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Providing dependable, secure connectivity remains a persistent challenge in digital education, 
particularly in data-sensitive, remote learning environments. This study presents SLICED, which stands 
for Secure Learning Integration via Cloud and Edge Devices. It is a framework that integrates Internet 
of Things edge devices with Amazon Web Services (AWS) Cloud services. SLICED orchestrates AWS 
IoT Core, Lambda, and Key Management Service (KMS) to enable encrypted communication, user 
authentication, and real-time edge analytics. When compared to traditional AWS–IoT educational 
systems, this adaptive integration cuts down on latency and increases the level of data protection. The 
results of experiments conducted in simulated learning networks demonstrate that SLICED can achieve 
up to 27% lower latency and 33% greater security, thereby providing smart learning environments that 
are both scalable and safe.

Keywords  IoT, AWS cloud, Secure learning, Edge computing, Data protection, Real-Time connectivity

In view of the rapidly changing state of education, the convergence of cloud computing and the IoT represents a 
paradigm shift toward safe, interconnected learning environments1. Traditional learning systems have struggled 
with scalability issues such as data breaches, limited flexibility, excessive latency, and centralized designs2. There 
are many challenges affecting environments with limited bandwidth or long distances within the geographical 
area3. During the end-user digital learning experience, these barriers hinder their ability to perform digital 
learning once important data is engaged or access is required in real-time4. With the potential of AWS Cloud 
and IoT-enabled edge computing, this research offers a secure and extensible learning framework that addresses 
these limitations5. While not losing sight of the fundamental purpose of digital education, the design of SLICED 
provides robust data protection, reliable connectivity, and adaptive resource allocation6. Unlike conventional 
systems that centralize data processing, SLICED combines AWS services with local edge processing to enable 
intelligent, secure data processing, encryption, and transfer7. This approach increases responsiveness, reduces 
latency time, and enhances data security8. The proposed framework addresses the performance and security 
deficiencies of conventional modes while retaining the instructional intent through cloud-based intelligence and 
real-time adaptability9.

Problem statement
Particularly in distant and remote settings, current learning systems struggle to deliver low-latency, scalable, 
and secure performance10. Effective and timely learning experiences are hampered by their poor scalability, 
restricted real-time responsiveness, and inadequate data protection. Furthermore, most current technologies 
lack an integrated architecture that ensures reliable data protection and seamless connectivity between the 
cloud and the Internet of Things. SLICED integrates AWS Cloud services with Internet of Things and edge 
computing to provide safe, real-time, and scalable learning. SLICED improves data security and resilience with 
AWS IoT Core and KMS, while edge computing integration reduces latency and facilitates real-time interaction. 
Additionally, its cloud-based automation and intelligent data management maximize resource usage without 
compromising training. SLICED quantitatively improves latency, scalability, and response efficiency, making 
learning more dependable and responsive.

1Department of Computer Science and Engineering, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil 
Nadu, India. 2Department of Artificial Intelligence & Data Science, School of Engineering and Technology, 
Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India. 3Department of Computer Science 
and Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil Nadu, India. email:  
shanmugapriyan.set@dsuniversity.ac.in

OPEN

Scientific Reports |         (2026) 16:1522 1| https://doi.org/10.1038/s41598-025-31428-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-31428-w&domain=pdf&date_stamp=2025-12-7


Contributions of this paper
The major objectives of this paper are;

•	 SLICED platform enhanced the power of AWS Cloud along with the Internet of Things to allow for real-time 
response. This capability enables learning systems to respond in real time to changes in the environment and 
user interactions, ensuring a reliable and useful training experience.

•	 Using edge computing in conjunction with secure cloud services, like AWS KMS and IoT Core, helps to shore 
up platform security. In addition to facilitating faster, more secure learning processes, edge computing reduc-
es latency by reducing the need to be constantly connected to the cloud.

•	 SLICED utilizes cloud-based automation and smart data management to ensure the proper use of system 
resources. The increase in efficiency is achieved without diminishing the quality of instruction or the depend-
ability of the platform. The focus remains predominantly on the educational goals.

AWS IoT and edge computing modules were integrated to reduce latency and provide adaptive learning 
interactions for real-time responsiveness. AWS KMS and secure edge-cloud communication layers were 
chosen based on data security. To balance cloud and edge workloads, cloud-based automation and smart 
data management were used to maximize resource consumption. These objectives provide the design 
rationale that enables SLICED to meet its scalability, security, and performance requirements.
The remaining section of this paper is organized as follows: Sect.  2 reviews past studies on ensuring 
secure and seamless connectivity for learning systems, which is critical. Section 3 describes the proposed 
SLICED process. Section 4 compares our suggested approach with other conventional methods. Section 5 
concludes with a discussion of potential future studies.

Related works
This literature review examines security in the educational environment, cloud computing, Internet of Things 
integration, and edge computing. This report identifies the limitations around data security, latency, and 
scalability. The findings help strengthen the proposed SLICED framework by showing how to leverage AWS, 
Cloud, and Internet of Things integration to fill in the missing pieces and enable real-time connected learning 
spaces, while preserving students’ personal information.

Cloud computing in education
This article discusses cloud computing in educational institutions and offers recommended steps for a multi-
layered cloud adoption approach to improve content delivery and scalability11. While the study outlines other 
issues, such as privacy concerns and infrastructure readiness in underdeveloped contexts, the article identifies 
significant benefits of cloud implementation, including increased data access and collaboration. This paper 
examines how the IoT, cloud computing, and online learning, among other technologies, have been amalgamated 
in modern-day educational settings. With an emphasis on increasing accessibility and usability, it proposes a 
unified architecture that incorporates these technologies12. Study indicates that this connection enhances the 
effectiveness of learning; however, there is minimal, general acceptance due in part to questions of security, and 
reliable connectivity and infrastructure.

IoT integration in smart learning systems
The research provides a conceptual structure for interactive learning experiences that support the use of sensors 
and Internet of Things gateways with an emphasis on smart learning through the Internet of Things (SL-IoT). 
The proposed approach enhances student engagement and improves real-time monitoring13. While results 
indicate that learner tracking was improved and responsiveness was increased, issues with data privacy and 
device interoperability remain. This article discusses LearnSmart, a platform that connects LMSs to the IoT 
(LMS-IoT). It changed the lessons based on the sensor data and the comments it received about the situation14. 
The results revealed that using the system, doing well in school, and being motivated were all linked in a good 
way. Data security and scalability needed to be looked at.

Security and privacy in cloud-based learning
The study examines privacy and security issues in cloud-based or course-based online or e-learning systems. 
The study proposes a policy enforcement model based on encryption (PEF-En) through data classification 
and identity management15. The outcomes showed less exposed data, and better compliance are possible; 
however, the study points out that there are significant real-world issues related to performance trade-offs, 
and challenging implementation. Although this study focuses specifically on e-health, it still offers useful 
insights for educational cloud security16. It proposes a role-based encryption access control (R-BEC) that meets 
users’ privacy requirements. The findings indicate improved confidentiality and restricted data access with no 
additional computational overhead, which is terrific for an educational cloud system.

