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Multi-stage classification of
abnormal traffic events using a
multi-head + LSTM
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Traffic congestion, anomalies and incident significantly impact urban transportation efficiency

and road safety. Accurate detection and classification of such events are crucial for effective traffic
managements, emergency response and infrastructure planning. Traditional approaches based
statistical and conventional machine learning models often struggle to generalize across the dynamic
and complex traffic patterns which evolves around the time. To address these limitations, we proposed
a multi-head + LSTM model in a multistage classification framework. This proposed framework
systematically detects anomalies using isolation forest, classifies the congestion into low, medium,
high using K-means clustering and determine whether an incident caused an anomaly using a spatial
threshold-based approach (1.5 km). the model is trained on 15 days of PeMS traffic data integrated
with weather information to enhanced predictive accuracy. Through hierarchical classification the
proposed model captures temporal dependencies, integrates contextual weather information and
ensures robust anomaly detection, congestion classification and incident identification. Experimental
results demonstrates that the multi-Head model significantly outperforms existing methods achieving
higher precision, recall, f1-score and ROC-AUC across all classification stages. The results highlight the
potential of deep learning-based traffic analysis for intelligent transportation system (ITS) enabling
data-driven decision making for urban traffic management.

Keywords Traffic flow prediction, Congestion classification, Anomaly detection, Incident identification,
Multi-head attention, LSTM, Intelligent transportation systems (ITS)

Traffic congestion, anomalies and incidents are critical factors which highly influence the urban traffic
transportation efficiency and road safety'. Identifying such events like congestions, incident caused anomalies
accurately is essential for traffic management, emergency response and infrastructure planning?. Traditional
methods for traffic anomaly detection and congestion analysis often rely on the statistical models or conventical
machine learning techniques which may struggle to generalize across complex and dynamic traffic pattern®.
Therefore, deep learning-based model often given promising results which enhance the accuracy and efficiency
of the traffic events classification models*.

In this study we developed a multistage deep learning base classification framework to systematically
detect the anomalies, classify the congestion levels for the detected anomalies and incident classification which
determine whether an incident has caused anomaly or not. Our approach is built on the PEMS California traffic
dataset, for our work we have considered 15 days of data and integrate it with externa weather and incident data.
The classification is structured into three main stages:

o Anomaly detection: Identifying the irregular traffic patterns using isolation forest algorithm and based on it
labelling each data point into anomaly (Yes/No)

o Congestion classification: Categorizing Road congestion into three classes Low, Medium and High using
k-means clustering based on the traffic flow characteristics.
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o Incident classification: Determining whether an incident triggered an anomaly or not by using a thresh-
old-based selection criterion where we have taken into account 1.5 km spatial threshold associating incident
with nearby anomalies.

To achieve accurate results for classification task, we have built a multi-head LSTM-inspired model trained in a
multistage format where in each stage builds upon previous prediction, allowing for structure and hierarchical
classification process. The proposed model integrates past and contextual information in a timely manner for
effective classification of traffic anomalies and congestion conditions.

Related work

Anomaly detection in traffic networks

Anomaly detection is road networks is a crucial task in intelligent transportation system (ITS). Anomaly
detection is mainly used to identify irregular patterns in the traffic networks such as congestion anomalies, sensor
error or accidents®. Traditional anomaly detection methods heavily rely on the statists technique and rule-based
systems but with the advance machine learning and deep learning-based methods more advance models have
emerged which can analyses the large-scale traffic data in real time®. This approach leverages structured traffic
data, computer vision techniques and time series analysis to enhance anomaly identification accuracy.

