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With the rapid advancements in intelligent transportation systems Jiang et al. (In: In Proceedings of 
the 30th ACM international conference on information & knowledge management 4515–4525, 2021), 
(Feng et al. Digit Commun Networks, 2024), precisely forecasting traffic information has emerged as a 
significant challenge. Recently, numerous advanced neural networks with complex architectures have 
been introduced to address this challenge. Nonetheless, the majority of these models handle temporal 
and spatial features separately before combining them, which overlooks the inherent relationships 
between these two types of characteristics. This approach of independent feature extraction can 
result in the loss of valuable information and restricts the model’s capacity to effectively leverage 
the interdependencies between spatial and temporal features. In order to tackle this challenge, we 
introduce STIC, a Transformer-based neural network designed to capture crucial information from both 
spatial and temporal domains. The main innovation of our method lies in utilizing the cross-attention 
mechanism within Transformers to sequentially capture and adaptively merge spatiotemporal features 
from historical data. Experiments conducted on four diverse traffic forecasting datasets show that our 
model outperforms traditional methods by effectively uncovering the underlying spatial and temporal 
dependencies in traffic data sequences. Our work introduces a new strategy for enhancing the accuracy 
of traffic flow predictions.

Traffic forecasting aims to analyze future traffic conditions in a road network by utilizing historical traffic data. 
Traffic flow data, characterized as spatio-temporal information, consists of multiple interdependent time series. 
Accurately forecasting traffic flow with computational efficiency serves as a foundational pillar for advancing 
intelligent mobility networks.Conventional analytical and modeling techniques face several constraints, making 
accurate forecasting a complex task. Recently, deep learning-based traffic prediction models have demonstrated 
significant advancements, largely due to their ability to capture the inherent spatio-temporal correlations within 
traffic systems.

Notably, Transformer-based models like those presented in 3,4 and spatio-temporal graph neural networks 
(STGNNs) 5,6 have achieved remarkable success, making them highly popular approaches in this domain. The 
Transformer-based models leverage the multi-head attention mechanism to efficiently establish spatial and 
temporal relationships, enabling it to handle lengthy sequences. In the mean time, the STGNNs integrate graph 
convolution networks with sequential models to capture temporal patterns while addressing non-Euclidean 
dependencies among variables.

Beyond these approaches, a variety of complex and cutting-edge models have been introduced for predicting 
traffic flow, such as those featuring efficient attention mechanisms 7–11, learning graph structure models 12–16, 
graph convolution models 17–22, and other methods 23–25. However, despite the progress in network architecture, 
performance gains have plateaued, primarily due to the oversight of the inherent correlations between temporal 
and spatial features in previous research.

Framework is very important in many researches26,27. Inspired by the Transformer framework 28, particularly 
the interaction between its encoder and decoder, we employ the cross-attention mechanism to seamlessly 
combine temporal and spatial features.

Effective data representation plays a vital role in traffic forecasting. A key element of STGNNs is the feature 
embedding Ef , which is used to map raw inputs into a high-dimensional latent space, capturing spatio-temporal 
patterns efficiently. However, attention mechanisms alone are not sufficient to retain positional information 
from time series. Therefore, additional structures like temporal position encoding Etpe and periodic 
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embeddings Ep are required. Recent advancements have led to the development of models such as GMAN 3, 
PDFormer 4, STID 29, and STAEformer 30, each incorporating spatial embedding ES  to improve the capture of 
spatial features. Notably, STID 29 introduces an innovative embedding approach that combines both spatial and 
temporal periodic embeddings, achieving significant performance gains with a simple Multi-layer Perceptron 
(MLP). Additionally, STAEformer 30 presents an adaptive embedding layer, which uses adaptive embedding Ea 
to effectively learn both temporal and spatial patterns.

We propose a novel enhanced periodic embedding Eplus to further improve the effectiveness of feature 
representation. It comprehensively integrates periodic information, thereby strengthening the representation of 
periodic patterns in historical data.

