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SLICED: A secure and adaptive
cloud-iot framework for low-
latency e-learning environments

K. Aswin?, N. Shanmugapriya?** & R. Gopi®

Providing dependable, secure connectivity remains a persistent challenge in digital education,
particularly in data-sensitive, remote learning environments. This study presents SLICED, which stands
for Secure Learning Integration via Cloud and Edge Devices. It is a framework that integrates Internet
of Things edge devices with Amazon Web Services (AWS) Cloud services. SLICED orchestrates AWS

loT Core, Lambda, and Key Management Service (KMS) to enable encrypted communication, user
authentication, and real-time edge analytics. When compared to traditional AWS-loT educational
systems, this adaptive integration cuts down on latency and increases the level of data protection. The
results of experiments conducted in simulated learning networks demonstrate that SLICED can achieve
up to 27% lower latency and 33% greater security, thereby providing smart learning environments that
are both scalable and safe.
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In view of the rapidly changing state of education, the convergence of cloud computing and the IoT represents a
paradigm shift toward safe, interconnected learning environments'. Traditional learning systems have struggled
with scalability issues such as data breaches, limited flexibility, excessive latency, and centralized designs?. There
are many challenges affecting environments with limited bandwidth or long distances within the geographical
area®. During the end-user digital learning experience, these barriers hinder their ability to perform digital
learning once important data is engaged or access is required in real-time*. With the potential of AWS Cloud
and IoT-enabled edge computing, this research offers a secure and extensible learning framework that addresses
these limitations®. While not losing sight of the fundamental purpose of digital education, the design of SLICED
provides robust data protection, reliable connectivity, and adaptive resource allocation®. Unlike conventional
systems that centralize data processing, SLICED combines AWS services with local edge processing to enable
intelligent, secure data processing, encryption, and transfer’. This approach increases responsiveness, reduces
latency time, and enhances data security®. The proposed framework addresses the performance and security
deficiencies of conventional modes while retaining the instructional intent through cloud-based intelligence and
real-time adaptability®.

Problem statement

Particularly in distant and remote settings, current learning systems struggle to deliver low-latency, scalable,
and secure performance!”. Effective and timely learning experiences are hampered by their poor scalability,
restricted real-time responsiveness, and inadequate data protection. Furthermore, most current technologies
lack an integrated architecture that ensures reliable data protection and seamless connectivity between the
cloud and the Internet of Things. SLICED integrates AWS Cloud services with Internet of Things and edge
computing to provide safe, real-time, and scalable learning. SLICED improves data security and resilience with
AWS IoT Core and KMS, while edge computing integration reduces latency and facilitates real-time interaction.
Additionally, its cloud-based automation and intelligent data management maximize resource usage without
compromising training. SLICED quantitatively improves latency, scalability, and response efficiency, making
learning more dependable and responsive.
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Contributions of this paper
The major objectives of this paper are;

 SLICED platform enhanced the power of AWS Cloud along with the Internet of Things to allow for real-time
response. This capability enables learning systems to respond in real time to changes in the environment and
user interactions, ensuring a reliable and useful training experience.

» Using edge computing in conjunction with secure cloud services, like AWS KMS and IoT Core, helps to shore
up platform security. In addition to facilitating faster, more secure learning processes, edge computing reduc-
es latency by reducing the need to be constantly connected to the cloud.

o SLICED utilizes cloud-based automation and smart data management to ensure the proper use of system
resources. The increase in efficiency is achieved without diminishing the quality of instruction or the depend-
ability of the platform. The focus remains predominantly on the educational goals.

AWS IoT and edge computing modules were integrated to reduce latency and provide adaptive learning
interactions for real-time responsiveness. AWS KMS and secure edge-cloud communication layers were
chosen based on data security. To balance cloud and edge workloads, cloud-based automation and smart
data management were used to maximize resource consumption. These objectives provide the design
rationale that enables SLICED to meet its scalability, security, and performance requirements.

The remaining section of this paper is organized as follows: Sect. 2 reviews past studies on ensuring
secure and seamless connectivity for learning systems, which is critical. Section 3 describes the proposed
SLICED process. Section 4 compares our suggested approach with other conventional methods. Section 5
concludes with a discussion of potential future studies.

Related works

This literature review examines security in the educational environment, cloud computing, Internet of Things
integration, and edge computing. This report identifies the limitations around data security, latency, and
scalability. The findings help strengthen the proposed SLICED framework by showing how to leverage AWS,
Cloud, and Internet of Things integration to fill in the missing pieces and enable real-time connected learning
spaces, while preserving students’ personal information.

Cloud computing in education

This article discusses cloud computing in educational institutions and offers recommended steps for a multi-
layered cloud adoption approach to improve content delivery and scalability!!. While the study outlines other
issues, such as privacy concerns and infrastructure readiness in underdeveloped contexts, the article identifies
significant benefits of cloud implementation, including increased data access and collaboration. This paper
examines how the IoT, cloud computing, and online learning, among other technologies, have been amalgamated
in modern-day educational settings. With an emphasis on increasing accessibility and usability, it proposes a
unified architecture that incorporates these technologies!?. Study indicates that this connection enhances the
effectiveness of learning; however, there is minimal, general acceptance due in part to questions of security, and
reliable connectivity and infrastructure.

loT integration in smart learning systems

The research provides a conceptual structure for interactive learning experiences that support the use of sensors
and Internet of Things gateways with an emphasis on smart learning through the Internet of Things (SL-IoT).
The proposed approach enhances student engagement and improves real-time monitoring'®. While results
indicate that learner tracking was improved and responsiveness was increased, issues with data privacy and
device interoperability remain. This article discusses LearnSmart, a platform that connects LMSs to the IoT
(LMS-IoT). It changed the lessons based on the sensor data and the comments it received about the situation'.
The results revealed that using the system, doing well in school, and being motivated were all linked in a good
way. Data security and scalability needed to be looked at.

Security and privacy in cloud-based learning

The study examines privacy and security issues in cloud-based or course-based online or e-learning systems.
The study proposes a policy enforcement model based on encryption (PEF-En) through data classification
and identity management'®. The outcomes showed less exposed data, and better compliance are possible;
however, the study points out that there are significant real-world issues related to performance trade-offs,
and challenging implementation. Although this study focuses specifically on e-health, it still offers useful
insights for educational cloud security'®. It proposes a role-based encryption access control (R-BEC) that meets
users’ privacy requirements. The findings indicate improved confidentiality and restricted data access with no
additional computational overhead, which is terrific for an educational cloud system.