The growing availability of traffic sensor data, CCTV footage and vehicular communication networks
(VANET’s) which has led to good development of novel data-driven anomaly detection models’. These models
mainly focus on detecting the sudden deviations in the traffic patterns using clustering techniques, neural
networks and hybrid deep learning architectures®. In recent studies unsupervised and semi-supervise learnings
techniques have gained prominence due to their ability to generalize across different traffic conditions without
any extensive labelled datasets’

Djenouri et al.!” proposes a deep learning-based frameworks for detecting anomalies in urban traffic
networks. Their method employs a Convolutional Neural Networks (CNN) with decomposition strategy to
partition traffic flow data into clusters with similar patterns by training CNN separately on each cluster model is
able to achieve good results for detecting anomalies by focusing on the local patterns rather that global patterns
in traffic trends. Due to the decomposition-based approach model outperforms traditional anomaly detection
methods particularly in large scale urban environments. The challenges this method faces are decompositions
process which increases computational overhead and due to that method struggles with generalization when
traffic patterns change dynamically.

Lei et al.!! propose a spectral decomposition-based anomaly detection model for time series traffic data.
Their method decomposes traffic data into the categories trends, seasonal trends and residual components
using discrete Fourier transform (DFT) before implementing LSTM and CNN based predictive models. By
reconstructing the original time series and identifying deviations this model has effectively shown good results
for detecting anomalies in real time traffic monitoring systems. The use of unsupervised learning enables
the model to generalize across different urban roads networks. Due to the reliance on frequency domain
decomposition makes model sensitive to high frequency noise and due to its unsupervised nature model can
lead to false positive in low variance traffic conditions.

Aboah et al.!? proposes a vision-based anomaly detection systems which leverages deep learning for real
time analysis on the traffic camera footage. aboah approach combines YOLOV5 object detection with decision
tree which is a machine learning classification model to detect and classify anomalies in traffic videos. The
proposed systems estimate the road background; extract foreground objects apply a decision tree-based filtering
mechanism to identify anomalies such as stalled vehicles or accidents. Their method has given effective results
for detecting anomalies in real time traffic monitoring applications. Even though model gives effective results but
it heavily depends on the video quality and camera angles making it prone to failure in poor visibility conditions
like (rain, fog, snow, nigh time scenarios).

Laanaoui et al.'® presents an intelligent traffic anomaly detection system which is designed for real time
traffic load balancing. The study mainly utilizes vehicular and hoc networks (VANET’s) and real time sensor
data to identify the anomalies and adjust vehicles routes dynamically. By implementing the big data analytics and
machine learning their system optimizes traffic flow which helps in reducing congestion and incident related
disruptions. The model demonstrates high precision in detecting traffic anomalies while maintaining low latency
which make it suitable for deployment in smart cities application. As their approach reliance in VANET’s due to
that model poorly performs in the areas where there are low congestions limiting its effectiveness in rural or in
less technological advance regions.

Traffic congestion in traffic networks

Urban mobility is perhaps one of the most pressing problems of traffic congestion that, besides increasing
travel time, fuel consumption, and environmental pollution, also contributes to many road accidents'. The
classification of congestion levels plays an important role in helping traffic management to mitigate its adverse
effects'®. In traditional congestion classification method is mainly relies on the rule-based systems and statical
modelling which often fail to generalize across diverse traffic conditions!®. In recent advancements in machine
learning and deep learning have enable more robust, scalable and accurate classification approaches which
leverages real-time traffic data from sensors, GPS and vehicular communications networks.

Modern congestion classification techniques utilize traffic flow, speed and density meters to categorize
congestion levels'”. These techniques can be broadly categorized into vision-based methods, sensor-based
classification and ML driven approaches. However, challenges such as data heterogeneity, real-time scalability
and the need for extensive labelled datasets remain significant hurdles.
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Bereczki and Simon et al.!® has used a hybrid ML-based congestion detection systems that compares both
supervise and unsupervised learning models. The system process and compares both V2X enable vehicles and
infrastructure sensors enabling the real time congestion detection. The proposed work consists use of multiple
ML models such as Linear regression, Random Forest and Extreme Gradient Boosting to identify congestion
pattern with high accuracy additional their model also forecast congestions in upcoming road segments which
make suitable for smart city applications as model relies mainly on V2X communications model struggle in the
areas where there is low vehicle connectivity and data sparsity in less densely populated area.