The key contributions of this paper can be outlined as follows:

•	 We introduce a new model called STICformer that features a cross-attention layer. This layer integrates tem-
poral and spatial and temporal information through the application of cross-attention mechanisms.

•	 We introduce a new embedding layer structure, Eplus, to further enhance the representation of periodic 
information in historical data.

The paper is organized as follows: Section 2 provides an overview of related research, fundamental concepts, 
and the problem definition. Section 3 offers a comprehensive description of the model. Section 4 includes an 
in-depth assessment of the model’s effectiveness, featuring predictive visualizations and detailed ablation studies 
across different architectures and key components. Lastly, Section 5 summarizes the findings and concludes the 
paper.

Related work
Previous studies
In recent years, Transformer-based models have garnered significant attention in the field of traffic flow 
prediction due to their ability to effectively capture both temporal and spatial dependencies. We proposed 
TSformer in the conference ICA3PP 31, a Temporal-Spatial Transformer model specifically designed for traffic 
prediction. TSformer addresses the challenges of modeling spatio-temporal intersections by introducing a novel 
attention mechanism that integrates spatial and temporal features in a sequential manner, first focusing on 
temporal features and then on spatial features. This approach effectively captures the intrinsic connections of 
spatio-temporal information.

However, the sequential order of feature extraction (temporal-first followed by spatial) may impact the 
prediction performance. Building on this, we extend TSformer and propose an improved method, STICformer 
(Spatio-Temporal Intrinsic Connections Transformer), which explicitly considers the influence of the extraction 
order on the results. To address this, we design two dedicated modules, the Temporal-first Cross-Attention Layer 
and the Spatial-first Cross-Attention Layer, to adaptively model the spatio-temporal dependencies in different 
orders. Taking into account the impact of the extraction sequence, our approach achieves superior performance 
in traffic flow prediction.

Spatial–temporal prediction models
Deep learning has made significant advancements in numerous domains, including autonomous driving and 
speech recognition, and it has also excelled in the prediction of spatio-temporal data. Researchers have created 
models that capture the inherent spatio-temporal relationships in traffic data by portraying such data as time 
series across a road network. In this network, roads are interconnected according to their geographical closeness. 
Traditional RNNs 32,33 and their variations 34 have been widely used to learn sequential patterns. However, these 
models often treat traffic data from different roads as independent streams, overlooking the hidden relationships 
between them. To overcome this limitation, researchers have integrated RNNs with GCNs or CNNs to enhance 
traffic forecasting. For example, some models use GCN outputs as features for GRUs 6,34, while others combine 
CNNs with GCNs for effective short-term forecasting  14,16. Despite these advancements, such methods often 
excel at capturing local patterns but struggle with long-term predictions.

Attention mechanism
The Attention Mechanism 28 has become widely adopted across different domains owing to its effectiveness and 
versatility in identifying dependencies. Its primary concept revolves around dynamically concentrating on the 
most pertinent features dictated by the input information.

In recent years, researchers have refined this mechanism to tackle the complex problem of traffic forecasting. 
PDFormer  4 utilizes two graph masking matrices to implement a spatial self-attention layer, which captures 
dynamic spatial relationships in the data. GMAN 3 employs a decoder-encoder structure, using separate attention 
layers to process dynamic spatial dependencies and non-linear temporal correlations in the data. STAEformer 30 
sequentially captures both temporal and spatial dependencies by concatenating multiple layers of self-attention 
mechanisms.

We utilize the cross-attention mechanism to capture the inherent temporal-spatial interactions, which 
allows for improved integration of both temporal and spatial features. Additionally, drawing inspiration from 
COTattention  ?, we incorporate convolutional layers into the temporal-spatial cross-attention block to better 
capture feature characteristics, thereby enhancing the fusion of temporal and spatial information.

