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Due to the unpredictability of loads and the complexity of fault propagation, modern power 
distribution networks require advanced technologies for fault identification and localization. In 
traditional systems, there is a high rate of false alarms, slow response times, and limited precision. 
For fault identification, the Multimodal Deep Feature Hybrid Deep Learning Model (MDF-HDL) utilizes 
LiDAR, optical images, and sensor data. This model was developed to help overcome these obstacles. 
The model utilizes deep learning layers to provide elaborate, multimodal feature representations. 
Additionally, Kalman filtering is used to enhance feature fusion. Classification results can be refined 
using decision trees, which are optimized using the Adam algorithm. This helps to reduce mistake 
rates. Through the use of GIS mapping, faults are precisely identified, facilitating efficient maintenance 
planning. While maintaining a low computational complexity, the MDF-HDL model, implemented 
in Python, achieves an accuracy of 98.91%, a precision of 98.7%, a recall of 98.3%, an F1-score of 
98.5%, and an inference time of 12.5 milliseconds. Through the incorporation of multimodal data and 
sophisticated algorithms, the system is able to transcend standard constraints, guaranteeing fault 
management that is both dependable and effective in complicated grid contexts.

Keywords  Power distribution networks, Fault localization, Deep learning, Kalman filtering, GIS mapping, 
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Abbreviations
MDF-HDL	� Multimodal deep feature hybrid deep learning model (Proposed hybrid model integrating Li-

DAR, optical, and sensor data for intelligent fault detection and localization in power distribu-
tion networks)

DERs	� Distributed energy resources (Small-scale power generation or storage technologies (e.g., solar 
panels, batteries) connected to the distribution grid to enhance reliability and resilience)

NAS	� Neural architecture search (Automated process of discovering optimal neural network architec-
tures for deep learning tasks)

LiDAR	� Light detection and ranging (Remote sensing method using laser light to measure distances 
and generate 3D spatial data)

GIS	� Geographic information system (System designed to capture, store, and analyze spatial or geo-
graphic data for mapping faults)

CNN	� Convolutional neural network (Deep learning model used for image-based feature extraction)
GNN	� Graph neural network (Model that captures relational and structural data for enhanced learn-

ing from graph-structured inputs)
SCADA	� Supervisory control and data acquisition (Industrial control system used for real-time monitor-

ing and data collection in power networks)
STRGNN	� Spatial-temporal recurrent graph neural network (Model integrating spatial and temporal data 

for dynamic fault detection)
DNN	� Deep neural network (Layered artificial neural network used for feature learning and classifica-

tion)
ROC	� Receiver operating characteristic (Statistical plot illustrating the diagnostic ability of a classifier 

system)
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Power distribution networks1 are essential electrical system components that interface between 35 kV and 400 
V. These devices control voltage, surge protection, and grid stability to provide reliable power supply2. Power 
distribution nowadays is essential for healthcare, utilities, communication, and manufacturing3. Uncontrolled 
power blackouts can pose safety issues and lost productive time, therefore economic or operational activities 
limit power flow to consumers4. Vegetation, powered weather, operational equipment, and cyclic short circuits 
are the primary reasons for faults along the fencing line. To reduce downtime and improve fault identification, 
the system needs effective and automated fault management5. Fault identification, isolation, and service 
restoration are typical Fault Management System stages6. Sensors, intelligent electronic devices, and SCADA 
systems with defect detection capabilities monitor the network’s state in real-time7. Advanced automation can 
quickly restructure the distribution grid, employing replacement tributaries to restore power to non-affected 
regions in seconds8. Smart grid technologies enable machine learning and IoT-based monitoring systems9, 
which automate inspections and reduce manual interventions, thereby decreasing maintenance costs and 
network downtime. Predictive maintenance models use real-time and historical fault data to proactively fix. 
Localized fault containment using microgrids and Distributed Energy Resources (DERs)10,11 reduces outages 
and improves fault tolerance. For efficient fault diagnosis, cost-effective smart fault management systems with 
resilient cybersecurity and efficient communication protocols are needed. Artificial intelligence12, renewable 
energy13, and automation will enhance the reliability and efficiency of power distribution networks by improving 
problem detection14.

Problem scope
Current technology lacks real-time, high-resolution detection in complex, geographically broad distribution 
networks6,7. Traditional fault management systems require improved detection, classification, and restoration 
methods due to delayed response times, imprecise problem identification, and poor localization4. LiDAR 
and high-resolution optical images improve network monitoring and problem diagnostics in the new system, 
eliminating issues2. AI, machine learning, and automation enhance strategy decision-making and reduce the 
need for human inspections3. This new technology enhances the dependability, efficiency, and adaptability of 
power distribution systems, ensuring a continuous electricity supply and improved performance.

Research intent
The major research improves power distribution network fault detection, predictive maintenance, and localization 
using LiDAR and optical image technology. Goals are: A hybrid deep learning model fuses multimodal data 
to reduce defect localization errors and reaction time. To develop hybrid fault detection systems using spatial 
mapping and optimal imaging to improve real-time fault detection and investigate merging the system with 
smart grid frameworks and IoT monitoring systems for power distribution network fault management and 
remote asset monitoring.

Modern power distribution networks face challenges in fault identification and localization due to load 
unpredictability and the complexity of fault propagation, which has inspired the development of the Multimodal 
Deep Feature Hybrid Deep Learning Model (MDF-HDL). More precise, real-time defect management solutions 
are needed due to high false alarm rates, poor reaction times, and limited precision in traditional systems. 
MDF-HDL integrates LiDAR, optical pictures, and sensor data with deep learning layers to extract rich feature 
representations, making it innovative. Kalman filtering and Adam-optimized decision trees improve accuracy 
and reduce errors in feature fusion and classification. Precision fault localization through GIS mapping facilitates 
effective maintenance planning. A comprehensive and sophisticated solution that addresses previous system 
limitations, MDF-HDL delivers dependable and efficient fault management in complex grid environments, with 
excellent performance metrics, low inference time, and low computational complexity.