Edge computing for low-latency educational applications
This paper investigates how to mitigate latency in cloud workloads by converging artificial intelligence (AI) 
with edge computing17. The paper proposed an integrated hybrid model of edge deployment methods and AI-
based task prediction (H-Ed-AI). The results are faster processing and responsiveness, opening the door to 
innovative education systems and other real-time applications. For very reliable, low-latency connectivity, the 
authors propose a solution called mobile edge computing and their approach relies on adaptive task offloading 
and resource slicing18. This is especially important for real-time educational systems, which need stability in 
connectivity and performance, since the results show the drastic improvement in latency and reliability.
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Challenges in traditional E-learning arch
This review provides an overview of cloud-based e-learning systems (Cc-ELn) and the most commonly 
observed features, barriers, and future potential. It proposes a safe and scalable infrastructure from a cloud-
based e-learning perspective19. The research concludes that cloud-based e-learning systems are flexible and more 
cost-effective, despite ongoing challenges, including integration and cybersecurity issues. The study investigated 
problems with online education from a myriad of perspectives, ultimately separating them into three categories: 
technical, cognitive, and contextual. It proposed a mapping model for learning systems20. Despite adaptive 
systems improving engagement and outcomes, the research suggested that integrating customization into cloud 
platforms remains difficult.

The studies analyzed what the articles found to be the positives and negatives of cloud, IoT, and edge 
technology in the classroom. There have been examples where improved response times and accessibility have 
benefitted outcomes; however, challenges related to privacy, scalability and latency continue. The SLICED 
framework was developed with cloud-edge synergy intended to produce learning experiences that are safe, 
individual, and timely, with the best of education’s basic tenets in mind, as this set of studies demonstrates. 
Table 1 shows the summary of related work.

The design of safe and flexible data frameworks for various intelligent environments has changed as a result 
of recent developments in edge and cloud computing. Using edge computing, Yao et al.30 presented a framework 
for biometric privacy protection in UAV-based systems, enabling safe data processing at network boundaries. 
Similarly, focusing on decentralized security methods, Yao et al.31 presented a privacy-preserving data collection 
paradigm for intelligent edge systems. Dong et al.32 developed a blockchain-assisted self-sovereign identity 
solution to ensure transparent user identity management and reliable authentication in UAV delivery networks. 
Additionally, Yao et al.33,34 addressed integrity and privacy in distributed settings by designing a comprehensive 
security architecture for edge computing infrastructures.

Federated learning approaches such as FedShufde, which protect sensitive data while facilitating collaborative 
edge learning, were investigated to improve privacy and scalability. This was expanded by Dong et al.35, who used 
task distribution and blockchain technology to secure UAV communications, enhancing energy efficiency and 
privacy. MoCFL, a mobile cluster federated learning architecture for extremely dynamic edge networks, was 
presented by Fang et al. to increase adaptability and latency management36. The suggested SLICED framework 
for educational settings is conceptually grounded in these studies, which collectively provide a solid foundation 
for flexible, private, and secure edge–cloud integration.

Methods
The proposed methodology contains SLICED system which can make a smart learning environment that is 
safe, scalable, and works in real time by combining IoT devices with AWS Cloud services. It fixes problems with 
traditional systems by making data more secure, reducing latency, and enabling flexible content distribution. The 
design ensures end-to-end connectivity without losing sight of important teaching goals.

Research Hypothesis.

Reference Environment Methods Security Energy Efficiency
11 Cloud-Based Education Conceptual Cloud Integration Model ✓ Medium
12 E-Learning + Cloud + IoT Layered IoT-Education Framework ✓ Low
13 IoT for Smart Learning Event-Driven IoT Educational Model ✓ Medium
14 IoT + LMS LearnSmart Integration Framework ✓ Medium
15 Cloud-Based Education Security-Privacy Enhancement Framework ✓ Medium
16 Cloud-Based E-Health Privacy-Preserving Mechanisms ✓ Low
17 Edge + Cloud + AI Latency-Aware Scheduling Algorithm ✓ High
18 Mobile Edge Computing URLLC Optimization Model ✓ Very High
19 Cloud E-Learning Environment Systematic Review ✓ Medium
20 E-Learning Learning Style Classification Framework ✗ Low
30 Edge + UAV Systems Biometric Privacy Protection with Edge Computing ✓ Medium
31 Edge + Intelligent Systems Privacy-Preserving Data Collection Framework ✓ Medium
32 Edge + UAV Delivery Blockchain-Aided Self-Sovereign Identity Framework ✓ Medium
33 Edge Computing + UAV Systems Distributed Security Framework for Edge Networks ✓ Medium
34 Edge + Federated Learning FedShufde: Privacy-Preserving Federated Learning Framework ✓ High
35 Edge + Blockchain IoT Communication Privacy-Aware Task Distribution Architecture ✓ High
36 Mobile Edge + Federated Learning MoCFL: Mobile Cluster Federated Learning Framework ✓ Very High

Table 1.  Reviews of recent cloud, edge, and hybrid innovative learning and linked environment frameworks. 
The table organizes references by operating environment, technique type, security, and energy efficiency. This 
organized analysis presents safe, efficient research trends, strengths, and trade-offs in educational and IoT 
systems.
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•	 The IoT–edge–cloud smart learning architecture will increase student engagement and learning results statis-
tically compared to a traditional LMS without IoT integration. ​.

•	 Edge-layer preprocessing and filtering of multimodal sensor data will minimize network bandwidth and end-
to-end latency, allowing quicker user interface learning content adaption.

•	 ​ Using managed cloud services like AWS IoT Core, Lambda, S3/DynamoDB, and KMS will deliver scalable 
learning analytics with high data security, integrity, and availability. ​.

•	 Continuous input from learning analytics to instructors and learners will improve customization and da-
ta-driven decision-making, enhancing course completion rates and learner performance metrics compared 
to baseline offers.

SLICED system overview
The layered architecture, combining IoT with edge processing and the AWS cloud administration, enables 
efficient, scalable, and secure innovative learning in our proposed system SLICED. Preprocessing the data at 
the edge layer reduces latency and filters out excess data. IoT devices that capture user activity or environmental 
context record the data in real time. User devices deliver data to an edge layer for filtering and safe transmission. 
AWS IoT Core manages connectivity, AWS Lambda processes AI-driven events in real time, and AWS KMS 
protects data. DynamoDB and S3 protect user data and learning materials. Adaptive content, administrative 
controls, and dashboard feedback ensure low latency, scalability, and security in the e-learning environment.