Traffic forecasting
Over the past few decades, traffic forecasting has garnered significant research attention. For example, DCRNN 6 
models traffic flow dynamics through a diffusion process and employs a diffusion convolution operation to 
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effectively capture spatial relationships. On the other hand, STGCN  5, which adopts a purely convolutional 
architecture, decreases the parameter count, resulting in accelerated training times. The AGCRN model   34 
addresses the unique traffic patterns observed at each node by assigning distinct parameters, such as biases and 
weights, to every individual node. This approach allows for a more effective capture of the specific behaviors of 
each observation point, improving the model’s ability to reflect node-specific characteristics.HI 35 focuses on 
historical inertia, leveraging the persistence and continuity of past data to enhance future forecasting.

There are also some models that do not rely on graph structures, such as STID 29, which introduces spatial 
embeddings and temporal periodic embeddings, and STAEformer 30, which builds upon this by incorporating 
adaptive spatio-temporal embedding layers. Both achieve superior performance with simple network structures. 
Similarly, our model introduces a cross-attention mechanism to capture complex spatio-temporal dependencies 
without relying on graph structures.

Methodology
We observe that spatio-temporal features are inherently integrated. For instance, traffic units on a road at a 
specific time tend to appear at particular observation points, indicating an intrinsic connection between 
temporal nodes and observation points. To better extract spatio-temporal features as a whole, rather than 
extracting them independently and then fusing them, we propose the concept of cross-attention spatio-temporal 
fusion. Meanwhile, to enhance the efficiency of pre-training, we employ feature extraction blocks to capture 
temporal features effectively.

As depicted in Fig. 1, the architecture of our model comprises three essential components: an embedding 
layer, cross-attention mechanisms, and a fusion regression module.At the outset, the embedding layer maps the 
input data into a latent space of high dimensionality. Following this, the time-first and space-first cross-attention 
layers refine the spatio-temporal representations. Finally, the fusion regression module processes the extracted 
features to produce the final prediction.

Problem definition
The primary goal of traffic prediction is to estimate future traffic conditions in transportation networks using 
historical data. Specifically, the data Yt−T +1:t encodes traffic patterns from the preceding T  time intervals. 
The task is to forecast traffic states for the next T ′ time intervals by training a model G(·) with parameters Φ, 
formulated as:

	 [Yt−T +1:t, ..., Yt]
G(Φ)−→ [Yt+1, ..., Y(t+T ′)]� (1)

At each time step, the traffic data Yi ∈ RM×p, where M  represents the count of spatial units and p denotes the 
feature size. Here, p = 1, indicating the traffic volume.

Embedding layer
The input data processed by the embedding layer is denoted as X ∈ RT ×N×D , where T represents the number 
of temporal nodes, N denotes the total number of observation points, and D is the number of dimensions. In our 
study, the embedding layer is divided into five main components: (1) the feature embedding layer Ef , (2) the 
adaptive embedding layer Ea, (3) the spatial embedding layer Es, (4) the periodic embedding layer Ep, and (5) 
the proposed periodic enhancement embedding layer Eplus.

To preserve the original data’s integrity, we employ a fully connected layer 36 to compute the feature embedding 
Ef ∈ RT ×N×df . This is expressed as:

	 Ef = Dense(Xt−T +1:t),� (2)

Fig. 1.  The Architecture of Spatio-Temporal Intrinsic Connections Transformer (STICformer) for Traffic Flow 
Prediction.
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where df  represents the feature embedding’s dimensionality, and Dense(·) denotes the fully connected layer.
Following the method proposed in STID 29, we utilize the spatial embedding layer Es ∈ RT ×N×ds  to capture 

spatial information, where ds is the dimensionality of the spatial embedding.
The periodic embedding layer, denoted as Ep, captures both weekday and timestamp information from the 

historical data. This embedding layer is influenced by two key components: Td, which represents weekday-
related data, and Tw , which holds information about the timestamps. These two components have demonstrated 
their effectiveness in previous works 29,30. Specifically, Td is a matrix of size Nd × df , where Nd represents the 
total number of distinct timestamps within a single day, which is 288. On the other hand, Tw  is a matrix of size 
Nw × df , where Nw  corresponds to the number of days in a week, which is 7.