Shah et al.! propose ML driven congestion classification for vehicular ad-hoc Networks (VANET’s). Their
study utilizes traffic flow and speed data to estimate vehicular density and classifies the traffic into three states
free-flow, Dense and Congested. The system evaluates multiple ML classification model such as Decision
Tree, K-Nearest Neighbor, Random Forest and Multilayer perceptron with this ensemble soft-voting classifier
demonstrate superior performance across multiple congestion scenarios. The spatial and temporal variation in
vehicular density affects model accuracy and their systems requires a fine tuning for different urban and highway
environments.

Liu et al.?® proposes a graph-based congestion classification framework that models spatial-temporal
dependencies in traffic networks. Their approach employs Spatial-Temporal Variational Graph Auto-Encoders
(ST-VGAE) which helps to extract road networks embedding and classify the congestions levels. By implementing
historic accidents and traffic flow data the system given a holistic view of congestion patterns. The proposed
work has some limitations as computational complexity of graph-based model is high and model struggle to give
good results with incomplete or missing sensor data.

Anomaly classification in traffic networks

Traffic incident classification is a vital component of intelligent transportations systems (ITS) enabling real-time
detection of accidents, vehicle breakdown and other disruptions that impact traffic flow?!. Effective classification
of the incidents improves traffic managements, emergency response and congestion mitigation. Traditional
incident classification relies on statistical methods and threshold-based selection rule which often result in
high false alarm rate and limited adaptability in recent advancements in machine learning and deep learning
have enable more accurate and scalable approaches leveraging sensors data time series analysis and deep neural
networks?.,

Lu et al.? propose a hybrid traffic incidents detection model combining generative advisal networks (GAN’s)
and transformers to address dataset imbalance and improve detection accuracy. GANs generate synthetic incident
samples to balance datasets, while transformers capture temporal dependencies for enhanced classification.
Their proposed work reliance on GAN-generated synthetic data which introduces biases and transformers
model which requires high computations power limiting their real time application.

Xie et al.>* propose an ensemble learning based incident detection model using Random Forest and Random
Subspace K-Nearest neighbors (RSKNN). The study involves using of SASYNO oversampling to mitigate dataset
imbalance and enhance classification reliability. Model heavily depends on the features selection techniques and
performance of the model varies on the road network type which requires specific dataset tunning.

Gurusamy et al.>® developed an LSTM-SE based incident detection classification framework that leverages
stacked autoencoders (SAE) for the feature extraction and LSTM for capturing temporal patterns the model
demonstrates superior accuracy in detecting incidents from real time traffic data. Computational overhead
of LSTM makes it difficult to deploy in low latency environments and therefore model struggle with highly
dynamic traffic conditions.

Zhu et al.?® proposes a network lasso based decentralized traffic incident detections frameworks which
optimizes classification models in a distributed traffic monitoring system. This approach reduces network
bandwidth usage and improves detection across multiple traffic regions the complex optimization process leads
to longer training times and model performance is highly dependent on the quality of decentralized data.

Methodology

This section outlines the methodology implemented in the study with respect to data collection process,
labelling strategies and model framework for traffic anomaly detection, congestion classification and incident
identification. Our approach integrates multi-source traffic data, machine learning-based labelling and deep
learning classification to create a robust and scalable classification system.

Data collection and pre-processing
We have used the PEMS California dataset covering January 1-15, 2024, which consists of station data, station
meta data, incident reports and weather data. Station data consists of timestamp traffic observation such as
flow, occupancy and speed where station meta data consists of geographical details like latitude, longitude
and freeway information. Incident data record traffic incident data such as incident ID, timestamp, location
and incident type like (e.g. Accident, breakdown or roadwork). We have also integrated weather data obtained
via API include temperature, wind speed, precipitations and humidity which gives environmental context for
traffic analysis. These datasets are merged using spatiotemporal alignment forming a compressive foundation
for anomaly detection, congestion classification and incident identification for our multi-stage classification
framework.

Figure 1 shows outlier detection and removal using IQR method to detect and remove the outliers in latitude
and longitude values.