Related works
Mirshekali et al.15 use a CNN capsule network (CapsNet) to track voltage and current hierarchies and relations 
to increase fault location precision using deep learning. CapsNet’s spatial information preservation and CNN’s 
feature extraction during training on synthetic data from simulated faults improve accuracy. Shafiullah et al.16 
used ML learning to diagnose active faults. Current and voltage signals are processed by SVM, ANN, or Decision 
Tree Algorithm. The suggested models use historical data for fast calculation and real-time defect identification. 
The necessity for high-quality training data and grid structure model difficulties limit the research. Thomas & 
Shihabudheen17 develop Neural Architecture Search (NAS), which creates optimal deep transformer (NAS-
MDT) models that outperform MDT approaches. NAS-MDT solves multi-dimensional fault detection faster and 
more accurately than typical deep learning models, but it requires high-quality labeled datasets for training and 
substantial computational costs during the search phase. Yoon and Yoon18 developed a CNN-LSTM automated 
fault diagnostic system for electric power systems to improve noise and fault scenario resilience. The voltage 
and current signal-based fault detection and classification method is accurate and real-time on synthetic and 
real-world datasets.

Recent research has enhanced multimodal deep learning models for power distribution system defect 
detection, offering cutting-edge techniques that improve precision and responsiveness in real-time. For 
example, a multimodal ResNet method that combined recorded electrical data with waveform-driven feature 
extraction showed strong fault diagnosis capabilities, outperforming conventional single-modality models. By 
utilizing multi-sensor data, such as vibration, sound, and current signals, another study combined time series 
analysis and Transformer-based networks to optimize fault diagnosis in electric motors. Through improved 
feature fusion and hyperparameter tuning, the study achieved extremely accurate classification results19. To 
overcome the challenges of complex background interference, small component recognition, and real-time 
inspection delays, a multi-scale fusion enhanced detection algorithm was specifically designed for power 
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transmission lines, incorporating Coordinate Convolution and optimized detection heads. Furthermore, with 
a focus on both computational efficiency and performance, lightweight multimodal CNN architectures such as 
ShuffleNet V2 have been applied to large datasets of current and vibration signals for effective fault detection 
with high classification accuracies exceeding 98.8% (2010 re-visited with large modern data). These new 
models complement the MDF-HDL approach by demonstrating advancements in hybrid model optimization, 
multimodal sensor fusion approaches, and practical applicability for complex grid fault management20.

To improve signal resilience and reliability in multimodal sensing environments, Men et al.19 created a 
photonic-assisted method for producing combined radar and communication signals that are resistant to power 
fading. Hazim and Al-Allaf20 offer a thorough analysis of fault detection developments in optical fiber networks, 
building on optical failure analytics and highlighting the application of deep learning and artificial intelligence 
to obtain accurate problem localization. By releasing a DE–HHO hybrid metaheuristic model for microgrid 
energy management optimization, Liu et al.21 shown how hybrid intelligence algorithms may enhance the 
operational efficiency and flexibility of energy systems. Similar to this, Soothar et al.22 looked at sophisticated 
machine learning-based methods for identifying optical defects, highlighting the need for real-time adaptability 
and data-driven problem diagnostics. In their demonstration of an OOA-optimized bidirectional LSTM 
network with spectral attention for power load forecasting, Liu, Hou, and Yin23 showed how temporal–spectral 
fusion may improve the accuracy of predictive modeling. By altering the phase-frequency distribution for 
multi-band phased array applications, Zhou et al.24 improved optical pulse-based radar systems and laid the 
groundwork for multimodal fusion techniques that combine optical and signal-based sensing. In line with the 
MDF-HDL model’s focus on reliable data fusion and reliability enhancement, Hou and Liu25 improved smart 
grid sustainability by hybrid machine learning approaches that take into consideration multi-factor effects and 
missing data imputation.

Additionally, Zhang et al.26 and Hou, Liu, and Yu27 validated the efficacy of fusion-based frameworks for 
enhancing diagnostic precision and interpretability by proposing dual-stream convolutional fusion models and 
multimodal data imputation for reliable fault diagnosis in mechanical and analog systems. The goals of this work, 
which include multimodal feature integration and accurate fault diagnosis, are quite similar to those of Song 
et al.‘s28 introduction of Fast Fusion Net, a deep learning-based technique for identifying high-voltage power 
line flaws. Similar to the deep feature fusion idea at the heart of MDF-HDL, Li et al.29 presented an enhanced 
LSTM fusion and cross-attention framework for multimodal fault classification in power distribution systems. 
Concurrently, Chaurasia et al.30 undertook a statistical investigation of SNR and optical power distribution in 
visible light communication systems, offering analytical insights for understanding the behavior of optical data 
in multimodal frameworks. Liu et al.31 showed the benefits of combining machine learning and mathematical 
modeling for power system monitoring by using a hybrid neural network based on Beluga Whale Optimization 
to predict transformer oil temperature. Finally, Kulandaivel and Jeyachitra32 used a shallow multitask neural 
network to experimentally examine optical spectrum-based power distribution, including optical analytics for 
intermediate node monitoring and network defect evaluation. These studies, which together reflect a progressive 
trend toward multimodal, hybrid, and optimization-driven AI architectures that combine optical, photonic, 
and deep learning techniques for high-accuracy fault detection and localization, serve as the conceptual and 
empirical foundation for the proposed MDF-HDL framework.

Research gap
CNN capsule networks, ML algorithms like SVM and ANN, Neural Architecture Search (NAS) optimizing 
transformer models, and CNN-LSTM hybrid systems are used in this research to detect power system faults. 
Significant research gaps remain. First, most models rely on high-quality labeled datasets, which are scarce or 
expensive in complex grid systems, thereby impacting their generalizability and resilience. Second, computing 
resource demands, especially those associated with NAS model searches, limit deployment. Third, synthetic 
training data may not fully replicate real-world variability and noise, which can limit problem detection 
performance across different settings. Fourth, comprehensive defect detection has yet to integrate multimodal 
sensor data, such as LiDAR and optical images, beyond voltage and current signals. Addressing these gaps 
would improve real-time, precise, and computationally efficient fault detection for dynamic power distribution 
networks.

Joint processing technology for fault detection in power-distributed networks
Multimodal Data Fusion and a Hybrid Deep Learning Model are used to build an intelligent real-time fault 
detection and management system for power distribution networks. Traditional fault detection (SCADA-based 
monitoring and manual inspection) is slow, inaccurate, expensive, and complex. This work employs multimodal 
data fusion with high-resolution Laser Radar (LiDAR) scans and Optical Image processing to improve fault 
localization, classification, and predictive maintenance. Figure 1 shows MDF-HDL construction overall.