Edge computing for low-latency educational applications

This paper investigates how to mitigate latency in cloud workloads by converging artificial intelligence (AI)
with edge computing!”. The paper proposed an integrated hybrid model of edge deployment methods and AI-
based task prediction (H-Ed-AI). The results are faster processing and responsiveness, opening the door to
innovative education systems and other real-time applications. For very reliable, low-latency connectivity, the
authors propose a solution called mobile edge computing and their approach relies on adaptive task oftfloading
and resource slicing'®. This is especially important for real-time educational systems, which need stability in
connectivity and performance, since the results show the drastic improvement in latency and reliability.
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Challenges in traditional E-learning arch

This review provides an overview of cloud-based e-learning systems (Cc-ELn) and the most commonly
observed features, barriers, and future potential. It proposes a safe and scalable infrastructure from a cloud-
based e-learning perspective!®. The research concludes that cloud-based e-learning systems are flexible and more
cost-effective, despite ongoing challenges, including integration and cybersecurity issues. The study investigated
problems with online education from a myriad of perspectives, ultimately separating them into three categories:
technical, cognitive, and contextual. It proposed a mapping model for learning systems®’. Despite adaptive
systems improving engagement and outcomes, the research suggested that integrating customization into cloud
platforms remains difficult.

The studies analyzed what the articles found to be the positives and negatives of cloud, IoT, and edge
technology in the classroom. There have been examples where improved response times and accessibility have
benefitted outcomes; however, challenges related to privacy, scalability and latency continue. The SLICED
framework was developed with cloud-edge synergy intended to produce learning experiences that are safe,
individual, and timely, with the best of education’s basic tenets in mind, as this set of studies demonstrates.
Table 1 shows the summary of related work.

The design of safe and flexible data frameworks for various intelligent environments has changed as a result
of recent developments in edge and cloud computing. Using edge computing, Yao et al.*° presented a framework
for biometric privacy protection in UAV-based systems, enabling safe data processing at network boundaries.
Similarly, focusing on decentralized security methods, Yao et al.’! presented a privacy-preserving data collection
paradigm for intelligent edge systems. Dong et al.** developed a blockchain-assisted self-sovereign identity
solution to ensure transparent user identity management and reliable authentication in UAV delivery networks.
Additionally, Yao et al.>*** addressed integrity and privacy in distributed settings by designing a comprehensive
security architecture for edge computing infrastructures.

Federated learning approaches such as FedShufde, which protect sensitive data while facilitating collaborative
edge learning, were investigated to improve privacy and scalability. This was expanded by Dong et al.*, who used
task distribution and blockchain technology to secure UAV communications, enhancing energy efficiency and
privacy. MoCFL, a mobile cluster federated learning architecture for extremely dynamic edge networks, was
presented by Fang et al. to increase adaptability and latency management?®. The suggested SLICED framework
for educational settings is conceptually grounded in these studies, which collectively provide a solid foundation
for flexible, private, and secure edge-cloud integration.

Methods
The proposed methodology contains SLICED system which can make a smart learning environment that is
safe, scalable, and works in real time by combining IoT devices with AWS Cloud services. It fixes problems with
traditional systems by making data more secure, reducing latency, and enabling flexible content distribution. The
design ensures end-to-end connectivity without losing sight of important teaching goals.

Research Hypothesis.

Reference | Environment Methods Security | Energy Efficiency
u Cloud-Based Education Conceptual Cloud Integration Model v Medium
12 E-Learning + Cloud +IoT Layered IoT-Education Framework v Low

13 ToT for Smart Learning Event-Driven IoT Educational Model v Medium
1 IoT +1LMS LearnSmart Integration Framework v Medium
15 Cloud-Based Education Security-Privacy Enhancement Framework v Medium
16 Cloud-Based E-Health Privacy-Preserving Mechanisms v Low

v Edge + Cloud + AI Latency-Aware Scheduling Algorithm v High

18 Mobile Edge Computing URLLC Optimization Model v Very High
19 Cloud E-Learning Environment Systematic Review v Medium
20 E-Learning Learning Style Classification Framework X Low

30 Edge + UAV Systems Biometric Privacy Protection with Edge Computing v Medium
3 Edge + Intelligent Systems Privacy-Preserving Data Collection Framework v Medium
2 Edge + UAV Delivery Blockchain-Aided Self-Sovereign Identity Framework v Medium
33 Edge Computing + UAV Systems Distributed Security Framework for Edge Networks v Medium
3 Edge + Federated Learning FedShufde: Privacy-Preserving Federated Learning Framework | v/ High

¥ Edge + Blockchain IoT Communication | Privacy-Aware Task Distribution Architecture v High

36 Mobile Edge + Federated Learning MoCFL: Mobile Cluster Federated Learning Framework v Very High

Table 1. Reviews of recent cloud, edge, and hybrid innovative learning and linked environment frameworks.
The table organizes references by operating environment, technique type, security, and energy efficiency. This
organized analysis presents safe, efficient research trends, strengths, and trade-offs in educational and IoT
systems.
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o The IoT-edge-cloud smart learning architecture will increase student engagement and learning results statis-
tically compared to a traditional LMS without IoT integration. .

o Edge-layer preprocessing and filtering of multimodal sensor data will minimize network bandwidth and end-
to-end latency, allowing quicker user interface learning content adaption.

« Using managed cloud services like AWS IoT Core, Lambda, S3/DynamoDB, and KMS will deliver scalable
learning analytics with high data security, integrity, and availability. .

« Continuous input from learning analytics to instructors and learners will improve customization and da-
ta-driven decision-making, enhancing course completion rates and learner performance metrics compared
to baseline offers.

SLICED system overview

The layered architecture, combining IoT with edge processing and the AWS cloud administration, enables
efficient, scalable, and secure innovative learning in our proposed system SLICED. Preprocessing the data at
the edge layer reduces latency and filters out excess data. IoT devices that capture user activity or environmental
context record the data in real time. User devices deliver data to an edge layer for filtering and safe transmission.
AWS ToT Core manages connectivity, AWS Lambda processes Al-driven events in real time, and AWS KMS
protects data. DynamoDB and S3 protect user data and learning materials. Adaptive content, administrative
controls, and dashboard feedback ensure low latency, scalability, and security in the e-learning environment.

In the SLICED architecture, AWS IoT Core, Lambda, and KMS interact in real time (Fig. 1). User devices
and edge nodes securely send data to AWS IoT Core, which manages device connectivity and communication.
AWS ToT Core automates learning events in real time with AWS Lambda. AWS KMS manages encryption keys
to keep data transmission and storage—whether for DynamoDB user records or S3 teaching materials—secure.
The platform’s integrated dashboard allows adaptive content delivery, feedback, and centralized management,
ensuring low latency, data protection, and responsive learning.

Eq. 1 models how IoT device data is captured f Dcqpand structured.

