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STICformer: spatio-temporal
Intrinsic connections transformer
for traffic flow prediction

Yuquan Chu?, Tingting Fu?, Peng Liu? & Haksrun Lao3™*

With the rapid advancements in intelligent transportation systems Jiang et al. (In: In Proceedings of
the 30th ACM international conference on information & knowledge management 4515-4525, 2021),
(Feng et al. Digit Commun Networks, 2024), precisely forecasting traffic information has emerged as a
significant challenge. Recently, numerous advanced neural networks with complex architectures have
been introduced to address this challenge. Nonetheless, the majority of these models handle temporal
and spatial features separately before combining them, which overlooks the inherent relationships
between these two types of characteristics. This approach of independent feature extraction can

result in the loss of valuable information and restricts the model’s capacity to effectively leverage

the interdependencies between spatial and temporal features. In order to tackle this challenge, we
introduce STIC, a Transformer-based neural network designed to capture crucial information from both
spatial and temporal domains. The main innovation of our method lies in utilizing the cross-attention
mechanism within Transformers to sequentially capture and adaptively merge spatiotemporal features
from historical data. Experiments conducted on four diverse traffic forecasting datasets show that our
model outperforms traditional methods by effectively uncovering the underlying spatial and temporal
dependencies in traffic data sequences. Our work introduces a new strategy for enhancing the accuracy
of traffic flow predictions.

Traffic forecasting aims to analyze future traffic conditions in a road network by utilizing historical traffic data.
Traffic flow data, characterized as spatio-temporal information, consists of multiple interdependent time series.
Accurately forecasting traffic flow with computational efficiency serves as a foundational pillar for advancing
intelligent mobility networks.Conventional analytical and modeling techniques face several constraints, making
accurate forecasting a complex task. Recently, deep learning-based traffic prediction models have demonstrated
significant advancements, largely due to their ability to capture the inherent spatio-temporal correlations within
traffic systems.

Notably, Transformer-based models like those presented in ** and spatio-temporal graph neural networks
(STGNN ) >6 have achieved remarkable success, making them highly popular approaches in this domain. The
Transformer-based models leverage the multi-head attention mechanism to efficiently establish spatial and
temporal relationships, enabling it to handle lengthy sequences. In the mean time, the STGNN' s integrate graph
convolution networks with sequential models to capture temporal patterns while addressing non-Euclidean
dependencies among variables.

Beyond these approaches, a variety of complex and cutting-edge models have been introduced for predicting
traffic flow, such as those featuring efficient attention mechanisms "~!1, learning graph structure models 1271,
graph convolution models =22, and other methods 23-2°. However, despite the progress in network architecture,
performance gains have plateaued, primarily due to the oversight of the inherent correlations between temporal
and spatial features in previous research.

Framework is very important in many researches?®?’. Inspired by the Transformer framework 23, particularly
the interaction between its encoder and decoder, we employ the cross-attention mechanism to seamlessly
combine temporal and spatial features.

Effective data representation plays a vital role in traffic forecasting. A key element of STGNN:G is the feature
embedding E'y, which is used to map raw inputs into a high-dimensional latent space, capturing spatio-temporal
patterns efficiently. However, attention mechanisms alone are not sufficient to retain positional information
from time series. Therefore, additional structures like temporal position encoding FEip. and periodic
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embeddings F,, are required. Recent advancements have led to the development of models such as GMAN 3,
PDFormer 4, STID %, and STAEformer , each incorporating spatial embedding E's to improve the capture of
spatial features. Notably, STID ?° introduces an innovative embedding approach that combines both spatial and
temporal periodic embeddings, achieving significant performance gains with a simple Multi-layer Perceptron
(MLP). Additionally, STAEformer *° presents an adaptive embedding layer, which uses adaptive embedding E,
to effectively learn both temporal and spatial patterns.

We propose a novel enhanced periodic embedding Epius to further improve the effectiveness of feature
representation. It comprehensively integrates periodic information, thereby strengthening the representation of
periodic patterns in historical data.

The key contributions of this paper can be outlined as follows:

o We introduce a new model called STICformer that features a cross-attention layer. This layer integrates tem-
poral and spatial and temporal information through the application of cross-attention mechanisms.

o We introduce a new embedding layer structure, Epiys, to further enhance the representation of periodic
information in historical data.

The paper is organized as follows: Section 2 provides an overview of related research, fundamental concepts,
and the problem definition. Section 3 offers a comprehensive description of the model. Section 4 includes an
in-depth assessment of the model’s effectiveness, featuring predictive visualizations and detailed ablation studies
across different architectures and key components. Lastly, Section 5 summarizes the findings and concludes the

paper.