To further capture the periodicity of historical data, we propose a periodic enhancement embedding layer 
Eplus ∈ RT ×N×dp . The indices of Eplus are represented by TD ∈ RNp×dp , where Np is defined as:

	 Np = Nd × Nw.� (3)

This design combines the weekday information and daily timestamp information from historical data to extract 
latent periodic features.

Drawing inspiration from the adaptive embedding strategy presented in STAEformer  30, We define 
Ea ∈ RT ×N×da  as a tensor designed to model the complex relationships within the traffic data. A key feature 
of Ea is its adaptability across various traffic time series, allowing it to generalize to different patterns of traffic 
flow over time and space.

By combining the embeddings mentioned earlier, we construct the spatio-temporal representation for the 
hidden layer, denoted by Z ∈ RT ×N×dh , which can be formulated as:

	 Z = Ef ∥ Es ∥ Ea ∥ Ep ∥ Eplus� (4)

where ∥ denotes the concatenation operation. This framework is designed to capture periodic behaviors and 
spatio-temporal patterns by leveraging diverse embedding layers, thereby improving the model’s ability to 
interpret and process spatio-temporal sequential data.

Temporal/spatial-first cross-attention layer
To capture intricate traffic dynamics, we employ a standard Transformer model across both temporal and spatial 
dimensions. As shown in Fig. 1, our approach leverages both temporal-first and spatial-first attention modules 
to integrate spatio-temporal features from historical data. For instance, in the temporal-first cross-attention 
layer (displayed on the left in Figure 1), The data fed into the system comes directly from the embedding layer, 
symbolized as Z ∈ RT ×N×dh . Here, T corresponds to the sequence length (time steps), and N indicates the 
count of spatial nodes.In the initial processing stage, the temporal self-attention mechanism computes three 
matrices: the query matrix Q, the key matrix K , and the value matrix V .

	 Q = ZWQ, K = ZWK , V = ZWV ,� (5)

where WQ, WK , WV ∈ Rdh×dh  are trainable parameters. The self-attention weights are computed as:

	
A = Softmax

(
QK⊤
√

dh

)
,� (6)

A ∈ RN×T ×T  captures the temporal dependencies across different nodes. Finally, the output from the temporal 
self-attention layer is:

	 Z = AV.� (7)

As illustrated by the attention visualizations in Fig. 2, we combine the output ZFB from feature extraction with 
the input Z  and apply cross-attention along the spatial axis to capture spatio-temporal relationships.

The query matrix ZFB is generated by passing Z  through the feature extraction module, detailed in Section 
3.3.

The learning process is formulated as follows:

	
Z(ts)

n =

{
ZFB, n = 1,

CA
(

Z, Z
(ts)
n−1, Z

(ts)
n−1

)
, n ≥ 1. � (8)

The index of the cross-attention sub-layer is represented by n.
Finally, the output of the spatio-temporal cross-attention layer is fed through a feedforward propagation and 

normalization process to obtain the final output of the temporal-first cross-attention layer Zt:

	 Z(te) = LN
(
FFN

(
Z(ts)

n

))
,� (9)

LN(·) denotes the normalization layer, and FFN(·) denotes the feedforward regression layer.
The spatial-first cross-attention layer follows the same process as described above, and its output is denoted 

as Zs.
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For the spatial-first cross-attention layer, the embedded input

	 Z ∈ RT ×N×dh

is first rearranged along the spatial axis, yielding

	 Z′ ∈ RN×T ×dh ,

so that each spatial node corresponds to a sequence of length T .
The multi-head attention mechanism then performs spatial self-attention as follows:

	 Q′ = Z′WQ, K′ = Z′WK , V ′ = Z′WV ,� (10)

where WQ, WK , WV ∈ Rdh×dh  are trainable parameters with the same form as in the temporal-first module. 
The attention weights along the spatial dimension are computed as:

	
A′ = Softmax

(
Q′K′⊤

√
dh

)
,� (11)

where A′ ∈ RT ×N×N  captures spatial dependencies among nodes for each time step. The output of the spatial 
self-attention layer is:

