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This paper investigates wave propagation in microstretch thermoelastic solids incorporating the two-
temperature theory, which models heat conduction using two distinct temperature fields to better 
capture microtemperature effects. We identify and analyze seven distinct wave types: longitudinal 
displacement (LD), thermal (T), microstretch (LM), longitudinal microtemperature (LT), coupled 
transverse displacement (CD-I), transverse microrotational (CD-II), and transverse microtemperature 
(CD-III) waves. For each wave type, we derive explicit expressions for phase velocity, attenuation 
coefficient, penetration depth, and specific loss, highlighting how these parameters vary with the two-
temperature effects. Our results demonstrate that incorporating microstretch and microtemperature 
fields leads to significant changes in wave characteristics, including the emergence of new wave modes 
and modified attenuation behavior compared to classical models. Graphical presentations illustrate 
these effects quantitatively, with phase velocity and attenuation variations changes under varying 
two-temperature parameter regimes. Additionally, special limiting cases of practical interest are 
discussed. The findings offer new insights for advanced material design and non-destructive evaluation 
in microstructured thermoelastic solids.
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Eringen1 introduced the theory of microstretch elastic solids, where material points can undergo independent 
stretching and contraction in addition to translations and rotations. In this theory, each material point is 
endowed with three deformable directors, constrained to exhibit only breathing-type microdeformations. The 
theory of thermo-microstretch elastic solids was further developed by Eringen2. Examples of microstretch solids 
include composite materials reinforced with chopped elastic fibers, porous media saturated with gas or inviscid 
liquids, asphalt, and solid–liquid crystals.

The concept of microtemperatures in elastic solids originated from the works of Eringen 3, Grot4, Wozniak5,6, 
Ieşan7,8, and Ieşan and Quintanilla9,10. Classical continuum theories often fail to adequately describe size-
dependent phenomena and nanoscale effects observed experimentally. The microtemperature theory 
addresses these limitations by introducing additional thermal variables that depend on the microcoordinates 
of microelements within the material. This approach allows for the study of size effects and complex 
thermomechanical coupling relevant to applications in nanotechnology, engineering, and geophysics. The 
thermodynamics of microstructured materials with microtemperatures was formulated by Grot4, who extended 
classical balance laws and the Clausius–Duhem inequality to include microtemperature effects.
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Riha11 studied heat conduction in materials with microtemperatures, demonstrating close agreement 
between theoretical predictions and experimental data on materials like silicone rubber with aluminum particles 
and human blood. Subsequent works by Iesan and Quintanilla10, Magaña and Quintanilla12, Noelia et al.13, 
Liu and Quintanilla14, and Ahmima and Fareh15 have further developed thermoelastic models incorporating 
microtemperature fields. Recent studies by Kaushal and Singh16 and Kaushal et al.17 have advanced thermoelastic 
wave theories by examining refracted waves in microstretch media with two-temperature coupling and analyzing 
wave propagation effects in micropolar elastic media with voids and non-free surfaces.

Thermoelasticity with two temperatures is a notable non-classical theory of thermodynamics in elastic 
solids, distinguishing between two distinct temperature fields: the conductive temperature (Φ) arising from 
thermal processes, and the thermodynamic temperature (T) related to mechanical processes18. Chen et al.19 
formulated a thermoelastic theory involving these two temperatures, incorporating a material parameter a that 
characterizes their coupling. This two-temperature model has been widely used to predict electron and phonon 
temperature distributions in ultrashort laser processing of metals and other advanced applications. More 
recently, Abouelregal20 and other researchers have extended this model to include higher-order time derivatives 
and phase-lag effects.

Several researchers have investigated wave propagation in thermoelastic media incorporating two-temperature 
and microstretch effects. Youssef21 developed wave propagation theory in generalized porothermoelasticity with 
two-temperature effects, while Hou et al.22 studied reflection and transmission of inhomogeneous plane waves 
in thermoporoelastic media using two-temperature heat conduction equations. Our study distinguishes itself by 
integrating the microstretch continuum theory with microtemperature fields and the two-temperature model, 
enabling the analysis of new wave modes and complex thermomechanical couplings that previous models did 
not consider.