Related work

Previous studies

In recent years, Transformer-based models have garnered significant attention in the field of traffic flow
prediction due to their ability to effectively capture both temporal and spatial dependencies. We proposed
TSformer in the conference ICA3PP 3!, a Temporal-Spatial Transformer model specifically designed for traffic
prediction. TSformer addresses the challenges of modeling spatio-temporal intersections by introducing a novel
attention mechanism that integrates spatial and temporal features in a sequential manner, first focusing on
temporal features and then on spatial features. This approach effectively captures the intrinsic connections of
spatio-temporal information.

However, the sequential order of feature extraction (temporal-first followed by spatial) may impact the
prediction performance. Building on this, we extend TSformer and propose an improved method, STICformer
(Spatio-Temporal Intrinsic Connections Transformer), which explicitly considers the influence of the extraction
order on the results. To address this, we design two dedicated modules, the Temporal-first Cross-Attention Layer
and the Spatial-first Cross-Attention Layer, to adaptively model the spatio-temporal dependencies in different
orders. Taking into account the impact of the extraction sequence, our approach achieves superior performance
in traffic flow prediction.

Spatial-temporal prediction models

Deep learning has made significant advancements in numerous domains, including autonomous driving and
speech recognition, and it has also excelled in the prediction of spatio-temporal data. Researchers have created
models that capture the inherent spatio-temporal relationships in traffic data by portraying such data as time
series across a road network. In this network, roads are interconnected according to their geographical closeness.
Traditional RNNs 3233 and their variations ** have been widely used to learn sequential patterns. However, these
models often treat traffic data from different roads as independent streams, overlooking the hidden relationships
between them. To overcome this limitation, researchers have integrated RNNs with GCNs or CNNs to enhance
traffic forecasting. For example, some models use GCN outputs as features for GRUs 634 while others combine
CNNs with GCNss for effective short-term forecasting *1°. Despite these advancements, such methods often
excel at capturing local patterns but struggle with long-term predictions.

Attention mechanism

The Attention Mechanism ?® has become widely adopted across different domains owing to its effectiveness and
versatility in identifying dependencies. Its primary concept revolves around dynamically concentrating on the
most pertinent features dictated by the input information.

In recent years, researchers have refined this mechanism to tackle the complex problem of traffic forecasting.
PDFormer * utilizes two graph masking matrices to implement a spatial self-attention layer, which captures
dynamic spatial relationships in the data. GMAN * employs a decoder-encoder structure, using separate attention
layers to process dynamic spatial dependencies and non-linear temporal correlations in the data. STAEformer 3
sequentially captures both temporal and spatial dependencies by concatenating multiple layers of self-attention
mechanisms.

We utilize the cross-attention mechanism to capture the inherent temporal-spatial interactions, which
allows for improved integration of both temporal and spatial features. Additionally, drawing inspiration from
COTattention °, we incorporate convolutional layers into the temporal-spatial cross-attention block to better
capture feature characteristics, thereby enhancing the fusion of temporal and spatial information.

Traffic forecasting
Over the past few decades, traffic forecasting has garnered significant research attention. For example, DCRNN ¢
models traffic flow dynamics through a diffusion process and employs a diffusion convolution operation to
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effectively capture spatial relationships. On the other hand, STGCN °, which adopts a purely convolutional
architecture, decreases the parameter count, resulting in accelerated training times. The AGCRN model 3
addresses the unique traffic patterns observed at each node by assigning distinct parameters, such as biases and
weights, to every individual node. This approach allows for a more effective capture of the specific behaviors of
each observation point, improving the model’s ability to reflect node-specific characteristics.HI * focuses on
historical inertia, leveraging the persistence and continuity of past data to enhance future forecasting.

There are also some models that do not rely on graph structures, such as STID ?°, which introduces spatial
embeddings and temporal periodic embeddings, and STAEformer *°, which builds upon this by incorporating
adaptive spatio-temporal embedding layers. Both achieve superior performance with simple network structures.
Similarly, our model introduces a cross-attention mechanism to capture complex spatio-temporal dependencies
without relying on graph structures.

Methodology

We observe that spatio-temporal features are inherently integrated. For instance, traffic units on a road at a
specific time tend to appear at particular observation points, indicating an intrinsic connection between
temporal nodes and observation points. To better extract spatio-temporal features as a whole, rather than
extracting them independently and then fusing them, we propose the concept of cross-attention spatio-temporal
fusion. Meanwhile, to enhance the efficiency of pre-training, we employ feature extraction blocks to capture
temporal features effectively.

