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Traffic congestion, anomalies and incident significantly impact urban transportation efficiency 
and road safety. Accurate detection and classification of such events are crucial for effective traffic 
managements, emergency response and infrastructure planning. Traditional approaches based 
statistical and conventional machine learning models often struggle to generalize across the dynamic 
and complex traffic patterns which evolves around the time. To address these limitations, we proposed 
a multi-head + LSTM model in a multistage classification framework. This proposed framework 
systematically detects anomalies using isolation forest, classifies the congestion into low, medium, 
high using K-means clustering and determine whether an incident caused an anomaly using a spatial 
threshold-based approach (1.5 km). the model is trained on 15 days of PeMS traffic data integrated 
with weather information to enhanced predictive accuracy. Through hierarchical classification the 
proposed model captures temporal dependencies, integrates contextual weather information and 
ensures robust anomaly detection, congestion classification and incident identification. Experimental 
results demonstrates that the multi-Head model significantly outperforms existing methods achieving 
higher precision, recall, f1-score and ROC-AUC across all classification stages. The results highlight the 
potential of deep learning-based traffic analysis for intelligent transportation system (ITS) enabling 
data-driven decision making for urban traffic management.
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Traffic congestion, anomalies and incidents are critical factors which highly influence the urban traffic 
transportation efficiency and road safety1. Identifying such events like congestions, incident caused anomalies 
accurately is essential for traffic management, emergency response and infrastructure planning2. Traditional 
methods for traffic anomaly detection and congestion analysis often rely on the statistical models or conventical 
machine learning techniques which may struggle to generalize across complex and dynamic traffic pattern3. 
Therefore, deep learning-based model often given promising results which enhance the accuracy and efficiency 
of the traffic events classification models4.

In this study we developed a multistage deep learning base classification framework to systematically 
detect the anomalies, classify the congestion levels for the detected anomalies and incident classification which 
determine whether an incident has caused anomaly or not. Our approach is built on the PEMS California traffic 
dataset, for our work we have considered 15 days of data and integrate it with externa weather and incident data. 
The classification is structured into three main stages:

•	 Anomaly detection: Identifying the irregular traffic patterns using isolation forest algorithm and based on it 
labelling each data point into anomaly (Yes/No)

•	 Congestion classification: Categorizing Road congestion into three classes Low, Medium and High using 
k-means clustering based on the traffic flow characteristics.
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•	 Incident classification: Determining whether an incident triggered an anomaly or not by using a thresh-
old-based selection criterion where we have taken into account 1.5 km spatial threshold associating incident 
with nearby anomalies.

To achieve accurate results for classification task, we have built a multi-head LSTM-inspired model trained in a 
multistage format where in each stage builds upon previous prediction, allowing for structure and hierarchical 
classification process. The proposed model integrates past and contextual information in a timely manner for 
effective classification of traffic anomalies and congestion conditions.

Related work
Anomaly detection in traffic networks
Anomaly detection is road networks is a crucial task in intelligent transportation system (ITS). Anomaly 
detection is mainly used to identify irregular patterns in the traffic networks such as congestion anomalies, sensor 
error or accidents5. Traditional anomaly detection methods heavily rely on the statists technique and rule-based 
systems but with the advance machine learning and deep learning-based methods more advance models have 
emerged which can analyses the large-scale traffic data in real time6. This approach leverages structured traffic 
data, computer vision techniques and time series analysis to enhance anomaly identification accuracy.

The growing availability of traffic sensor data, CCTV footage and vehicular communication networks 
(VANET’s) which has led to good development of novel data-driven anomaly detection models7. These models 
mainly focus on detecting the sudden deviations in the traffic patterns using clustering techniques, neural 
networks and hybrid deep learning architectures8. In recent studies unsupervised and semi-supervise learnings 
techniques have gained prominence due to their ability to generalize across different traffic conditions without 
any extensive labelled datasets9

Djenouri et al.10 proposes a deep learning-based frameworks for detecting anomalies in urban traffic 
networks. Their method employs a Convolutional Neural Networks (CNN) with decomposition strategy to 
partition traffic flow data into clusters with similar patterns by training CNN separately on each cluster model is 
able to achieve good results for detecting anomalies by focusing on the local patterns rather that global patterns 
in traffic trends. Due to the decomposition-based approach model outperforms traditional anomaly detection 
methods particularly in large scale urban environments. The challenges this method faces are decompositions 
process which increases computational overhead and due to that method struggles with generalization when 
traffic patterns change dynamically.

