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This paper investigates wave propagation in microstretch thermoelastic solids incorporating the two-
temperature theory, which models heat conduction using two distinct temperature fields to better
capture microtemperature effects. We identify and analyze seven distinct wave types: longitudinal
displacement (LD), thermal (T), microstretch (LM), longitudinal microtemperature (LT), coupled
transverse displacement (CD-I), transverse microrotational (CD-Il), and transverse microtemperature
(CD-lll) waves. For each wave type, we derive explicit expressions for phase velocity, attenuation
coefficient, penetration depth, and specific loss, highlighting how these parameters vary with the two-
temperature effects. Our results demonstrate that incorporating microstretch and microtemperature
fields leads to significant changes in wave characteristics, including the emergence of new wave modes
and modified attenuation behavior compared to classical models. Graphical presentations illustrate
these effects quantitatively, with phase velocity and attenuation variations changes under varying
two-temperature parameter regimes. Additionally, special limiting cases of practical interest are
discussed. The findings offer new insights for advanced material design and non-destructive evaluation
in microstructured thermoelastic solids.

Keywords Microstretch, Microtemperatures, Two temperatures, Phase Velocity, Attenuation coefficient,
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Eringen' introduced the theory of microstretch elastic solids, where material points can undergo independent
stretching and contraction in addition to translations and rotations. In this theory, each material point is
endowed with three deformable directors, constrained to exhibit only breathing-type microdeformations. The
theory of thermo-microstretch elastic solids was further developed by Eringen®. Examples of microstretch solids
include composite materials reinforced with chopped elastic fibers, porous media saturated with gas or inviscid
liquids, asphalt, and solid-liquid crystals.

The concept of microtemperatures in elastic solids originated from the works of Eringen 3, Grot*, Wozniak>®,
Iesan”®, and Iegsan and Quintanilla®!?. Classical continuum theories often fail to adequately describe size-
dependent phenomena and nanoscale effects observed experimentally. The microtemperature theory
addresses these limitations by introducing additional thermal variables that depend on the microcoordinates
of microelements within the material. This approach allows for the study of size effects and complex
thermomechanical coupling relevant to applications in nanotechnology, engineering, and geophysics. The
thermodynamics of microstructured materials with microtemperatures was formulated by Grot*, who extended
classical balance laws and the Clausius-Duhem inequality to include microtemperature effects.
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Riha!! studied heat conduction in materials with microtemperatures, demonstrating close agreement
between theoretical predictions and experimental data on materials like silicone rubber with aluminum particles
and human blood. Subsequent works by Iesan and Quintanilla’, Magafia and Quintanilla'?, Noelia et al.!3,
Liu and Quintanilla’®, and Ahmima and Fareh!® have further developed thermoelastic models incorporating
microtemperature fields. Recent studies by Kaushal and Singh!® and Kaushal et al.!” have advanced thermoelastic
wave theories by examining refracted waves in microstretch media with two-temperature coupling and analyzing
wave propagation effects in micropolar elastic media with voids and non-free surfaces.

Thermoelasticity with two temperatures is a notable non-classical theory of thermodynamics in elastic
solids, distinguishing between two distinct temperature fields: the conductive temperature () arising from
thermal processes, and the thermodynamic temperature (T) related to mechanical processes'®. Chen et al.!’
formulated a thermoelastic theory involving these two temperatures, incorporating a material parameter a that
characterizes their coupling. This two-temperature model has been widely used to predict electron and phonon
temperature distributions in ultrashort laser processing of metals and other advanced applications. More
recently, Abouelregal?® and other researchers have extended this model to include higher-order time derivatives
and phase-lag effects.

Several researchers have investigated wave propagation in thermoelastic media incorporating two-temperature
and microstretch effects. Youssef?! developed wave propagation theory in generalized porothermoelasticity with
two-temperature effects, while Hou et al.?? studied reflection and transmission of inhomogeneous plane waves
in thermoporoelastic media using two-temperature heat conduction equations. Our study distinguishes itself by
integrating the microstretch continuum theory with microtemperature fields and the two-temperature model,
enabling the analysis of new wave modes and complex thermomechanical couplings that previous models did
not consider.

Wave phenomena have been widely studied by researchers such as Vlase et al.**4, Marin et al.>>?¢, Sharma
and Khator?”?, Kaushal et al.?*°, Yadav et al.*!, Kumar et al.*>-*, Ahmed and Ali*, Debnath and Singh®,
and Lotfy et al.*” who have explored wave propagation under various generalized thermoelastic, micropolar,
and non-local theories. Achenbach® investigated wave reflection and refraction behavior under three different
thermoelastic theories, focusing on bidirectional coupling between longitudinal elastic waves and thermal
fields in advanced materials. They examined the thermomechanical model effects on wave amplitudes and
transmission characteristics®>°.