Wave phenomena have been widely studied by researchers such as Vlase et al.23,24, Marin et al.25,26, Sharma 
and Khator27,28, Kaushal et al.29,30, Yadav et al.31, Kumar et al.32–34, Ahmed and Ali35, Debnath and Singh36, 
and Lotfy et al.37 who have explored wave propagation under various generalized thermoelastic, micropolar, 
and non-local theories. Achenbach38 investigated wave reflection and refraction behavior under three different 
thermoelastic theories, focusing on bidirectional coupling between longitudinal elastic waves and thermal 
fields in advanced materials. They examined the thermomechanical model effects on wave amplitudes and 
transmission characteristics39,40.

The applications of microtemperature and microstretch theories span across microelectronics, biomechanics, 
aerospace, geomechanics, and wave propagation in materials where classical thermoelastic models fail. These 
theories enable realistic modeling of finite thermal wave speeds, microscale heat transfer, and thermomechanical 
coupling, with practical implications in smart actuators, energy harvesting devices, geothermal systems, seismic 
response prediction, aerospace structures, and biomedical tissues41,42.

In this paper, we investigate the propagation of plane waves in microstretch thermoelastic solids incorporating 
microtemperatures and two-temperature effects. We analyze the influence of these effects on the phase velocity, 
attenuation coefficient, specific loss, and penetration depth of longitudinal displacement (LD), thermal (T), 
microstretch (LM), longitudinal microtemperature (LT), and coupled transverse waves (CD-I, CD-II, CD-III). 
The results are presented graphically over frequency ranges, highlighting novel wave modes and coupling effects 
arising from the integrated microstretch and two-temperature framework. Particular cases of interest are also 
discussed.

Basic equations
Following Eringen3 and Iesan7, the field equations for a homogeneous, isotropic microstretch thermoelastic solid 
with microtemperatures and two temperatures without body forces, body couples, stretch force, heat sources, 
and first heat source moment are given as:

	
(λ + 2µ + K)∇ (∇.u) − (µ + K) ∇ × (∇ × u) + K (∇ × φ) + λ0∇φ∗ − ν ∇T = ρ

∂2u

∂t2 ,� (1)

	
(α + β + γ) ∇ (∇.φ) − γ ∇ × (∇ × φ) + K(∇ × u) − 2Kφ−µ1(∇ × w) = ρj

∂2φ

∂t2 ,� (2)

	
α0∇2φ∗ + ν1T − λ1φ∗ − λ0 (∇.u) − µ2(∇.w) = ρ

j0

2
∂2φ∗

∂t2 ,� (3)

	
K∗∇2Φ − ρc∗ ∂T

∂t
− ν1T0

∂φ∗

∂t
− νT0

∂

∂t
(∇.u) + k1(∇.w) = 0,� (4)

	
k6∇2w + (k4 + k5)∇(∇.w) + µ1

∂

∂t
(∇ × φ) − µ2

∂

∂t
(∇φ∗) − b

∂w

∂t
− k2w − k3∇T = 0,� (5)

where

	 T = (1 − a∇2)Φ.� (6)

where K , α, β,γ,λ,µ, α0, λ0, λ1, µ1, µ2, j0, ki(i = 1, ..........., 6) are constitutive coefficients. u is the 
displacement vector, φ is the microrotation vector, w is the microtemperature vector and φ∗ is the microstretch 
scalar, ρ is the density, j is the microinertia, c∗  is the specific heat at constant strain, K∗ is the thermal 
conductivity, T  is the thermodynamic temperature, Φ is the conductive temperature, T0 is the reference 
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temperature, a is a two temperature parameter, ν = (3λ + 2µ + K) αT1 , ν1 = (3λ + 2µ + K) αT2 , where 
αT1 , αT2  are the coefficients of linear thermal expansion. The main coefficients, constants, and parameters 
used in this study are summarized in Appendix I (Table A1 (Nomenclature)), along with their physical meanings 
and roles in wave propagation.

Formulation of the problem
A homogeneous, isotropic microstretch thermoelastic solid with microtemperatures and two temperatures is 
considered.