As depicted in Fig. 1, the architecture of our model comprises three essential components: an embedding
layer, cross-attention mechanisms, and a fusion regression module.At the outset, the embedding layer maps the
input data into a latent space of high dimensionality. Following this, the time-first and space-first cross-attention
layers refine the spatio-temporal representations. Finally, the fusion regression module processes the extracted
features to produce the final prediction.

Problem definition

The primary goal of traffic prediction is to estimate future traffic conditions in transportation networks using
historical data. Specifically, the data Y;_741.¢+ encodes traffic patterns from the preceding 7" time intervals.
The task is to forecast traffic states for the next 7" time intervals by training a model G(-) with parameters ®,
formulated as:

G(®)
[)/v,g_T+1;t,...,Y15] — [Y;H-lv-“:}/(t«rT/)] (1)

At each time step, the traffic data Y; € R %P, where M represents the count of spatial units and p denotes the
feature size. Here, p = 1, indicating the traffic volume.

Embedding layer
The input data processed by the embedding layer is denoted as X € R?*"*P where T represents the number
of temporal nodes, N denotes the total number of observation points, and D is the number of dimensions. In our
study, the embedding layer is divided into five main components: (1) the feature embedding layer Ey, (2) the
adaptive embedding layer E, (3) the spatial embedding layer Es, (4) the periodic embedding layer E,,, and (5)
the proposed periodic enhancement embedding layer Fpys.

To preserve the original data’s integrity, we employ a fully connected layer 3¢ to compute the feature embedding
Ej € RT*N*di This is expressed as:

E; = Dense(X¢—1+1:t), )
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Fig. 1. The Architecture of Spatio-Temporal Intrinsic Connections Transformer (STICformer) for Traffic Flow
Prediction.
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where dy represents the feature embedding’s dimensionality, and Dense(+) denotes the fully connected layer.

Following the method proposed in STID 2, we utilize the spatial embedding layer E5 € RT*"*9s o capture
spatial information, where d is the dimensionality of the spatial embedding.

The periodic embedding layer, denoted as Ey,, captures both weekday and timestamp information from the
historical data. This embedding layer is influenced by two key components: T, which represents weekday-
related data, and T%,, which holds information about the timestamps. These two components have demonstrated
their effectiveness in previous works 2%, Specifically, T} is a matrix of size Ny X dy, where Ny represents the
total number of distinct timestamps within a single day, which is 288. On the other hand, 7%, is a matrix of size
Ny x dy, where N, corresponds to the number of days in a week, which is 7.

To further capture the periodicity of historical data, we propose a periodic enhancement embedding layer
Epius € RT*NXdp The indices of Epus are represented by Tp € RN»X4» where N, is defined as:

N, = Ny x N 3)

This design combines the weekday information and daily timestamp information from historical data to extract
latent periodic features.

Drawin;%v inspiration from the adaptive embedding strategy presented in STAEformer 30, We define
E, € RT*IV>Xda 453 tensor designed to model the complex relationships within the traffic data. A key feature
of E, is its adaptability across various traffic time series, allowing it to generalize to different patterns of traffic
flow over time and space.

By combining the embeddings mentioned earlier, we construct the spatio-temporal representation for the
hidden layer, denoted by Z € R* * Nxdn which can be formulated as:

Z=E; || Es |l Ea || Ep || Eptus (4)

where || denotes the concatenation operation. This framework is designed to capture periodic behaviors and
spatio-temporal patterns by leveraging diverse embedding layers, thereby improving the model’s ability to
interpret and process spatio-temporal sequential data.

Temporal/spatial-first cross-attention layer

To capture intricate traffic dynamics, we employ a standard Transformer model across both temporal and spatial
dimensions. As shown in Fig. 1, our approach leverages both temporal-first and spatial-first attention modules
to integrate spatio-temporal features from historical data. For instance, in the temporal-first cross-attention
layer (displayed on the left in Figure 1), The data fed into the system comes directly from the embedding layer,
symbolized as Z € RT*~*4r Here, T corresponds to the sequence length (time steps), and N indicates the
count of spatial nodes.In the initial processing stage, the temporal self-attention mechanism computes three
matrices: the query matrix @, the key matrix K, and the value matrix V.

Q=2Wq, K=2ZWg, V=2ZWy, (5)

where Wq, Wi, Wy € R% %% are trainable parameters. The self-attention weights are computed as:

.
A = Softmax (QK ) , (6)

vV

A € RNXTXT captures the temporal dependencies across different nodes. Finally, the output from the temporal
self-attention layer is:

Z = AV. (7)

As illustrated by the attention visualizations in Fig. 2, we combine the output Zrp from feature extraction with
the input Z and apply cross-attention along the spatial axis to capture spatio-temporal relationships.

The query matrix Zrp is generated by passing Z through the feature extraction module, detailed in Section
3.3.