Lei et al.11 propose a spectral decomposition-based anomaly detection model for time series traffic data. 
Their method decomposes traffic data into the categories trends, seasonal trends and residual components 
using discrete Fourier transform (DFT) before implementing LSTM and CNN based predictive models. By 
reconstructing the original time series and identifying deviations this model has effectively shown good results 
for detecting anomalies in real time traffic monitoring systems. The use of unsupervised learning enables 
the model to generalize across different urban roads networks. Due to the reliance on frequency domain 
decomposition makes model sensitive to high frequency noise and due to its unsupervised nature model can 
lead to false positive in low variance traffic conditions.

Aboah et al.12 proposes a vision-based anomaly detection systems which leverages deep learning for real 
time analysis on the traffic camera footage. aboah approach combines YOLOv5 object detection with decision 
tree which is a machine learning classification model to detect and classify anomalies in traffic videos. The 
proposed systems estimate the road background; extract foreground objects apply a decision tree-based filtering 
mechanism to identify anomalies such as stalled vehicles or accidents. Their method has given effective results 
for detecting anomalies in real time traffic monitoring applications. Even though model gives effective results but 
it heavily depends on the video quality and camera angles making it prone to failure in poor visibility conditions 
like (rain, fog, snow, nigh time scenarios).

Laanaoui et al.13 presents an intelligent traffic anomaly detection system which is designed for real time 
traffic load balancing. The study mainly utilizes vehicular and hoc networks (VANET’s) and real time sensor 
data to identify the anomalies and adjust vehicles routes dynamically. By implementing the big data analytics and 
machine learning their system optimizes traffic flow which helps in reducing congestion and incident related 
disruptions. The model demonstrates high precision in detecting traffic anomalies while maintaining low latency 
which make it suitable for deployment in smart cities application. As their approach reliance in VANET’s due to 
that model poorly performs in the areas where there are low congestions limiting its effectiveness in rural or in 
less technological advance regions.

Traffic congestion in traffic networks
Urban mobility is perhaps one of the most pressing problems of traffic congestion that, besides increasing 
travel time, fuel consumption, and environmental pollution, also contributes to many road accidents14. The 
classification of congestion levels plays an important role in helping traffic management to mitigate its adverse 
effects15. In traditional congestion classification method is mainly relies on the rule-based systems and statical 
modelling which often fail to generalize across diverse traffic conditions16. In recent advancements in machine 
learning and deep learning have enable more robust, scalable and accurate classification approaches which 
leverages real-time traffic data from sensors, GPS and vehicular communications networks.

Modern congestion classification techniques utilize traffic flow, speed and density meters to categorize 
congestion levels17. These techniques can be broadly categorized into vision-based methods, sensor-based 
classification and ML driven approaches. However, challenges such as data heterogeneity, real-time scalability 
and the need for extensive labelled datasets remain significant hurdles.
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Bereczki and Simon et al.18 has used a hybrid ML-based congestion detection systems that compares both 
supervise and unsupervised learning models. The system process and compares both V2X enable vehicles and 
infrastructure sensors enabling the real time congestion detection. The proposed work consists use of multiple 
ML models such as Linear regression, Random Forest and Extreme Gradient Boosting to identify congestion 
pattern with high accuracy additional their model also forecast congestions in upcoming road segments which 
make suitable for smart city applications as model relies mainly on V2X communications model struggle in the 
areas where there is low vehicle connectivity and data sparsity in less densely populated area.

Shah et al.19 propose ML driven congestion classification for vehicular ad-hoc Networks (VANET’s). Their 
study utilizes traffic flow and speed data to estimate vehicular density and classifies the traffic into three states 
free-flow, Dense and Congested. The system evaluates multiple ML classification model such as Decision 
Tree, K-Nearest Neighbor, Random Forest and Multilayer perceptron with this ensemble soft-voting classifier 
demonstrate superior performance across multiple congestion scenarios. The spatial and temporal variation in 
vehicular density affects model accuracy and their systems requires a fine tuning for different urban and highway 
environments.