The applications of microtemperature and microstretch theories span across microelectronics, biomechanics,
aerospace, geomechanics, and wave propagation in materials where classical thermoelastic models fail. These
theories enable realistic modeling of finite thermal wave speeds, microscale heat transfer, and thermomechanical
coupling, with practical implications in smart actuators, energy harvesting devices, geothermal systems, seismic
response prediction, aerospace structures, and biomedical tissues*!42.

In this paper, we investigate the propagation of plane waves in microstretch thermoelastic solids incorporating
microtemperatures and two-temperature effects. We analyze the influence of these effects on the phase velocity,
attenuation coefficient, specific loss, and penetration depth of longitudinal displacement (LD), thermal (T),
microstretch (LM), longitudinal microtemperature (LT), and coupled transverse waves (CD-I, CD-II, CD-III).
The results are presented graphically over frequency ranges, highlighting novel wave modes and coupling effects
arising from the integrated microstretch and two-temperature framework. Particular cases of interest are also
discussed.

Basic equations

Following Eringen® and Iesan’, the field equations for a homogeneous, isotropic microstretch thermoelastic solid
with microtemperatures and two temperatures without body forces, body couples, stretch force, heat sources,
and first heat source moment are given as:

2
A+2u+K)WV(Vau) — (u+ K)V x (Vxu)+ K (VX)+ Ve —VVT:p%T’;L, (1)
Reatt)
(@+B8+7)V(Vip) =7V x (VX 9) + K(V xu) = 2Kp—pa(V x w) = pj 5z )
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2 0 1o} " ow
keV w + (k4 + ks)V(V'w) + M1§(V X QD) — uza(vw ) — bg — kow — k3VT = 0, (5)
where

T =(1-aV?)o. (6)
where K, o, B\, qo, Ao, A1, 1, B2, Jo, k(i =1, e ,6) are constitutive coefficients. w is the

displacement vector, ¢ is the microrotation vector, w is the microtemperature vector and ¢* is the microstretch
scalar, p is the density, j is the microinertia, ¢* is the specific heat at constant strain, K™ is the thermal
conductivity, T" is the thermodynamic temperature, ® is the conductive temperature, Ty is the reference
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temperature, a is a two temperature parameter, v = (3\ + 2u + K) ar, , v1 = (3A+2u + K) ar, , where
ar,, o, are the coefficients of linear thermal expansion. The main coefficients, constants, and parameters
used in this study are summarized in Appendix I (Table A1 (Nomenclature)), along with their physical meanings
and roles in wave propagation.

Formulation of the problem
A homogeneous, isotropic microstretch thermoelastic solid with microtemperatures and two temperatures is
considered.

The displacement vector, microtemperature vector, and microrotation vector for the two-dimensional case
are taken as

u = (w1 (z1,23), 0, uz (w1,23)), w= (w1 (z1,23), 0, w3 (z1,73)) ¢ = (0, w2 (z1,23), 0) (7)

For convenience, the following dimensionless quantities have been considered

* * 1
(¢1,25) = (21, 23) 7 (w1,u3) = (w1, u3) T, 02 = 92,97 = ¢7,a' = T5a. (8)
The displacement components and microtemperature components are related to the potential functions in
dimensionless form as*>#
0 0 7] 0
oo O 09 W
6$1 6%3 85133 8x1 (9)
dp1 Oy _ Op; n O
) —

- 61‘1 (9I37 ws = 6‘1'3 61‘1 ’

Making use of dimensionless quantities defined by Eq. (8) in Egs. (1)-(5) and with the aid of Egs. (6), (7) and
(9), the following equations are obtained

2
[(a1 +1)V? —a5;2]¢+a3¢* —as(1—aV?)® =0, (10)
62
[V — a5 8t2]¢ + az2p2 = 0, (11)
82
[V? — 2a6 — as a9 — asV3 + a7 V3, =0, (12)
2
[V2 — aio — a13 8t2] a11V290 - algv%l +ag(l— aV2)<I> =0, (13)
0 o™ 1o}
[V - a14(1 —aV? )(‘%] — ais (,;i — 16 8tv2g0 + a17V2g01 =0, (14)
0 ™
[VQ(I + alg) — a21 — a23f]<p1 — a0 12 — a22(1 — CLVQ)(I) = 0, (15)
ot ot
Op2
[V? —az1 — 235, ]dil + 19— 5% 0, (16)

where the values of a; are defined in Appendix II.
In all the above relations and equations, the primes have been suppressed.