The learning process is formulated as follows:

ZFB, = 17

n =
Zﬁts) _ CA (Z,Z(ts) Z(ts) ) , n > 1. (8)

n—11“n—1

The index of the cross-attention sub-layer is represented by n.
Finally, the output of the spatio-temporal cross-attention layer is fed through a feedforward propagation and
normalization process to obtain the final output of the temporal-first cross-attention layer Z;:

Z"9 = LN (FFN (")), ©)

LN(-) denotes the normalization layer, and FFN(-) denotes the feedforward regression layer.
The spatial-first cross-attention layer follows the same process as described above, and its output is denoted
as 7.
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Fig. 2. Temporal-First and Spatial-First Attention Heatmaps for selected PEMS08 nodes and time steps.
Left: temporal-first module (rows: nodes, columns: time steps). Right: spatial-first module (rows: time
steps, columns: nodes). Darker colors indicate higher attention weights. The visualizations reveal temporal
synchronization among nodes and spatial coupling patterns, demonstrating the model’s ability to capture
meaningful spatio-temporal dependencies.

For the spatial-first cross-attention layer, the embedded input
A= RT XN Xdp,
is first rearranged along the spatial axis, yielding

NXTxd
127/ c ]Eg XT'Xdp, ,

so that each spatial node corresponds to a sequence of length T'.
The multi-head attention mechanism then performs spatial self-attention as follows:

Q =7ZWq, K =Z'Wg, V' =ZWy, (10)

where Wo, Wk, Wy € R >4 are trainable parameters with the same form as in the temporal-first module.
The attention weights along the spatial dimension are computed as:

27a
A’ = Softmax (Q I; > , (11)
Vdn

where A’ € RT*N*N captures spatial dependencies among nodes for each time step. The output of the spatial
self-attention layer is:

zZ' =AV'. (12)

Next, consistent with the temporal-first structure, the output from the feature extraction module Zrgp is
integrated through cross-attention along the temporal axis:

(st) ZFB, n = 1,
Z5 = CA (2/7 () Z(st)) o> (13)

n—1“n—1

Finally, the spatial-first cross-attention layer output is obtained by applying feedforward propagation and
normalization:

Z®P) = LN (FFN (z{V)). (14)

This supplement explicitly distinguishes the two modules: the temporal-first module first aggregates temporal
dependencies and then performs spatial cross-attention, while the spatial-first module first aggregates spatial
dependencies and then performs temporal cross-attention.

Analysis and Innovation Points:

The combined heatmap provides a clear view of how the model captures spatio-temporal dependencies:

« Temporal-first module highlights temporal correlations and assigns higher attention to key nodes during
peak hours and anomalies.

« Spatial-first module reveals spatial coupling among nodes and the propagation of local traffic anomalies.

« Together, these modules illustrate our key innovation: efficient modeling of complex spatio-temporal traffic
dynamics, improving prediction accuracy and interpretability.
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Feature pre-extraction block (FB)

Figure 3 presents the layout of our feature extraction module, which is organized into three main branches: Key
Encoding, Value Encoding, and Attention Encoding. The Key Encoding branch applies a 3 X 3 convolutional
filter, denoted by Convs € R3*?, followed by a Batch Normalization operation and a ReLU activation function
to enhance the feature maps. The Value Encoding branch uses a pointwise convolution filter Conv; € R**!
in tandem with Batch Normalization to extract and standardize key features. The Attention Encoding segment
consists of two consecutive 1 x 1 convolutional layers (each Conv; € R'*'), and the output is then normalized
via Batch Normalization and activated using a ReLU function, which together capture complex inter-feature
dependencies.

The FB module is designed to enhance the quality of feature representations before they are passed into
the cross-attention mechanism. Its three branches—Key Encoding, Value Encoding, and Attention Encoding—
serve complementary purposes.

First, the Key Encoding branch refines the structural patterns contained in K, enabling the model to highlight
node-specific temporal or spatial structures that are important for attention matching. Second, the Value
Encoding branch enriches the semantic information in V/, allowing the subsequent weighted aggregation to
capture more informative spatio-temporal features. Third, the Attention Encoding branch operates on the joint
representation Y’ = Concat(K1, Q) to learn an adaptive attention distribution that reflects the interaction
strength between query and key features.

This design provides a hierarchical enhancement of keys, values, and attention patterns, which strengthens
the expressiveness of the cross-attention module. Compared with convolution-based attention mechanisms
(e.g.,”’), the FB module plays a similar role in enriching local dependencies, but it does so through feature-level
encoding rather than explicit convolutional operations. As a result, the FB module improves spatio-temporal
feature extraction while maintaining compatibility with the Transformer-based attention structure.