Data collection and preprocessing
For more efficient data analysis, the multimodel data fusion system synchronizes optical imaging and LiDAR 
scanning. Figure 2 illustrates the processing flow for this step. LiDAR sensors first map distribution networks in 
3D. The laser pulse from LiDAR calculates the time it takes each plus to return after reflecting on objects. During 
this process, distance (d) to the particular object is estimated as d = c· t

2 ; here d is computed from the light 
speed (c) (∼ 3.0 × 108m/s), time (t) , and the factor (1/2) represented for laser pulses round-trip travel.

Then it is denoted as P = {( xi, yi, zi, Ii) | i = 1,2, . . . , N}; here (xi, yi, zi) is defined as LiDAR return 
points spatial coordinates, return intensity value (Ii) and LiDAR points total counts (N). Then, the optimal 
image-based capture information is represented as I(x, y) = {R( x, y), G(x, y), B(x, y )}; here, image 
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intensity is denoted as I(x, y), red, green and blue channel is represented as R(x, y), G(x, y), B(x, y). From 
the image, the edge component is derived with the help of Sobel filtering, which is mentioned in Eq. (1)

	 Gx = [−1 0 1 − 2 0 2 − 1 0 1 ] , Gy = [−1 − 2 − 1 0 0 0 1 2 1 ]� (1)

From the Eq. (1), gradients, the magnitude of the component is computed as G =
√

G2
x + G2

y ; G2
x and G2

y  
is defined as horizontal and vertical direction gradients. Then, the thermal image gives the temperature-
based fault details that are denoted as T (x, y) = fthermal (I( x, y )). Here, fthermal is represented as the 
transformation mapping of the RGB image to the temperature data, and the temperature pixel is defined as 
T (x, y). First, the gathered LiDAR and optical images are tagged with the help of GPS coordinates denoted as 
G = (lat, lon, alt, t). Then, the inertial measurement unit and GPS, the gathered information is aligned in the 
general coordinate frame that is denoted as (x′ , y′ , z′ ) = R · (x, y, z) + T .

Feature extraction and data fusion
Multi-sensor fusion methods, such as deep Kalman filtering, neural networks, and attention-based models, 
integrate multiple data streams to accurately represent the power infrastructure and its components. The 
point cloud is represented as P = {( xi, yi, zi, Ii)}N

i=1. Here, Ii is the image intensity, spatial coordinates are 
represented as (xi, yi, zi) and the total number of points are denoted as N .

Process of feature extraction and data fusion is shown in Fig.  3. Initially, the best fitting plane region is 
identified Ax + By + Cz + D = 0 to extract the power lines. Here, D is the offset, and the plane normal 
vector is defined as (A, B, C). Then, the residual errors are computed from the distance that is calculated using 
Eq. (2)

	
di = | Axi + Byi + Czi + D |√

A2 + B2 + C2
� (2)

In Eq. (2), di is below the threshold (di > dthreshold)value, and then the LiDAR points are allocated to the 
plane. This process is repeated continuously to fit the points into the model. Then, curvature-based features 

Fig. 2.  Process of data preparation in fault localization.

 

Fig. 1.  Overall working process of Fault detection in power distributed networks.
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are derived to identify the conductors and pole deformation. Then, the local curvature (λ ) is estimated as 

λ i =
∑

j
wj d2

ij∑
j

wj
; here, Euclidean distance is represented as dij , weight function is wj  (that is of higher 

importance to closer neighbors). The maximum λ  value is represented as the misaligned components. As said, 
the gradient filters applied to extract the spatial features and the gradient points are defined in Eq. (1). From the 
gradient points ( Gx and Gy) the edge transitions are estimated according to Eq. (3)

	 Gx = [−1 0 1 − 2 0 2 − 1 0 1 ] ∗ I (x, y) Gy = [−1 − 2 − 1 0 0 0 1 2 1 ] ∗ I(x, y) ]� (3)

From the gradient points, the magnitude is estimated as G =
√

G2
x + G2

y  which helps to derive the edge 
intensity. The texture features are extracted with the help of convolution operations that are defined in Eq. (4)

	
F (l, m) =

¨ ∞

−∞
K (i, j) I (l − i, m − j) di dj� (4)

in Eq. (4), the input image intensity is I(x, y) at coordinates (x, y), the convolution kernel is represented as 
K(i, j), and the output feature map is signified as F (l, m). Therefore, the derivative of F (l, m) concerning 
I(x, y) is given by Eq. (5) (6)& (7),

	a.	 Start from the discrete convolution definition (our Eq. (4)):

	
F (x, y) =

∑
u

∑
v I(x + u, y + v)K(u, v)� (5)

	b.	 Differentiate F (x, y) with respect to a kernel element K (u′ , v′ ) : because the sum is linear, only the term 
with (u, v) = (u′ , v′ ) survives:

	
∂ F (x, y)

∂ K (u′ , v′ ) = I
(
x + u′ , y + v′ )

� (6)

	c.	  Differentiate F (x, y) with respect to an input pixel I (x′ , y′ ) : similarly, only kernel entries that align with 
that input pixel contribute:

	
∂ F (x, y)

∂ I (x′ , y′ ) = K
(
x′ − x, y′ − y

)
� (7)

	

∂ F (l, m)
∂ I (x, y) = ∂

∂ I (x, y)

¨ ∞

−∞
K (i, j) I (l − i, m − j) di dj

¨ ∞

−∞
K (i, j) ∂ I (l − i, m − j)

∂ I (x, y) di dj
∂ I (l − i, m − j)

∂ I (x, y)

= δ (l − i − x, m − j − y) ∂ F (l, m)
∂ I(x, y) = K(l − x, m − y)

� (8)

In Eq.  (8), the linear operators, Dirac delta function (δ ( x )) at value i = l − x and j = m − y is used to 
compute the textural features. The derivative outputs help to identify the change of outputs F (l, m) concerning 

Fig. 3.  Process of feature extraction and data fusion.
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I(x, y), equal to the kernel values. During this process, the gradient loss function (L) is computed to 
I (x, y) and K(i, j).

	a.	 Let L denote the scalar loss. For a given filter weight w (previously written as a generic W or w ), the gra-
dient used in backpropagation is shown in in Eq. (9).

	
∂ L

∂ w
=

∑
x,y

∂ L

∂ F (x, y)
∂ F (x, y)

∂ w
� (9)

	b.	  Using the result from step (2b) above (derivative of F  w.r.t. a kernel element) we substitute 
∂ F (x, y)/∂ w = I (x + u′ , y + v′ ) (or the appropriate alignment), as shown in Eq. (10).

