet++, and DeepLabV 3+ to evaluate
the effectiveness of the proposed CAUC model in multi-weed segmentation. All of these models, including the
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Validation time Test time

A L P R FS MIoU | A L P R FS MIoU
Model name % % % % % % % % % % % %
SegNet512[23] 97.46 | 6.25 | 97.62 | 97.32 | 97.46 | 78.42 | 95.81 | 18.69 | 95.98 | 95.68 | 95.82 | 75.23
UNet [7] 98.85 | 4.18 | 98.88 | 98.82 | 98.84 | 80.05 |96.89 | 19.02 | 97.01 | 96.79 | 96.89 | 78.52
RRUDC [7] 97.76 | 4.62 | 97.78 |97.74 | 97.76 |79.52 |95.92 | 852 |96.01 | 9584 |9592 |77.25
DeepLabV3+ 99.02 | 3.65 | 99.06 | 98.99 |99.02 |81.11 |97.09 |5.6 97.27 | 96.97 | 97.11 | 80.61
UNet++ 99.22 | 2.5 ]99.25 |99.20 | 99.22 | 81.55 |97.35 | 5.7 97.41 | 97.30 | 97.35 | 80.85
Proposed CAUC | 99.09 | 2.77 | 99.11 | 99.02 | 99.06 | 81.02 |97.50 | 7.85 |97.14 | 96.9 | 97.02 | 80.2

Table 4. The comparison of outcomes attained by the proposed CAUC model and other state-of-the-art
models in the Multi-weed segmentation.

Accuracy Curves Loss Curves

—— Proposed CAUC
—— SegNet512
0.8 —— U-Net

—— RRUDC

—— DeeplabV3+
— UNet++

Accuracy
Loss

— Proposed CAUC
SegNet512
— UNet 02
— RRUDC
088 —— DeeplabV3+
— UNet++

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Fig. 10. The validation time- Accuracy and Loss curves of the proposed CAUC, SegNet512, UNet, RRUDC,
DeepLabV3+, and UNet + +models over the training epochs. (a) Accuracy curves, (b) Loss curves.

proposed CAUC model, are fine-tuned using the training dataset (Table 1) in the experimental settings outlined
in Sect. 4.1. First, Accuracy (A), Loss (L), Precision (P), Recall (R), F1-Score (FS), and Mean Intersection over
Union (MIoU) are used to assess how well the model segments crop and weed regions. Table 4 documents the
corresponding outcomes from the test and validation stages.

The comparison results depicted in Table 4 indicate the efficiency of the proposed CAUC model and also
provide insight into the performance of existing state-of-the-art segmentation models. The CAUC model
achieved 99.09% validation set and 97.50% test set accuracy with good generalizability over models such as
SegNet and RRUDC that achieved relatively lower accuracies for both stages. Keeping the loss also in view,
CAUC attained 2.77% for validation and 7.85% for testing, which puts it at a competitive standing amongst other
state-of-the-art architectures. In addition, the proposed model achieved Precision and Recall of 99.11% and
99.02% on the validation set and 97.14% and 96.90% on the test set, respectively, which resulted in the highest
F-scores of all models (99.06% and 97.02%).

Although SegNet and RRUDC obtained reasonable validation results, their relatively low test recall and
precision levels suggest lower consistency for hard segmentation problems. UNet and UNet++ competed
vigorously, with UNet + + offering the best validation accuracy of 99.22% and stable consistency across the
metrics. DeepLabV 3 +also attained stable consistency levels of accuracy with 99.02% on validation and 97.09%
on test, demonstrating its good baseline potential for semantic segmentation. Further, the best aspect of the
CAUC model remains its Mean Intersection over Union (MIoU), which achieved 81.02% on validation and
80.20% on test. These metric scores are slightly lower than the UNet++and DeepLabV ++models’ metric
scores. As a primary quality measure of segmentation tasks, the outcome demonstrates the strength of the CAUC
model at discerning thinner borders of weeds from crops by a greater margin, thereby confirming its robustness
potential for realistic application cases of multi-crop field crop and weed image segmentation.