Liu et al.20 proposes a graph-based congestion classification framework that models spatial–temporal 
dependencies in traffic networks. Their approach employs Spatial–Temporal Variational Graph Auto-Encoders 
(ST-VGAE) which helps to extract road networks embedding and classify the congestions levels. By implementing 
historic accidents and traffic flow data the system given a holistic view of congestion patterns. The proposed 
work has some limitations as computational complexity of graph-based model is high and model struggle to give 
good results with incomplete or missing sensor data.

Anomaly classification in traffic networks
Traffic incident classification is a vital component of intelligent transportations systems (ITS) enabling real-time 
detection of accidents, vehicle breakdown and other disruptions that impact traffic flow21. Effective classification 
of the incidents improves traffic managements, emergency response and congestion mitigation. Traditional 
incident classification relies on statistical methods and threshold-based selection rule which often result in 
high false alarm rate and limited adaptability in recent advancements in machine learning and deep learning 
have enable more accurate and scalable approaches leveraging sensors data time series analysis and deep neural 
networks22.

Lu et al.23 propose a hybrid traffic incidents detection model combining generative advisal networks (GAN’s) 
and transformers to address dataset imbalance and improve detection accuracy. GANs generate synthetic incident 
samples to balance datasets, while transformers capture temporal dependencies for enhanced classification. 
Their proposed work reliance on GAN-generated synthetic data which introduces biases and transformers 
model which requires high computations power limiting their real time application.

Xie et al.24 propose an ensemble learning based incident detection model using Random Forest and Random 
Subspace K-Nearest neighbors (RSKNN). The study involves using of SASYNO oversampling to mitigate dataset 
imbalance and enhance classification reliability. Model heavily depends on the features selection techniques and 
performance of the model varies on the road network type which requires specific dataset tunning.

Gurusamy et al.25 developed an LSTM-SE based incident detection classification framework that leverages 
stacked autoencoders (SAE) for the feature extraction and LSTM for capturing temporal patterns the model 
demonstrates superior accuracy in detecting incidents from real time traffic data. Computational overhead 
of LSTM makes it difficult to deploy in low latency environments and therefore model struggle with highly 
dynamic traffic conditions.

Zhu et al.26 proposes a network lasso based decentralized traffic incident detections frameworks which 
optimizes classification models in a distributed traffic monitoring system. This approach reduces network 
bandwidth usage and improves detection across multiple traffic regions the complex optimization process leads 
to longer training times and model performance is highly dependent on the quality of decentralized data.

Methodology
This section outlines the methodology implemented in the study with respect to data collection process, 
labelling strategies and model framework for traffic anomaly detection, congestion classification and incident 
identification. Our approach integrates multi-source traffic data, machine learning-based labelling and deep 
learning classification to create a robust and scalable classification system.

Data collection and pre-processing
We have used the PEMS California dataset covering January 1–15, 2024, which consists of station data, station 
meta data, incident reports and weather data. Station data consists of timestamp traffic observation such as 
flow, occupancy and speed where station meta data consists of geographical details like latitude, longitude 
and freeway information. Incident data record traffic incident data such as incident ID, timestamp, location 
and incident type like (e.g. Accident, breakdown or roadwork). We have also integrated weather data obtained 
via API include temperature, wind speed, precipitations and humidity which gives environmental context for 
traffic analysis. These datasets are merged using spatiotemporal alignment forming a compressive foundation 
for anomaly detection, congestion classification and incident identification for our multi-stage classification 
framework.

Figure 1 shows outlier detection and removal using IQR method to detect and remove the outliers in latitude 
and longitude values.

To ensure data consistency, redundant columns such as lane-specific statistics were removed and missing 
values in traffic flow, occupancy and speed were filed using station level and global mean imputation. The 
timestamp column was converted to datetime format like day, hour and minute these features were extracted 
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with sin cosine transformation applied to capture the cyclical time patterns. Latitude and longitude outliers were 
filtered as shown in Fig. 1 using IQR method and station metadata was merged to provide geospatial context.