The displacement vector, microtemperature vector, and microrotation vector for the two-dimensional case 
are taken as

	 u = (u1 (x1, x3) , 0, u3 (x1, x3)) , w = (w1 (x1, x3) , 0, w3 (x1, x3)) φ = (0 , φ2 (x1, x3) , 0)� (7)

For convenience, the following dimensionless quantities have been considered 

	
(x′

1, x′
3) = (x1, x3) 1

L
(u′

1, u′
3) = (u1, u3) 1

L
, φ′

2 = φ2, φ∗′ = φ∗, a′ = 1
L2 a.� (8)

The displacement components and microtemperature components are related to the potential functions in 
dimensionless form as43,44

	

u1 = ∂φ

∂x1
− ∂ψ

∂x3
, u3 = ∂φ

∂x3
+ ∂ψ

∂x1
,

w1 = ∂φ1

∂x1
− ∂ψ1

∂x3
, w3 = ∂φ1

∂x3
+ ∂ψ1

∂x1
.

� (9)

Making use of dimensionless quantities defined by Eq. (8) in Eqs. (1)–(5) and with the aid of Eqs. (6), (7) and 
(9), the following equations are obtained

	
[(a1 + 1)∇2 − a5

∂2

∂t2 ]φ + a3φ∗ − a4(1 − a∇2)Φ = 0,� (10)

	
[∇2 − a5

∂2

∂t2 ]ψ + a2φ2 = 0,� (11)

	
[∇2 − 2a6 − a8

∂2

∂t2 ]φ2 − a6∇2ψ + a7∇2ψ1 = 0,� (12)

	
[∇2 − a10 − a13

∂2

∂t2 ]φ∗ − a11∇2φ − a12∇2φ1 + a9(1 − a∇2)Φ = 0,� (13)

	
[∇2 − a14(1 − a∇2) ∂

∂t
]Φ − a15

∂φ∗

∂t
− a16

∂

∂t
∇2φ + a17∇2φ1 = 0,� (14)

	
[∇2(1 + a18) − a21 − a23

∂

∂t
]φ1 − a20

∂φ∗

∂t
− a22(1 − a∇2)Φ = 0,� (15)

	
[∇2 − a21 − a23

∂

∂t
]ψ1 + a19

∂φ2

∂t
= 0,� (16)

where the values of ai are defined in Appendix II.
In all the above relations and equations, the primes have been suppressed.

Solution of the problem
The solution of Eqs. (10)–(16) is assumed of the form

	 (φ, φ∗, Φ, ψ, φ2, ψ1, φ1) = (
_
φ,

_

φ∗,
_
Φ,

_
ψ,

_
φ2,

_
ψ1,

_
φ1) exp[ι(ξ(x1l1 + x3l3) − ωt)],� (17)

where 
_
φ,

_

φ∗,
_
Φ,

_
ψ,

_
φ2,

_
ψ1,

_
φ1 are undetermined amplitudes that are independent of time t and coordinates 

xm(m = 1, 3),ω is the frequency and ξ is the wave number. li, i = 1, 3 are the direction cosines of the wave 
normal to the x1x3− plane satisfying the relation l2

1 + l2
3 = 1.

Making use of Eq. (17) in Eqs. (10), (13), (14) and (15), we obtain,

	 [−a∗
1ξ2 + a5ω2]

_
φ +a3

_

φ∗ −a4(1 + aξ2)
_
Φ = 0,� (18)

	 [−ξ2 − a10 + a13ω2]
_

φ∗ +a11ξ2 _
φ +a12ξ2 _

φ1 +a9(1 + aξ2)
_
Φ = 0,� (19)

	 [−ξ2 + ιa14ω(1 + aξ2)]
_
Φ +ιω a15

_

φ∗ −a16ιωξ2 _
φ −a17ξ2 _

φ1 = 0,� (20)
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	 [−(a18 + 1)ξ2 − a21 + ιa23ω]
_
φ1 +a20ιω

_

φ∗ −a22(1 + aξ2)
_
Φ = 0.� (21)

The above equations will have a non-trivial solution if and only if the following determinant vanishes

	

∣∣∣∣∣∣∣

−a∗
1ξ2 + a5ω2 a3 0 −a4(1 + aξ2)

a11ξ2 a13ω2 − ξ2 − a10 a12ξ2 a9(1 + aξ2)
−a16ιωξ2 a15ιω −ξ2a17

[
−ξ2 + a14ιω(1 + aξ2)