Deop = / (rtd (sn — ms) + bh (pr/ — ac) *fd —ud ) (1)

IoT devices collect real-time data from sensors rtd (sn — ms) that measure anything from environment to
student behavior to physiological responses. Eq. 1 guarantees that data is collected accurately bh (pr’ — ac),
and this is critical because correct data is the bedrock of adaptive learning fd. Preprocessing provided the next
step in the arrangement of the data to eliminate the unimportant data ud’ and allows the system as a whole to be
more efficient through eliminating unnecessary inputs bh (pr’ — ac)for the preceding orders.

At the edge layer, Eq. 2 describes how raw data from IoT sensors is first preprocessed D (p)prior to being
sent.

D(p) = En,, —ep,q (cl' —ep /) + bd (rl' - tle) +op’’ 2)

This includes filtering, feature extraction, and compression, all of which are done to eliminate noise and reduce
En the size of the data rs in Eq. 2. By the end of the edge processing stage, the relevant information ep,.,is all
the data that makes it to the cloud layer cl’ . This edge processing ep’’ step reduces the amount of bandwidth bd
used and reduces latency rl’ in time-sensitive learning tle environments, and optimizes system efficiency op’’ .

AWS-managed cloud and edge services are used in the SLICED architecture to process data and deliver
adaptive content using machine learning and AI models. Specifically:

o AWS IoT Greengrass and Lambda@Edge deploy lightweight incremental learner state predictors such online
gradient-based customization models and federated learning schemes on IoT-enabled devices. These models
adjust to user interaction and environment for real-time customisation and feedback without cloud depend-
ence.

« Cloud layer: Recommendation systems, NLP modules, and LLMs—including Amazon SageMaker and Am-
azon Bedrock—improve content creation, adaptive distribution, and Q&A generation. Federated learning
or asynchronous aggregation synchronizes these models with on-device models for scaled intelligence and
system-wide optimization.

o Automation and control: Event-driven AI pipelines are orchestrated by AWS Lambda, which processes
streaming data, triggers adaptive content generation, and manages intelligent automation workflows for edu-
cational tasks. These include personalized recommendation systems, real-time transcription and translation,
and interactive assessment tools.

The core model learns baseline behavior using an encoder-decoder architecture trained on normal traffic
data. Significant deviations in reconstruction error suggest aberrant activity. Adam-optimized, mean squared
error-trained autoencoders use many dense layers with ReLU activation. We use dynamic thresholding based
on reconstruction error statistics to adapt to changing network conditions for robust detection. Real-time
network metrics data gathering, a visualization dashboard, and model fine-tuning for ongoing improvement
are also included. On a large, publicly available dataset, the model outperformed PCA and isolation forests
in differentiating normal and abnormal behaviours. This comprehensive solution allows scalable, real-time
anomaly detection for trustworthy network management.
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Fig. 1. System architecture of SLICED for secure learning connectivity. The picture depicts how user devices
and edge layers safely send data to AWS IoT Core. AWS Lambda and AWS KMS implement safe processing
and storage in Amazon DynamoDB and S3. The integrated system’s dashboard shows end-to-end secure
communication, data management, and real-time analytics with AWS cloud-edge connection.

Step 1: data acquisition through loT devices

The SLICED system begins by collecting data from the learning environment using IoT devices. In particular,
smart boards that influence engagement instantaneously, sensors to detect elements of the physical environment
(e.g., light, motion, temperature), cameras to automatically take attendance or track behaviours, wearable to
record physiological response (e.g., heart rate, activity) etc?’. Different classroom technologies including smart
boards, environmental sensors, and cameras collect real-time educational and environmental data. Sources
capture student inputs, environmental conditions, and attendance automation. A microcontroller or gateway
like ESP32 or Raspberry Pi timestamps and structures all signals. Before sending data to the processing layer
for advanced analysis, anomaly detection, and adaptive learning, the microcontroller layer provides accurate
aggregation and preparation. This integration ensures situational awareness, automation, and precise data
collecting in smart and remote learning settings.

All of the devices are linked by microcontrollers or gateways (e.g., Raspberry Pi, ESP32) for initial handling
and structuring of the device-level data collection as elucidated in Fig. 2. This layer enables learning and digital
infrastructure to work together smoothly. It additionally turns on the system’s real-time features. After data is
gathered from the sources, it is organized, timestamped, and placed in a queue for later processing. This layer
is very important for allowing adaptive learning with as little help from people as possible. It ensures that the
preprocessing and decision-making layers receive consistent, well-structured input, and provides a framework
to monitor learning behaviour at every level.
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Fig. 2. Data acquisition in a smart learning environment. Smart boards, environmental sensors, and cameras
collect real-time classroom data, which is structured and timestamped via microcontroller gateways for further
processing.

Eq. 3 represents the procedure for obtaining real-time data Rtd from IoT devices within the learning
environment le/ .

Rtd = I’ (Gd (m' — sr)) +ts (dceQ — Al ) *Ta'’ (3)

It establishes how data are gathered considering multiple sensors (e.g., smart boards, motion detectors, wearables)
(Ga (m' — sr)). The Eq. 3 timestamps s’ and categorizes the data such that it can be later processed dc. Q. It
is a well-structured equation to ensure that accurate and timely Ac’, labeled data have been collected because
accurate and timely data T'a’’ are the foundation of all further processing, decision-making, and feedback that
the system will provide ts’ (dce@ — Ac' )« Ta’’ 2.

Step 2: Edge-level preprocessing and filtering

In Phase 2, data from IoT devices is sent to edge computers. Edge “nodes” (small computers or “smart gateways”)
process data in real time at or close to the original data source. The primary function of edge nodes is to discard
superfluous data, perform preprocessing (e.g., compression and feature extraction), and perform other functions
(e.g., activity classification or sensor threshold determination), and to provide a cache to store data when network
conditions temporarily cause slow processing.

The algorithm 1 filters managed data at the edge based on similarity scores. The algorithm reviews each
managed data instance and compares the computed similarity score to a particular threshold. If the managed
data instance has a similarity score above the threshold, it is relevant to the filtered data set and added to the
filtered data set instance. If multiple managed data instances have the same best score, all instances will be added
to the final results set. This will assist the edge device when sending only the most relevant scored data to the
cloud for processing?*.