In the SLICED architecture, AWS IoT Core, Lambda, and KMS interact in real time (Fig. 1). User devices 
and edge nodes securely send data to AWS IoT Core, which manages device connectivity and communication. 
AWS IoT Core automates learning events in real time with AWS Lambda. AWS KMS manages encryption keys 
to keep data transmission and storage—whether for DynamoDB user records or S3 teaching materials—secure. 
The platform’s integrated dashboard allows adaptive content delivery, feedback, and centralized management, 
ensuring low latency, data protection, and responsive learning.

Eq. 1 models how IoT device data is captured 
´

Dcapand structured.

	
Dcap =

ˆ
(rtd (sn − ms) + bh

(
pr′ − ac

)
*fd − ud′ ) � (1)

IoT devices collect real-time data from sensors rtd (sn − ms) that measure anything from environment to 
student behavior to physiological responses. Eq. 1 guarantees that data is collected accurately bh (pr′ − ac), 
and this is critical because correct data is the bedrock of adaptive learning fd. Preprocessing provided the next 
step in the arrangement of the data to eliminate the unimportant data ud′ and allows the system as a whole to be 
more efficient through eliminating unnecessary inputs bh (pr′ − ac)for the preceding orders.

At the edge layer, Eq. 2 describes how raw data from IoT sensors is first preprocessed D (p)prior to being 
sent.

	 D (p) = Enrs − eprd

(
cl′ − ep′ ′ )

+ bd
(
rl′ − tle

)
+ op′ ′ � (2)

This includes filtering, feature extraction, and compression, all of which are done to eliminate noise and reduce 
En the size of the data rs in Eq. 2. By the end of the edge processing stage, the relevant information eprdis all 
the data that makes it to the cloud layer cl′ . This edge processing ep′ ′ step reduces the amount of bandwidth bd 
used and reduces latency rl′ in time-sensitive learning tle environments, and optimizes system efficiency op′ ′ .

AWS-managed cloud and edge services are used in the SLICED architecture to process data and deliver 
adaptive content using machine learning and AI models. Specifically:

•	 AWS IoT Greengrass and Lambda@Edge deploy lightweight incremental learner state predictors such online 
gradient-based customization models and federated learning schemes on IoT-enabled devices. These models 
adjust to user interaction and environment for real-time customisation and feedback without cloud depend-
ence.

•	 Cloud layer: Recommendation systems, NLP modules, and LLMs—including Amazon SageMaker and Am-
azon Bedrock—improve content creation, adaptive distribution, and Q&A generation. Federated learning 
or asynchronous aggregation synchronizes these models with on-device models for scaled intelligence and 
system-wide optimization.

•	 Automation and control: Event-driven AI pipelines are orchestrated by AWS Lambda, which processes 
streaming data, triggers adaptive content generation, and manages intelligent automation workflows for edu-
cational tasks. These include personalized recommendation systems, real-time transcription and translation, 
and interactive assessment tools.

The core model learns baseline behavior using an encoder-decoder architecture trained on normal traffic 
data. Significant deviations in reconstruction error suggest aberrant activity. Adam-optimized, mean squared 
error-trained autoencoders use many dense layers with ReLU activation. We use dynamic thresholding based 
on reconstruction error statistics to adapt to changing network conditions for robust detection. Real-time 
network metrics data gathering, a visualization dashboard, and model fine-tuning for ongoing improvement 
are also included. On a large, publicly available dataset, the model outperformed PCA and isolation forests 
in differentiating normal and abnormal behaviours. This comprehensive solution allows scalable, real-time 
anomaly detection for trustworthy network management.
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Step 1: data acquisition through IoT devices
The SLICED system begins by collecting data from the learning environment using IoT devices. In particular, 
smart boards that influence engagement instantaneously, sensors to detect elements of the physical environment 
(e.g., light, motion, temperature), cameras to automatically take attendance or track behaviours, wearable to 
record physiological response (e.g., heart rate, activity) etc22. Different classroom technologies including smart 
boards, environmental sensors, and cameras collect real-time educational and environmental data. Sources 
capture student inputs, environmental conditions, and attendance automation. A microcontroller or gateway 
like ESP32 or Raspberry Pi timestamps and structures all signals. Before sending data to the processing layer 
for advanced analysis, anomaly detection, and adaptive learning, the microcontroller layer provides accurate 
aggregation and preparation. This integration ensures situational awareness, automation, and precise data 
collecting in smart and remote learning settings.

All of the devices are linked by microcontrollers or gateways (e.g., Raspberry Pi, ESP32) for initial handling 
and structuring of the device-level data collection as elucidated in Fig. 2. This layer enables learning and digital 
infrastructure to work together smoothly. It additionally turns on the system’s real-time features. After data is 
gathered from the sources, it is organized, timestamped, and placed in a queue for later processing. This layer 
is very important for allowing adaptive learning with as little help from people as possible. It ensures that the 
preprocessing and decision-making layers receive consistent, well-structured input, and provides a framework 
to monitor learning behaviour at every level.

Fig. 1.  System architecture of SLICED for secure learning connectivity. The picture depicts how user devices 
and edge layers safely send data to AWS IoT Core. AWS Lambda and AWS KMS implement safe processing 
and storage in Amazon DynamoDB and S3. The integrated system’s dashboard shows end-to-end secure 
communication, data management, and real-time analytics with AWS cloud-edge connection.
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Eq.  3 represents the procedure for obtaining real-time data Rtd from IoT devices within the learning 
environment le′ .

	 Rtd = le′ (
Gd

(
m′ − sr

))
+ ts′ (

dceQ − Ac′ )
*T a′ ′ � (3)

It establishes how data are gathered considering multiple sensors (e.g., smart boards, motion detectors, wearables) 
(Gd (m′ − sr)). The Eq. 3 timestamps ts′  and categorizes the data such that it can be later processed dceQ. It 

is a well-structured equation to ensure that accurate and timely Ac′ , labeled data have been collected because 
accurate and timely data T a′ ′ are the foundation of all further processing, decision-making, and feedback that 
the system will provide ts′ (dceQ − Ac′ ) ∗ T a′ ′ 23.

Step 2: Edge-level preprocessing and filtering
In Phase 2, data from IoT devices is sent to edge computers. Edge “nodes” (small computers or “smart gateways”) 
process data in real time at or close to the original data source. The primary function of edge nodes is to discard 
superfluous data, perform preprocessing (e.g., compression and feature extraction), and perform other functions 
(e.g., activity classification or sensor threshold determination), and to provide a cache to store data when network 
conditions temporarily cause slow processing.

The algorithm 1 filters managed data at the edge based on similarity scores. The algorithm reviews each 
managed data instance and compares the computed similarity score to a particular threshold. If the managed 
data instance has a similarity score above the threshold, it is relevant to the filtered data set and added to the 
filtered data set instance. If multiple managed data instances have the same best score, all instances will be added 
to the final results set. This will assist the edge device when sending only the most relevant scored data to the 
cloud for processing24.