Solution of the problem
The solution of Egs. (10)-(16) is assumed of the form

(@, 0", ®, ¥, w2, Y1, 1) = (P,¢", 3,9, G2, Y1, ¢1) explu(E(arls + x3ls) — wi)], (17)

where @, 0*, &, v, go, U1, @1 are undetermined amplitudes that are independent of time ¢ and coordinates

Zm(m = 1, 3),w is the frequency and £ is the wave number. [;, ¢ = 1, 3 are the direction cosines of the wave
normal to the x123— plane satisfying the relation I3 + I3 = 1.
Making use of Eq. (17) in Egs. (10), (13), (14) and (15), we obtain,

[—aie® + asw?] P 4as " —as(1 +a€®) $ =0, (18)
[—€% — a10 + a13w’] " +a116% P +a126” 41 +ao(1 + a€®) d = 0, (19)
[—€% + taraw(1 + a€?)] & 41w ars " —a16wE> P —a176> g1 = 0, (20)
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[—(a1s + 1)52 — a21 + tazsw] @1 +agotw tp_* —az2(1+ a§2) ® =0. (21)

The above equations will have a non-trivial solution if and only if the following determinant vanishes

—a}€? 4 asw? as 0 —as(1+ a€?)
ané’ a1sw” — €2 — axo a12€? ag(1 + a&?) =0. (22)
—a16LwE? a1sLw —&%a17 [752 + araw(1 + a§2)] e
0 Lwasg a3iw — az1 — E2alg —aga(1 + af?)
By solving Eq. (22), we obtain the following polynomial equation in &
P+ P’ + B + Fad® + F5 =0, (23)

where the values of Fj are given in Appendix III.

Solving Eq. (23), the eight roots of & are obtained, in which four roots &1, &2, £3 and &4 correspond to
positive 3 — direction and other four roots —&1, —&2, —&3 and —&4 correspond to negative 23— direction. The
roots &1, &2, &3 and &4 corresponds to four waves in descending order of their velocities i.e. LD-wave, T-wave,
LM-wave and LT-wave.

Making use of Eq. (17) in Egs. (11), (12) and (16), the following equations are obtained

(&% + asw”] Y +as g2 = 0, (24)
(€% — 2a6 + asw®] @2 +act” ¢ —az&? 1 = 0, (25)
[—52 —+ ta23w — a21] 1/71 —lwaig P2 = 0. (26)

The above equations will have a non-trivial solution if and only if the following determinant vanishes.

—52 + azw? as 0
a6§2 —52 — 2a6 + agw? —a7§2 =0. (27)
0 —a19lw —&% — az1 + azzw

The Eq. (26) gives the following polynomial equation in §

£+ Fot* + Fr&® + Fy = 0, (28)
where
Fs = — (a5 + as)w” — (a23 + araio)uw + az1 + as(2 — az),
Fr; = fa5w2(a21 — A3 — agw? + 2ag — araigw) + (2a¢ — asw? — azae)(a21 — azstw),
Fr = fa5w2(2a6 — ang)(agl — a3tw).

Solving Eq. (28), we obtain six roots of , in which three roots £1, &2 and &3 correspond to positive 23— direction
and other four roots —£1, —&2 and —&3 correspond to negative £z — direction. Corresponding to roots £1, &2
and &3 there exist three waves in descending order of their velocities, namely CD-I wave, CD-II wave and CD-III
wave.

The numerical computations required for solving the characteristic equations and evaluating wave parameters
such as phase velocity, attenuation coefficient, specific loss, and penetration depth were carried out using
MATLAB. Root-finding routines were employed to determine complex wave numbers for different modes*.

Phase velocity
The phase velocity of a wave describes the speed at which a particular phase of the wave (e.g., a crest) propagates
through the medium. It is a fundamental parameter characterizing wave propagation in thermoelastic solids and
directly influences energy transport and signal timing.
Mathematically, the phase velocities of the different wave modes are defined as
Vie —Y . i=1,2,34,56,7 (29)
K3 | Re (é—l ) | ) ’ ) ) ) ) )

where.

Vi, Vo, Vs, Viu, Vs, Vs, V7 are the phase velocities of LD, T, LM, LT, CD-I, CD-II and CD-III waves
respectively.