Historic weather data (temperature, wind speed, precipitation and humidity) was retrieved via API and aligned 
with the traffic records based on timestamp and location. Categorical variables like travel direction and lane 
type were encode and numerical features were standardize using z-score normalization.in last sliding windows 
(steps = 6) were applied to capture spatial relationships, optimizing the dataset for multistage classification.

To address the issue of the class imbalance SMOTE (synthetic minority over-sampling technique) was 
applied on anomaly and incident class, ensuring sufficient representation of the minority class. Unlike naive 
up sampling, SMOTE generates synthetic samples based on the features space similarities rather than random 
duplication, preserving the temporal structure of the data. For congestion classification no up sampling was 
performed as class distribution was balanced additionally model evaluation was conducted on the unseen csv 
file ensuring no data leakage while up sampling which maintaining the integrity of time-series dependencies 
during testing.

Labelling strategy

•	 Anomaly detection labelling strategy

Anomalies in traffic data were labelled using isolation forest algorithm with a 1% contamination rate which 
means 1% of the data was classified as an anomaly. This threshold was selected through iterative testing and 
statistical validation using methods like IQR and Z-score analysis to ensure anomalies significantly deviated 
from normal traffic patterns. The model’s predictions were further cross checked with historical reports and 
visual inspection to enhance reliability. Anomalies were labelled as 1 and 0 anomaly and no anomaly. This 
approach effectively captures irregularities and detects accurate congestion spikes, sudden speed drops and other 
unexpected behaviors crucial for smart traffic management. Methods like IQR/Z-score and One-Class SVM 
where not considered over Isolation Forest as these techniques assumes normality in data and struggles with 
scalability whereas isolation forest effectively detects anomalies in high dimension like real world traffic data 
without requiring labelled samples.

•	 Congestion classification labelling strategy

Traffic congestion was labelled using means clustering, an unsupervised machine learning approach that 
segmented the data into three cluster corresponding to Low, Medium, High congestions levels. The clustering was 
performed using the key features like traffic flow, average occupancy and average speed which were normalized 
before applying to the model. Once the cluster were formed their centroids were analyzed to derive thresholds-
based rule for classification. Then based on this threshold the congestion classes were labelled this labelled 
congestion levels provide valuable insights for traffic predictions and management, enabling better decision 
making for congestion mitigation road planning. K-means is computationally efficient. Interpretable and 
naturally identifies distinct congestion patterns as compare to other methods like DBSCAN which is sensitive to 
noise and GMM (Gaussian Mixture Models) which assumes distribution.

•	 Incident classification labelling strategy

Fig. 1.  Station data cleaning using IQR.
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Incident labels were assigned by matching reported incidents with nearby traffic station which lies within the 
threshold of 1.5 km radius using spatial querying with cKD Tree. If an incident occurred within this threshold 
and aligned with the stations timestamp it was labelled as an incident (anomaly caused by an incident) if the 
incident id does not fall within threshold, then it was marked as no incident (anomaly was not caused by an 
incident) this method ensures accurate association between traffic disruptions and detected anomalies allowing 
for better incident classification and analysis. cKD tree provides fast and precise nearest neighbor searches for 
accurate incident-station joining as compare to other traditional method like brute force distance calculation are 
computationally expensive.

Although fixed thresholding (e.g. contamination, 1.5  km radius) were validated for PeMS data, their 
transferability to other networks may be limited. Future extension will consider adaptive or learning based 
thresholding strategies to enhance generalization.

The sequential three-stage designed reflects the natural progression of traffic events anomalies are first 
detected as irregularities, then categorized into congestion levels, and finally linked to nearby incidents. This 
ordering simplifies classification by filtering out normal traffic early, thereby reducing unnecessary computation.