]
0 ιωa20 a23ιω − a21 − ξ2a∗

18 −a22(1 + aξ2)

∣∣∣∣∣∣∣
= 0.� (22)

By solving Eq. (22), we obtain the following polynomial equation in ξ

	 F1ξ8 + F2ξ6 + F3ξ4 + F4ξ2 + F5 = 0,� (23)

where the values of  Fi are given in Appendix III.
Solving Eq.  (23), the eight roots of ξ are obtained, in which four roots ξ1, ξ2, ξ3 and ξ4 correspond to 

positive x3− direction and other four roots −ξ1, −ξ2, −ξ3 and −ξ4 correspond to negative x3− direction. The 
roots ξ1, ξ2, ξ3 and ξ4 corresponds to four waves in descending order of their velocities i.e. LD-wave, T-wave, 
LM-wave and LT-wave.

Making use of Eq. (17) in Eqs. (11), (12) and (16), the following equations are obtained

	 [−ξ2 + a5ω2]
_
ψ +a2

_
φ2 = 0,� (24)

	 [−ξ2 − 2a6 + a8ω2]
_
φ2 +a6ξ2

_
ψ −a7ξ2

_
ψ1 = 0,� (25)

	 [−ξ2 + ιa23ω − a21]
_
ψ1 −ιωa19

_
φ2 = 0.� (26)

The above equations will have a non-trivial solution if and only if the following determinant vanishes.

	

∣∣∣∣∣
−ξ2 + a5ω2 a2 0

a6ξ2 −ξ2 − 2a6 + a8ω2 −a7ξ2

0 −a19ιω −ξ2 − a21 + a23ιω

∣∣∣∣∣ = 0.� (27)

The Eq. (26) gives the following polynomial equation in ξ

	 ξ6 + F6ξ4 + F7ξ2 + F8 = 0,� (28)

where

	 F6 = −(a5 + a8)ω2 − (a23 + a7a19)ιω + a21 + a6(2 − a2),

	

F7 = −a5ω2(a21 − a23ιω − a8ω2 + 2a6 − a7a19ιω) + (2a6 − a8ω2 − a2a6)(a21 − a23ιω),
F7 = −a5ω2(2a6 − a8ω2)(a21 − a23ιω).

Solving Eq. (28), we obtain six roots of ξ, in which three roots ξ1, ξ2 and ξ3 correspond to positive x3− direction 
and other four roots −ξ1, −ξ2 and −ξ3 correspond to negative x3− direction. Corresponding to roots ξ1, ξ2 
and ξ3 there exist three waves in descending order of their velocities, namely CD-I wave, CD-II wave and CD-III 
wave.

The numerical computations required for solving the characteristic equations and evaluating wave parameters 
such as phase velocity, attenuation coefficient, specific loss, and penetration depth were carried out using 
MATLAB. Root-finding routines were employed to determine complex wave numbers for different modes45.

Phase velocity
The phase velocity of a wave describes the speed at which a particular phase of the wave (e.g., a crest) propagates 
through the medium. It is a fundamental parameter characterizing wave propagation in thermoelastic solids and 
directly influences energy transport and signal timing.

Mathematically, the phase velocities of the different wave modes are defined as

	
Vi = ω

|Re(ξi)|
; i = 1, 2, 3, 4, 5, 6, 7� (29)

where.
V1, V2, V3, V4, V5, V6, V7 are the phase velocities of LD, T, LM, LT, CD-I, CD-II and CD-III waves 

respectively.
The detailed understanding of phase velocity is crucial as it governs wave dispersion and energy propagation 

in complex media. Classic references such as38 and39 provide foundational insights into elastic wave mechanics 
and thermoelastic wave propagation, which serve as theoretical underpinnings for this study.
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Attenuation coefficient:
Attenuation coefficients quantify the exponential decay of wave amplitude due to material damping and 
scattering mechanisms. For each wave type, the attenuation coefficient is given by the imaginary part of the 
complex wave number:

	 Qi = Im(ξi); i = 1, 2, 3, 4, 5, 6, 7� (30)

where.
Q1, Q2, Q3, Q4, Q5, Q6, Q7 are the attenuation coefficients of LD, T, LM, LT, CD-I, CD-II and CD-III 

waves respectively.
Accurate estimation of attenuation is essential for understanding energy loss and signal weakening in 

materials.