The proposed CAUC and state-of-the-art models’ validation time accuracy, and Loss curves are visualized
in Fig. 10. With relatively small variation in the learning curves, the CAUC model achieves consistently higher
accuracy, which proves stable convergence. SegNet512 exhibits instability with sharp descents. UNet++and
DeepLabV3 +rival but show occasional variation, while U-Net and RRUDC progress continuously with
moderate variation. In terms of loss, CAUC achieves a smooth decline and converges at lower levels than most
models, confirming its optimization efficiency. SegNet512 shows the instability with large spikes, while other
models converge moderately well but at higher loss levels. Additionally, the proposed CAUC model’s epoch-
wise F1-Scores learning curves of the training and validation stages are plotted in Fig. 11. From Figs. 10 and 11,
one can observe that the learning curves of Accuracy, Loss, and F1-Score for the CAUC model proposed are
converging and trending towards higher values, post the 40 epochs.

From Fig. 10a, all models’ accuracy learning curves begin from ~ 94% because soil portions in every image
are much higher than the vegetation portions. Hence, calculating overall accuracy may not be the right choice
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Fig. 11. The F1- Score curves of the proposed CAUC model in training and validation time.

Validation time Test time
S.no | Vegetation | P (%) | R(%) | FS (%) | P (%) | R (%) | FS (%)
1 Carrot 93.66 | 92.59 | 93.12 91.27 |90.59 |90.93

Sugar beet | 97.51 | 97.61 | 97.56 |92.51 |91.61 |92.06

Sunflower | 96.26 | 95.46 |95.86 |90.25 |97.79 | 93.87

I IO I Y

Weed 87.95 | 83.87 |85.86 |84.95 |82.37 |83.64

Table 5. The comparison of the proposed model’s performance in segmenting the vegetation portions.

S NPM | MRT
S.no | Model name MB Million | seconds
1 SegNet5127 185.35 | 16.35 1.53
2 U-Net!® 63.5 5.51 0.62
3 RRUDC! 7.9 0.65 0.30
4 DeepLabV3+® |153.8 |1339 |1.51
5 UNet++°! 104 9.05 1.07
6 Proposed CAUC | 5.6 0.37 0.35

Table 6. The comparison of model size (S), number of parameters generated by the model (NPM), and mean
response time (MRT). S model size, NPM number of parameters generated by the model, MRT mean response
time.

to evaluate the preciseness of crop and weed segmentations perfectly, since the segmentation of soil portions
dominates the overall accuracy. Accordingly, Precision, Recall, and FS scores are calculated independently for
Carrot, Sunflower, Sugar beet, and weed crops, and Table 6 presents the corresponding results. According to
Table 5, the FS score of the proposed CAUC model for the vegetation is more than 90% in both validation and
test time, besides weed portions, where the FS scores on segmenting weed portions will be approximately 82%
to 87%. Due to the portions occupied by the weed being smaller in size when compared to crop portions, a drop
might be observed in the proposed model.

The applications are designed to create light, quick-reacting models that not only improve performance but
are also deployable on resource-limited devices to address farmers’ requirements. For this purpose, all models are
compared based on Model Size, Number of Parameters (NPM), and Mean Runtime (MRT), and the respective
values are tabulated in Table 6.