	
∂ L

∂ w
=

∑
x,y δ F (x, y)I

(
x + u′ , y + v′ )

� (10)

	where we define δ F (x, y) ≜ ∂ L
∂ F (x,y)  (the local sensitivity / error signal at location (x, y) ). The I (x, y) based 

computed loss function is shown in Eq. (11)

	

∂ L

∂ I (x, y) =
∑

l,m

∂ L

∂ F (l, m) · ∂ F (l, m)
∂ I (x, y)

∂ F (l, m)
∂ I (x, y) = K (l − x, m − y) (previous result) ∂ L

∂ I(x, y)

=
∑

l,m

∂ L

∂ F (l, m) · K(l − x, m − y)
� (11)

	In Eq. (11), the gradient loss is computed with the help of chain rules, and the filter weight K(i, j) based gradi-
ent loss is estimated using Eq. (12)

	

∂ L

∂ K (i, j) =
∑

l,m

∂ L

∂ F (l, m) · ∂ F (l, m)
∂ K (i, j)

∂ F (l, m)
∂ K (i, j) = I (l − i, m − j) ∂ L

∂ K(i, j)

=
∑

l,m

∂ L

∂ F (l, m) · I(l − i, m − j)
� (12)

	The filter weight-based computed gradient values are estimated with the help of a feature map with a loss gradi-
ent concerning output value. During the optimization mt and vt is zero; therefore, the bias value is also zero. 
Hence, the weight and bias updating rule is defined in Eq. (13).

	
m̂t = mt

1 − β t
1

v̂t = vt

1 − β t
2

wt+1 = wt − η√
v̂t + ε

m̂t }� (13)

	In Eq. (13), η  is the learning rate, ε is the small constant, m̂t and v̂t computed bias corrected moments, The β₁ 
(first-moment decay rate), and β₂ (second-moment decay rate) are described. To guarantee the openness and 
repeatability of the optimization process, the text specifies their default or experimental settings. According 
to the discussion, the convolution operations derive the discoloration, cracks, and hotspots from the images.

Multimodal data fusion
Multimodal data fusion is crucial in fault detection systems, as it optimally integrates valuable sensor information 
to enhance accuracy and robustness. Multimodal fusion is the systematic integration of several data sources, 
namely LiDAR point clouds, optical images, and sensor measurements, into a unified representational space to 
increase the robustness of defect characterisation. The process uses Kalman filtering, a statistical estimator that 
properly combines sequential sensor values, to decrease noise and uncertainty. Textural, structural, and spatial 
information is progressively extracted from multimodal input by a hierarchy of neural processing units known 
as deep learning layers. In this scenario, graph neural networks (GNNs) capture the topological and relational 
interactions among LiDAR points, whereas convolutional neural networks (CNNs) learn constrained spatial 
patterns from optical pictures. Together, these layers enable coherent feature fusion and comprehensive system 
comprehension across modalities. The processing structure of multimodal data fusion is shown in Fig. 4.

A Kalman filter algorithm uses an algebraic estimator, combining several sensor measurements over time. The 
state update is given as X̂k = X̂k−1 + Kk(Zk − HX̂k−1); here, X̂k  is denoted as computed fault prediction 
state, Zk  is observed measurement vector (LiDAR and optical features), H  is the transformation matrix and 
Kalman gain ( Kk) that is estimated as Kk = Pk−1HT (HPk−1HT + R)−1. Pk−1 is the state covariance 
matrix, and R is the measured noise covariance matrix.To improve the performance of the fusion, this work 
includes a Hybrid Deep Learning Model, which integrates convolution networks and graph neural networks 
(GNN). The LiDAR points consist of a set of 3D points that are defined as (xi, yi, zi) and the unstructured data 
is processed by constructing the graph G = (V, E) with a set of LiDAR points V  and edges (E). The V and E 
has the connections that are connected with the help of the adjacency matrix (A) , which is represented in 
Eq. (14)
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Aij = {exp(−∥ xi − xj∥ 2

2σ 2 ), if ∥ xi − xj ∥ < dthresh 0, otherwise � (14)

In Eq. (14), the two LiDAR points are represented as xi, xj , the scaling parameter is (σ ) and dthresh is denoted 
as a predefined distance value, which is limited to distant points. The spectral graph generalizes the irregular 
graphs, and the convolution operation is defined as F ′ = σ

(
D−1/2AD−1/2F W

)
. The extracted features 

FOptical and FLiDAR aligned into the common latent space with the transformation matrix (T), which is 
defined as Faligned = T · [FLiDAR, FOptical] to perform the feature fusion. The derived features are fused and 
weighted with the help of W1 and W2 trainable parameters. The fusion is performed via the fully connected 
layer, and the weighted concatenation is applied for the trainable fusion operation that is defined in Eq. (15)

	 Ffusion = σ (W [ FLiDAR ⊕ FOptical] + b)� (15)

In Eq.  (15), the fusion weight matrix is defined as W , the bias value is b, the activation function is 
σ , and concatenation is denoted as ⊕ . The final layer identifies the structural fault probability using 
Ŷ = Softmax(WoutFfusion + bout), which is obtained from the fused features.

Fault classification and localization
The final stage receives the input from the previous stage that consists of fused features like LiDAR, voltage 
sensor, and thermal features are represented in Eq. (16). Several multimodal inputs were included into the NN 
model, including LiDAR point clouds (3D coordinates and intensity values), optical image properties (RGB 
intensities, gradient edges, and textures), and thermal sensor data (temperature pixels). These inputs were 
normalized, spatially aligned, and fused using Kalman filtering before being processed by the neural network for 
classification and fault location.

	 Ffused = α 1FLiDAR + α 2Fthermal + α 3Fvoltage� (16)

In Eq. (16), feature importance is denoted as α i which are updated during the training, and the fused features 
are represented as Ffused ∈ Rn× d that helps the hybrid deep learning model to perform the classification. 
While fault classification is the process of assigning fault classes or situations based on multimodal fused 
feature representations, fault localization is the process of mapping these faults onto real grid coordinates via 
GIS transformation. The activation function allows the network to depict complex patterns found in power 
distribution data by introducing non-linearity into neural computations. The fusion weight matrix, a learnable 
parameter set, controls the contribution of each modality in the final decision-making layer to guarantee equal 
representation of LiDAR, optical, and sensor-derived data. These concepts clarify how localization accuracy 
and classification accuracy are attained and simplify the suggested hybrid deep learning architecture. Then, the 
working process of fault classification and localization is shown in Fig. 5.