Edge nodes or smart gateways like Raspberry Pi and small PCs collect IoT device data. These nodes rapidly
filter incoming data, extract key aspects for analysis, and cache it for spikes or connectivity outages. All acquired
data is compressed and organized for storage and transmission. Local data encryption protects sensitive data
before leaving the edge. After compression, encrypted data is safely sent to the AWS cloud layer, assuring privacy,
efficiency, and integrity along the edge-to-cloud pipeline. This layer enhances system responsiveness, reduces
latency, and allows applications to remain operational even in the event of a network outage by reducing the
volume of data transferred to the cloud in Fig. 3. Data encryption at the local level is the first step to introducing
security mechanisms. The data is organized and filtered at the edge layer before it is securely transmitted to
AWS cloud services. Identifying and processing data to ensure that what proceeds to the cloud for analysis and
decision-making is clean, relevant, and valuable is more efficient and effective with this mechanism.

Eq. 4 explains the process of filtering irrelevant data fi’ and then compressing this data at the edge layer Dc,
which guarantees the edge will only send relevant, appropriate, and high-value data to the cloud.

Scientific Reports |

(2026) 16:1522 | https://doi.org/10.1038/s41598-025-31428-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Input: Ok — set of (dataPoint, similarityScore) pairs
Output: I" — filtered data set, 1 — best similarity score
function FilterEdgeData(0k):

l = o // Initialize the best similarity level for data relevance
r=29 // Initialize an empty set for filtered data
for each (dataPoint, similarityScore) in Ok do:
if similarityScore > threshold then: // Check if the data point has high relevance
= {dataPoint} // Assign the new relevant data point
| = similarityScore // Update similarity level
else if similarityScore == lthen: // Handle case where similarity score matches best
I' = I' U {dataPoint} // Add data point to set if similarity score is equal
end if
end for each
returnl,l // Return the filtered data and the best similarity score

Algorithm 1. Data Preprocessing and Edge Filtering.

)

@
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Y
Edge Nodes / Smart Gateways v
(e g Raspberry Pi, Mini PCs) '_‘.
Data Feature
Fll(ermg Extraction Encryptlmy @
A 4 Y A 4
Cloud Ingestion & Storage
(AWS, Azure, Google Cloud)

v v

Data Processing & Analytics

Y

Applications & Visuilization

Fig. 3. Edge data processing pipeline for IoT-enabled learning environments. Edge nodes perform filtering,
feature extraction, caching, and encryption before securely transmitting compressed data to the AWS cloud

layer.

Dc = fi’ (T’ — Og') aM’ (rb' — dq) *ep (td/ - me)

The overarching goal Og’ of this equation relates to reducing the amount of data aM’ sent to the cloud,
reducing bandwidth used rb’, and reducing the delay dg or latency from processing edge data, whether that
be analysis of data retrieval with Eq. 4. Feature extraction is another way in which edge processing ep can be
described as organizing the more relevant components to reduce the total data td’ to the most useful features to

maximise efficiency me in the architecture and real-time decision from the edge?.
The Eq. 5 models the extraction of relevant features F'e from raw IoT sensor data at the edge.
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The previous metrics illustrate how different variables or patterns (vp)are identified and ranked. The role of
Eq. 5 is to ensure that, the most relevant data 7d’’ (e.g., movement patterns, engagement data) is processed or
made available for the cloud avc. In this way, the system (Sy — dt’’ )can suppress unnecessary data clutter and
maximize mz (dc — bel’ ') the organization’s ability to focus on insights that matter in promoting the process
of adaptive learning.

Eq. 6 calculates the reduction in latency [ achieved by leveraging the edge layer to evaluate data locally.

Ir =pr' —mf' si”(sr —dlr1)*di(fd — eel 1) (6)

The processing and filtering pr’ of data close to the creating source minimizes m f’’ the time required to send
information si”to the cloud. The aim of Eq. 6 is to improve the overall system’s responsiveness sr, allowing
adaptive learning dl// content or feedback fd to be produced without delay dl, a key consideration to keep a
learning environment engaging ee/ /.

Step 3: secure cloud processing with AWS services

Step three involves securely processing data in the cloud using AWS services. AWS IoT Core uses TLS/SSL with
each connected device to identify devices and ensure the secure transfer of data. AWS provides real-time data
processing with AWS Lambda, a serverless compute service that can trigger automatic responses like alerts about
performance, content recommendations, or anomaly detection. All stored and processed data utilizes AWS KMS
for security and access control.

Edge devices send encrypted data to AWS IoT Core, which authenticates devices using TLS/SSL. Data is
processed by AWS Lambda to generate real-time alerts or recommendations. AWS S3 (object storage) and
DynamoDB (NoSQL DB) store and event logs, protected by AWS KMS for data privacy. Customized content
and secure computation are supported by the integrated stack. This optimises learning system outputs, ensuring
reliability, privacy, and adaptive service throughout the educational process. AWS S3 stores educational
resources, logs, and multimedia files, whereas AWS DynamoDB stores mutable data, such as access patterns,
system configurations, and user activity logs, illustrated in Fig. 4. The SLICED frameworK’s intelligence resides
in the cloud layer, enabling data optimization for personalization, enforced access control, and learning

AWS Lambda
Trigger Alerts / > | AWS DynamoDB
Recomendations| > Y ogQL DB ? Access Logs

\

AWS S3
% (Object Storage)

Personalized
Content Delivery

Optimized Outputs for Learning System @

\/

Scalable, Reliable, Secure
Secure Processing

Fig. 4. Safe processing and content optimization for smart learning on AWS. AWS authenticates, analyzes, and
stores encrypted edge data, with KMS assuring confidentiality and delivering tailored content.
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orchestration®. Multiple services are integrated, enabling fast, secure, low-latency decision-making at scale,
reliability, and data integrity. All this without compromising the learning environment or learner experience.
Eq.7 represents the encryption process En while transferring data from the edge to the AWS cloud.

En = [ep (as' —ua”)] + Pr' — {ssp<ua' —us >} (7)

This is critical to measure the security strength of any encrypted data En secured using encryption protocols ep
like TLS/SSL. It gives the analyst assurance as’ sensitive educational and user data ua’’ are secure and protected
Pr’ during the transfer process by Eq. 7. Strong encryption protocols ssp will disallow illegal, unauthorized
access ua’ and data will remain secure and unbreached wus. This preserves the integrity and confidentiality of
the system.

Eq.8 illustrates the way in which data is processed dp in real time in AWS Lambda.

dp:sF{adq”}—i—cp” <ad—dq"' >*{ps(al —ue)} (8)

The above Eq. 8 illustrates how serverless functions sF' enable automatic downstream action {adq’’ }on
incoming data like alerts, content updates cp’’ or anomaly detection ad. The purpose of the formula is to
process data quickly dq’’ and at scale in the cloud, as well as not have to provision servers ps. It allows users
to ensure that adaptive learning al features run in real time, thus guaranteeing that the user experience ue is
seamless and suitable for the user.