To ensure data consistency, redundant columns such as lane-specific statistics were removed and missing
values in traffic flow, occupancy and speed were filed using station level and global mean imputation. The
timestamp column was converted to datetime format like day, hour and minute these features were extracted
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Fig. 1. Station data cleaning using IQR.

with sin cosine transformation applied to capture the cyclical time patterns. Latitude and longitude outliers were
filtered as shown in Fig. 1 using IQR method and station metadata was merged to provide geospatial context.

Historic weather data (temperature, wind speed, precipitation and humidity) was retrieved via API and aligned
with the traffic records based on timestamp and location. Categorical variables like travel direction and lane
type were encode and numerical features were standardize using z-score normalization.in last sliding windows
(steps = 6) were applied to capture spatial relationships, optimizing the dataset for multistage classification.

To address the issue of the class imbalance SMOTE (synthetic minority over-sampling technique) was
applied on anomaly and incident class, ensuring sufficient representation of the minority class. Unlike naive
up sampling, SMOTE generates synthetic samples based on the features space similarities rather than random
duplication, preserving the temporal structure of the data. For congestion classification no up sampling was
performed as class distribution was balanced additionally model evaluation was conducted on the unseen csv
file ensuring no data leakage while up sampling which maintaining the integrity of time-series dependencies
during testing.

Labelling strategy
o Anomaly detection labelling strategy

Anomalies in traffic data were labelled using isolation forest algorithm with a 1% contamination rate which
means 1% of the data was classified as an anomaly. This threshold was selected through iterative testing and
statistical validation using methods like IQR and Z-score analysis to ensure anomalies significantly deviated
from normal traffic patterns. The model’s predictions were further cross checked with historical reports and
visual inspection to enhance reliability. Anomalies were labelled as 1 and 0 anomaly and no anomaly. This
approach effectively captures irregularities and detects accurate congestion spikes, sudden speed drops and other
unexpected behaviors crucial for smart traffic management. Methods like IQR/Z-score and One-Class SVM
where not considered over Isolation Forest as these techniques assumes normality in data and struggles with
scalability whereas isolation forest effectively detects anomalies in high dimension like real world traffic data
without requiring labelled samples.

« Congestion classification labelling strategy

Traffic congestion was labelled using means clustering, an unsupervised machine learning approach that
segmented the data into three cluster corresponding to Low, Medium, High congestions levels. The clustering was
performed using the key features like traffic flow, average occupancy and average speed which were normalized
before applying to the model. Once the cluster were formed their centroids were analyzed to derive thresholds-
based rule for classification. Then based on this threshold the congestion classes were labelled this labelled
congestion levels provide valuable insights for traffic predictions and management, enabling better decision
making for congestion mitigation road planning. K-means is computationally efficient. Interpretable and
naturally identifies distinct congestion patterns as compare to other methods like DBSCAN which is sensitive to
noise and GMM (Gaussian Mixture Models) which assumes distribution.

o Incident classification labelling strategy
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Incident labels were assigned by matching reported incidents with nearby traffic station which lies within the
threshold of 1.5 km radius using spatial querying with cKD Tree. If an incident occurred within this threshold
and aligned with the stations timestamp it was labelled as an incident (anomaly caused by an incident) if the
incident id does not fall within threshold, then it was marked as no incident (anomaly was not caused by an
incident) this method ensures accurate association between traffic disruptions and detected anomalies allowing
for better incident classification and analysis. cKD tree provides fast and precise nearest neighbor searches for
accurate incident-station joining as compare to other traditional method like brute force distance calculation are
computationally expensive.

Although fixed thresholding (e.g. contamination, 1.5 km radius) were validated for PeMS data, their
transferability to other networks may be limited. Future extension will consider adaptive or learning based
thresholding strategies to enhance generalization.

The sequential three-stage designed reflects the natural progression of traffic events anomalies are first
detected as irregularities, then categorized into congestion levels, and finally linked to nearby incidents. This
ordering simplifies classification by filtering out normal traffic early, thereby reducing unnecessary computation.