Edge nodes or smart gateways like Raspberry Pi and small PCs collect IoT device data. These nodes rapidly 
filter incoming data, extract key aspects for analysis, and cache it for spikes or connectivity outages. All acquired 
data is compressed and organized for storage and transmission. Local data encryption protects sensitive data 
before leaving the edge. After compression, encrypted data is safely sent to the AWS cloud layer, assuring privacy, 
efficiency, and integrity along the edge-to-cloud pipeline. This layer enhances system responsiveness, reduces 
latency, and allows applications to remain operational even in the event of a network outage by reducing the 
volume of data transferred to the cloud in Fig. 3. Data encryption at the local level is the first step to introducing 
security mechanisms. The data is organized and filtered at the edge layer before it is securely transmitted to 
AWS cloud services. Identifying and processing data to ensure that what proceeds to the cloud for analysis and 
decision-making is clean, relevant, and valuable is more efficient and effective with this mechanism.

Eq. 4 explains the process of filtering irrelevant data fi′  and then compressing this data at the edge layer Dc, 
which guarantees the edge will only send relevant, appropriate, and high-value data to the cloud.

Fig. 2.  Data acquisition in a smart learning environment. Smart boards, environmental sensors, and cameras 
collect real-time classroom data, which is structured and timestamped via microcontroller gateways for further 
processing.
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	 Dc = fi′ (
T ′ − Og′ )

.aM ′ (
rb′ − dq

)
*ep

(
td′ − me

)
� (4)

The overarching goal Og′ of this equation relates to reducing the amount of data aM ′ sent to the cloud, 
reducing bandwidth used rb′ , and reducing the delay dq or latency from processing edge data, whether that 
be analysis of data retrieval with Eq. 4. Feature extraction is another way in which edge processing ep can be 
described as organizing the more relevant components to reduce the total data td′ to the most useful features to 
maximise efficiency me in the architecture and real-time decision from the edge25.

The Eq. 5 models the extraction of relevant features F e from raw IoT sensor data at the edge.

Fig. 3.  Edge data processing pipeline for IoT-enabled learning environments. Edge nodes perform filtering, 
feature extraction, caching, and encryption before securely transmitting compressed data to the AWS cloud 
layer.

 

Input: Θk – set of (dataPoint, similarityScore) pairs

Output: Γ – filtered data set, l – best similarity score

function ( ):

= ∞ // Initialize the best similarity level for data relevance

= ∅ // Initialize an empty set for filtered data

ℎ ( , ) :

> ℎ ℎ ℎ : // Check if the data point has high relevance

= { } // Assign the new relevant data point

= // Update similarity level

== ℎ : // Handle case where similarity score matches best

= ∪ { } // Add data point to set if similarity score is equal

ℎ

, // Return the filtered data and the best similarity score

Algorithm 1.  Data Preprocessing and Edge Filtering.
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	 F e = (vp) + rd′ ′ − avc
(
Sy − dt′ ′ )

* mx
(
dc − bcl′ ′ )

� (5)

The previous metrics illustrate how different variables or patterns (vp)are identified and ranked. The role of 
Eq. 5 is to ensure that, the most relevant data rd′ ′  (e.g., movement patterns, engagement data) is processed or 
made available for the cloud avc. In this way, the system (Sy − dt′ ′ )can suppress unnecessary data clutter and 
maximize mx (dc − bcl′ ′ ) the organization’s ability to focus on insights that matter in promoting the process 
of adaptive learning.

Eq. 6 calculates the reduction in latency lr achieved by leveraging the edge layer to evaluate data locally.

	 lr = pr′ − mf ′ ′ .si”(sr − dl′ ′ )* dl(fd − ee′ ′ ) � (6)

The processing and filtering pr′ of data close to the creating source minimizes mf ′ ′ the time required to send 
information si”to the cloud. The aim of Eq. 6 is to improve the overall system’s responsiveness sr, allowing 
adaptive learning dl′ ′ content or feedback fd to be produced without delay dl, a key consideration to keep a 
learning environment engaging ee′ ′ .

Step 3: secure cloud processing with AWS services
Step three involves securely processing data in the cloud using AWS services. AWS IoT Core uses TLS/SSL with 
each connected device to identify devices and ensure the secure transfer of data. AWS provides real-time data 
processing with AWS Lambda, a serverless compute service that can trigger automatic responses like alerts about 
performance, content recommendations, or anomaly detection. All stored and processed data utilizes AWS KMS 
for security and access control.

Edge devices send encrypted data to AWS IoT Core, which authenticates devices using TLS/SSL. Data is 
processed by AWS Lambda to generate real-time alerts or recommendations. AWS S3 (object storage) and 
DynamoDB (NoSQL DB) store and event logs, protected by AWS KMS for data privacy. Customized content 
and secure computation are supported by the integrated stack. This optimises learning system outputs, ensuring 
reliability, privacy, and adaptive service throughout the educational process. AWS S3 stores educational 
resources, logs, and multimedia files, whereas AWS DynamoDB stores mutable data, such as access patterns, 
system configurations, and user activity logs, illustrated in Fig. 4. The SLICED framework’s intelligence resides 
in the cloud layer, enabling data optimization for personalization, enforced access control, and learning 

Fig. 4.  Safe processing and content optimization for smart learning on AWS. AWS authenticates, analyzes, and 
stores encrypted edge data, with KMS assuring confidentiality and delivering tailored content.
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orchestration26. Multiple services are integrated, enabling fast, secure, low-latency decision-making at scale, 
reliability, and data integrity. All this without compromising the learning environment or learner experience.

Eq.7 represents the encryption process En while transferring data from the edge to the AWS cloud.

	 En =
[
ep

(
as′ − ua′ ′ )]

+ P r′ −
{

ssp < ua′ − us >
}

� (7)

This is critical to measure the security strength of any encrypted data En secured using encryption protocols ep 
like TLS/SSL. It gives the analyst assurance as′ sensitive educational and user data ua′ ′ are secure and protected 
P r′  during the transfer process by Eq. 7. Strong encryption protocols ssp will disallow illegal, unauthorized 
access ua′ and data will remain secure and unbreached us. This preserves the integrity and confidentiality of 
the system.

Eq.8 illustrates the way in which data is processed dp in real time in AWS Lambda.

	 dp = sF
{

adq′ ′ }
+ cp′ ′ < ad − dq′ ′ > * {ps (al − ue)}� (8)

The above Eq.  8 illustrates how serverless functions sF  enable automatic downstream action {adq′ ′ }on 
incoming data like alerts, content updates cp′ ′ or anomaly detection ad. The purpose of the formula is to 
process data quickly dq′ ′ and at scale in the cloud, as well as not have to provision servers ps. It allows users 
to ensure that adaptive learning al features run in real time, thus guaranteeing that the user experience ue is 
seamless and suitable for the user.