Table 6 compares model size, the number of model parameters, and the Mean Response Time(MRT) of the
model, which indicates the efficiency of model computation. Although state-of-the-art semantic segmentation
models, namely SegNet512 and DeepLabV3+, are extremely large (185.35 MB and 153.8 MB models,
respectively) and require model parameters (16.35 M and 13.39 M), the CAUC model is remarkably small.
Because the CAUC model is only 5.6 MB with only 0.37 million computational parameters. Compared by MRT,
the CAUC model (0.35 s) beats large models such as SegNet512 and DeepLabV 3 +at the speed of inference but
matches the extremely light RRUDC model at 0.30 s. Compared with U-Net and UNet++, the CAUC model also
consumes fewer parameters and occupies less memory while maintaining a competitive response time.
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Further, the computational efficiency vs. performance trade-off is analyzed by comparing the outcomes of
Tables 4 and 6. The CAUC model achieves slightly higher validation (2.77%) and testing (7.85%) loss values than
those of UNet++ (2.5% validation, 5.7% testing) and DeepLabV3+ (3.65% validation, 5.6% testing). However,
CAUC achieves steadily high segmentation quality, an MIoU of 81.02% on validation data and of 80.20% on test
data. These values stand their ground against the best-performing UNet++ (81.55% validation, 80.85% testing)
and DeepLabV3+ (81.11% validation, 80.61% testing). Moreover, CAUC achieves stable levels of accuracy
(99.09% validation, 97.50% testing) and F-scores (99.06% validation, 97.02% testing) superior even to large
SegNet512 and RRUDC models. Although SegNet512 and DeepLabV 3 + deploy significantly higher computing
resources, they fail to bring corresponding performance gains. This indicates that CAUC achieves an optimal
balance, embedding compactness, fast response time, and high segmentation quality appropriate for deployment
at large scales in real-time agriculture.

Figure 12 shows the qualitative comparison of crop and weed segmented images generated by the models,
such as the proposed CAUC model, RRUDC, UNet++, SegNet512, DeepLabV3+, and U-Net for the sample
image from the Carrot Crop (CWFID), Sugar Beet Crop, and Sunflower Crop datasets. The actual crop field
images and their ground truth are given in Fig. 12a,b, respectively. Generated Segmented images from the
proposed CAUC, RRUDC, UNet++, SegNet512, DeepLabV3+, and U-Net are shown in Fig. 12c-h, respectively.
Visualization shows that the proposed CAUC model (Fig. 12c) provides a precise crop and weed segmented
image that is more aligned with the actual target label image (Fig. 12b).

Compared with other state-of-the-art semantic segmentation models’ crop and weed segmented images,
the proposed model’s crop and weed segmented images have finer crop boundaries, correct separation of weed
from crop area, and reduced misclassification in high vegetation density. The architectural components of
the proposed CAUC, such as AG-attached skip connections among the corresponding encoder and decoder
blocks, and integration of CBAM in the decoder, enable more precise crop and weed segmentation with precise
boundaries. Next to this, the UNet++model achieved a precise crop and weed segmentation and reduced
misclassifications due to nested skip connections (Fig. 12.h). However, it may slightly oversmooth fine weed
structures, resulting in minor detail loss compared to the ground truth.

Although SegNet512 and DeepLabV3+ (Fig. 12f, g) over-segment or blur crop-weed interfaces, and
lightweight networks like RRUDC (Fig. 12d) sometimes lose distinct structures. Furthermore, the proposed
CAUC model attained a trade-off between semantic segmentation performance and computational complexity.
This proves qualitatively the quantitative enhancements indicated in the results of Tables 4 and 6, affirming the
CAUC model’s robustness in multi-weed segmentation.

Performance comparison between the proposed model vs. existing state-of-the-art works
Comparing the performance of the proposed model with existing state-of-the-art approaches is one of the
crucial steps in assessing the proposed model’s efficiency. However, the existing state-of-the-art crop and weed
segmentation approaches are applied to a single crop field. Although few existing works processed multiple
crop field images in their research work, they have not used these three crops (carrot, sugar beet, sunflower)
together in their research work. Hence, to evaluate how the proposed CAUC model is more efficient in terms
of crop and weed segmentations, and computationally effective than the existing state-of-the-art crop and weed
segmentation approaches, the proposed CAUC model is trained using the individual datasets of carrot, sugar
beet, and sunflower crops, and their outcomes are compared with their corresponding existing work results,
presented in Table 7.