Multi-stage model
o Architecture of the hybrid multistage model

Figure 2 shows the multi-head with LSTM model pipeline which is a multistage traffic classification, progressing
through anomaly detection, congestion classification and incident identification. The pipeline begins with data
pre-processing where from multiple data sources like station data, station meta data, weather data from API
were integrated and transformed using feature engineering techniques including temporal encoding and spatial
embedding. As data was not labelled, we have used different labelling strategies to label the data for anomaly we
have used solation forest, for congestion classification label were generated based on the k-means threshold value
and incident labels were decided based on the spatial distance threshold. The multi-stage + LSTM model first
determines whether an anomaly is present in the traffic flow or not if yes then model classifies the anomaly into
the congestion class and finally the model predicts weather a congestion was caused by incident or not. Multi-
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Fig. 2. Proposed multi-head with LSTM model pipeline architecture.
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head attention captures complex dependencies in sequential data while LSTM layers are enhanced temporal
feature extraction ensuring robust classification of each stage with improved contextual awareness.

This integration differs from prior hybrid approaches (e.g. CNN +LSTM or Transformers-based models) as
it explicitly balances long term dependencies through multi-head attention and short- term temporal dynamics
via LSTM. Embedding this within a staged classification pipeline (anomaly—congestion—incident) constitutes
the novelty of our approach.

Unlike prior single-task models, our innovation lies in integrating anomaly detection, congestion classification
and incident identification into sequential multi-stage pipeline, enriched with weather context and incremental
training which provides a unique contribution to ITS research.

The multi-head attention with LSTM architecture shown in Fig. 3 combines a self-attention mechanism with
LSTM-based sequential modelling for enhanced feature extraction in traffic network classification. First the
model takes sequential input data which in (6-time step, 31 features per step) and passes to further through
multi-head attention block with 128-dimension representation which help to capture a complex dependency
across different time steps. The normalization and feed forward dense layer which are present from it the data
is been pass further which refines feature space which are followed by dropout layer to prevent overfitting. A
stack of LSTM units then processes the refined features which leverages temporal dependencies to enhance the
classification accuracy. Finally, the global average pooling reduces the dimensionality before passing the output
through fully connected layers which culminates it in a single unit output layer with an activation function
for anomaly and incident the output neuron is sigmoid activation function with binary cross entropy loss and
for congestion it SoftMax activation function with sparse categorical cross entropy. Muti-head attention with
LSTM able to capture both short term dependencies and long-term dependencies where short term are captured
by the LSTM and long terms is captured by multi-head attention. The multistage approach ensures stepwise,
interpretable prediction process which helps to improve accuracy by sequentially refining anomaly, congestion
and incident classification other models like CNN where it lacks temporal awareness while in other hand model
like transformers which requires excessive data and computational power due to which proposed model gives
best balance of efficiency and performance.

o Model training

The training process is multi-stage starts with anomaly detection then congestion classification and then incident
identification to refine predictions step by step. Class imbalance is handled through SMOTE up sampling,
ensuring balance of training samples without any data leakage by reserving unseen csv file for testing. The model
is trained on 15 days csv and then tested on the 16™ csv from the dataset which was unseen to the model. The
model training uses the Adam optimizer with a learning rate of 0.001 and early stopping has been applied to.

prevent overfitting. For evaluation metrics such as precision, recall and f1-score were logged during training.
Each stage refines its prediction before passing enriched feature representation to the next which enables a
hierarchical and robust classification framework.

Experimental steup
« Hardware and software environment
The model was trained on a GPU P100 compute units to handle large scale traffic dataset efficiently. The

implementation was done using TensorFlow and Kera’s for deep learning with an additional tool like Scikit-
learn, NumPy, pandas and optuna for data pre-processing, feature engineering and hyperparameter tuning.
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Fig. 3. Multi-head attention with LSTM model architecture.
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o Performance metrics

The optimal hyperparameters values were considered using a Bayesian Optimization using optuna. To evaluate
the model performances, we have considered confusion matrix, Precision, Recall, F1-Score and Matthews
Correlation Coefficient (MCC) where True Positive (TP) represents correctly detected anomalies, congestion
levels or incident where True Negative (TN) are correctly identified normal conditions. False Positives (FP)
indicates incorrect detection where no issue exits and False Negatives (FN) occur when actual anomalies,
congestion or incidents are missed by the model.