	 Z′ = A′V ′.� (12)

Next, consistent with the temporal-first structure, the output from the feature extraction module ZFB is 
integrated through cross-attention along the temporal axis:

	
Z(st)

n =

{
ZFB, n = 1,

CA
(

Z′, Z
(st)
n−1, Z

(st)
n−1

)
, n ≥ 1. � (13)

Finally, the spatial-first cross-attention layer output is obtained by applying feedforward propagation and 
normalization:

	 Z(sp) = LN
(
FFN

(
Z(st)

n

))
.� (14)

This supplement explicitly distinguishes the two modules: the temporal-first module first aggregates temporal 
dependencies and then performs spatial cross-attention, while the spatial-first module first aggregates spatial 
dependencies and then performs temporal cross-attention.

Analysis and Innovation Points:
The combined heatmap provides a clear view of how the model captures spatio-temporal dependencies:

•	 Temporal-first module highlights temporal correlations and assigns higher attention to key nodes during 
peak hours and anomalies.

•	 Spatial-first module reveals spatial coupling among nodes and the propagation of local traffic anomalies.
•	 Together, these modules illustrate our key innovation: efficient modeling of complex spatio-temporal traffic 

dynamics, improving prediction accuracy and interpretability.

Fig. 2.  Temporal-First and Spatial-First Attention Heatmaps for selected PEMS08 nodes and time steps. 
Left: temporal-first module (rows: nodes, columns: time steps). Right: spatial-first module (rows: time 
steps, columns: nodes). Darker colors indicate higher attention weights. The visualizations reveal temporal 
synchronization among nodes and spatial coupling patterns, demonstrating the model’s ability to capture 
meaningful spatio-temporal dependencies.
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Feature pre-extraction block (FB)
Figure 3 presents the layout of our feature extraction module, which is organized into three main branches: Key 
Encoding, Value Encoding, and Attention Encoding. The Key Encoding branch applies a 3 × 3 convolutional 
filter, denoted by Conv3 ∈ R3×3, followed by a Batch Normalization operation and a ReLU activation function 
to enhance the feature maps. The Value Encoding branch uses a pointwise convolution filter Conv1 ∈ R1×1 
in tandem with Batch Normalization to extract and standardize key features. The Attention Encoding segment 
consists of two consecutive 1 × 1 convolutional layers (each Conv1 ∈ R1×1), and the output is then normalized 
via Batch Normalization and activated using a ReLU function, which together capture complex inter-feature 
dependencies.

The FB module is designed to enhance the quality of feature representations before they are passed into 
the cross-attention mechanism. Its three branches—Key Encoding, Value Encoding, and Attention Encoding—
serve complementary purposes.

First, the Key Encoding branch refines the structural patterns contained in K , enabling the model to highlight 
node-specific temporal or spatial structures that are important for attention matching. Second, the Value 
Encoding branch enriches the semantic information in V , allowing the subsequent weighted aggregation to 
capture more informative spatio-temporal features. Third, the Attention Encoding branch operates on the joint 
representation Y ′ = Concat(K1, Q) to learn an adaptive attention distribution that reflects the interaction 
strength between query and key features.

This design provides a hierarchical enhancement of keys, values, and attention patterns, which strengthens 
the expressiveness of the cross-attention module. Compared with convolution-based attention mechanisms 
(e.g.,37), the FB module plays a similar role in enriching local dependencies, but it does so through feature-level 
encoding rather than explicit convolutional operations. As a result, the FB module improves spatio-temporal 
feature extraction while maintaining compatibility with the Transformer-based attention structure.

This hierarchical structure enables efficient feature extraction while preserving spatial and temporal 
dependencies.