Based on the inference recorded in Table 7, the computational complexity level of the proposed CAUC model
in terms of NPM is relatively low compared to other models except for the AgNet model®, where the AgNet
model achieved crop and weed segmentation accuracy on the carrot crop that is less (88.9%) when compared to
the proposed CAUC model (98.38%). Regarding Recall, the RRUDC model'? achieved a better score (98.82%)
when compared to the proposed CAUC model (97.51%), but the difference is in the negligible range. However,
the proposed CAUC model minimizes 42% of the computational complexity as compared to the RRUDC model.
The crop and weed segmentation accuracy of the Bonnet model? on Sugar beet crops is a little high (99.32%) but
in a negligible range in comparison with the proposed CAUC model. Despite this, the parameter reduction on
the proposed CAUC model is 34% when compared to the Bonnet model?®>2. According to the above discussion,
the proposed CAUC model outperformed existing deep learning-based models/approaches based on the trade-
off between performance and computational complexity.

Ablation analysis for component-wise evaluation of the proposed model

A component-wise ablation analysis of the proposed model is a valuable analytical tool in deep learning-based
research, assessing the significance and contribution of individual components within the model. The purpose of
this study is to isolate specific components from the proposed CAUC model in different ways and observe their
effects on model performance. It enables a better understanding of what components drive the model’s precise
crop and weed segmentation. In this regard, the proposed CACU model is created as 4 versions by removing AG,
CBAM, and LCB components in different ways, which are CAUC without AG (CAUC-wo-AG), CAUC without
CBAM (CAUC-wo-CBAM), CAUC without AG and CBAM (CAUC-wo-CBAM_AG), CAUC without LCB, AG,
and CBAM (CAUC-wo-CBAM_AG_LCB).

CAUC-wo-AG (V3) uses a traditional skip connection in place of the AG-attached skip connection. Whereas
CAUC-wo-CBAM (V4) derives the final output from the last LCB component and removes only the CBAM,
CAUC-wo-CBAM_AG (V2) excludes both the AG and CBAM components. Finally, CAUC-wo-CBAM_AG_
LCB removes the AG, CBAM, and LCB components and operates similarly to a typical UNet architecture. All
these ablated versions of proposed models, CAUC-wo-CBAM_AG_LCB (V1), CAUC-wo-CBAM_AG (V2),
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In (b) - - - - EI Soil Background, Weed, Carrot crop, Sugar beet crop,
Sunflower crop

In(c,d, e, f, g h) - - - |:| I':l Soil Background, Weed, Carrot crop, Sugar beet
crop, Sunflower crop

Fig. 12. Crop and weed portions segmented image for the sample image from Carrot Crop (CWFID), Sugar
Beet Crop, and Sunflower Crop dataset, generated by different Models, (a) Actual crop field images, (b) Actual
target label images, (c) Segmented images generated by the Proposed CAUC model, (d) Segmented images
generated by the RRUDC model, (e) Segmented images generated by the UNet model, (f) Segmented images
generated by the SegNet512 model, (g) Segmented images generated by the DeepLabV3+, (h) Segmented
images generated by the UNet++.
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A MIoU | P R NPM
Crop Model/approach name % % % % Million
DeepLabV3++% 843 |- - - 11.85
Adapted-1V3° 939 |- - - 25
Carrot AgNet’ 88.9 - - 0.25
RRUDC!® 95.40 | - 95.43 | 98.82 | 0.655
Proposed CAUC 98.38 | 80.5 97.51 | 97.27 | 0.377
Deep encoder-decoder CNN(Bonn)*® | 94.74 | 80.1 - - -
UNet-ResNet50(dice + focal)? 96.06 | 85.25 |92.28 | 92.21 | 20.67
Sugar Beet | Bonnet® 99.32 | 77.47 |- - 1.1
UNet-ResNet50?! - 67.0 |- - 20.67
Proposed CAUC 98.51 | 80.75 |97.54 | 97.50 | 0.377
VGG-UNet’! 90.0 |64.0 - - -
Bonnet?! - 70.0 L1
Sun flower | UNet-ResNet50?! - 43.0 20.67
Bonnet?® 99.02 | 68.98 | - - 1.1
Proposed CAUC 99.10 | 81.1 99.14 | 99.10 | 0.377

Table 7. The performance and complexity comparison between the proposed CACU model vs state-of-the-art
approaches. A - Accuracy, P - Precision, R - Recall, S - Model Size, NPM - Number of Parameters generated
by the Model, - Not given in the paper.