(1) Precision

e TP
Precision = TP+ FP (1)

Precision (Eq. 1) measures the predictions which are crucial for minimizing false alarms in incident detection

(2) Recall (sensitivity)

TP
Recall = m (2)

Recall (Eq. 2) captures how well the model has detected actual incidents or congestion preventing missed events.

(3) Fl-score

Precision x Recall
F1-S =2 3
core % Precision + Recall )

F1-Score (Eq. 3) Calculates the harmonic mean of precision and recall ensuring balancing between them.

(4) Matthews correlation coefficient (MCC):

TP+TN — FPx FN
MCC = (4)
\/(TP+ FP)(TP + FN)(TN + FP) (TN + FN)

MCC (Eq. 4) is used for evaluating the imbalance class present in the dataset which gives a robust measure of
classification performance.

Results and discussion
Model was trained on the 15 days csv traffic data and was tested on the 16th day csv below are the results and the
comparison with existing work are discussed with respective to each objective of the multi-stage model.

Anomaly detection results

Figure 4b shows result of the anomaly detection model in form of confusion matrix which represent the
prediction of the samples which correctly predicted vs incorrectly predicted. Figure 4a represents the roc curve
of true positive rate vs false positive rate with an AUC score.

The anomaly detection model has achieved high performance with an accuracy score of 99.46% with an
precision of 99.98 for normal traffic and 0.74 for anomalies and an F1-score of 0.81 for anomalies. The Matthews
correlation coeflicient of 0.81 indicates strong predictive performance. The ROC curve further confirms with
an AUC score of 0.98 which highlights the model abilities to distinguish between normal and anomalous traffic
effectively. The confusion matrix shown in fig a that the model correctly identified 508,711 normal instance and
6027 anomalies with a minimal false positive and negatives.

The above plots are the training logs as the model was trained on multiple days csv file each red horizontal
dotted line represent new csv given to the model incremental learning manner. Figure 4c shows the training
and validation accuracy trends over epochs. Figure 4d shows model training and validation loss across epochs.
Figure 4e demonstrates how precision and recall evolved throughout training. Figure 4f tracks the Fl-score
progression across training epochs. The training logs illustrate the model learnings progression showing stable
accuracy, loss reduction and strong trends of precision, recall and fl-score across epochs. These shows model
results are well generalized where anomaly detection model effectively captures traffic patterns.

Model comparison with existing work

Table 1 shows the comparison with the existing work for anomaly detection, proposed multi-stage with LSTM
model shows good results which outperform existing approaches across all the key metrics. Unlike existing works
rely on CNN, YOLOs or machine learning based systems, the multi-stage with LSTM model effectively captures
temporal dependencies and integrates external weather factors achieving the highest precision (99.53%), recall
(99.46%) and F1_score (99.48). Additionally, AUC-ROC (99.08) and true negative rate (0.9959) demonstrates
strong anomaly detection capabilities, surpassing traditional models that lack a multistage sequential learning
approach.
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Fig. 4. Performance evaluation of the proposed model.

First author (year) Model Dataset Precision | Recall | F1-score | AUC-ROC | TPR TNR
Youcef Djenouri (2022)° CNN with decomposition Urban traffic flow data (odense) | N/A N/A | N/A 0.72 0.89 0.94
Armstrong Aboah (2021)!2 | YOLOV5 + decision tree NVIDIA Al city challenge N/A N/A 0.8571 N/A N/A N/A
My Driss Laanaoui (2024)!* | Machine learning-based system Real-time traffic data 0.93 0.92 0.925 N/A N/A N/A
Tianyang Lei (2023)!! LSTM + CNN + spectrum decomposition | Traffic flow time series (Pems) | 0.89 0.7 0.78 0.98 N/A N/A
Proposed work Multi-head + LSTM PeMS + weather 99.53 99.46 | 99.48 99.8 0.8979 | 0.9959

Table 1. Comparison of the anomaly detection with existing work. Significant values are in bold.