Figure 1 presents the process in which the temporal-first cross-attention mechanism operates. First, the input 
Z(te) is assigned to the variables K , Q, and V . To initiate the process, the **Key Encoding** is performed on 
K , producing the key feature matrix K1. Similarly, the **Value Encoding** transforms V  into the value feature 
matrix V ′, which will be used in subsequent attention calculations:

	 K1 = KeyEncoding(K), V ′ = ValueEncoding(V ). � (15)

After these encodings, the next step involves combining K1 with Q along the feature axis to form the matrix 
Y ′. The resulting Y ′ then undergoes **Attention Encoding**, producing the attention distribution Att. This 
attention map is utilized in a dot product with V ′, resulting in the weighted feature matrix K2:

	 Y ′ = Concat(K1, Q),Att = AttentionEncoding(Y ′), K2 = DotProduct(Att, V ′)� (16)

Finally, the two matrices K1 and K2 are combined element-wise, yielding the final feature map ZFB:

	 ZFB = Add(K1, K2).� (17)

Fig. 3.  Feature Pre-Extraction Block (FB) Model Introduction.
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Fusion regression layer
To effectively capture the latent correlations between temporal and spatial information in historical data, we 
again make use of the cross-attention mechanism. The results from both the temporal and spatial attention 
layers, Zt and Zs, are passed into the fusion regression layer to derive the spatio-temporal feature tensor Zts:

	 Zts = CrossAttention(Zt, Zs)� (18)

Finally, to generate the predictions, the output of the cross-attention layer, Zts ∈ RT ×N×dh , is fed through the 
regression layer, with the complete process represented as follows:

	 Ŷ = FC(Zts)� (19)

The predicted output is denoted as Ŷ ∈ RT ′×N×dh , where T ′ is the forecast horizon, and dh refers to the output 
feature dimensions, which are set to 1 in our model implementation. As a result, the regression layer maps the 
tensor Zts, which has a size of T × N , to Ŷ , with the dimensions reduced to T ′ × 1. The detailed steps of the 
STIC model are outlined in Algorithm 1. In this context, the input and output of the model are represented by 
X and Y, respectively. Here, K indicates the number of training epochs, Z is the feature map generated by the 
embedding layer, while Zfb1 and Zfb2 correspond to the outcomes of self-attention operations conducted along 
the time and spatial axes. Finally, Zt and Zs represent the outputs from the temporal and spatial cross-attention 
modules, respectively.

Algorithm 1.  Algorithm for STIC

Experiments
Experimental setup
Datasets & metrics
We conducted experiments on six traffic prediction benchmark datasets, namely METR-LA, PEMS-BAY, 
PEMS03, PEMS04, PEMS07, and PEMS08. The first two datasets were introduced by DCRNN 6 , and the latter 
four by STSGCN 8 proposed. The time sampling interval of these six datasets is 5 minutes, thus there are 12 time 
points per hour. For more details, refer to Table 1

In line with previous studies, we opted to assess the average performance across 12 forecasted time steps for 
the PEMS03, PEMS04, PEMS07, and PEMS08 datasets. For evaluating the METR-LA and PEMS-BAY datasets, 
we examined the performance at time horizons of 3, 6, and 12 steps, corresponding to 15, 30, and 60 minutes, 
respectively. To assess model performance, we evaluate model performance using three widely adopted metrics 
in traffic prediction tasks: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE), defined as follows:

Dataset #Sensors (N) #Timesteps Time Range

METR-LA 207 34,272 03/2012 - 06/2012

PEMS-BAY 325 52,116 01/2017 - 05/2017

PEMS03 358 26,209 05/2012 - 07/2012

PEMS04 307 16,992 01/2018 - 02/2018

PEMS07 883 28,224 05/2017 - 08/2017

PEMS08 170 17,856 07/2016 - 08/2016

Table 1.  Summary of Datasets.
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RMSE(a, â) =

√√√√ 1
M

M∑
j=1

(aj − âj)2, � (20)

	
MAE(a, â) = 1

M

M∑
j=1

|aj − âj |, � (21)

	
MAPE(a, â) = 1

M

M∑
j=1

|aj − âj |
aj

, � (22)

where aj  represents the actual value, âj  is the predicted value, and M  is the total number of samples.