Specific loss
The ratio of energy (W ) dissipated in taking a specimen through a stress cycle, to the elastic energy (W) stored 
in the specimen when the strain is maximum, is defined as specific loss. It is the most direct method of defining 
internal friction for a material. For a sinusoidal plane wave of small amplitude, Kolsky44, shows that the specific 
loss (W /W ) equals 4π times the absolute value of the ratios of imaginary part of ξ to the real part of ξ, i.e.

	
Ri = (W

W
)i = 4π

∣∣∣∣
Im(ξi)
Re(ξi)

∣∣∣∣ ; i = 1, 2, 3, 4, 5, 6, 7� (31)

This parameter is widely used in material characterization, nondestructive testing, and seismic wave analysis.

Penetration depth
The penetration depth indicates how far a wave can travel before its amplitude decays to 1/e of its original 
magnitude due to attenuation. It is defined as

	
Si = 1

|Im(ξi)|
; i = 1, 2, 3, 4, 5, 6, 7� (32)

This parameter is significant in applications involving thermal and mechanical wave propagation where energy 
localization and dissipation play critical roles.

Particular cases

	 (i)	 If the two-temperature effect is neglected in Eq. (22), we obtain the phase velocity, attenuation coefficient, 
penetration depth, and specific loss for a microstretch thermoelastic solid with microtemperatures, and the 
results will be the same as obtained by Kumar et al.43

	(ii)	 If the microtemperature effect is neglected in Eq. (22), we obtain phase velocity, attenuation coefficient, 
penetration depth, and specific loss for a microstretch thermoelastic solid with two temperatures, and the 
results will be the same as obtained by Kumar et al.45.

	(iii)	 When the effect of microstretch is removed in Eq. (22), the phase velocity, attenuation coefficient, pene-
tration depth, and specific loss for a thermoelastic solid with two temperatures and microtemperatures are 
obtained.

Numerical results and discussion
For numerical computations, the material constants were taken from previously established sources: micropolar 
constants from Eringen2, thermal parameters from46, microstretch parameters from47, and microtemperature 
parameters from48,49. All calculations were carried out using MATLAB routines. The values of micropolar 
constants are taken from Eringen2:

	 λ = 9.4 × 1010Nm−2, µ = 4.0 × 1010Nm−2, K = 1.0 × 1010Nm−2, γ = 7.79 × 10−10N,

	 j = 2 × 10−20m2, ρ = 1.74 × 103Kgm−3,

and thermal parameters are taken from46:

	 c∗ = 1.04 × 103 Nm Kg−1K−1, T0 = 298 K, K∗ = 1.7 × 102 N sec−1K−1, a = 0.5 m2.

Microstretch parameters are taken as47

	

j0 = 0.19 × 10−17m2, b0 = 4.5 × 10−10N , lambda0 = 2.1 × 1010Nm−2, lambda1 = 0.7 × 1010Nm−2,

α0 = 0.8 × 10−9N,

nu1 = 0.005 × 10−5K,

and microtemperatures parameters are taken as48,49
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k1 = 0.35 × 1010Ns−1, k2 = 0.45 × 1010Ns−1, k3 = 0.55 × 1010NK−1s−1, k4 = 0.65 × 1010Ns−1m2,

k5 = 0.76 × 1010Ns−1m2, k6 = 0.96 × 1010Ns−1m2, µ1 = 0.85 × 10−9N, µ2 = 0.95 × 10−9N,

b = 4.5 × 109N.

The graphical representation of results, including 3-D plots, was prepared using OriginPro for clear visualization 
of the variation of these parameters with frequency and material constants.

To illustrate the influence of the two-temperature parameter, the results are presented for both cases 
in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20: (i) microstretch thermoelastic solids 
with microtemperatures and two temperatures (MST) and (ii) microstretch thermoelastic solids with 
microtemperatures but without the two-temperature effect (WST).