Eq. 9 is a model of the cloud’s access control method, based on AWS KMS, the cloud access control ac
protocol itself.

ac = [pr (ud' —md'’ )} .s¢’ —pd (sc —co'’ ) 9)

It uses processes pr of user and device ud’ authentication or access control, to identify what users and devices
are permitted to access data and make modifications md’'’ by Eq. 9. The goal of this equation is to secure
educational content se’, personal data pd, and system configurations sc, while simultaneously establishing
real control co’’ over who can access what information in real-time pd (sc — co’’), a foundational security and
protection feature of sensitive learning data.

Algorithm 2 accrues resources in the cloud, subject to the allocation score. The algorithm checks each cloud
resource and its allocation score against the prior maximum. If a resource’s allocation score is higher than or
equal to the current best score, the resource is included in the cumulative optimal resources. The algorithm
guarantees that the best resources for cloud processing are selected by the overall system. The system stays
efficient by allocating resources that will provide the very best performance for cloud resources, while still
guaranteeing functionality?’.

Step 4: smart learning output and real-time adaptation

Lastly, smart applications are used to leverage processed data into usable learning outputs. Adaptive content
delivery systems that are learning resources specifically tailored to each individual student based on data
compiled from AWS Lambda and profile storage help to create more specialized remediation for slow learners
and advanced content for faster learners. Students will receive tailored feedback developed from real-time
analytics.

The actual visualizations of live performance, attendance, and behavioural trends in admin dashboards
support teachers are shown in Fig. 5. The system might give messages or alerts (for example, disengagement or
anomalies) to the administration or teachers, and they may intervene before something bad happens. Tablets,
laptops, and internet portals give users access to the output through a defined end-user interface, which creates

Input: @k — set of (resource, allocationScore) pairs
Output: I" — optimal resource set, 1 — best allocation score
function AllocateCloudResources(Ok):
l = o // Initialize the best resource allocation score
r=o90 // Initialize an empty set for allocated resources
for each (resource, allocationScore) in Ok do:
if allocationScore > lthen: // Check if the resource allocation is optimal

I' = {resource} // Assign the new best resource allocation
l = allocationScore // Update resource allocation score
else if allocationScore == lthen: // Handle case where allocation score matches best
I' = I' U {resource} // Add resource to set if allocation score is equal
end if
end for each
returnl,l // Return the optimal resources and their allocation score

Algorithm 2. Dynamic resource allocation for cloud processing.
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Fig. 5. Processing and real-time visualization after detection. Labeling, class tagging, and confidence scoring
are applied to unified detection findings, which are GPS/context-synchronized for action triggers and user
interface presentation.

a consistent learning environment. This layer makes it possible to meet the goals of participation, feedback, and
monitoring while keeping the successful and safe methods from earlier phases. It makes learning easy to get to,
allows for continual learning, and lets us make changes quickly, even when resources are really limited.

Eq.n 10 establishes the strength of the system’s uptime and connectivity performance Cp even with the
unstable state us of the network Nt.

Cp=us (Nt — at”) +ds (le' — nw) *ss (10)

That is, the amount of time at’’ the system is usable despite network outage/disruptions ds, and Eq. 10 is for
ensuring that learning experiences le’ remain uninterrupted or usable, even when the network is weak nw or
intermittent. This strength of the system ss should allow it to support learners who are accessing content in
more remote locations and from continuous-data-expensive networks without replacing the quality of their
teaching and learning environment.

This Eq. 11 defines how anomalies An in students’ behavior sb’ (e.g., disengagement, low activity) are
detected by comparing the baseline pattern bl to real-time data.

An = sb’ (bl —is) = in (eb —pr') * [rp/ — al] (11)

The system can provide alerts to instructors ¢s or can automatically suggest interventions in based on deviations
from expected behavior eb. The Eq. 11 serves to keep students engaged while the system is being predictive pr’
and responsive rp’ to anything interfering with the ability to learn al, to keep a proactive approach to student
support?8,

This Eq. 12 represents the system’s capability Sc of remaining operational and online performance under
imperfect network conditions, where poor network conditions can mean the system remains up for various
amounts of time and down or disrupted at other times.

Sc=0Rz. — fc (le —pr’ ) + i*rl (ol —bl’ /) (12)

Eq.12 involves the actual operational values Sc = oR.cand is for the purpose of facilitating continuity fcina
learning experience and movement (le — pr’ )to the learning in a poor often intermittent network environment
7. This resilience ! allows the system to operate and allow learning ol with learners who may be in remote or
bandwidth-limited bl’/ situations while ensuring their education is not compromised.

The first part of the SLICED framework is data capture in the context of the learning environment, from IoT
devices, including sensors and wearables, as shown in Fig. 6. The edge layer does preprocessing and filtering with
the data and other processes to enhance relevancy and improve latency. The data is then transmitted through a
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Fig. 6. End-to-end workflow for secure, adaptive smart learning. IoT data collection is followed by edge
preprocessing, secure AWS cloud analytics, real-time output, and continuous feedback to optimize learning
processes.

secure channel through AWS IoT Core. Data is encrypted while it is in transit, processed in real-time, and stored
in a secure environment in AWS. Smart learning applications provide features like analytics dashboards, real-
time feedback, and custom content delivery based on the information collected while the student and teacher
end users are interacting through simple-to-use, connected devices.

The SLICED platform makes learning safe by using a structured data flow. It does this by gathering data from
IoT, filtering it at the edge, processing it in the cloud, and delivering material that changes based on what the
system might need. It makes sure that communication is safe, learning feedback is smart, and responses happen
in real time. By combining AWS Cloud with the Internet of Things, the system creates a dynamic, safe learning
environment that is in line with educational goals. This helps the system get around problems it had before.

Implementation details

Dataset description

The “Smart Classroom IoT-Edge Dataset” on Kaggle is a simulated, real-time dataset representative of typical
smart classroom environments powered by IoT and edge computing. In this study, the dataset is primarily used for
simulation and validation purposes to evaluate the performance of the proposed SLICED framework. It provides
multimodal interaction data generated by IoT sensors, mirroring real-world dynamics for behavior analysis,
adaptive learning response, and environmental monitoring. This enables robust testing of anomaly detection
models, resource allocation algorithms, and personalized content delivery mechanisms under practical, realistic
conditions. The dataset supports benchmarking against existing methods by providing a standardized input for
system response, security, and scalability evaluations, helping validate the effectiveness of SLICED in enabling
secure, low-latency, and adaptive learning experiences®.

Tech stack

o AWSIoT Core - Enables secure device connectivity and communication between edge devices and the cloud.

« AWS Lambda - Provides serverless compute capabilities for real-time data processing and automation.

o AWS KMS (Key Management Service) — Ensures encryption and secure key management for protecting
sensitive student data.