The detailed understanding of phase velocity is crucial as it governs wave dispersion and energy propagation
in complex media. Classic references such as*® and* provide foundational insights into elastic wave mechanics
and thermoelastic wave propagation, which serve as theoretical underpinnings for this study.
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Attenuation coefficient:

Attenuation coefficients quantify the exponential decay of wave amplitude due to material damping and
scattering mechanisms. For each wave type, the attenuation coefficient is given by the imaginary part of the
complex wave number:

Qi=Im(&); 1=1,2,3,4,5,6,7 (30)

where.

Q1, Q2, Q3, Q4, Qs, Qs, Q7 are the attenuation coefficients of LD, T, LM, LT, CD-I, CD-II and CD-III
waves respectively.

Accurate estimation of attenuation is essential for understanding energy loss and signal weakening in
materials.

Specific loss o

The ratio of energy (W) dissipated in taking a specimen through a stress cycle, to the elastic energy (W) stored
in the specimen when the strain is maximum, is defined as specific loss. It is the most direct method of defining
internal friction for a material. For a sinusoidal plane wave of small amplitude, Kolsky44, shows that the specific
loss (W /W) equals 47 times the absolute value of the ratios of imaginary part of £ to the real part of €, i.e.

Im(&;)
Re(&:)

R; = (7)2 =4

T :i=1,2,3,4,5,6,7 31)

This parameter is widely used in material characterization, nondestructive testing, and seismic wave analysis.

Penetration depth
The penetration depth indicates how far a wave can travel before its amplitude decays to 1/e of its original
magnitude due to attenuation. It is defined as

1
Si=———; 1=1,2,3,4,5,6,7 32
T (&,)] (32

This parameter is significant in applications involving thermal and mechanical wave propagation where energy
localization and dissipation play critical roles.

Particular cases

(i) If the two-temperature effect is neglected in Eq. (22), we obtain the phase velocity, attenuation coeflicient,
penetration depth, and specific loss for a microstretch thermoelastic solid with microtemperatures, and the
results will be the same as obtained by Kumar et al.*?

(ii) If the microtemperature effect is neglected in Eq. (22), we obtain phase velocity, attenuation coefficient,
penetration depth, and specific loss for a microstretch thermoelastic solid with two temperatures, and the
results will be the same as obtained by Kumar et al.*>.

(iii) When the effect of microstretch is removed in Eq. (22), the phase velocity, attenuation coefficient, pene-
tration depth, and specific loss for a thermoelastic solid with two temperatures and microtemperatures are
obtained.

Numerical results and discussion

For numerical computations, the material constants were taken from previously established sources: micropolar
constants from Eringen?, thermal parameters from*®, microstretch parameters from*’, and microtemperature
parameters from*%°. All calculations were carried out using MATLAB routines. The values of micropolar
constants are taken from Eringen*:

A=94x10"°Nm ™2 p=40x10"°Nm™2 K =1.0x 10"°Nm™2,v =7.79 x 107'°N,
§=2x10""m? p=1.74 x 10* Kgm ™2,
and thermal parameters are taken from*S:
¢F=1.04x10° NmKg "K', Tp =298 K, K* = 1.7 x 10° Nsec 'K ™', a = 0.5 m>.

Microstretch parameters are taken as*’

jo =019 x 107 "m?, by =4.5 x 107 *°N | lambdao = 2.1 x 10" Nm ™2, lambda; = 0.7 x 10*° Nm ™2,
ap=0.8x10"°N,
nu1 = 0.005 x 107°K,

and microtemperatures parameters are taken as?34°

Scientific Reports |

202515:43816 | https://doi.org/10.1038/s41598-025-31454-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Y WST(a=0)

Fig. 2. Variation of phase velocity V2 (ms™) with frequency w(Hz).

ki =0.35 x 10"°Ns™*, ko = 0.45 x 10'°Ns™*, ks =0.55 x 10"°NK 's™ ky = 0.65 x 10"°Ns™'m?,
ks = 0.76 x 10'°Ns™*m?, k¢ = 0.96 x 10'°Ns ™ m?, pu1 = 0.85 x 107 °N, po = 0.95 x 107 °N,
b=4.5x 10°N.

The graphical representation of results, including 3-D plots, was prepared using OriginPro for clear visualization
of the variation of these parameters with frequency and material constants.