Phase velocity (Figures 1, 2, 3, 4, 5)
The variations of phase velocity with frequency are illustrated in Figs. 1, 2, 3, 4, 5. Collectively, these results reveal 
that the inclusion of two-temperature effects consistently enhances the propagation speed of different wave 
modes. In the MST case, the phase velocity curves often exhibit oscillatory behavior, while the corresponding 
WST curves display more monotonic trends. This difference highlights the role of two-temperature coupling in 
introducing additional dispersion into the system. For example, the LD, LM, and LT wave velocities increase more 
rapidly with frequency under MST compared to WST, reflecting the stronger thermo-mechanical interaction. 
Moreover, the relative ordering of wave speeds is preserved, but the magnitude of separation between modes 
becomes more pronounced in the presence of two temperatures. Overall, the figures collectively demonstrate 
that the two-temperature effect accelerates the transmission of energy through the medium and modifies 
the dispersion characteristics. The increase in phase velocity under MST conditions is not just a numerical 
observation but a direct consequence of the enhanced thermo-mechanical coupling introduced by the two-
temperature theory. In this framework, conductive and thermodynamic temperatures interact differently with 
the lattice vibrations, effectively stiffening the medium and reducing thermal relaxation delays. As a result, 
elastic waves propagate faster because the material responds more coherently to applied oscillations. Oscillatory 
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patterns in phase velocity further indicate resonance-like interactions between mechanical waves and internal 
microtemperature fields, which are absent in the WST case.

Attenuation coefficient (Figures 6, 7, 8, 9, 10)
The attenuation coefficients for the different wave modes are shown in Figs. 6, 7, 8, 9, 10. Taken together, these 
results demonstrate that the MST case generally exhibits higher attenuation compared to WST, confirming 
that two-temperature effects amplify dissipative processes. While some modes (e.g., LD and T waves) show 
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Fig. 8.  Variation of attenuation coefficient Q3(m−1).
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a monotonic increase in attenuation with frequency, others display oscillatory or non-monotonic trends. This 
behavior indicates the presence of competing mechanisms: energy dissipation through microtemperature fields 
and dispersion effects due to microstretch coupling. The MST case shows stronger fluctuations, particularly at 
intermediate frequencies, which may be attributed to resonant interactions between thermal and microstructural 
modes. These results underscore the fact that two-temperature coupling does not simply increase attenuation 
uniformly but also modifies the qualitative frequency dependence of energy dissipation. The higher attenuation 
observed in MST arises from additional pathways for energy dissipation. Two-temperature theory introduces 
a nonequilibrium between thermodynamic and conductive temperatures, causing repeated energy exchange 
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Fig. 11.  Variation of specific loss R1 with frequency ω(Hz).
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Fig. 10.  Variation of attenuation coefficient Q5(m−1) with frequency ω(Hz).
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between lattice vibrations and thermal carriers. This mismatch acts as a damping mechanism, increasing 
wave energy absorption. Oscillatory attenuation curves reflect frequency ranges where this energy exchange 
is especially strong, suggesting possible resonances between the thermal relaxation time and wave frequency. 
Thus, the MST case reveals more complex damping phenomena than WST, where only a single thermal field 
governs attenuation.
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Fig. 14.  Variation of specific loss R4 with frequency ω(Hz).
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Fig. 13.  Variation of specific loss R3 with frequency ω(Hz).
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Fig. 12.  Variation of specific loss R2 with frequency ω(Hz).
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Specific loss (Figures 11, 12, 13, 14, 15)
The behavior of specific loss with frequency is summarized in Figs. 11, 12, 13, 14, 15. Unlike phase velocity 
and attenuation, which generally increase with frequency, specific loss exhibits both decreasing and oscillatory 
patterns depending on the wave mode. The MST case typically produces higher values of specific loss than 
WST, especially in the low-to-intermediate frequency range. This reflects the fact that two-temperature coupling 

0

2

4

6

8

10

12

14

0
1

2
3

4
5

6
7

8
9

10

 MST(a=0.5)
 WST(a=0)