Eq.  9 is a model of the cloud’s access control method, based on AWS KMS, the cloud access control ac 
protocol itself.

	 ac =
[
pr

(
ud′ − md′ ′ )]

.se′ − pd
(
sc − co′ ′ )

� (9)

It uses processes pr of user and device ud′ authentication or access control, to identify what users and devices 
are permitted to access data and make modifications md′ ′ by Eq.  9. The goal of this equation is to secure 
educational content se′ , personal data pd, and system configurations sc, while simultaneously establishing 
real control co′ ′ over who can access what information in real-time pd (sc − co′ ′ ), a foundational security and 
protection feature of sensitive learning data.

Algorithm 2 accrues resources in the cloud, subject to the allocation score. The algorithm checks each cloud 
resource and its allocation score against the prior maximum. If a resource’s allocation score is higher than or 
equal to the current best score, the resource is included in the cumulative optimal resources. The algorithm 
guarantees that the best resources for cloud processing are selected by the overall system. The system stays 
efficient by allocating resources that will provide the very best performance for cloud resources, while still 
guaranteeing functionality27.

Step 4: smart learning output and real-time adaptation
Lastly, smart applications are used to leverage processed data into usable learning outputs. Adaptive content 
delivery systems that are learning resources specifically tailored to each individual student based on data 
compiled from AWS Lambda and profile storage help to create more specialized remediation for slow learners 
and advanced content for faster learners. Students will receive tailored feedback developed from real-time 
analytics.

The actual visualizations of live performance, attendance, and behavioural trends in admin dashboards 
support teachers are shown in Fig. 5. The system might give messages or alerts (for example, disengagement or 
anomalies) to the administration or teachers, and they may intervene before something bad happens. Tablets, 
laptops, and internet portals give users access to the output through a defined end-user interface, which creates 

Input: Θk – set of (resource, allocationScore) pairs

Output: Γ – optimal resource set, l – best allocation score

function ( ):

= ∞ // Initialize the best resource allocation score

= ∅ // Initialize an empty set for allocated resources

ℎ ( , ) :

> ℎ : // Check if the resource allocation is optimal

= { } // Assign the new best resource allocation

= // Update resource allocation score

== ℎ : // Handle case where allocation score matches best

= ∪ { } // Add resource to set if allocation score is equal

ℎ

, // Return the optimal resources and their allocation score

Algorithm 2.  Dynamic resource allocation for cloud processing.
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a consistent learning environment. This layer makes it possible to meet the goals of participation, feedback, and 
monitoring while keeping the successful and safe methods from earlier phases. It makes learning easy to get to, 
allows for continual learning, and lets us make changes quickly, even when resources are really limited.

Eq.n  10 establishes the strength of the system’s uptime and connectivity performance Cp even with the 
unstable state us of the network Nt.

	 Cp = us
(
Nt − at′ ′ )

+ ds
(
le′ − nw

)
*ss � (10)

That is, the amount of time at′ ′  the system is usable despite network outage/disruptions ds, and Eq. 10 is for 
ensuring that learning experiences le′ remain uninterrupted or usable, even when the network is weak nw or 
intermittent. This strength of the system ss should allow it to support learners who are accessing content in 
more remote locations and from continuous-data-expensive networks without replacing the quality of their 
teaching and learning environment.

This Eq.  11 defines how anomalies An in students’ behavior sb′  (e.g., disengagement, low activity) are 
detected by comparing the baseline pattern bl to real-time data.

	 An = sb′ (bl − is) = in
(
eb − pr′ )

*
[
rp′ − al

]
� (11)

The system can provide alerts to instructors is or can automatically suggest interventions in based on deviations 
from expected behavior eb. The Eq. 11 serves to keep students engaged while the system is being predictive pr′

and responsive rp′ to anything interfering with the ability to learn al, to keep a proactive approach to student 
support28.

This Eq. 12 represents the system’s capability Sc of remaining operational and online performance under 
imperfect network conditions, where poor network conditions can mean the system remains up for various 
amounts of time and down or disrupted at other times.

	 Sc = oRxc − fc
(
le − pr′ )

+ ii*rl
(
ol − bl′ ′

)
� (12)

Eq.12 involves the actual operational values Sc = oRxcand is for the purpose of facilitating continuity fc in a 
learning experience and movement (le − pr′ )to the learning in a poor often intermittent network environment 
ii. This resilience rl allows the system to operate and allow learning ol with learners who may be in remote or 
bandwidth-limited bl′ ′ situations while ensuring their education is not compromised.

The first part of the SLICED framework is data capture in the context of the learning environment, from IoT 
devices, including sensors and wearables, as shown in Fig. 6. The edge layer does preprocessing and filtering with 
the data and other processes to enhance relevancy and improve latency. The data is then transmitted through a 

Fig. 5.  Processing and real-time visualization after detection. Labeling, class tagging, and confidence scoring 
are applied to unified detection findings, which are GPS/context-synchronized for action triggers and user 
interface presentation.
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secure channel through AWS IoT Core. Data is encrypted while it is in transit, processed in real-time, and stored 
in a secure environment in AWS. Smart learning applications provide features like analytics dashboards, real-
time feedback, and custom content delivery based on the information collected while the student and teacher 
end users are interacting through simple-to-use, connected devices.

The SLICED platform makes learning safe by using a structured data flow. It does this by gathering data from 
IoT, filtering it at the edge, processing it in the cloud, and delivering material that changes based on what the 
system might need. It makes sure that communication is safe, learning feedback is smart, and responses happen 
in real time. By combining AWS Cloud with the Internet of Things, the system creates a dynamic, safe learning 
environment that is in line with educational goals. This helps the system get around problems it had before.

Implementation details
Dataset description
The “Smart Classroom IoT-Edge Dataset” on Kaggle is a simulated, real-time dataset representative of typical 
smart classroom environments powered by IoT and edge computing. In this study, the dataset is primarily used for 
simulation and validation purposes to evaluate the performance of the proposed SLICED framework. It provides 
multimodal interaction data generated by IoT sensors, mirroring real-world dynamics for behavior analysis, 
adaptive learning response, and environmental monitoring. This enables robust testing of anomaly detection 
models, resource allocation algorithms, and personalized content delivery mechanisms under practical, realistic 
conditions. The dataset supports benchmarking against existing methods by providing a standardized input for 
system response, security, and scalability evaluations, helping validate the effectiveness of SLICED in enabling 
secure, low-latency, and adaptive learning experiences29.

Tech stack

•	 AWS IoT Core – Enables secure device connectivity and communication between edge devices and the cloud.
•	 AWS Lambda – Provides serverless compute capabilities for real-time data processing and automation.
•	 AWS KMS (Key Management Service) – Ensures encryption and secure key management for protecting 

sensitive student data.
•	 Edge Devices (IoT-enabled sensors and hardware) – Used for real-time data collection, local processing, 

and initial filtering to reduce latency.
•	 Cloud Infrastructure (AWS Cloud) – Supports scalable storage, processing, and orchestration of learning 

resources.
•	 Adaptive Cloud–Edge Integration – Coordinates dynamic resource allocation and real-time responses to 

ensure uninterrupted, intelligent learning experiences.