To illustrate the influence of the two-temperature parameter, the results are presented for both cases
in Figs. 1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20: (i) microstretch thermoelastic solids
with microtemperatures and two temperatures (MST) and (ii) microstretch thermoelastic solids with
microtemperatures but without the two-temperature effect (WST).

Phase velocity (Figures 1, 2, 3, 4, 5)

The variations of phase velocity with frequency are illustrated in Figs. 1, 2, 3, 4, 5. Collectively, these results reveal
that the inclusion of two-temperature effects consistently enhances the propagation speed of different wave
modes. In the MST case, the phase velocity curves often exhibit oscillatory behavior, while the corresponding
WST curves display more monotonic trends. This difference highlights the role of two-temperature coupling in
introducing additional dispersion into the system. For example, the LD, LM, and LT wave velocities increase more
rapidly with frequency under MST compared to WST, reflecting the stronger thermo-mechanical interaction.
Moreover, the relative ordering of wave speeds is preserved, but the magnitude of separation between modes
becomes more pronounced in the presence of two temperatures. Overall, the figures collectively demonstrate
that the two-temperature effect accelerates the transmission of energy through the medium and modifies
the dispersion characteristics. The increase in phase velocity under MST conditions is not just a numerical
observation but a direct consequence of the enhanced thermo-mechanical coupling introduced by the two-
temperature theory. In this framework, conductive and thermodynamic temperatures interact differently with
the lattice vibrations, effectively stiffening the medium and reducing thermal relaxation delays. As a result,
elastic waves propagate faster because the material responds more coherently to applied oscillations. Oscillatory
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P72 MST(a=0.5)
WST(a=0)

Fig. 4. Variation of phase velocity V; (ms™') with frequency w(Hz).

EZ2MST(V,)
Y MST(V,)
B MST(V,)

Fig. 5. Variation of phase velocity Vs (ms™!) with frequency w(Hz).
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MST(a=0.5)
WST(a=0)

Fig. 7. Variation of attenuation with frequency w(Hz) coefficient Q2 (m™!) with frequency w(Hz).

Fig. 8. Variation of attenuation coefficient Q3(m™).

patterns in phase velocity further indicate resonance-like interactions between mechanical waves and internal
microtemperature fields, which are absent in the WST case.

Attenuation coefficient (Figures 6, 7, 8, 9, 10)

The attenuation coeflicients for the different wave modes are shown in Figs. 6, 7, 8, 9, 10. Taken together, these
results demonstrate that the MST case generally exhibits higher attenuation compared to WST, confirming
that two-temperature effects amplify dissipative processes. While some modes (e.g., LD and T waves) show
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ST(a=0.5)

MST(Q,)
R MST(Q,)

Fig. 11. Variation of specific loss R1 with frequency w(Hz).

a monotonic increase in attenuation with frequency, others display oscillatory or non-monotonic trends. This
behavior indicates the presence of competing mechanisms: energy dissipation through microtemperature fields
and dispersion effects due to microstretch coupling. The MST case shows stronger fluctuations, particularly at
intermediate frequencies, which may be attributed to resonant interactions between thermal and microstructural
modes. These results underscore the fact that two-temperature coupling does not simply increase attenuation
uniformly but also modifies the qualitative frequency dependence of energy dissipation. The higher attenuation
observed in MST arises from additional pathways for energy dissipation. Two-temperature theory introduces
a nonequilibrium between thermodynamic and conductive temperatures, causing repeated energy exchange
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Fig. 12. Variation of specific loss R2 with frequency w(Hz).

Fig. 13. Variation of specific loss R3 with frequency w(Hz).

Fig. 14. Variation of specific loss R4 with frequency w(Hz).

between lattice vibrations and thermal carriers. This mismatch acts as a damping mechanism, increasing
wave energy absorption. Oscillatory attenuation curves reflect frequency ranges where this energy exchange
is especially strong, suggesting possible resonances between the thermal relaxation time and wave frequency.
Thus, the MST case reveals more complex damping phenomena than WST, where only a single thermal field
governs attenuation.
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MST(S,)
MST(S,)
B2 MST(S,)

Fig. 15. Variation of specific loss Rs with frequency w(Hz).

Fig. 17. Variation of penetration depth S2(m) with frequency w(Hz).

Specific loss (Figures 11, 12, 13, 14, 15)

The behavior of specific loss with frequency is summarized in Figs. 11, 12, 13, 14, 15. Unlike phase velocity
and attenuation, which generally increase with frequency, specific loss exhibits both decreasing and oscillatory
patterns depending on the wave mode. The MST case typically produces higher values of specific loss than
WST, especially in the low-to-intermediate frequency range. This reflects the fact that two-temperature coupling
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©Z2 MST(a=0.5)
ST(a=0)

Fig. 19. Variation of penetration depth S4(m) with frequency w(Hz).