S 2

Frequency

Fig. 17.  Variation of penetration depth S2(m) with frequency ω(Hz).
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Fig. 15.  Variation of specific loss R5 with frequency ω(Hz).
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enhances internal friction, leading to greater energy dissipation per cycle. At higher frequencies, both MST and 
WST cases show decreasing specific loss for most modes, indicating that dissipation becomes less significant 
relative to stored elastic energy. Oscillatory patterns, observed in certain modes, suggest mode coupling effects 
where microtemperature and microstretch interactions modulate the balance between energy storage and 
dissipation. Together, the figures highlight that the two-temperature theory enriches the complexity of loss 
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Fig. 20.  Variation of penetration depth S5(m) with frequency ω(Hz).
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Fig. 19.  Variation of penetration depth S4(m) with frequency ω(Hz).
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Fig. 18.  Variation of penetration depth S3(m) with frequency ω(Hz).
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behavior beyond the predictions of classical microstretch models. Specific loss represents the fraction of stored 
elastic energy dissipated per cycle. Its enhancement under MST conditions highlights how two-temperature 
interactions intensify internal friction within the medium. When conductive and thermodynamic temperatures 
diverge, the resulting microscopic thermal stress relaxations introduce irreversible energy dissipation. This effect 
is strongest at lower frequencies, where the system has more time per cycle to exchange energy between the two 
temperatures. At higher frequencies, the time available per cycle is too short for full energy transfer, leading to 
reduced specific loss. This explains the overall decreasing trend in both MST and WST, while MST consistently 
exhibits higher values due to stronger coupling.

Penetration depth (Figures 16, 17, 18, 19, 20)
The penetration depth results, presented in Figs. 16, 17, 18, 19, 20, show an overall decreasing trend with 
frequency, consistent with the expected inverse relationship between attenuation and penetration. The MST 
case consistently demonstrates larger penetration depths than WST, especially at higher frequencies, which 
indicates that two-temperature effects allow waves to travel farther before significant amplitude decay. 
Oscillatory penetration depth behavior is observed for certain modes under MST, again emphasizing the role of 
additional thermal coupling in modifying energy transport. In some frequency ranges, MST penetration depth 
exceeds WST by an order of magnitude, highlighting the profound influence of two-temperature interactions 
on wave propagation distance. Penetration depth depends inversely on attenuation. The greater penetration 
depth observed in MST is physically linked to the modified balance between dispersion and damping. While 
MST enhances attenuation at some frequencies, it simultaneously increases phase velocity, allowing waves to 
carry energy deeper before amplitude decay dominates. In addition, the two-temperature coupling improves 
the efficiency of thermal energy redistribution within the lattice, delaying complete wave damping. Oscillatory 
penetration depth in MST reflects alternating regimes of enhanced and suppressed thermal energy transfer, 
producing localized windows where waves can travel significantly farther than in the WST case.

General observations
By considering the results as a whole, rather than as isolated figures, a coherent picture emerges: two-temperature 
effects systematically increase phase velocity, enhance attenuation coefficients, amplify specific loss in the low-
frequency regime, and extend penetration depths at higher frequencies. These trends collectively confirm that 
the introduction of two-temperature coupling enriches the dynamical response of microstretch thermoelastic 
solids with microtemperatures. The findings suggest that tailoring the two-temperature parameter could provide 
a powerful tool for engineering materials with desired wave propagation characteristics, such as increased 
dispersion for signal control, enhanced damping for vibration isolation, or extended penetration depth for 
energy transmission applications.

Conclusion

•	 A microstretch thermoelastic solid model with microtemperatures and two-temperature theory is developed.
•	 Propagation of plane waves—LD, T, LM, LT, CD-I, CD-II, and CD-III—is analyzed within this framework.
•	 The two-temperature effect significantly influences wave characteristics: phase velocity, attenuation coeffi-

cient, specific loss, and penetration depth across frequencies.
•	 Numerical results reveal that the two-temperature model yields higher phase velocities and attenuation coef-

ficients than the classical single-temperature model.
•	 This reflects enhanced wave dispersion and increased energy dissipation due to stronger thermo-mechanical 

coupling.
•	 Phase velocities of LD, LM, and LT waves increase noticeably with the inclusion of two-temperature effects.
•	 Attenuation coefficients for LD and T waves and penetration depths for LD, T, and LM waves also increase 

compared to models without two-temperature effects.
•	 Certain complex interactions and extended phenomena related to the two-temperature microstretch thermo-

elastic model have not been addressed in this study and remain beyond its current scope. These aspects will 
be explored in detail in future research.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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