Multi-stage model

•	 Architecture of the hybrid multistage model

Figure 2 shows the multi-head with LSTM model pipeline which is a multistage traffic classification, progressing 
through anomaly detection, congestion classification and incident identification. The pipeline begins with data 
pre-processing where from multiple data sources like station data, station meta data, weather data from API 
were integrated and transformed using feature engineering techniques including temporal encoding and spatial 
embedding. As data was not labelled, we have used different labelling strategies to label the data for anomaly we 
have used solation forest, for congestion classification label were generated based on the k-means threshold value 
and incident labels were decided based on the spatial distance threshold. The multi-stage + LSTM model first 
determines whether an anomaly is present in the traffic flow or not if yes then model classifies the anomaly into 
the congestion class and finally the model predicts weather a congestion was caused by incident or not. Multi-

Fig. 2.  Proposed multi-head with LSTM model pipeline architecture.
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head attention captures complex dependencies in sequential data while LSTM layers are enhanced temporal 
feature extraction ensuring robust classification of each stage with improved contextual awareness.

This integration differs from prior hybrid approaches (e.g. CNN + LSTM or Transformers-based models) as 
it explicitly balances long term dependencies through multi-head attention and short- term temporal dynamics 
via LSTM. Embedding this within a staged classification pipeline (anomaly—congestion—incident) constitutes 
the novelty of our approach.

Unlike prior single-task models, our innovation lies in integrating anomaly detection, congestion classification 
and incident identification into sequential multi-stage pipeline, enriched with weather context and incremental 
training which provides a unique contribution to ITS research.

The multi-head attention with LSTM architecture shown in Fig. 3 combines a self-attention mechanism with 
LSTM-based sequential modelling for enhanced feature extraction in traffic network classification. First the 
model takes sequential input data which in (6-time step, 31 features per step) and passes to further through 
multi-head attention block with 128-dimension representation which help to capture a complex dependency 
across different time steps. The normalization and feed forward dense layer which are present from it the data 
is been pass further which refines feature space which are followed by dropout layer to prevent overfitting. A 
stack of LSTM units then processes the refined features which leverages temporal dependencies to enhance the 
classification accuracy. Finally, the global average pooling reduces the dimensionality before passing the output 
through fully connected layers which culminates it in a single unit output layer with an activation function 
for anomaly and incident the output neuron is sigmoid activation function with binary cross entropy loss and 
for congestion it SoftMax activation function with sparse categorical cross entropy. Muti-head attention with 
LSTM able to capture both short term dependencies and long-term dependencies where short term are captured 
by the LSTM and long terms is captured by multi-head attention. The multistage approach ensures stepwise, 
interpretable prediction process which helps to improve accuracy by sequentially refining anomaly, congestion 
and incident classification other models like CNN where it lacks temporal awareness while in other hand model 
like transformers which requires excessive data and computational power due to which proposed model gives 
best balance of efficiency and performance.

•	 Model training

The training process is multi-stage starts with anomaly detection then congestion classification and then incident 
identification to refine predictions step by step. Class imbalance is handled through SMOTE up sampling, 
ensuring balance of training samples without any data leakage by reserving unseen csv file for testing. The model 
is trained on 15 days csv and then tested on the 16th csv from the dataset which was unseen to the model. The 
model training uses the Adam optimizer with a learning rate of 0.001 and early stopping has been applied to.

prevent overfitting. For evaluation metrics such as precision, recall and f1-score were logged during training. 
Each stage refines its prediction before passing enriched feature representation to the next which enables a 
hierarchical and robust classification framework.

Experimental steup

•	 Hardware and software environment

The model was trained on a GPU P100 compute units to handle large scale traffic dataset efficiently. The 
implementation was done using TensorFlow and Kera’s for deep learning with an additional tool like Scikit-
learn, NumPy, pandas and optuna for data pre-processing, feature engineering and hyperparameter tuning.

Fig. 3.  Multi-head attention with LSTM model architecture.
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•	 Performance metrics

The optimal hyperparameters values were considered using a Bayesian Optimization using optuna. To evaluate 
the model performances, we have considered confusion matrix, Precision, Recall, F1-Score and Matthews 
Correlation Coefficient (MCC) where True Positive (TP) represents correctly detected anomalies, congestion 
levels or incident where True Negative (TN) are correctly identified normal conditions. False Positives (FP) 
indicates incorrect detection where no issue exits and False Negatives (FN) occur when actual anomalies, 
congestion or incidents are missed by the model.