AWS IoT Core was chosen for its strong device authentication and end-to-end encrypted connectivity, 
assuring data privacy and dependability from edge devices to the cloud. AWS Lambda enables real-time, 
serverless event processing, enabling the framework to automate adaptive learning actions instantly and 
scale without server maintenance. Industry-standard encryption and centralized key management protect 
sensitive educational data across remote resources with AWS KMS. Real-time classroom responsiveness 
requires early data filtering and latency reduction by edge devices. Cloud infrastructure provides seamless 
orchestration, scalable storage, and adaptive cloud–edge interaction for dynamic resource allocation and 
context-aware learning under varying loads.

Fig. 6.  End-to-end workflow for secure, adaptive smart learning. IoT data collection is followed by edge 
preprocessing, secure AWS cloud analytics, real-time output, and continuous feedback to optimize learning 
processes.
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Baseline models for comparison

•	 Traditional Cloud-Centric Learning Systems (centralized processing without edge filtering).
•	 Standard IoT-Based Architectures (basic sensor-to-cloud setups without adaptive resource management).
•	 Conventional Learning Management Systems (LMS) (without integrated cloud–edge security or real-time 

adaptability).
•	 Basic Encryption Models (standalone AES or RSA without AWS KMS orchestration).
•	 Edge-Only Computing Models (without cloud-based automation and scalability).
•	 Cloud-Only Processing Pipelines (lacking local edge preprocessing and latency reduction).

Simulation setup
The simulation used 50–100 edge nodes (IoT-enabled sensors) to represent student and instructor devices across 
several locations, simulating a real-world deployment. Traditional Wi-Fi (802.11ac) and simulated 4G cellular 
networks were used to measure latency and connection. System stability and peak-load behavior were tested 
over 24 h in each scenario. IoT Core controlled device connectivity, Lambda processed real-time events, and 
KMS safeguarded critical data transmission. DynamoDB and S3 housed user data and instructional materials, 
respectively, with CloudWatch monitoring resource utilization and system performance. User logins, frequent 
content access, and real-time streaming were system load criteria, with 500 simultaneous requests at peak. The 
simulation used Raspberry Pi 4 devices, AWS IoT Device Simulator virtual IoT nodes, and laptops to simulate 
classroom device diversity and improve reproducibility.

Using a variety of competing approaches (SL-IoT, LMS-IoT, PEF-En, R-BEC, H-Ed-AI, Cc-ELn, Azure IoT, 
Google Cloud IoT, and SLICED), the experimental protocol assesses four essential components of the Internet 
of Things–edge–cloud innovative learning architecture. Replaying similar workloads with up to 500 concurrent 
queries and determining the average end-to-end delay in comparison to a baseline for a non-Internet of 
Things learning management system (LMS) is how latency reduction is quantified. Data security evaluation is 
conducted using programmed attack scenarios, which yield a breach-attempt percentage. Lower numbers imply 
a higher level of protection. When aiming for edge filtering accuracy, it is necessary to inject labelled streams of 
relevant and noisy events at the edge, then calculate the fraction of data correctly maintained and the fraction 
eliminated. The strength of user authentication may be described as a composite score that combines attributes 
such as multi-factor authentication, token policies, and resistance to brute-force and credential-stuffing attacks. 
When taken as a whole, these studies provide a replicable, measurable foundation for evaluating and contrasting 
latency, security, edge intelligence, and access control across all implemented approaches.

Results
The eight measures of latency, data security, resource scaling, edge filtering accuracy, system response time, 
disruption resilience, automated processes, and good user authentication create a unique SLICED framework 
in this study. This would give us a view of the scalability, reliability, and overall performance of the SLICED 
framework idea when applied in real-world classrooms, when using AWS, Cloud, IoT, edge technologies to 
optimize reliable, safe online education.

Analysis of latency reduction
SLICED utilizes AWS Lambda and IoT Core to process data at the edge and help significantly reduce latency, 
creating ideal conditions for learners to receive immediate feedback and to keep their experience uninterrupted, 
as analyzed in Fig. 7. For many learners, especially in parts of the world with slow internet access or learners 
who may not be near cities, this is incredibly beneficial, using Eq. 13. As a corollary, 27% latency reduction was 
realized by the system, which improved responsiveness in live learning sessions and reduced the average time 
taken to execute a task to 248 m/s from the previous 340 m/s.

The below Eq.  13 measures the latency reduction Lr of the SLICED system over standard systems, by 
assessing the average aa′ difference in the time required tr to acquire data and the time required to process 
data.

	 Lr =
(
aa′ − tr

)
+ qltr

(
rt − ot′ )

*dt
(
Et′ − pr

)
� (13)

The goal is to quantify latency reduction qltr in Eq. 13, which makes it possible to go beyond latency reduction 
into the real-time rt optimality of the SLICED system qltr (rt − ot′ )by focusing on how data transmission dt 
and processing time dt (Et′ − pr)can be minimized.

Analysis of data security
SLICED utilizes AWS KMS for encryption and communicates through secure IoT Core channels as a means of 
keeping student data safe when in transit and storage, as illustrated in Fig. 8. To provide further protection to 
the system, real-time authentication adds another layer of security. The purpose of these security features is to 
minimize the chance of a data leak. Results indicated a 33% improvement in data security metrics and a 61% 
reduction in attempted unauthorized access by Eq. 14 when compared to baseline cloud learning systems.

This Eq. 14 determines the security score ss for data transfer across the SLICED system.

	 ss = dt (ef − sm) +
(
au′ − lba

(
hd − pt′ ′ ))

� (14)
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Fig. 8.  Data security analysis based on breach attempt percentages across smart learning methods. SLICED 
shows the lowest breach attempt rate, indicating superior data security compared to existing frameworks and 
major IoT platforms.

 

Fig. 7.  Latency reduction analysis for various IoT-enabled smart learning frameworks. SLICED demonstrates 
the lowest latency among compared methods, highlighting its effectiveness in minimizing end-to-end 
processing delays.
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The above Eq.  14 calculates the breach attempts out of total data transactions dt and can show some 
effectiveness ef  of security mechanisms sm including encryption and authentication au′ , i.e., a lower 
breach attempts lba percentage indicates higher data security hd, which highlights SLICED’s encryption 
policies (au′ − lba (hd − pt′ ′ )), and secure cloud processing mechanisms for data security.

Analysis of resource scalability
SLICED leverages demand-based resource allocation and scalability while managing AWS cloud and edge 
resources are examined in Table 2. With the serverless structure and seamless integration of Lambda triggers, 
the platform is able to allocate resources based on traffic, optimizing resource utilization during peak traffic 
periods using Eq. 15. This flexibility allowed for an overall better cloud resource utilization of 40%, with idle 
resource time decreased by 25%, which guarantees cost-effectiveness and ensures system redundancy across 
different user loads.

Eq. 15 measures how scalable a resource Scr is by comparing the resources allocated ra to the resources 
actually used.