« Edge Devices (IoT-enabled sensors and hardware) — Used for real-time data collection, local processing,
and initial filtering to reduce latency.

o Cloud Infrastructure (AWS Cloud) - Supports scalable storage, processing, and orchestration of learning
resources.

« Adaptive Cloud-Edge Integration - Coordinates dynamic resource allocation and real-time responses to
ensure uninterrupted, intelligent learning experiences.

AWS ToT Core was chosen for its strong device authentication and end-to-end encrypted connectivity,
assuring data privacy and dependability from edge devices to the cloud. AWS Lambda enables real-time,
serverless event processing, enabling the framework to automate adaptive learning actions instantly and
scale without server maintenance. Industry-standard encryption and centralized key management protect
sensitive educational data across remote resources with AWS KMS. Real-time classroom responsiveness
requires early data filtering and latency reduction by edge devices. Cloud infrastructure provides seamless
orchestration, scalable storage, and adaptive cloud-edge interaction for dynamic resource allocation and
context-aware learning under varying loads.
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Baseline models for comparison

« Traditional Cloud-Centric Learning Systems (centralized processing without edge filtering).

« Standard IoT-Based Architectures (basic sensor-to-cloud setups without adaptive resource management).

« Conventional Learning Management Systems (LMS) (without integrated cloud-edge security or real-time
adaptability).

« Basic Encryption Models (standalone AES or RSA without AWS KMS orchestration).

« Edge-Only Computing Models (without cloud-based automation and scalability).

 Cloud-Only Processing Pipelines (lacking local edge preprocessing and latency reduction).

Simulation setup

The simulation used 50-100 edge nodes (IoT-enabled sensors) to represent student and instructor devices across
several locations, simulating a real-world deployment. Traditional Wi-Fi (802.11ac) and simulated 4G cellular
networks were used to measure latency and connection. System stability and peak-load behavior were tested
over 24 h in each scenario. IoT Core controlled device connectivity, Lambda processed real-time events, and
KMS safeguarded critical data transmission. DynamoDB and S3 housed user data and instructional materials,
respectively, with CloudWatch monitoring resource utilization and system performance. User logins, frequent
content access, and real-time streaming were system load criteria, with 500 simultaneous requests at peak. The
simulation used Raspberry Pi 4 devices, AWS IoT Device Simulator virtual IoT nodes, and laptops to simulate
classroom device diversity and improve reproducibility.

Using a variety of competing approaches (SL-IoT, LMS-IoT, PEF-En, R-BEC, H-Ed-AlI, Cc-ELn, Azure IoT,
Google Cloud IoT, and SLICED), the experimental protocol assesses four essential components of the Internet
of Things—edge-cloud innovative learning architecture. Replaying similar workloads with up to 500 concurrent
queries and determining the average end-to-end delay in comparison to a baseline for a non-Internet of
Things learning management system (LMS) is how latency reduction is quantified. Data security evaluation is
conducted using programmed attack scenarios, which yield a breach-attempt percentage. Lower numbers imply
a higher level of protection. When aiming for edge filtering accuracy, it is necessary to inject labelled streams of
relevant and noisy events at the edge, then calculate the fraction of data correctly maintained and the fraction
eliminated. The strength of user authentication may be described as a composite score that combines attributes
such as multi-factor authentication, token policies, and resistance to brute-force and credential-stuffing attacks.
When taken as a whole, these studies provide a replicable, measurable foundation for evaluating and contrasting
latency, security, edge intelligence, and access control across all implemented approaches.

Results

The eight measures of latency, data security, resource scaling, edge filtering accuracy, system response time,
disruption resilience, automated processes, and good user authentication create a unique SLICED framework
in this study. This would give us a view of the scalability, reliability, and overall performance of the SLICED
framework idea when applied in real-world classrooms, when using AWS, Cloud, IoT, edge technologies to
optimize reliable, safe online education.

Analysis of latency reduction
SLICED utilizes AWS Lambda and IoT Core to process data at the edge and help significantly reduce latency,
creating ideal conditions for learners to receive immediate feedback and to keep their experience uninterrupted,
as analyzed in Fig. 7. For many learners, especially in parts of the world with slow internet access or learners
who may not be near cities, this is incredibly beneficial, using Eq. 13. As a corollary, 27% latency reduction was
realized by the system, which improved responsiveness in live learning sessions and reduced the average time
taken to execute a task to 248 m/s from the previous 340 m/s.

The below Eq. 13 measures the latency reduction Lr of the SLICED system over standard systems, by
assessing the average aa’ difference in the time required #¢r to acquire data and the time required to process
data.

Lr = (aa/ — tr) + qltr (rt — ot') *dt (Et' — pr) (13)

The goal is to quantify latency reduction gltr in Eq. 13, which makes it possible to go beyond latency reduction
into the real-time rt optimality of the SLICED system gltr (1t — ot’ )by focusing on how data transmission dt
and processing time dt (Et' — pr)can be minimized.

Analysis of data security
SLICED utilizes AWS KMS for encryption and communicates through secure IoT Core channels as a means of
keeping student data safe when in transit and storage, as illustrated in Fig. 8. To provide further protection to
the system, real-time authentication adds another layer of security. The purpose of these security features is to
minimize the chance of a data leak. Results indicated a 33% improvement in data security metrics and a 61%
reduction in attempted unauthorized access by Eq. 14 when compared to baseline cloud learning systems.

This Eq. 14 determines the security score ss for data transfer across the SLICED system.

ss =dt(ef —sm) + (au/ — lba (hd —pt"’ )) (14)
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Fig. 7. Latency reduction analysis for various IoT-enabled smart learning frameworks. SLICED demonstrates
the lowest latency among compared methods, highlighting its effectiveness in minimizing end-to-end
processing delays.
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Fig. 8. Data security analysis based on breach attempt percentages across smart learning methods. SLICED
shows the lowest breach attempt rate, indicating superior data security compared to existing frameworks and
major IoT platforms.
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The above Eq. 14 calculates the breach attempts out of total data transactions dt and can show some
effectiveness ef of security mechanisms sm including encryption and authentication au’, ie., a lower
breach attempts lba percentage indicates higher data security hd, which highlights SLICED’s encryption
policies (au’ — lba (hd — pt’")), and secure cloud processing mechanisms for data security.

Analysis of resource scalability
SLICED leverages demand-based resource allocation and scalability while managing AWS cloud and edge
resources are examined in Table 2. With the serverless structure and seamless integration of Lambda triggers,
the platform is able to allocate resources based on traffic, optimizing resource utilization during peak traffic
periods using Eq. 15. This flexibility allowed for an overall better cloud resource utilization of 40%, with idle
resource time decreased by 25%, which guarantees cost-effectiveness and ensures system redundancy across
different user loads.