Congestion classification results
Figure 5a shows the result of the Congestion Classification detection model in form of confusion matrix which
represents the prediction of the samples which correctly predicted vs incorrectly predicted. Figure 5b represents
the roc curve of true positive rate vs false positive rate with an AUC score for each class.
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Fig. 5. Performance evaluation of the proposed model.

The congestion classification model has gained good results with an overall accuracy of 94.84% with a high
F1-score of 94.55% and MCC of 0.8922 which demonstrates its effectiveness in classifying different congestion
levels. The confusion matrix shown above in Fig. 5a indicates that the model correctly classifies most instances
with a minimal misclassification across the three congestion levels. The ROC-AUC score of 0.9675 suggests
excellent discrimination ability between the classes. The high recall values for medium and high congestion
level are 0.92 and 0.99 respectively which indicates that the model is effectively able to classify the significant
congestion scenarios. However, the lower recall of 0.46 for low congestion suggests misclassification is potentially
due to overlapping of the features.

The above plots are the training logs as model was trained on multiple days csv file each red horizontal
dotted line represent new csv given in incremental learning manner. Figure 5¢ shows the training and validation
accuracy trends over epochs. Figure 5d shows model training and validation loss across epochs. Figure 5e
demonstrates how precision and recall evolved throughout training. Figure 5f tracks the F1-score progression
across training epochs. The training and validation loss plots demonstrate stable convergence across epochs with
no significance of overfitting while the accuracy trends show consistent improvements in the precision-recall
and f1-score trends to reinforce the model ability to maintain strong generalization.

Scientific Reports|  (2026) 16:1516 | https://doi.org/10.1038/s41598-025-31470-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Model comparisons with existing work

Table 2 shows the comparison with existing work for congestion classification. The proposed multi-Head + LSTM
model achieves a competitive accuracy of 94.84% which outperforms the random forest-based models and
demonstrates a good recall of 95% compared to existing work ensuring effective congestion detection. The ROC-
AUC score of 98.41% indicates a strong discriminatory capability which significantly surpasses the spatial-
temporal graph auto-encoder model AUC of 0.62 which highlights robustness. While the TAP model archives
higher accuracy of 96% our approach balances precision, recall, f1-score making it highly reliable congestion
classification model.

Incident classification results

Figure 6a shows the result of the incident detection model in form of confusion matrix which represent the
prediction of the samples which correctly predicted vs incorrectly predicted. Figure 6b represents the roc curve
of true positive rate vs false positive rate with an AUC score for each class.

For the incident classification task, the model demonstrates exceptional performances achieving good
classification results as shown in Fig. 6. The confusion matrix shown in Fig. 6b indicates minimal misclassification
with only 57 false positive and 5 false negative which highlights the model’s ability to accurately detect the
incidents. The classification report showcases a good high precision, recall and f1-score which shows that model
is robust for identifying the incident class. The ROC-AUC curve in Fig. 6a gives a perfect score of 1 demonstrating
the models’ strong discriminatory power in separating the incidents for non-incidents.

The above plots are the training logs as model was trained on multiple days csv file each red horizontal
dotted line represents new csv given to the model in incremental learning manner. Figure 6¢ shows the training
and validation accuracy trends over epochs. Figure 6d shows model training and validation loss across epochs.
Figure 6e demonstrates how precision and recall evolved throughout training. Figure 6f tracks the F1-score
progression across training epochs. Logs indicate the improvements in accuracy and loss trends over epochs
with validation metrics aligning closely with the training metrics which indicates that the model generalize well
to unseen data. The gradual convergence of loss values and the stability of the precision, recall, and fl-score
throughout the training.

Model comparison with existing work

Table 3 shows the comparison with existing work for incident classification. The proposed model outperforms
existing methods in incidents classification achieving a good accuracy of 99.99% with precision, recall, and
fl-scores at 0.99. compared to prior works like SAE 92.72 accuracy and network lasso 0.97 AUC-ROC of 1.0
and significantly lower false alarm rate 0.011 which highlights the model exception ability to minimize the
misclassifications while maintaining high detection reliability.