	(1)	 Precision

	
Precision = T P

T P + F P
� (1)

Precision (Eq. 1) measures the predictions which are crucial for minimizing false alarms in incident detection

	(2)	 Recall (sensitivity)

	
Recall = T P

T P + F N
� (2)

Recall (Eq. 2) captures how well the model has detected actual incidents or congestion preventing missed events.

	(3)	 F1-score

	
F1 − Score = 2 × P recision ∗ Recall

P recision + Recall
� (3)

F1-Score (Eq. 3) Calculates the harmonic mean of precision and recall ensuring balancing between them.

	(4)	 Matthews correlation coefficient (MCC):

	
MCC = T P ∗ T N − F P ∗ F N√

(T P + F P ) (T P + F N) (T N + F P ) (T N + F N) � (4)

MCC (Eq. 4) is used for evaluating the imbalance class present in the dataset which gives a robust measure of 
classification performance.

Results and discussion
Model was trained on the 15 days csv traffic data and was tested on the 16th day csv below are the results and the 
comparison with existing work are discussed with respective to each objective of the multi-stage model.

Anomaly detection results
Figure  4b shows result of the anomaly detection model in form of confusion matrix which represent the 
prediction of the samples which correctly predicted vs incorrectly predicted. Figure 4a represents the roc curve 
of true positive rate vs false positive rate with an AUC score.

The anomaly detection model has achieved high performance with an accuracy score of 99.46% with an 
precision of 99.98 for normal traffic and 0.74 for anomalies and an F1-score of 0.81 for anomalies. The Matthews 
correlation coefficient of 0.81 indicates strong predictive performance. The ROC curve further confirms with 
an AUC score of 0.98 which highlights the model abilities to distinguish between normal and anomalous traffic 
effectively. The confusion matrix shown in fig a that the model correctly identified 508,711 normal instance and 
6027 anomalies with a minimal false positive and negatives.

The above plots are the training logs as the model was trained on multiple days csv file each red horizontal 
dotted line represent new csv given to the model incremental learning manner. Figure 4c shows the training 
and validation accuracy trends over epochs. Figure 4d shows model training and validation loss across epochs. 
Figure  4e demonstrates how precision and recall evolved throughout training. Figure  4f tracks the F1-score 
progression across training epochs. The training logs illustrate the model learnings progression showing stable 
accuracy, loss reduction and strong trends of precision, recall and f1-score across epochs. These shows model 
results are well generalized where anomaly detection model effectively captures traffic patterns.

Model comparison with existing work
Table 1 shows the comparison with the existing work for anomaly detection, proposed multi-stage with LSTM 
model shows good results which outperform existing approaches across all the key metrics. Unlike existing works 
rely on CNN, YOLOs or machine learning based systems, the multi-stage with LSTM model effectively captures 
temporal dependencies and integrates external weather factors achieving the highest precision (99.53%), recall 
(99.46%) and F1_score (99.48). Additionally, AUC-ROC (99.08) and true negative rate (0.9959) demonstrates 
strong anomaly detection capabilities, surpassing traditional models that lack a multistage sequential learning 
approach.
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Congestion classification results
Figure 5a shows the result of the Congestion Classification detection model in form of confusion matrix which 
represents the prediction of the samples which correctly predicted vs incorrectly predicted. Figure 5b represents 
the roc curve of true positive rate vs false positive rate with an AUC score for each class.

First author (year) Model Dataset Precision Recall F1-score AUC-ROC TPR TNR

Youcef Djenouri (2022)10 CNN with decomposition Urban traffic flow data (odense) N/A N/A N/A 0.72 0.89 0.94

Armstrong Aboah (2021)12 YOLOv5 + decision tree NVIDIA AI city challenge N/A N/A 0.8571 N/A N/A N/A

My Driss Laanaoui (2024)13 Machine learning-based system Real-time traffic data 0.93 0.92 0.925 N/A N/A N/A

Tianyang Lei (2023)11 LSTM + CNN + spectrum decomposition Traffic flow time series (Pems) 0.89 0.7 0.78 0.98 N/A N/A

Proposed work Multi-head + LSTM PeMS + weather 99.53 99.46 99.48 99.8 0.8979 0.9959

Table 1.  Comparison of the anomaly detection with existing work. Significant values are in bold.