Validation
time Test time Observation

Size | NPM ES MloU | ES MIoU

Ver. no | Model name MB | Million | (%) (%) (%) (%) Performance Computational complexity

V1 CAUC-wo-CBAM_AG_LCB 63.4 | 5.51 98.84 | 80.05 |96.89 | 78.52 | High Very High

V2 CAUC-wo-CBAM_AG 4.1 ]0.281 96.27 | 75.26 | 94.74 | 73.12 | Low ~93.53% less than V1

V3 CAUC-wo-AG 43 (0288 |97.70 | 7911 |95.82 | 77.55 | mprovedover V2 | gty increased from V2
Less than V1

V4 CAUC-wo-CBAM 526 | 0370 | 97.69 | 7921 |9574 | 77.65 | mproved overV2 | gy increased from V2 & V3
Less than V1

V5 Actual proposed CAUC model | 5.6 | 0.377 99.05 | 81.02 | 96.92 | 80.2 Higher than all Slightly increased from V3 & V4.

Table 8. Comparison of results attained in the ablation study on the proposed CAUC model.

CAUC-wo0-AG (V3), and CAUC-wo-CBAM (V4), are built and trained in the same execution environment, and
the corresponding outcome is recorded in Table 8.

The outcome of the Ablation study presented in Table 8 not only confirms individual contributions of LCB,
AG, and CBAM but also reflects their complementary interactions and joint effect on performance. When all
three modules are excluded (CAUC-wo-CBAM_AG_LCB, V1), the model achieved relatively high FS and MIoU
(98.84% and 80.05%), but with the cost of very high computational complexity (63.4 MB, 5.51 M parameters),
revealing that the backbone is capable of extracting features but is not computationally effective. Meanwhile,
excluding AG and CBAM (CAUC-wo-CBAM_AG, V2) resulted in the greatest decline of performance (FS:
96.27%, MIoU: 75.26), revealing their significant contribution to fine-tuning contextual and attention-related
feature representations, but such a variant had the largest number of parameter reduction (~93.5% fewer
compared with V1). Removing AG alone (CAUC-wo-AG, V3) resulted in better performance compared with
V2 (FS: 97.70%, MIoU: 79.11), revealing that LCB improves localized context coding even without AG. Likewise,
excluding CBAM alone (CAUC-wo-CBAM, V4) resulted in results close to V3 (FS: 97.69%, MIoU: 79.21%),
implying AG and CBAM play complementary but partially intersecting contributions, with AG enhancing scale-
crossed spatial dependency and CBAM highlighting channel-spatial discriminative features. The entire CAUC
model (V5) with LCB, AG, and CBAM correlated showed the best performance (FS: 99.05%, MIoU: 81.02) with
aslight increase in computational complexity compared with (CAUC-wo-AG, V3) and (CAUC-wo-CBAM, V4),
but verifies that the three modules synergistically interact with each other. Precisely, LCB enriches localized
feature aggregations, AG refines multi-scale context information, and CBAM focuses on attention on the most
discriminative area with better accuracy while remaining efficient.

Based on Tables 4, 5, 6, 7 and 8, the proposed CAUC model satisfies requirements, such as a better-
performing model with lesser computational complexity and model size, when building agricultural computer
vision applications. It has achieved the highest Accuracy, MIoU, and F1-scores of 97.5%, 80.2%, and 97.02% in
test time with the lowest Model size, NPM of 5.6 MB, and 0.37 million. It also consumes the second-lowest MRT
of0.35s.
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MRT
Mobile device | Configuration seconds
MD 1 RAM: 1 GB, Storage: 16 GB, Quad-Core, Android 6 | 2.4
MD 2 RAM: 3GB, Storage: 32 GB, Octa Core, Android 11 | 1.3
MD 3 RAM: 4GB, Storage: 32 GB, Octa Core, Android 11 | 0.4

Table 9. Comparison of MRT for the developed computer vision applications on different configuration
mobile devices.