	 Scr = ra
(
ef ′ − ru′ ′ )

+
(
ls − gfa′ ′ )

* (sc − vg)� (15)

A high score indicates efficient ef ′ usage of resource ru′ ′ , while a low score ls may indicate that the resource(s) 
are over-provisioned, as mentioned in Eq. 15. For SLICED, this equation is used to assess whether the system is 
capable of scaling dynamically (sc − vg) to meet usage demand (from low to high loading) while minimising 
the use of cloud resources, because managing cloud resources is an important aspect of scalability (ls − gfa′ ′ )
to a growing education system.

Analysis of edge filtering accuracy
SLICED applies edge filtering to discard redundant data prior to coming to the cloud, leading to better analytics 
and better decisions in Fig. 9. This is how effective edge data processing is accomplished with SLICED. SLICED 
improved data accuracy up to 29% in tests, especially in noisy situations with a variety of connected sensors, 
giving educators and school administrators more confidence in their decisions by Eq. 16.

This Eq. 16 determines the accuracy ac of edge filtering ed, assessing the processed (filtered) data in relation 
to the raw data inputs.

	 ac = ed (me − rd) + fl
(
sd′ − ca′ ′ )

*ab − cb′ � (16)

The purpose of Eq. 16 is to measure the efficacy me of irrelevant or redundant data rd filtration at the edge level 
fl, ensuring that the most salient data sd′ are sent to the cloud for analysis ca′ ′ . This gives the system, both 
cloud and edge ab, the ability to conserve bandwidth and processing capabilities cb′ .

Analysis of system response time
AWS Lambda implements event-driven architecture which SLICED utilizes for fast execution of student 
engagements, whether submitting quizzes or accessing content; as a result, wait times were halved shown in 
Table 3. when matched against centralized architectures, the system examines a 20 desires need 20% improvement 
response time, jeb.js Ajax polling average time for query processing Puente a range of306 with average query 
funding with Eq. 17. Auto completion 312ms to 250ms, which allows for more directed and smoother digital 
learning.

This Eq. 17 quantifies system response time srt′ ; it measures time from the moment the input data ipis 
acquired when the response is produced by the edge nodes en′ .

	 srt′ =
(
ip

(
hq′ − rt

))
+ cd′ (

Sef − rt′ )
*Oz′ ′ � (17)

A low response time indicates that the system is of high quality hq′  in terms of SLICED, the system want to 
minimize response time such that real-time learning interactions (ip (hq′ − rt)) by Eq. 17, such as adaptive 

Method Resource Scalability (%) Relevant/Impact

SL-IoT 70 Limited scalability with fixed hardware, struggling with growing load.

LMS-IoT 75 Moderate scalability, and challenges with scaling in real-time applications.

PEF-En 80 Improved scalability with edge devices, and still limited for large-scale systems.

R-BEC 85 Higher scalability and requires significant cloud-based infrastructure.

H-Ed-AI 82 Scalable and dependent on centralized AI for scaling.

Cc-Eln 78 Moderate scalability due to centralized resources.

Azure IoT 88 Scales efficiently for enterprise/hybrid workloads and seamless Microsoft integration

Google Cloud IoT 86 High data and device scaling, excels for analytics-heavy workloads.

SLICED 90 High scalability through dynamic cloud-edge resource management.

Table 2.  Comparing smart learning with IoT resource scalability. With 90% scalability, dynamic cloud-edge 
resource management makes SLICED the best choice for flexible and large-scale deployments.
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content delivery cd′ or student feedback Sef , happen in real time rt′ , and optimize Oz′ ′  a better user 
experience and system efficiency.

Analysis of connectivity resilience
SLICED uses offline caching and edge processing to maintain learning even in settings with interrupted 
connectivity is analysed in Table 4. All data will sync when connection is re-established. However, during in-class 
monitoring, this method kept the system available 96% of the time (even only using simulated low bandwidth), 
and automatically recovered in less than 2.5 s using Eq. 18.

Eq.  18 provides a metric for connectivity resilience Cr, which indicates how well our system is still 
functioning in the face of changes to the network conditions NC  (stable, weak, or interrupted).

	
Cr =NC

∑
2
||hr||

ˆ n

i

||ai (∀ cf − ∂ ro)|| − ||nu |To + Cs||| � (18)

A high resilience score indicates that some resilience | |hr| is constructed into the system that allows it to absorb 
interruptions ai using Eq. 18 and continue functioning ∀ cf , meaning that, for example, the SLICED platform 

Method System response time (ms) Relevant/impact

SL-IoT 450 ms Long response time due to dependence on central cloud processing.

LMS-IoT 430 ms Moderate improvement, and real-time data still causes delays.

PEF-En 420 ms Reduced response time, and still limited by cloud processing.

R-BEC 500 ms Slower response time due to poor infrastructure design.

H-Ed-AI 470 ms Response time is slower due to dependence on AI models.

Cc-Eln 490 ms Relatively slow, requiring multiple data transfers.

Azure IoT 250 ms Fast hybrid processing; improved response via edge/cloud integration.

Google Cloud IoT 220 ms Accelerated data flow, optimized pipeline; excels in analytics-heavy tasks.

SLICED 150 ms Fast response due to edge processing, reducing cloud load.

Table 3.  IoT vs. smart learning system reaction time. Efficient edge processing gives SLICED the quickest 
system response at 150 ms, beating cloud-centric and standard IoT frameworks.

 

Fig. 9.  Edge filtering accuracy across smart learning and IoT architectures. SLICED achieves the highest 
filtering accuracy, demonstrating superior data preprocessing performance compared to contemporary 
educational and cloud IoT solutions.
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can remain operational ∂ ro while the network is unstable nu, rather than terminating operationally To. The 
SLICED platform must allow the learner to maintain consistent access Cs to learning content, rather than an 
interruption ||nu |To + Cs|||in access to content, causing disruption in learning.

Analysis of automation efficiency
SLICED automates many processes with AWS Lambda, including logging, data backup, and issue creation. 
Therefore, it enables the platform to develop and respond to end-user needs quicker, with less human disruption 
shown in Table 5. With automation, the framework decreased human error by 45% and decreased time processing 
data manually by 37% by Eq. 19 and this made operations smoother for the administrators and the instructors.

Eq.19 quantifies the efficiency obtained from automation by comparing the time on manual work with the 
time saved with automation (Ca).

	 (Ca) = ts − ie + cf , (dp × cp) + Ap−1 (dc)� (19)

This is intended to show time saved tsand improved efficiency ie with automation to cloud functions cf such as 
data processing dp and content personalization cp by Eq. 19. In the case of SLICED, automation Ap−1 provides 
timeliness and more accurate decisions (dc), improved user experience and impact of the system overall.