This hierarchical structure enables efficient feature extraction while preserving spatial and temporal
dependencies.

Figure 1 presents the process in which the temporal-first cross-attention mechanism operates. First, the input
Z®®) s assigned to the variables K, Q, and V. To initiate the process, the **Key Encoding** is performed on
K, producing the key feature matrix K. Similarly, the **Value Encoding** transforms V" into the value feature
matrix V’, which will be used in subsequent attention calculations:

K1 = KeyEncoding(K), V'’ = ValueEncoding(V). (15)
After these encodings, the next step involves combining K1 with () along the feature axis to form the matrix

Y. The resulting Y’ then undergoes **Attention Encoding**, producing the attention distribution Att. This
attention map is utilized in a dot product with V”, resulting in the weighted feature matrix K»:

Y’ = Concat(K1, Q),Att = AttentionEncoding(Y”’), Kz = DotProduct(Att, V") (16)

Finally, the two matrices K and K3 are combined element-wise, yielding the final feature map Zrp:

Zrp = Add(K1, K2). (17)
Output
_______________ é
§ Attention p
1 Embedding ’l Key Embedding Value Embedding Attention Embedding
T 77777777777777 ReLU @
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Fig. 3. Feature Pre-Extraction Block (FB) Model Introduction.
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Fusion regression layer

To effectively capture the latent correlations between temporal and spatial information in historical data, we
again make use of the cross-attention mechanism. The results from both the temporal and spatial attention
layers, Z; and Zs, are passed into the fusion regression layer to derive the spatio-temporal feature tensor Z;s:

Zys = CrossAttention(Zy, Zs) (18)

Finally, to generate the predictions, the output of the cross-attention layer, Z;s € RTXNXdn s fed through the
regression layer, with the complete process represented as follows:

Y = FC(Zs) (19)

The predicted output is denoted as Ye RT' XN xdn ,where T" is the forecast horizon, and d}, refers to the output
feature dimensions, which are set to 1 in our model implementation. As a result, the regression layer maps the
tensor Zys, which has a size of T X N, to Y, with the dimensions reduced to 7" x 1. The detailed steps of the
STIC model are outlined in Algorithm 1. In this context, the input and output of the model are represented by
X and Y, respectively. Here, K indicates the number of training epochs, Z is the feature map generated by the
embedding layer, while Z ;1 and Z 2 correspond to the outcomes of self-attention operations conducted along
the time and spatial axes. Finally, Z; and Z, represent the outputs from the temporal and spatial cross-attention
modules, respectively.

1: Input: Traffic data from the past 7' time steps, denoted as X
2: Output: Predicted traffic signals Y for the upcoming 7’ time steps
3: for each epoch k do
4: Z + embedding(X)
Zsp1 < SelfAttention(Z)
Zsy < SelfAttention(Z)

(swap dim 1 and dim 2 for Multi-Head)
Z; < FeedForward&LayerNorm(CrossAttention(Zy1,Z))
Z; + FeedForward&LayerNorm(CrossAttention(Zs;,Z))
10: Y + RegressionLayer(CrossAttention(Z;, Zy))
11: end for

R A A

Algorithm 1. Algorithm for STIC

Experiments
Experimental setup
Datasets & metrics
We conducted experiments on six traffic prediction benchmark datasets, namely METR-LA, PEMS-BAY,
PEMS03, PEMS04, PEMS07, and PEMS08. The first two datasets were introduced by DCRNN 6 and the latter
four by STSGCN 8 proposed. The time sampling interval of these six datasets is 5 minutes, thus there are 12 time
points per hour. For more details, refer to Table 1

In line with previous studies, we opted to assess the average performance across 12 forecasted time steps for
the PEMS03, PEMS04, PEMS07, and PEMS08 datasets. For evaluating the METR-LA and PEMS-BAY datasets,
we examined the performance at time horizons of 3, 6, and 12 steps, corresponding to 15, 30, and 60 minutes,
respectively. To assess model performance, we evaluate model performance using three widely adopted metrics
in traffic prediction tasks: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE), defined as follows:

Dataset #S s (N) | #Timesteps | Time Range

METR-LA | 207 34,272 03/2012 - 06/2012
PEMS-BAY | 325 52,116 01/2017 - 05/2017
PEMS03 358 26,209 05/2012 - 07/2012
PEMS04 307 16,992 01/2018 - 02/2018
PEMS07 883 28,224 05/2017 - 08/2017
PEMS08 170 17,856 07/2016 - 08/2016

Table 1. Summary of Datasets.
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RMSE(a,8) = |+ 3 (a; — )2, 20)
j=1
1 M
MAE(a,4) = 77 la; — i, (21)
j=1
1~ Jaj —
AN a; — a;
MAPE(a, ) = - 2; — (22)
=

where a; represents the actual value, G; is the predicted value, and M is the total number of samples.