Segmented As

Segmented As Segmented As

Il SUNFLOWER

Il SUNFLOWER Il SUNFLOWER

Detection Time: 0.371 seconds

Detection Time: 2.07 seconds Detection Time: 1.1 seconds

(b)

Fig. 13. The comparison of detection time consumed for crop and weed segmentation done on three different
configuration mobile devices. (a) On Mobile Device - MD1, (b) On Mobile Device - MD2, (¢) On Mobile
Device - MD3.

Evaluating the suitability of the proposed model on mobile devices

To estimate the suitability and the performance of the developed CAUC model on low-computational devices,
a computer vision application has been developed using the proposed CAUC model for deployment on mobile
devices. The trained proposed CAUC model in .h5 format is transformed into TensorFlow Lite format to
accomplish this. During this conversion, the size of the proposed CAUC model is reduced from 5.6 MB to
1.5 MB. Hence, the developed computer vision application for crop and weed segmentation comes in a lightweight
13.7 MB size whose memory consumption on the mobile device is shown in Fig. 9. This developed computer
vision application is deployed on three mobile devices of different configurations to identify the response time
on a range of mobile devices. The MRT is calculated on these three mobile devices using the Test dataset images,
and their corresponding values are recorded in Table 9.

A crop-field sample image is segmented by the recommended computer vision mobile app on various mobile
devices, as indicated in Fig. 13. The reference segmented image produced by the CAUC model using Colab is
depicted in Fig. 12.c(1). Even with differences in detection time on various mobile device setups, the weed and
crop segmentation is still accurate, as presented in Fig. 13.

Conclusion

A lightweight Concatenated Attention U-Net with CBAM (CAUC) is proposed in this research work to segment
the crop and weed portions in the three agricultural crop fields (carrot, sugar beet, and sunflower). The core
components of the proposed CAUC model are Linear Concatenated Block (LCB), Attention Gate (AG), and
Convolutional Block Attention Module (CBAM). A key role played by the components AG and CBAM is to
utilize the feature maps efficiently and help the flow of significant features among LCB components without
increasing computational complexity excessively.
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The design of LCB components is such a way that it reduces the computational complexity using the two
approaches without degrading the performance of the model. With the depth-wise separable convolution layers
in the first approach, the computational parameter reduction per LCB component (PR1) is achieved in the
range of ~ 12% to ~ 17%. Using 1 x 1 convolution layers, the second approach achieves computational parameter
reductions of 63.5% and 52.5% on the encoder and decoder sides, respectively.

With this design strategy, the proposed CAUC model achieved better performance in segmenting the crop
and weed portions with an Accuracy and Fl-score of 97.50% & 97.02% with the computational complexity,
such as the model size of 5.6 MB and 0.377 million computational parameters, and the MRT of 0.35 s/image.
A lightweight computer vision application of size 13.7 MB is developed to aid the farmers using this proposed
model, and the same is deployed on different mobile devices for performance evaluation, where the performance
of crop and weed segmentation is not affected in different computational devices with slight variations in the
MRT.

Limitations and future work

« To assess the suitability of our proposed model in resource-constrained devices, we built a computer vi-
sion-based mobile application using the proposed model and tested different configurations of mobile de-
vices. However, the model is not tested under edge devices in the real agricultural fields, and the real-time
deployment, which will be carried out in our future work.

« The integration of a new category of crop field images into the existing model will demand retraining of the
model after the inclusion of the new crop field images, which will be carried out in future work.

« The computational complexity is optimized further using Knowledge-Distillation techniques in future work.

Data availability

The data that support the findings of this study are openly available in [Dataset Ninja, Image Synthesis] at https:
//datasetninja.com/cwfid, https://datasetninja.com/sugar-beets-2016, https://sites.google.com/diag.uniromal.it
/image-synthesis/downloads?authuser=0, reference numbers®”*%7,
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