 

Fig. 4.  Performance evaluation of the proposed model.
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The congestion classification model has gained good results with an overall accuracy of 94.84% with a high 
F1-score of 94.55% and MCC of 0.8922 which demonstrates its effectiveness in classifying different congestion 
levels. The confusion matrix shown above in Fig. 5a indicates that the model correctly classifies most instances 
with a minimal misclassification across the three congestion levels. The ROC-AUC score of 0.9675 suggests 
excellent discrimination ability between the classes. The high recall values for medium and high congestion 
level are 0.92 and 0.99 respectively which indicates that the model is effectively able to classify the significant 
congestion scenarios. However, the lower recall of 0.46 for low congestion suggests misclassification is potentially 
due to overlapping of the features.

The above plots are the training logs as model was trained on multiple days csv file each red horizontal 
dotted line represent new csv given in incremental learning manner. Figure 5c shows the training and validation 
accuracy trends over epochs. Figure  5d shows model training and validation loss across epochs. Figure  5e 
demonstrates how precision and recall evolved throughout training. Figure 5f tracks the F1-score progression 
across training epochs. The training and validation loss plots demonstrate stable convergence across epochs with 
no significance of overfitting while the accuracy trends show consistent improvements in the precision-recall 
and f1-score trends to reinforce the model ability to maintain strong generalization.

Fig. 5.  Performance evaluation of the proposed model.
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Model comparisons with existing work
Table 2 shows the comparison with existing work for congestion classification. The proposed multi-Head + LSTM 
model achieves a competitive accuracy of 94.84% which outperforms the random forest-based models and 
demonstrates a good recall of 95% compared to existing work ensuring effective congestion detection. The ROC-
AUC score of 98.41% indicates a strong discriminatory capability which significantly surpasses the spatial–
temporal graph auto-encoder model AUC of 0.62 which highlights robustness. While the TAP model archives 
higher accuracy of 96% our approach balances precision, recall, f1-score making it highly reliable congestion 
classification model.

Incident classification results
Figure 6a shows the result of the incident detection model in form of confusion matrix which represent the 
prediction of the samples which correctly predicted vs incorrectly predicted. Figure 6b represents the roc curve 
of true positive rate vs false positive rate with an AUC score for each class.

For the incident classification task, the model demonstrates exceptional performances achieving good 
classification results as shown in Fig. 6. The confusion matrix shown in Fig. 6b indicates minimal misclassification 
with only 57 false positive and 5 false negative which highlights the model’s ability to accurately detect the 
incidents. The classification report showcases a good high precision, recall and f1-score which shows that model 
is robust for identifying the incident class. The ROC-AUC curve in Fig. 6a gives a perfect score of 1 demonstrating 
the models’ strong discriminatory power in separating the incidents for non-incidents.

The above plots are the training logs as model was trained on multiple days csv file each red horizontal 
dotted line represents new csv given to the model in incremental learning manner. Figure 6c shows the training 
and validation accuracy trends over epochs. Figure 6d shows model training and validation loss across epochs. 
Figure  6e demonstrates how precision and recall evolved throughout training. Figure  6f tracks the F1-score 
progression across training epochs. Logs indicate the improvements in accuracy and loss trends over epochs 
with validation metrics aligning closely with the training metrics which indicates that the model generalize well 
to unseen data. The gradual convergence of loss values and the stability of the precision, recall, and f1-score 
throughout the training.

Model comparison with existing work
Table 3 shows the comparison with existing work for incident classification. The proposed model outperforms 
existing methods in incidents classification achieving a good accuracy of 99.99% with precision, recall, and 
f1-scores at 0.99. compared to prior works like SAE 92.72 accuracy and network lasso 0.97 AUC-ROC of 1.0 
and significantly lower false alarm rate 0.011 which highlights the model exception ability to minimize the 
misclassifications while maintaining high detection reliability.