MST(S,)
MST(S,)
R MST(S,)

Fig. 20. Variation of penetration depth Ss(m) with frequency w(Hz).

enhances internal friction, leading to greater energy dissipation per cycle. At higher frequencies, both MST and
WST cases show decreasing specific loss for most modes, indicating that dissipation becomes less significant
relative to stored elastic energy. Oscillatory patterns, observed in certain modes, suggest mode coupling effects
where microtemperature and microstretch interactions modulate the balance between energy storage and
dissipation. Together, the figures highlight that the two-temperature theory enriches the complexity of loss

Scientific Reports |  202515:43816 | https://doi.org/10.1038/s41598-025-31454-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

behavior beyond the predictions of classical microstretch models. Specific loss represents the fraction of stored
elastic energy dissipated per cycle. Its enhancement under MST conditions highlights how two-temperature
interactions intensify internal friction within the medium. When conductive and thermodynamic temperatures
diverge, the resulting microscopic thermal stress relaxations introduce irreversible energy dissipation. This effect
is strongest at lower frequencies, where the system has more time per cycle to exchange energy between the two
temperatures. At higher frequencies, the time available per cycle is too short for full energy transfer, leading to
reduced specific loss. This explains the overall decreasing trend in both MST and WST, while MST consistently
exhibits higher values due to stronger coupling.

Penetration depth (Figures 16, 17, 18, 19, 20)

The penetration depth results, presented in Figs. 16, 17, 18, 19, 20, show an overall decreasing trend with
frequency, consistent with the expected inverse relationship between attenuation and penetration. The MST
case consistently demonstrates larger penetration depths than WST, especially at higher frequencies, which
indicates that two-temperature effects allow waves to travel farther before significant amplitude decay.
Oscillatory penetration depth behavior is observed for certain modes under MST, again emphasizing the role of
additional thermal coupling in modifying energy transport. In some frequency ranges, MST penetration depth
exceeds WST by an order of magnitude, highlighting the profound influence of two-temperature interactions
on wave propagation distance. Penetration depth depends inversely on attenuation. The greater penetration
depth observed in MST is physically linked to the modified balance between dispersion and damping. While
MST enhances attenuation at some frequencies, it simultaneously increases phase velocity, allowing waves to
carry energy deeper before amplitude decay dominates. In addition, the two-temperature coupling improves
the efficiency of thermal energy redistribution within the lattice, delaying complete wave damping. Oscillatory
penetration depth in MST reflects alternating regimes of enhanced and suppressed thermal energy transfer,
producing localized windows where waves can travel significantly farther than in the WST case.

General observations

By considering the results as a whole, rather than as isolated figures, a coherent picture emerges: two-temperature
effects systematically increase phase velocity, enhance attenuation coefficients, amplify specific loss in the low-
frequency regime, and extend penetration depths at higher frequencies. These trends collectively confirm that
the introduction of two-temperature coupling enriches the dynamical response of microstretch thermoelastic
solids with microtemperatures. The findings suggest that tailoring the two-temperature parameter could provide
a powerful tool for engineering materials with desired wave propagation characteristics, such as increased
dispersion for signal control, enhanced damping for vibration isolation, or extended penetration depth for
energy transmission applications.

Conclusion

o A microstretch thermoelastic solid model with microtemperatures and two-temperature theory is developed.

o Propagation of plane waves—LD, T, LM, LT, CD-I, CD-II, and CD-III—is analyzed within this framework.

« The two-temperature effect significantly influences wave characteristics: phase velocity, attenuation coeffi-
cient, specific loss, and penetration depth across frequencies.

o Numerical results reveal that the two-temperature model yields higher phase velocities and attenuation coef-
ficients than the classical single-temperature model.

« This reflects enhanced wave dispersion and increased energy dissipation due to stronger thermo-mechanical
coupling.

« Phase velocities of LD, LM, and LT waves increase noticeably with the inclusion of two-temperature effects.

o Attenuation coefficients for LD and T waves and penetration depths for LD, T, and LM waves also increase
compared to models without two-temperature effects.

« Certain complex interactions and extended phenomena related to the two-temperature microstretch thermo-
elastic model have not been addressed in this study and remain beyond its current scope. These aspects will
be explored in detail in future research.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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