Model implementation

Our model is implemented using the PyTorch framework on a Windows-based server equipped with a GeForce
RTX 4070 Ti GPU. For the experimental setup, we use four traffic datasets: PEMS-03, PEMS-04, PEMS-07,
and PEMS-08. These datasets are split into training, validation, and test sets in a ratio of 60%, 20%, and 20%,
respectively.

The auxiliary embedding dimension, d,, is set to 84, while the primary feature dimension, d, is configured
to 24. The model architecture includes two layers for both the temporal self-attention and temporal-spatial
cross-attention modules, and three layers for the spatial self-attention module. Each attention module uses four
attention heads. Both the input and forecast sequences represent one-hour time spans, which consist of twelve
time steps.

To train the model, we use the Adam optimizer with an initial learning rate of 0.001, which decays during
the optimization process.

Baselines

In this study, we compared our proposed approach with several widely recognized baseline models that are
commonly used in traffic forecasting. The HI model * represents a traditional method. In addition to STGNN-
based models like GWNet !¢, Cy2Mixer 3¢, STPGNN *, DCRNN 6, AGCRN *, STGCN °, GTS 1°,and MTGNN 14,
we also examine STNorm “, which focuses on decomposing traffic time series. Although Transformer-based
time series models like Informer, Pyraformer, FEDformer, and Autoformer are available, these are not specifically
designed for short-term traffic forecasting. Therefore, we selected GMAN 3 and PDFormer 4, both Transformer-
based models designed for this task. Additionally, we included STID, STAEformer, and Tsformer *!, which avoid
using adjacency matrices and instead focus on enhancing embedding layers, with relatively simpler model
architectures. As shown in Table 3, our method outperforms most of these models across all six datasets on
various evaluation metrics.

Attention weight analysis
To validate how STICformer captures spatio-temporal dependencies, we analyze the statistical properties of
attention weights in both temporal-first and spatial-first cross-attention layers using the PEMS08 dataset.

For the temporal-first layer, we compute the average attention weight across all time steps and spatial nodes,
finding it to be 0.28 with a maximum value of 0.82. This indicates that, on average, each time step attends
moderately to past states, but occasionally focuses strongly on immediate predecessors (e.g., t — 1 to t), aligning
with the intuition that traffic flow exhibits short-term temporal correlations.

In the spatial-first layer, the average attention weight is 0.31 with a maximum of 0.89. This higher average and
peak value suggest that spatial dependencies are more pronounced, with each spatial node attending strongly to
its adjacent neighbors (e.g., sensors 105 and 109 on PEMS08). These findings confirm that the cross-attention
mechanism effectively adapts to the intrinsic characteristics of traffic data, prioritizing critical temporal and
spatial relationships.

Performance evaluation

We evaluate STICformer alongside 14 state-of-the-art baselines, including both traditional and recent deep
learning models, on the widely used METR-LA and PEMS-BAY traffic forecasting datasets. These datasets
represent urban traffic networks with different scales and sparsity levels, making them ideal for evaluating
generalization capability. Table 2 presents the quantitative results across three prediction horizons: 3 (15
minutes), 6 (30 minutes), and 12 (60 minutes), measured by MAE, RMSE, and MAPE. Our proposed STICformer
consistently achieves the best performance across all metrics and horizons, demonstrating its superior capability
in modeling complex spatio-temporal dependencies. Particularly, STICformer outperforms the second-best
model by notable margins, with up to 0.02 lower MAE, 0.07 lower RMSE, and 0.05% lower MAPE on key
horizons.

As presented in Table 3, our proposed model, STICformer, outperforms existing methods across various
metrics on the four datasets (PEMS03, PEMS04, PEMS07, and PEMS08) achieving state-of-the-art results.
Notably, STICformer outperforms its predecessor, TSformer, which uses a sequential order of feature extraction
(temporal-first followed by spatial). This indicates that explicitly considering the impact of the extraction order
on spatio-temporal dependencies is crucial for improving prediction accuracy.
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Dataset PEMS03 PEMS04 PEMS07 PEMS08