Analysis of user authentication strength
The SLICED user verification process implements multi-factor authentication within AWS Identity and IoT 
regulations, which in turn prevents impersonation and unauthorized access. There will be secure access for 
both students and staff due to this process, illustrated in Fig. 10. The SLICED authentication model surpassed 
baseline models, which showed an average of 81% accuracy in creating a valid user authentication for students 
and staff, as there was a demonstrated authentication success rate of 98.6% in evaluations by Eq. 20, showing 
further verification that the SLICED platform satisfied the integrity and compliance measures of secure learning.

Eq. 20 measures the strength of the user authentication mechanism U (ai).

	
U (ai) =

∑
n
i=1Sa (at) × hr − ap (ua (pr − sc) − nat)� (20)

Method Automation efficiency (time saved/error rate) Relevant/impact

SL-IoT  80 s saved/15% error rate Basic automation with limited optimization, resulting in errors.

LMS-IoT  85 s saved/10% error rate Some automation, and errors still occur, reducing system efficiency.

PEF-En  90 s saved/18% error rate Automation improves and at the cost of higher error rates.

R-BEC  75 s saved/20% error rate Poor automation features, high error rate reduces overall efficiency.

H-Ed-AI  95 s saved/12% error rate Increased automation, fewer errors and still dependent on manual input.

Cc-ELn  70 s saved/22% error rate Limited automation with higher error margins.

Azure IoT  105 s saved/7% error rate Efficient automation, good scalability; modest error under high concurrency.

Google Cloud IoT  98 s saved/9% error rate High concurrency management, scalable autoscaling, moderate error rate.

SLICED  120 s saved/5% error rate Highly efficient automation, minimizing errors and maximizing efficiency.

Table 5.  Automation efficiency and impact analysis of various IoT-enabled smart learning methods. The table 
summarizes time saved and error rates, showing SLICED offers the greatest automation efficiency and lowest 
errors among all compared frameworks.

 

Method
Connectivity Resilience (Uptime%)/Reconnection 
Delay (s) Relevant/Impact

SL-IoT 90% uptime/3 s delay Vulnerable to network disruptions, limited to local connectivity.

LMS-IoT 92% uptime/2.5s delay Improved resilience, and still dependent on cloud availability.

PEF-En 88% uptime/4 s delay Struggles with weak network, longer reconnection times.

R-BEC 85% uptime/5 s delay Poor resilience to network instability and delays in reconnection.

H-Ed-AI 91% uptime/2.7s delay Moderate resilience, and performance degrades in poor conditions.

Cc-ELn 87% uptime/4.5s delay Network resilience challenges, especially in low bandwidth regions.

Azure IoT 96% uptime/1.8s delay Advanced cloud-based redundancy with per-device recovery, rapid 
reconnection in hybrid mode.

Google Cloud IoT 94% uptime/2 s delay Strong global network; effective fail-over and automated scaling, 
moderate reconnection.

SLICED 98% uptime/1 s delay Excellent resilience, real-time recovery even in weak network conditions.

Table 4.  Evaluation of smart learning framework connectivity resilience. Compare uptime percentages and 
reconnection delays, and SLICED has the strongest operational resilience and fastest recovery, exceeding IoT 
and cloud-based techniques.
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More specifically, it measures the percentage of successful authentications Sa (at), A where the higher result hr

indicates a better authentication process ap since this means fewer unauthorized access ua attempts through 
utilization of equtaion 20. This is important in the SLICED system because privacy pr and security sc are 
very important for the individuals whose data are contributed. This metric helps the system ensure that non-
authorized users nat are not able to access protected learning materials and personalized learning content. 
Eight metric variations of performance improvement included a 27% reduction of latency, a 33% enhancement 
of security, and a 20% boost of responsiveness; collaboration further improved by automation, authentication, 
and filtering accuracy; cloud edge collaboration provided resiliency and coordinated scalability of resources. 
Collectively, these confirmations substantiate the conclusion that SLICED effectively provides a contemporary 
educational transformation with a safe, efficient, and flexible learning systems infrastructure.

Discussion
This paper presents the proposed system, SLICED, as a practical, scalable, and secure solution for digital 
learning spaces. This study uses simulated environments rather than live deployment of SLICED, which 
has 27% lower latency, 33% better data security, and 20% faster response than centralized solutions. AWS’s 
unique infrastructure, anticipated operational expenses, and limited generalizability without field testing are 
major restrictions. Real-world deployment pilots across varied schools will test the platform’s scalability, cost-
effectiveness, and robustness under varying network conditions. SLICED will add AI-enabled analytics for real-
time personalization, systematic blockchain-based security testing for distributed classrooms, and multilingual 
support. The platform will also test privacy-preserving and federated learning models in stringent security 
environments to address data governance and global educational compliance. Integrating AI-enabled analytics 
for personalized learning and blockchain-enabled distributed ledgers for infrastructure security may enhance 
the SLICED experience. The proposed system could make learning more immersive by utilizing augmented or 
virtual reality technologies. Another benefit to consider is providing multiple languages to learners at once to 
diversify access for potential users of the SLICED platform. From there, the system could assess how successful 
the SLICED process is and how scalable it is in other learning contexts, such as schools in developing countries 
or large university communities. The system could even examine more rigid security environments in addition 
to privacy-preserving models and federated learning. With the improvements above, SLICED may become a 
pivotal component in smart education.

The SLICED design revealed statistically significant advantages compared to all baselines. By achieving the 
lowest mean latency (about 242 milliseconds, with a standard deviation of approximately 9 milliseconds), it 
outperformed both the conventional SL-IoT (approximately 320 milliseconds) and the major cloud platforms, 
such as Google Cloud IoT (approximately 249 milliseconds). The accuracy of edge filtering achieved around 
96%, which is significantly higher than the 85–92% achievable by competing approaches. This indicates that 
redundant data was removed with greater precision before cloud upload. The results of the security tests 
demonstrated that SLICED prevented approximately 97% of programmed breaches and achieved the highest 
composite authentication-strength score (approximately 21/25). This substantiates that its performance 
enhancements do not compromise confidentiality or access control.

Limitations
Evaluation context and deployment assumptions are fundamental SLICED restrictions. First, the gains in latency, 
security, and responsiveness may not apply to all school infrastructures and user behaviors, as the findings 
are from controlled simulations rather than long-term production rollouts. Second, AWS reliance restricts 
mobility, cost modeling, and application in legislative or procurement-restricted areas. Third, operational costs, 
edge-device heterogeneity, and network unpredictability in low-resource environments are poorly understood. 
Advanced extensions (AI analytics, federated learning, blockchain, AR/VR, multilingual support) are planned 
yet untested.

Fig. 10.  User authentication strength analysis for different IoT-based frameworks. SLICED demonstrates the 
highest authentication strength, highlighting its enhanced capability for secure access control in smart learning 
systems.
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Data availability
The data used in this research are available in the following links: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​z​i​y​a​0​7​/​s​m​a​
r​t​-​c​l​a​s​s​r​o​o​m​-​i​o​t​-​e​d​g​e​-​d​a​t​a​s​e​t​.​​
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