The input is transferred to the hidden lay that uses the linear transformation tailed by a non-linear activation 
function. A neural network including an input layer, three hidden layers, and an output layer is used in the 
suggested MDF-HDL model. 512 fused features from LiDAR, optical, and thermal data are processed by the 
input layer. Tanh and ReLU activations with batch normalization and dropout (0.3) are used by the hidden layers 
(256, 128, and 64 neurons) to enhance learning and avoid overfitting. Using a Softmax function, the output 
layer categorizes fault types, including conductor damage, vegetation-induced faults, and normal faults. With 
an accuracy of 98.91% and an inference time of 12.5 ms, the network provides dependable and effective real-
time defect detection after being trained using the Adam optimizer (learning rate 0.001) and cross-entropy loss. 
The linear transformation observes the complex relationship between the data and the layer function, which is 

Fig. 4.  Process of multimodal data fusion.
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denoted as hk = σ (Wkhk−1 + bk); where, bk ∈ Rdk , Wk ∈ Rdk× dk−1  and activation function ( σ ). The 
hidden layer output is nourished into the output layer that predicts the output using the fault class probability 

value that is estimated as P (y | Ffused) = exp(WohL+bo)∑ C

j=1
exp(WohL+bo)

. The computed P (y | Ffused) value helps 

to improve the classification accuracy by using cross-entropy-based loss function training. The training process 
identifies the deviation between the outputs L = −

∑ N

i=1yilogP (yi | Ffused). The deviations are reduced by 
updating the network parameters using the Adam optimizer, which is defined as Eq. (17)

	
mt = β 1mt−1 + (1 − β 1) ∇ L vt = β 2vt−1 + (1 − β 2)(∇ L)2 θ t = θ t−1 − η√

vt + ε
mt }� (17)

In Eq.  (17), momentum gradient estimation is denoted as mt and vt, the learning rate is η , and the decay 
factor is represented as β 1, β 2 and ε eliminates the division by zero.Then, the refinement process is defined as 
y∗ = D (P ( y | Ffused )); y∗ is final refined fault abel, decision tree refinement function is D(· ), probabilistic 
classification result is denoted as P (y | Ffused) and multimodal fused vector is Ffused. According to the 
discussions, the pseudocode for fault detection and localization is shown in Table 1.

In this step, geospatial transformation is performed, where the spatial grid representation of the fault 
probability and its contours drawn in the computer-aided design tool is converted into real geospatial coordinates, 
allowing accurate fault localization on the power grid.

 Results and discussions
This section discusses the efficiency of the Multimodal Data Fusion and a Hybrid Deep Learning Model (MDF-
HDL) based fault classification and localization in power distribution networks. This work uses the ArcGIS 
Power Line Classification Project33 and Awesome 3D LiDAR Datasets34 to create multimodal data fusion 
systems. These geographical, annotated point cloud data of power line environments can be obtained through 
the use of the ArcGIS Dataset product. It gives the real-world environment (wires, poles, background) that you 
require as a baseline for the classification jobs that you are trying to complete.

Input: Ffused, sd and GIS map

Output: Gf and y∗

Initialize deep parameters w and b

For each layer, k in {1,2, . . . L}

              Compute hidden layer activation using hk = σ (Wkhk−1 + bk)

              Compute final probability using softmax function P (y | Ffused) = exp(WohL+bo)∑ C

j=1
exp(WohL+bo)

Defined decision tree nodes using thresholding y∗ = D (P (Ffused))

Extract Ploc from sd

Transform pi  into geospatial coordinates using Gf = H · Ploc

Return Gf and y∗

Table 1.  Fault detection and localization using a hybrid deep learning model.

 

Fig. 5.  Neural structure for fault classification.
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Dataset description
The ArcGIS Power Line Classification Project and the Awesome 3D LiDAR Datasets are the two main datasets 
used in this investigation. There are over 3  million annotated point cloud samples in the ArcGIS collection 
that depict actual power line settings, complete with cables, poles, and background objects. For applications 
requiring the location and categorization of faults in power distribution networks, this data offers a realistic 
geographic baseline.

The Awesome 3D LiDAR Datasets were chosen based on their applicability for urban odometry, localization, 
and segmentation applications, taking into account experimental parameters like scale, objectives, and sensor 
type. There are about 2 million high-resolution 3D point clouds in the collection. Both datasets were divided 
into 25-meter spatial blocks with a maximum of 8,192 points each during data processing. The application of 
normalization and noise filtering techniques enhanced the quality of the data.

The dataset was split into 80% training, 10% validation, and 10% testing subsets both geographically and 
temporally to guarantee reliable model assessment and avoid overfitting. Through stratified sampling, our 
partitioning technique ensured that each fault category was proportionately represented in each subgroup while 
maintaining constant class representation across all splits. Furthermore, to reduce imbalance and enhance model 
generalization, data augmentation methods were used for underrepresented fault classes, including random 
rotations, horizontal and vertical mirroring, and controlled noise injection. To make sure minority classes made 
a suitable contribution to the optimization process, a weighted categorical cross-entropy loss function was also 
used during training. Together, these actions successfully reduced class disparity and improved the model’s 
dependability and fairness in problem identification across a range of operating conditions. Methods such as 
stratified sampling are utilized in an effort to alleviate class imbalance. Following the application of CNN layers 
for image data and 3D convolutional networks or RandLA-Net for LiDAR data, Kalman filtering was utilized 
for the purpose of achieving robust multimodal fusion that was achieved by feature extraction. When it came to 
classification, Adam-optimized decision trees with early halting (patience of 8) were utilized in order to avoid 
excess fitting. This comprehensive description of the dataset and the preprocessing workflow contribute to the 
enhancement of the reproducibility and reliability of the fault detection results.