Metric RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE
H02! 49.89 | 32.62 |30.60% | 61.66 |42.35 | 29.92% |71.18 |49.03 |22.75% |50.45 |36.66 |21.63%
GWNet2? 2524 |14.59 | 1552% |32.95 |18.53 | 12.89% |33.47 |2047 [8.61% |23.39 |14.40 |9.21%
DCRNN2018 27.18 | 1554 | 15.62% |31.26 |19.63 |13.59% |34.14 |[21.16 |9.02% |24.17 |1522 |10.21%
AGCRN?020 26.65 |15.24 | 15.89% |31.25 |19.38 | 13.40% |34.40 |20.57 |8.74% |24.41 |15.32 |10.03%
STGCN?2018 27.51 |15.83 | 16.13% |31.38 |19.57 | 13.44% |35.27 |21.74 [ 9.24% |25.39 |16.08 | 10.60%
GTS202! 26.15 | 1541 | 15.39% |32.95 |20.96 | 14.66% |35.10 |[22.15 |9.38% |26.08 |16.49 |10.54%
MTGNN220 2523 | 14.85 | 14.55% |31.70 |19.17 | 13.37% |34.06 |20.89 |9.00% |24.24 |15.18 | 10.20%
STNorm?2?2! 2593 |[15.32 | 14.37% | 30.98 |18.96 | 12.69% |34.66 |20.50 |8.75% |24.77 |15.41 |9.76%
Cy2Mixer® | x X X 30.02 | 18.14 | 11.93% | 3328 |19.50 |8.19% |23.22 |13.53 |8.86%
STPGNN?2024 X 14.37 | 14.23% | x 18.34 | 12.49% |x 20.52 [8.75% |x 13.90 |9.01%
GMAN?2020 27.92 | 16.87 | 18.23% | 31.60 |19.14 | 13.19% |34.10 |20.97 [9.05% |24.92 |1531 |10.13%
PDFormer?®?® | 2539 |14.94 |15.82% |30.03 |18.36 |12.00% |32.95 |19.97 |8.55% |23.41 |[13.58 |9.05%
STID2022 27.40 | 1533 | 16.40% |29.95 |18.38 |12.04% |32.79 |19.61 |8.30% |23.28 |14.21 |9.27%
STAEformer®? | 27.55 | 15.35 | 15.18% | 30.18 |18.22 | 11.98% |32.60 |19.14 | 8.01% |23.25 |13.46 | 8.88%
TSformer?°2* 2575 | 14.75 | 15.02% |29.90 |18.05 | 12.36% |32.36 |19.11 | 7.96%% |23.11 |13.34 |8.75%
STICformer 25.20 | 15.19 | 14.34% | 29.80 |18.07 | 12.21% |32.30 | 19.10 | 7.99% | 23.09 | 13.29 | 8.80%

Table 3. Performance Comparison on the PEMS03, PEMS04, PEMS07, and PEMS08 Datasets.

Dataset PEMS03 PEMS04 PEMS08

Metric RMSE | MAE | MAPE | RMSE | MAE | MAPE |RMSE | MAE | MAPE
w/o Eplus 25.80 | 1528 | 14.85% |30.01 |18.16 |12.20% |23.25 |13.37 |8.88%

w/o T 26.07 | 15.41 | 15.01% |30.09 |18.44 |12.44% |23.37 |13.46 | 9.05%

w/o S 26.03 | 15.35 | 14.99% |30.11 |18.45 |12.41% |23.32 |13.54 | 9.10%

w/o C 25.65 | 15.30 | 14.90% |30.05 |18.21 |12.26% |23.30 | 13.41 |8.99%

w/o TS 26.35 | 15.80 | 15.23% |30.21 | 18.69 |12.61% |23.44 |13.86 |9.31%

STICformer | 25.20 | 15.19 | 14.34% | 29.80 | 18.07 | 11.96% | 23.09 | 13.29 | 8.80%

Table 4. Ablation Study on PEMS03, PEMS04, and PEMS08 with Metrics in the Order of RMSE, MAE, and
MAPE.

Furthermore, STICformer achieves competitive or superior results without relying on explicit graph
modeling, a common requirement in many STGNNSs such as AGCRN, GWNet, and DCRNN. For example, on
PEMS07, STICformer achieves an MAE of 19.10, outperforming AGCRN (20.57) and DCRNN (21.16), while
maintaining simplicity in its architecture by not requiring predefined graph structures.

Compared to graph-free models like STID and TSformer, STICformer achieves further improvement by
addressing the limitations of feature extraction sequence. The incorporation of adaptive cross-attention layers
enables STICformer to better integrate temporal and spatial information dynamically, leading to consistent
improvements across datasets. On PEMS03, STICformer achieves the lowest RMSE (25.20) and a competitive
MAPE (14.34%) underscoring its robustness and generalizability across varying data distributions.

In conclusion, the findings indicate that STICformer significantly improves spatio-temporal modeling
by tackling the impact of extraction sequence. When compared to state-of-the-art methods, it demonstrates
superior performance in predicting traffic flow. These enhancements validate the design of the two specialized
cross-attention layers and highlight the importance of adaptively capturing spatio-temporal dependencies in
varying sequences.