Conclusion and future work

This study proposes a multi-head with LSTM model for anomaly detection, congestion classification and incident
classification which is trained on PeMS traffic data with an integration of weather data. The model consistently
outperformed existing methods achieving higher precision, recall, f1-score and AUC-ROC in all three objectives.
The incremental training strategy helped maintaining stable learning while preventing overfitting. For anomaly
detection the model accurately identified irregularities with optimized loss curve. Congestion classification has
achieved 94.84% accuracy with an fl1-score of 95% surpassing previous work like random forest and graph Auto-
encoders. Similarly incident classification model has also achieved an exceptional good results with an accuracy
of 99.99% outperforming the models such as Network Lasso, GAN-Transformers and SAE based approaches.
The results demonstrate the importance of integrating traffic and environmental data for accurate real-time
traffic monitoring making the proposed model a strong candidate for intelligent transportation system.

The proposed multi-head with LSTM model faces some key challenges some of them which are data imbalance
and where for anomalies and incident are rare which leads to potential bias in prediction Limited weather data
diversity is a key limitation as the study considered only 15 days of data. Consequently, the model has not been
exposed to longer-term seasonal or holiday variations which could lead to concept drift over time. As a future
extension we plan to incorporate multi-month and multi-seasonal datasets to validate the robustness of the
proposed framework under diverse traffic conditions. Model interpretability as deep learning model function as
black box makes it difficult to trust the model predictions. To overcome these adaptive rebalancing techniques
can be used such as Temporally Constrained SMOTE (TCSMOTE) or GANSs based data augmentation will be
explored in future work, as these approaches better respect sequential dependencies compare to vanilla SMOTE.
Online learning strategies, self-adjusting anomaly detection threshold and lighter architectures can be used for
real-time performance and scalability for deployment in diverse traffic conditions. Future work will also extend

First author (year) Model Dataset Accuracy (%) | Precision | Recall | F1-score | AUC
Syed Ammad Ali Shah (2024)" | Random forest, Caltrans PeMS 93.33 93.34 93.33 | N/A 0.99
Zhi liu (2023)% Spatio-temporal variational graph auto-encoders | pems 8 96 0.95 93 94.4 0.62
Norman Bereczki'® xgb Simulation dataset | 0.9 0.84 0.88 |0.86 0.96
Proposed Work Multi-head + LSTM PeMS + weather 94.84 95 95 95 98.41

Table 2. Comparison of the congestion classification with existing work. Significant values are in bold.
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Fig. 6. Performance evaluation of the proposed model.
First author (year) Model Dataset Accuracy | Precision | Recall | F1-score | AUC-ROC | DR FAR |CR |MCC
Qiyuan Zhu (2024)% Network Lasso Custom traffic data | 0.97 N/A N/A 0.79 0.94 0.88 N/A | N/A | N/A
Xinying Lu (2024)% GAN + Transformer | PeMS N/A N/A N/A N/A 0.99 0.98 0.021 | 0.96 | N/A
Tian Xie (2022)2* SASYNO-RE-RSKNN | PORTAL Highway | )y 0.94 N/A | 096 N/A 097 | 0061 | N/A | 091
I-205highway.
g;l;‘)'j?hmi Gurusamy | g Caltrans PeMS 92.73 0.98 089 |0.85 0.94 N/A |N/A |N/A |N/A
Proposed work Multi-head +LSTM PeMS + weather 99.99 0.99 0.99 0.99 1 0.9968 | 0.011 | 0.99 | 0.98

Table 3. Comparison of the incident classification in with existing work. Significant values are in bold.
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the comparison to include advanced Transformer-based models to benchmark our framework against the latest
SOTA architectures.

Data availability
The datasets generated and/or analyzed during the current study are available in the PeMS repository, [https://d
ot.ca.gov/programs/traffic-operations/mpr/pems-source].
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