Experimental setup
Multimodal data fusion and reproducibility are ensured by the experimental setup. The study uses the ArcGIS 
Power Line Classification Project and Awesome 3D LiDAR Datasets from ArcGIS Hub and GitHub. ArcGIS has 
3 million point cloud points, while LiDAR has 2 million. High-resolution 3D LiDAR point clouds and GIS power 
line photos are included. Data are preprocessed by dividing them into 25-meter blocks with 8,192 points per 
block, noise filtering, and normalization. Mode-specific feature extraction uses CNN layers for images and 3D 
convolutional networks or RandLA-Net for LiDAR. The collected characteristics are incorporated using Kalman 
filtering for robust multimodal fusion. Decision tree models optimized with the Adam optimizer (learning 
rate = 0.001, batch size = 64, 50 epochs) are used for classification, while GIS mapping with 1 m spatial accuracy 
is used for fault location. The model achieves 98.9% accuracy, 98.7% precision, 98.3% recall, 98.5% F1-score, 
According to experimental results, the model ensures real-time performance at over 80 frames per second by 
achieving an average end-to-end latency of 12.5 ms per sample on a high-performance workstation (NVIDIA 
RTX 3090 GPU, Intel i9 CPU). Latency rises to 20–35 ms on mid-range GPUs like the RTX 3060, which still 
satisfies real-time needs. Near-real-time requirements for field applications are met by efficient deployment using 
TensorRT and FP16 quantization, which keeps latency below 100 ms even on tiny GPUs. In order to verify and 
maintain real-time operation under various hardware restrictions, optimization techniques (model pruning, 
quantization, and asynchronous execution) have been implemented, along with a thorough latency breakdown 
across preprocessing, feature extraction, fusion, and inference phases. The implementation environment runs 
Python 3.9, TensorFlow 2.x, NumPy, and ArcGIS API on an NVIDIA RTX 3090 GPU, Intel i9-10900 K CPU, 
and 64 GB RAM. The dataset is split into 80% training, 10% validation, and 10% testing sets, with the Adam 
optimizer used for optimization and early halting (patience = 8 epochs) to prevent overfitting.

Collecting and synchronizing disparate datasets like ArcGIS power line photos and Awesome 3D LiDAR 
point clouds ensures spatial alignment for consistent feature mapping in multimodal data fusion. Data quality 
is improved via noise filtering, normalization, and temporal-spatial alignment for each modality. Convolutional 
neural networks (CNN) for image data and 3D convolutional networks for LiDAR data extract rich, modality-
specific characteristics. Kalman filtering iteratively merges complementing information from each source to 
improve resilience and accuracy. For accurate fault classification and GIS mapping fault localization, Adam-
optimized decision trees are fed the fused multimodal feature representation. Power distribution network fault 
detection is accurate and real-time with this systematic fusion approach, which leverages the complementary 
strengths of different modalities and addresses data heterogeneity.

Figure 6 shows a complete data analysis after feature extraction and multimodal fusion. In the comparison 
histogram (Fig. 6a), the fused feature distribution reduces variance while retaining the important bimodal features 
of LiDAR and optical modalities, suggesting effective complementary information integration, specifically shows 
the comparative feature distribution before and after fusion by plotting Feature Value (x-axis) against Frequency 
(y-axis). Feature value sorting (Fig.  6b) shows that fused features smooth and uniformly represent samples, 
bridging their statistical qualities and the distribution homogeneity attained by fusion by plotting Feature Index 
(x-axis) against Variance (y-axis). The spectrum energy plot (Fig.  6c) indicates a concentration of energy at 
lower frequencies, validating the conclusion that the fusion process suppressed high-frequency noise. Plotting 
frequency (Hz) against spectral energy (dB) in subfigure (c) illustrates how high-frequency noise is suppressed. 
PCA results (Fig. 6d) show that the first two components explain virtually all of the variance, demonstrating that 
most relevant information is recorded post-fusion and Principal Component (x-axis) vs. Explained Variance (%) 
to emphasize dimensionality reduction efficiency. Fused features have the greatest significance ratings (Fig. 6e), 

Scientific Reports |         (2026) 16:1868 9| https://doi.org/10.1038/s41598-025-31565-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


surpassing separate modalities and showing their vital influence in classification accuracy. In order to determine 
which qualities are more important for categorization, Subfigure (e) displays Feature Rank (x-axis) against 
Importance Score (0–1 scale). Finally, t-SNE clustering (Fig. 6f) shows well-separated clusters, proving that the 
fused feature space improves inter-class separability and classification over unimodal representations. The inter-
class separability attained following multimodal fusion is demonstrated in subfigure (f), which compares t-SNE 
Dimension 1 to Dimension 2.

The fault classification system based on deep learning approaches has surpassed expectations by achieving 
an accuracy of 98.91% with a 3-layer DNN architecture, which is remarkably close to the proposed ceiling of 
99.4% displayed in Fig. 7 (a). Accuracy (%) vs. Epoch is shown in Subfigure (a), which shows how the model’s 
performance improves throughout training iterations. From the analysis of training convergence (Fig. 7b), it 
is clear that optimization is achieved without considerable overfitting, as demonstrated by the training loss 
and validation loss curves of the model, The convergence pattern between the training and validation sets is 
highlighted in Subfigure (b), which displays Loss Value versus Epoch. The neural network (NN) training state 
graphic is included, which displays the evolution of the gradient magnitude, validation checks, and learning rate 
scalar (µ). This figure validates effective validation during model training, stable convergence, and appropriate 
learning rate adaptation. The discriminative power of the model is illustrated by Subfigure (c), which shows the 
False Positive Rate (x-axis) vs. True Positive Rate (y-axis) via the ROC curve, which were close to each other 
is well demonstrated by the ROC curve (AUC = 0.992, Fig.  7c) and precision-recall characteristics (Fig.  7d), 
affirming that the model maintained good discriminative ability across all operational thresholds.

Data from the confusion matrix (Fig. 7e) showcases an outstanding 485 out of 500 sample classification, 
resulting in only five errors classifying the two subtypes of faults B and C softmax distributions in Fig.  7f 
indicate the overwhelming dominance of high-confidence predictions, which showed that out of all samples, 
89% were classified with over 95% certainty affirming that the system can be reliably deployed in industrial 

Fig. 7.  Efficiency analysis of deep learning-based fault classification. (a) Accuracy (b) loss convergence (c) 
ROC curve (Fault Class B) (d) Precision-recall curve (e) Confusion matrix (f) Classification confidence 
distribution.