Ablation study
To evaluate the effectiveness of each component in TSformer, we conduct an ablation study, which includes four
variants of our model:

o W/0 Eplus: Removal of the embedding layer of periodic enhancement.

o w/o T: Removal of the temporal cross-attention layer.

« w/o S: Removing the spatial cross-attention layer.

+ w/o C: Removing the cross-attention layer and replacing it with a self-attention layer.
« w/o TS: Removing both the temporal and spatial cross-attention layers.

o STICformer: The complete model.

As shown in Table 4, we evaluate the impact of different modules on the model’s performance.
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The results of the analysis reveal that removing either the temporal-first or spatial-first cross-attention layer
leads to performance degradation, but the extent of the decline is not consistent. Specifically, the removal of the
temporal cross-attention layer causes a more significant drop in performance on the PEMS03 dataset, whereas
omitting the spatial cross-attention layer has a larger effect on the PEMS08 dataset. This discrepancy can be
attributed to the varying distribution of spatio-temporal features across datasets. The model is able to more
effectively capture the relationships between these features, which helps it handle non-uniformities in the data.
These findings further support the validity of the STIC structural design.

Moreover, to further verify the models structural soundness, we replace the cross-attention layers in the
model with self-attention layers. The results show a significant performance degradation, indicating that
spatio-temporal data indeed have specific interdependencies across different dimensions. The cross-attention
mechanism is better suited to capturing these dependencies, enhancing the model’s overall effectiveness.

Visualization of prediction results

In this study, we further validate the rationale of our model by comparing it visually with the high-performance
model STID? on the PEMS08 dataset. We concatenate the model predictions with the actual data in batches
to enable a more comprehensive analysis of the model’s predictive performance. As shown in Fig. 4, the STIC
model is closer to the true values at most time points, demonstrating higher prediction accuracy compared
to STID, which indicates that STIC has a significant advantage in capturing the temporal features of the data.
Moreover, the STIC model exhibits less fluctuation in its predictions, remaining smoother than the more volatile
predictions from STID, suggesting that it is more robust in terms of data smoothing. This characteristic makes it
more suitable for real-world applications where data stability is crucial.

More importantly, despite some prediction errors, the STIC model performs excellently in following the
overall trend, especially in regions with large fluctuations, where it can more accurately reflect the change trend
of the real data. In contrast, STID is somewhat lacking in trend tracking ability, further validating the superiority
of the STIC model in handling temporal data.

In addition to prediction accuracy, we also compare the model complexity and computational efficiency
of STICformer with recent graph-based spatio-temporal Transformer models, including STAEformer and
STID, on the PEMS08 dataset. Table 5 summarizes the relative comparison in terms of parameter counts and
training/inference efficiency. As shown, STICformer maintains a competitive model size while demonstrating
faster training and inference speed compared to STAEformer and STID. These results indicate that STICformer
achieves improved predictive performance without introducing significant computational overhead, highlighting
its practical advantage for real-world traffic forecasting applications where both accuracy and efficiency are
important.

Summary and conclusions

Through the integration of a temporal-spatial cross-attention fusion mechanism, we have successfully advanced
traffic forecasting. Our study showcases significant improvements in handling intricate spatio-temporal dynamics,
addressing the limitations of conventional neural network approaches. The experimental results indicate that
our model outperforms existing techniques across four traffic prediction benchmarks, underscoring its superior
capability to model complex temporal and spatial interdependencies. This innovative method provides a robust
solution to the challenges of traffic prediction, delivering highly satisfactory performance in our experimental
evaluations.

Despite these promising results, it is important to acknowledge that benchmark datasets are typically well-
curated and preprocessed. In real-world traffic prediction scenarios, data can be affected by unexpected events
such as accidents and traffic control, as well as sensor failures and communication noise, which often introduce
unknown anomalies and substantial noise. The robustness of the proposed model, including STICformer, under
such noisy and unpredictable conditions has not yet been fully examined. In future work, we plan to investigate
how to enhance the model’s resilience to unknown disturbances and noise, which we believe is a valuable and
meaningful research direction for improving the practicality and reliability of traffic forecasting systems.
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Fig. 4. Prediction Comparison of STICformer and STID on the PEMS08 Dataset: Observed Points 105 (Top),
109 (Middle), and 111 (Bottom).
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Model Parameter Count | Training Efficiency | Inference Efficiency
STAEformer | Moderate Moderate Moderate

STID Slightly Larger Moderate Moderate
STICformer | Competitive Fast Fast

Table 5. Relative Comparison of Model Complexity and Training Efficiency on PEMS08.
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