Eq. 15 measures how scalable a resource Scr is by comparing the resources allocated ra to the resources
actually used.

Scr:ra(ef’ fru”)+(lsfgfa”)*(scfvg) (15)
A high score indicates efficient e f’ usage of resource ru’’, while alow score Is may indicate that the resource(s)
are over-provisioned, as mentioned in Eq. 15. For SLICED, this equation is used to assess whether the system is
capable of scaling dynamically (sc — vg) to meet usage demand (from low to high loading) while minimising

the use of cloud resources, because managing cloud resources is an important aspect of scalability (Is — gfa’’)
to a growing education system.

Analysis of edge filtering accuracy
SLICED applies edge filtering to discard redundant data prior to coming to the cloud, leading to better analytics
and better decisions in Fig. 9. This is how effective edge data processing is accomplished with SLICED. SLICED
improved data accuracy up to 29% in tests, especially in noisy situations with a variety of connected sensors,
giving educators and school administrators more confidence in their decisions by Eq. 16.

This Eq. 16 determines the accuracy ac of edge filtering ed, assessing the processed (filtered) data in relation
to the raw data inputs.

ac = ed(me — rd) + fl (sd/ — ca”) *ab — cb’ (16)

The purpose of Eq. 16 is to measure the efficacy me of irrelevant or redundant data rd filtration at the edge level
f1, ensuring that the most salient data sd’ are sent to the cloud for analysis ca’ " . This gives the system, both
cloud and edge ab, the ability to conserve bandwidth and processing capabilities cb’.

Analysis of system response time
AWS Lambda implements event-driven architecture which SLICED utilizes for fast execution of student
engagements, whether submitting quizzes or accessing content; as a result, wait times were halved shown in
Table 3. when matched against centralized architectures, the system examines a 20 desires need 20% improvement
response time, jeb.js Ajax polling average time for query processing Puente a range of306 with average query
funding with Eq. 17. Auto completion 312ms to 250ms, which allows for more directed and smoother digital
learning.

This Eq. 17 quantifies system response time srt’; it measures time from the moment the input data i,is
acquired when the response is produced by the edge nodes en’ .

srt’ = (ip (hq' - rt)) +ed (Sef - rt/) *0z'' (17)

A low response time indicates that the system is of high quality g’ in terms of SLICED, the system want to
minimize response time such that real-time learning interactions (i, (hg' — rt)) by Eq. 17, such as adaptive

Method Resource Scalability (%) | Relevant/Impact

SL-IoT 70 Limited scalability with fixed hardware, struggling with growing load.

LMS-IoT 75 Moderate scalability, and challenges with scaling in real-time applications.

PEF-En 80 Improved scalability with edge devices, and still limited for large-scale systems.
R-BEC 85 Higher scalability and requires significant cloud-based infrastructure.

H-Ed-AI 82 Scalable and dependent on centralized Al for scaling.

Cc-Eln 78 Moderate scalability due to centralized resources.

Azure IoT 88 Scales efficiently for enterprise/hybrid workloads and seamless Microsoft integration
Google Cloud IoT | 86 High data and device scaling, excels for analytics-heavy workloads.

SLICED 90 High scalability through dynamic cloud-edge resource management.

Table 2. Comparing smart learning with IoT resource scalability. With 90% scalability, dynamic cloud-edge
resource management makes SLICED the best choice for flexible and large-scale deployments.
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Fig. 9. Edge filtering accuracy across smart learning and IoT architectures. SLICED achieves the highest
filtering accuracy, demonstrating superior data preprocessing performance compared to contemporary
educational and cloud IoT solutions.

Method System response time (ms) | Relevant/impact

SL-IoT 450 ms Long response time due to dependence on central cloud processing.

LMS-IoT 430 ms Moderate improvement, and real-time data still causes delays.

PEF-En 420 ms Reduced response time, and still limited by cloud processing.

R-BEC 500 ms Slower response time due to poor infrastructure design.

H-Ed-AI 470 ms Response time is slower due to dependence on AI models.

Cc-Eln 490 ms Relatively slow, requiring multiple data transfers.

Azure IoT 250 ms Fast hybrid processing; improved response via edge/cloud integration.

Google Cloud IoT | 220 ms Accelerated data flow, optimized pipeline; excels in analytics-heavy tasks.

SLICED 150 ms Fast response due to edge processing, reducing cloud load.

Table 3. IoT vs. smart learning system reaction time. Efficient edge processing gives SLICED the quickest
system response at 150 ms, beating cloud-centric and standard IoT frameworks.

content delivery cd’ or student feedback Se f, happen in real timert’, and optimize Oz'’ a better user
experience and system efficiency.

Analysis of connectivity resilience
SLICED uses offline caching and edge processing to maintain learning even in settings with interrupted
connectivity is analysed in Table 4. All data will sync when connection is re-established. However, during in-class
monitoring, this method kept the system available 96% of the time (even only using simulated low bandwidth),
and automatically recovered in less than 2.5 s using Eq. 18.

Eq. 18 provides a metric for connectivity resilience C'r, which indicates how well our system is still
functioning in the face of changes to the network conditions NC (stable, weak, or interrupted).

Cr=xc Y funi [ llai (¥ es = 8 ol| = lnu T, + Gl (18)

A high resilience score indicates that some resilience | |hr| is constructed into the system that allows it to absorb
interruptions a¢ using Eq. 18 and continue functioning V .y, meaning that, for example, the SLICED platform
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Connectivity Resilience (Uptime%)/Reconnection
Method Delay (s) Relevant/Impact
SL-ToT 90% uptime/3s delay Vulnerable to network disruptions, limited to local connectivity.
LMS-IoT 92% uptime/2.5s delay Improved resilience, and still dependent on cloud availability.
PEF-En 88% uptime/4 s delay Struggles with weak network, longer reconnection times.
R-BEC 85% uptime/5s delay Poor resilience to network instability and delays in reconnection.
H-Ed-AI 91% uptime/2.7s delay Moderate resilience, and performance degrades in poor conditions.
Cc-ELn 87% uptime/4.5s delay Network resilience challenges, especially in low bandwidth regions.
Azure IoT 96% uptime/1.8s delay iizzr;lzecciigll;)?gﬁ;;;% ﬁiléx;iancy with per-device recovery, rapid
Google Cloud IoT | 94% uptime/2s delay f;ggg agtleolr)eaclorlller:\e'vc(:irl(;;1 'eﬁfective fail-over and automated scaling,
SLICED 98% uptime/1s delay Excellent resilience, real-time recovery even in weak network conditions.

Table 4. Evaluation of smart learning framework connectivity resilience. Compare uptime percentages and
reconnection delays, and SLICED has the strongest operational resilience and fastest recovery, exceeding IoT
and cloud-based techniques.