Conclusion and future work
This study proposes a multi-head with LSTM model for anomaly detection, congestion classification and incident 
classification which is trained on PeMS traffic data with an integration of weather data. The model consistently 
outperformed existing methods achieving higher precision, recall, f1-score and AUC-ROC in all three objectives. 
The incremental training strategy helped maintaining stable learning while preventing overfitting. For anomaly 
detection the model accurately identified irregularities with optimized loss curve. Congestion classification has 
achieved 94.84% accuracy with an f1-score of 95% surpassing previous work like random forest and graph Auto-
encoders. Similarly incident classification model has also achieved an exceptional good results with an accuracy 
of 99.99% outperforming the models such as Network Lasso, GAN-Transformers and SAE based approaches. 
The results demonstrate the importance of integrating traffic and environmental data for accurate real-time 
traffic monitoring making the proposed model a strong candidate for intelligent transportation system.

The proposed multi-head with LSTM model faces some key challenges some of them which are data imbalance 
and where for anomalies and incident are rare which leads to potential bias in prediction Limited weather data 
diversity is a key limitation as the study considered only 15 days of data. Consequently, the model has not been 
exposed to longer-term seasonal or holiday variations which could lead to concept drift over time. As a future 
extension we plan to incorporate multi-month and multi-seasonal datasets to validate the robustness of the 
proposed framework under diverse traffic conditions. Model interpretability as deep learning model function as 
black box makes it difficult to trust the model predictions. To overcome these adaptive rebalancing techniques 
can be used such as Temporally Constrained SMOTE (TCSMOTE) or GANs based data augmentation will be 
explored in future work, as these approaches better respect sequential dependencies compare to vanilla SMOTE. 
Online learning strategies, self-adjusting anomaly detection threshold and lighter architectures can be used for 
real-time performance and scalability for deployment in diverse traffic conditions. Future work will also extend 

First author (year) Model Dataset Accuracy (%) Precision Recall F1-score AUC

Syed Ammad Ali Shah (2024)19 Random forest, Caltrans PeMS 93.33 93.34 93.33 N/A 0.99

Zhi liu (2023)20 Spatio-temporal variational graph auto-encoders pems 8 96 0.95 93 94.4 0.62

Norman Bereczki18 xgb Simulation dataset 0.9 0.84 0.88 0.86 0.96

Proposed Work Multi-head + LSTM PeMS + weather 94.84 95 95 95 98.41

Table 2.  Comparison of the congestion classification with existing work. Significant values are in bold.

 

Scientific Reports |         (2026) 16:1516 10| https://doi.org/10.1038/s41598-025-31470-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


First author (year) Model Dataset Accuracy Precision Recall F1-score AUC-ROC DR FAR CR MCC

Qiyuan Zhu (2024)26 Network Lasso Custom traffic data 0.97 N/A N/A 0.79 0.94 0.88 N/A N/A N/A

Xinying Lu (2024)23 GAN + Transformer PeMS N/A N/A N/A N/A 0.99 0.98 0.021 0.96 N/A

Tian Xie (2022)24 SASYNO-RF-RSKNN PORTAL Highway 
I-205highway. N/A 0.94 N/A 0.96 N/A 0.97 0.061 N/A 0.91

Rajalakshmi Gurusamy 
(2023)25 SAE Caltrans PeMS 92.73 0.98 0.89 0.85 0.94 N/A N/A N/A N/A

Proposed work Multi-head +LSTM PeMS + weather 99.99 0.99 0.99 0.99 1 0.9968 0.011 0.99 0.98

Table 3.  Comparison of the incident classification in with existing work. Significant values are in bold.

 

Fig. 6.  Performance evaluation of the proposed model.
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the comparison to include advanced Transformer-based models to benchmark our framework against the latest 
SOTA architectures.

Data availability
The datasets generated and/or analyzed during the current study are available in the PeMS repository, [​h​t​t​p​s​:​​​/​​/​d​
o​​t​.​c​​a​.​g​​o​v​/​p​r​o​​g​r​a​​m​s​​/​t​r​a​f​​f​​i​c​-​o​p​e​​r​a​t​i​​o​​n​s​​/​m​p​r​/​​p​e​m​s​-​s​o​u​r​c​e].
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