 

Fig. 6.  Efficiency analysis of feature extraction and fusion (a) Feature distribution before/after fusion. (b) 
Feature variance distribution. (c) Spectral energy of fused features. (d) PCA explained variance. (e) PCA 
explained variance. (f) t-SNE feature cluster analysis.
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settings. Classification Confidence (%) vs. Sample Count is shown in Subfigure (f), which shows the distribution 
of reliability among samples. To ensure visual consistency and analytical clarity, all probability and rate metrics 
are consistently expressed as percentages (%), and legends in each subfigure clearly indicate training, validation, 
and testing outcomes.

Refining the decision tree shows notable increases in performance, enhancing accuracy by 60–80% across 
all fault types (Fig. 8a).It highlights mistake reduction across categories by plotting Fault Type (x-axis) against 
Misclassification Rate (%). Maximum accuracy is attained at depth 5 (Fig. 8b), Tree Depth (levels) vs. Accuracy 
(%) is shown to determine the ideal model complexity, where the probability distribution of classification 
confidence exhibits a steep increase (Fig.  8c) the degree of categorization certainty by plotting Confidence 
Probability (0–1 scale) against Fault Class. Gini impurity analysis reveals a strong negative correlation with 
decision confidence (Fig. 8d), and the ranking of feature importance identifies voltage and current measurements 
as the most relevant ones (Fig.  8e) the relative importance of input attributes by plotting the Feature Index 
against Importance Value (normalized). In terms of accuracy, the average absolute improvement of 5–8% across 
all fault types after refinement is the post-comparison accuracy (Fig. 8f), which confirms that the optimization 
process worked effectively. After refinement, the model has an accuracy between 93 and 98% and still has a clear 
structure due to the decision tree used.

In addition, the efficiency of the Multimodal Data Fusion and a Hybrid Deep Learning Model (MDF-HDL) 
is compared with the existing approaches such as capsule network (CapsNet)15, Neural Architecture Search 
(NAS)17, Spatial-temporal recurrence neural network (STRGNN)35 and 1D convolutional neural networks 
(CNN)36 and the obtained results are shown in Table 2.

Table 2 shows that the MDF-HDL framework outperforms previous techniques in all important performance 
criteria. MDF-HDL outperforms CapsNet (95.24%), NAS (96.27%), STRGNN (94.35%), and 1D-CNN (92.98%) 
in fault classification and localization at 98.91%. Beyond accuracy, MDF-HDL has higher precision (0.9837) 
and recall (0.9931), resulting in an F1-score of 0.9893, indicating better false positive and negative balance. This 
performance advantage shows its ability to find flaws under difficult settings. MDF-HDL also reduces training 
time (65.1 min) compared to NAS (210.31 min) and CapsNet (120.3 min) while retaining a competitive inference 
performance of 12.5 ms for real-time applications. In terms of data efficiency, MDF-HDL achieves 86% accuracy 
with 10k samples, surpassing benchmark models that vary from 64 to 77% under the same data limitations. 
These results demonstrate that the proposed framework is practical for real-world multimodal fault diagnosis 
and localization tasks due to its state-of-the-art accuracy, faster training convergence, lower computational cost, 
and efficient use of limited training data.

The claim of maintaining low computational complexity even when integrating several techniques, including 
k-means clustering, deep learning layers, Kalman filtering, and decision trees, has been validated by a thorough 
computational complexity analysis. The analysis breaks down each component’s time and space complexity: 

Criteria MDF-HDL (proposed) CapsNet15 NAS17 STRGNN19 1D-CNN20

Accuracy (%) 98.91 95.24 96.27 94.35 92.98

Precision 0.9837 0.951 0.958 0.952 0.925

Recall 0.9931 0.963 0.963 0.961 0.938

F1-score 0.9893 0.977 0.96 0.976 0.941

Training time (mins) 65.1 120.3 210.31 95.22 85.5

Inference speed (ms) 12.5 18.2 25.7 15.3 9.8

Data efficiency 86% @ 10k samples 73% @ 10k samples 77% @ 10k samples 66% @ 10k samples 64% @ 10k samples

Table 2.  Comparative analysis of MDF-HDL.

 

Fig. 8.  Refinement efficiency analysis. (a) Mis-classification rate (b) tree depth vs. accuracy (c) classification 
confidences (d) Gini impurity vs. confidence (e) feature importance (f) accuracy comparison.
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Generally, k-means clustering works in O(n × k × t × d), where n is the number of samples, k the 
clusters, t iterations, and d the dimensionality; deep learning layers are optimized to control complexity by 
balancing model depth and parameter count; Kalman filtering incurs linear complexity O

(
m2)

 related to 

fused feature dimensions; and, lastly, decision trees optimized via Adam maintain effective classification with 
complexity approximately O (log n). The low computational cost claim was supported by experimental runtime 
profiling on a realistic hardware setup (NVIDIA RTX 3090 GPU, Intel i9-10900  K CPU), which verified an 
inference time of roughly 12.5 ms per sample. These outcomes demonstrate the system’s suitability for detecting 
realistic, real-time problems in complex power distribution networks. The supplemental resources offer full 
computational details and profiling.

Statistical results
The benchmark datasets underwent additional tests, which were conducted using the 5-fold cross-validation 
method. To accurately portray the consistency of the model, performance metrics such as accuracy, precision, 
recall, and F1-score are now provided as the mean ± standard deviation across all folds. As an illustration, the 
MDF-HDL model achieved an accuracy of 98.91% ± 0.23%, precision of 98.7% ± 0.27%, recall of 98.3% ± 0.30%, 
and F1-score of 98.5% ± 0.25%. Additionally, sensitivity assessments were conducted on critical hyperparameters, 
including the learning rate and batch size, to validate the model’s stable performance within practical parameter 
ranges. To address concerns regarding unpredictability and reinforce trust in the model’s application for fault 
detection in power distribution networks, these additional statistical evaluations provide a rigorous examination 
of the model’s reliability. To further strengthen the statistical validity and interpretability of the performance 
evaluation, 95% confidence intervals and error bars were incorporated into all reported performance metrics. 
Specifically, for each of the five cross-validation folds, the mean and standard deviation were computed for 
accuracy, precision, recall, and F1-score, and the corresponding error bars were plotted to visually represent 
the variability across folds. The MDF-HDL model achieved an average accuracy of 98.91% ± 0.23% (95% CI: 
[98.68%, 99.14%]), precision of 98.70% ± 0.27% (95% CI: [98.43%, 98.97%]), recall of 98.30% ± 0.30% (95% CI: 
[98.00%, 98.60%]), and F1-score of 98.50% ± 0.25% (95% CI: [98.25%, 98.75%]). These confidence intervals and 
error bars, now reflected in Figs. 7(a) and 8(f), provide a clearer depiction of statistical variability and confirm 
the robustness and consistency of the proposed model across multiple validation folds. This refinement ensures 
a transparent representation of performance stability and reinforces the reliability of the MDF-HDL framework 
for real-world fault detection and localization tasks. The MDF-HDL and baseline models were compared using 
paired t-tests and Wilcoxon signed-rank tests to further confirm model randomness and statistical reliability. 
Significant performance gains were seen in the results (p < 0.01 and p < 0.05), indicating that the gains are 
statistically significant and not the result of chance.