Method Automation efficiency (time saved/error rate) | Relevant/impact

SL-IoT 80s saved/15% error rate Basic automation with limited optimization, resulting in errors.

LMS-IoT 855 saved/10% error rate Some automation, and errors still occur, reducing system efficiency.

PEF-En 90s saved/18% error rate Automation improves and at the cost of higher error rates.

R-BEC 75s saved/20% error rate Poor automation features, high error rate reduces overall efficiency.
H-Ed-Al 95s saved/12% error rate Increased automation, fewer errors and still dependent on manual input.
Cc-ELn 70s saved/22% error rate Limited automation with higher error margins.

Azure IoT 1055 saved/7% error rate Efficient automation, good scalability; modest error under high concurrency.
Google Cloud IoT | 98s saved/9% error rate High concurrency management, scalable autoscaling, moderate error rate.
SLICED 120's saved/5% error rate Highly efficient automation, minimizing errors and maximizing efficiency.

Table 5. Automation efficiency and impact analysis of various IoT-enabled smart learning methods. The table
summarizes time saved and error rates, showing SLICED offers the greatest automation efficiency and lowest
errors among all compared frameworks.

can remain operational 0 », while the network is unstable nu, rather than terminating operationally 7. The
SLICED platform must allow the learner to maintain consistent access Cs to learning content, rather than an
interruption ||nu |T, + Cs|||in access to content, causing disruption in learning.

Analysis of automation efficiency

SLICED automates many processes with AWS Lambda, including logging, data backup, and issue creation.

Therefore, it enables the platform to develop and respond to end-user needs quicker, with less human disruption

shown in Table 5. With automation, the framework decreased human error by 45% and decreased time processing

data manually by 37% by Eq. 19 and this made operations smoother for the administrators and the instructors.
Eq.19 quantifies the efficiency obtained from automation by comparing the time on manual work with the

time saved with automation (Ca).

(Ca) =ts —ie+ cy, (dpx cp)+ Ap_1(dc) (19)
This is intended to show time saved tsand improved efficiency ie with automation to cloud functions cysuch as
data processing dp and content personalization cp by Eq. 19. In the case of SLICED, automation A,_1 provides
timeliness and more accurate decisions (dc), improved user experience and impact of the system overall.

Analysis of user authentication strength

The SLICED user verification process implements multi-factor authentication within AWS Identity and IoT
regulations, which in turn prevents impersonation and unauthorized access. There will be secure access for
both students and staff due to this process, illustrated in Fig. 10. The SLICED authentication model surpassed
baseline models, which showed an average of 81% accuracy in creating a valid user authentication for students
and staff, as there was a demonstrated authentication success rate of 98.6% in evaluations by Eq. 20, showing
further verification that the SLICED platform satisfied the integrity and compliance measures of secure learning.

Eq. 20 measures the strength of the user authentication mechanism U (az).

U (ai) = Z i—1Sa (at) x A" —a® (ua (pr — sc) — nat) (20)
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Fig. 10. User authentication strength analysis for different IoT-based frameworks. SLICED demonstrates the
highest authentication strength, highlighting its enhanced capability for secure access control in smart learning
systems.

More specifically, it measures the percentage of successful authentications S, (at), A where the higher result A"
indicates a better authentication process a” since this means fewer unauthorized access wa attempts through
utilization of equtaion 20. This is important in the SLICED system because privacy pr and security sc are
very important for the individuals whose data are contributed. This metric helps the system ensure that non-
authorized users nat are not able to access protected learning materials and personalized learning content.
Eight metric variations of performance improvement included a 27% reduction of latency, a 33% enhancement
of security, and a 20% boost of responsiveness; collaboration further improved by automation, authentication,
and filtering accuracy; cloud edge collaboration provided resiliency and coordinated scalability of resources.
Collectively, these confirmations substantiate the conclusion that SLICED effectively provides a contemporary
educational transformation with a safe, efficient, and flexible learning systems infrastructure.

Discussion

This paper presents the proposed system, SLICED, as a practical, scalable, and secure solution for digital
learning spaces. This study uses simulated environments rather than live deployment of SLICED, which
has 27% lower latency, 33% better data security, and 20% faster response than centralized solutions. AWS’s
unique infrastructure, anticipated operational expenses, and limited generalizability without field testing are
major restrictions. Real-world deployment pilots across varied schools will test the platform’s scalability, cost-
effectiveness, and robustness under varying network conditions. SLICED will add AI-enabled analytics for real-
time personalization, systematic blockchain-based security testing for distributed classrooms, and multilingual
support. The platform will also test privacy-preserving and federated learning models in stringent security
environments to address data governance and global educational compliance. Integrating Al-enabled analytics
for personalized learning and blockchain-enabled distributed ledgers for infrastructure security may enhance
the SLICED experience. The proposed system could make learning more immersive by utilizing augmented or
virtual reality technologies. Another benefit to consider is providing multiple languages to learners at once to
diversify access for potential users of the SLICED platform. From there, the system could assess how successful
the SLICED process is and how scalable it is in other learning contexts, such as schools in developing countries
or large university communities. The system could even examine more rigid security environments in addition
to privacy-preserving models and federated learning. With the improvements above, SLICED may become a
pivotal component in smart education.

The SLICED design revealed statistically significant advantages compared to all baselines. By achieving the
lowest mean latency (about 242 milliseconds, with a standard deviation of approximately 9 milliseconds), it
outperformed both the conventional SL-IoT (approximately 320 milliseconds) and the major cloud platforms,
such as Google Cloud IoT (approximately 249 milliseconds). The accuracy of edge filtering achieved around
96%, which is significantly higher than the 85-92% achievable by competing approaches. This indicates that
redundant data was removed with greater precision before cloud upload. The results of the security tests
demonstrated that SLICED prevented approximately 97% of programmed breaches and achieved the highest
composite authentication-strength score (approximately 21/25). This substantiates that its performance
enhancements do not compromise confidentiality or access control.

Limitations

Evaluation context and deployment assumptions are fundamental SLICED restrictions. First, the gains in latency,
security, and responsiveness may not apply to all school infrastructures and user behaviors, as the findings
are from controlled simulations rather than long-term production rollouts. Second, AWS reliance restricts
mobility, cost modeling, and application in legislative or procurement-restricted areas. Third, operational costs,
edge-device heterogeneity, and network unpredictability in low-resource environments are poorly understood.
Advanced extensions (Al analytics, federated learning, blockchain, AR/VR, multilingual support) are planned
yet untested.
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Data availability
The data used in this research are available in the following links: https://www.kaggle.com/datasets/ziya07/sma
rt-classroom-iot-edge-dataset.
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