According to experimental results, the model ensures real-time performance at over 80 frames per second by 
achieving an average end-to-end latency of 12.5 ms per sample on a high-performance workstation (NVIDIA 
RTX 3090 GPU, Intel i9 CPU). Latency rises to 20–35 ms on mid-range GPUs like the RTX 3060, which still 
satisfies real-time needs. Near-real-time requirements for field applications are met by efficient deployment 
using TensorRT and FP16 quantization, which keeps latency below 100 ms even on tiny GPUs. In order to 
verify and maintain real-time operation under various hardware restrictions, optimization techniques (model 
pruning, quantization, and asynchronous execution) have been implemented, along with a thorough latency 
breakdown across preprocessing, feature extraction, fusion, and inference phases.

To guarantee dependability, an experimental uncertainty analysis was conducted using many trials and five-
fold cross-validation. To demonstrate the openness and robustness of the results provided, performance metrics 
are displayed as mean ± standard deviation (e.g., accuracy: 98.91% ± 0.23%), which indicates the experimental 
uncertainty resulting from data and model variances.

Ablation study
Model performance improved significantly in the Kalman filtering ablation study on feature fusion. Without 
Kalman filtering, the MDF-HDL model achieved 96.23% ± 0.45% accuracy and 95.89% ± 0.47% F1-score. Using 
Kalman filtering for multimodal feature integration significantly improved accuracy to 98.91% ± 0.23% and 
F1-score to 98.50% ± 0.25%. Kalman filtering is essential for merging complementary modality features, which 
improves defect detection precision and reliability.

Compared to CNN-only feature extraction, Graph Neural Networks (GNN) improved performance. The 
CNN-only model had an accuracy of 97.12% ± 0.38% and an F1-score of 96.85% ± 0.40%, whereas the GNN-
enhanced model had 98.18% ± 0.29% and 97.75% ± 0.31%. This suggests that GNN’s capacity to capture relational 
and structural information between features improves power grid fault detection categorization.

Further investigation showed that decision tree refinement corrected misclassifications from raw deep neural 
network (DNN) output. The raw DNN predictions have an accuracy of 97.45% ± 0.42% and an F1-score of 
97.10% ± 0.44%. After decision tree post-processing, the accuracy and F1-score improved to 98.91% ± 0.23% and 
98.50% ± 0.25%, respectively, highlighting the impact of the refinement on classification robustness and error 
reduction. These results confirm that the MDF-HDL model’s integrated approach maximizes fault classification 
and localization.

Limitations
Critical limitations are acknowledged in this study. The evaluation uses only publicly available benchmark 
datasets, not real-world or field-collected data. Sensor noise, fault characteristics, and data gaps can affect model 
robustness and accuracy in power grid failure detection. Second, high-quality multimodal data, especially 
LiDAR and optical pictures, are difficult to acquire and expensive, limiting implementation. Obtaining high-
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quality LiDAR and optical data for the identification of power distribution problems presents both technological 
and economical challenges. Centimeter-level accuracy requires expensive sensors, aerial platforms, and precise 
calibration; prices rise with larger grid areas and more frequent scans. Environmental variables like as changes 
in cloud cover, vegetation, and light can further reduce the reliability of data and need extensive preprocessing 
and alignment. Moreover, synchronization between multimodal sources necessitates specialized equipment 
and skilled personnel, and massive data volumes demand strong servers, storage, and GPUs. When combined, 
these elements lead to scale problems, lengthy implementation times, and high running expenses. Third, while 
the MDF-HDL model has low computational complexity, integrating deep learning layers, Kalman filtering, 
and decision tree refinement may limit scalability and real-time operation in large-scale or resource-limited 
grid environments. Finally, dataset bias and class distribution constraints may limit the model’s applicability to 
varied geographic and operational contexts. To improve practicality, future research will validate the model on 
operational grid data, optimize computing efficiency, and address dataset diversity.

Furthermore, because of their labeling procedures and data collection settings, the ArcGIS Power Line 
Classification Project and the Awesome 3D LiDAR Datasets may introduce intrinsic biases while being 
comprehensive and well-annotated. Because these datasets mostly cover certain geographic regions under 
controlled imaging conditions, they could not adequately capture the unpredictability of real-world power 
distribution networks due to changing weather, terrain, and sensor calibration settings. These dataset-specific 
biases might make the model overoptimized for benchmark conditions when applied to unfamiliar situations, 
thereby limiting its usefulness. To mitigate these effects and ensure a balanced class distribution and broader 
representation, the study employed stratified sampling, cross-validation, and multimodal data normalization. 
Further validation using a variety of field-collected datasets is required to confirm the robustness and adaptability 
of the proposed MDF-HDL architecture in operational grid settings.

Conclusion
The MDF-HDL system improves power distribution network fault detection and localization accuracy and 
efficiency by combining multimodal LiDAR and optical data fusion, deep hierarchical learning, decision tree 
refinement, and GIS mapping. This study enhances fault classification accuracy, reduces false alarms, and 
accelerates inference for real-time applicability. Deep neural network-based feature extraction and classification 
with decision tree post-processing outperformed CapsNet, NAS, STRGNN, and 1D-CNN on benchmark 
datasets with 98.91% accuracy. The model had 86% data efficiency at 10k samples, low computational cost 
(4.2 M parameters), and 12.5ms inference time, demonstrating potential scalability for real-world deployment. 
MDF-HDL also performed well in noisy environments and across various settings. High-quality LiDAR and 
optical data are difficult to use in low-visibility situations and increase computational overhead. Self-supervised 
learning will enhance flexibility, processing speed, and real-world validation, ensuring generalizability beyond 
synthetic datasets. This study shows promise for effective, scalable fault management in emerging smart grid 
systems, but more empirical evaluation is needed.
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