Model implementation
Our model is implemented using the PyTorch framework on a Windows-based server equipped with a GeForce 
RTX 4070 Ti GPU. For the experimental setup, we use four traffic datasets: PEMS-03, PEMS-04, PEMS-07, 
and PEMS-08. These datasets are split into training, validation, and test sets in a ratio of 60%, 20%, and 20%, 
respectively.

The auxiliary embedding dimension, da, is set to 84, while the primary feature dimension, d, is configured 
to 24. The model architecture includes two layers for both the temporal self-attention and temporal-spatial 
cross-attention modules, and three layers for the spatial self-attention module. Each attention module uses four 
attention heads. Both the input and forecast sequences represent one-hour time spans, which consist of twelve 
time steps.

To train the model, we use the Adam optimizer with an initial learning rate of 0.001, which decays during 
the optimization process.

Baselines
In this study, we compared our proposed approach with several widely recognized baseline models that are 
commonly used in traffic forecasting. The HI model 35 represents a traditional method. In addition to STGNN-
based models like GWNet 16, Cy2Mixer 38, STPGNN 39, DCRNN 6, AGCRN 34, STGCN 5, GTS 15, and MTGNN 14, 
we also examine STNorm 40, which focuses on decomposing traffic time series. Although Transformer-based 
time series models like Informer, Pyraformer, FEDformer, and Autoformer are available, these are not specifically 
designed for short-term traffic forecasting. Therefore, we selected GMAN 3 and PDFormer 4, both Transformer-
based models designed for this task. Additionally, we included STID, STAEformer, and Tsformer 31, which avoid 
using adjacency matrices and instead focus on enhancing embedding layers, with relatively simpler model 
architectures. As shown in Table 3, our method outperforms most of these models across all six datasets on 
various evaluation metrics.

Attention weight analysis
To validate how STICformer captures spatio-temporal dependencies, we analyze the statistical properties of 
attention weights in both temporal-first and spatial-first cross-attention layers using the PEMS08 dataset.

For the temporal-first layer, we compute the average attention weight across all time steps and spatial nodes, 
finding it to be 0.28 with a maximum value of 0.82. This indicates that, on average, each time step attends 
moderately to past states, but occasionally focuses strongly on immediate predecessors (e.g., t − 1 to t), aligning 
with the intuition that traffic flow exhibits short-term temporal correlations.

In the spatial-first layer, the average attention weight is 0.31 with a maximum of 0.89. This higher average and 
peak value suggest that spatial dependencies are more pronounced, with each spatial node attending strongly to 
its adjacent neighbors (e.g., sensors 105 and 109 on PEMS08). These findings confirm that the cross-attention 
mechanism effectively adapts to the intrinsic characteristics of traffic data, prioritizing critical temporal and 
spatial relationships.

Performance evaluation
We evaluate STICformer alongside 14 state-of-the-art baselines, including both traditional and recent deep 
learning models, on the widely used METR-LA and PEMS-BAY traffic forecasting datasets. These datasets 
represent urban traffic networks with different scales and sparsity levels, making them ideal for evaluating 
generalization capability. Table  2 presents the quantitative results across three prediction horizons: 3 (15 
minutes), 6 (30 minutes), and 12 (60 minutes), measured by MAE, RMSE, and MAPE. Our proposed STICformer 
consistently achieves the best performance across all metrics and horizons, demonstrating its superior capability 
in modeling complex spatio-temporal dependencies. Particularly, STICformer outperforms the second-best 
model by notable margins, with up to 0.02 lower MAE, 0.07 lower RMSE, and 0.05% lower MAPE on key 
horizons.

As presented in Table  3, our proposed model, STICformer, outperforms existing methods across various 
metrics on the four datasets (PEMS03, PEMS04, PEMS07, and PEMS08) achieving state-of-the-art results. 
Notably, STICformer outperforms its predecessor, TSformer, which uses a sequential order of feature extraction 
(temporal-first followed by spatial). This indicates that explicitly considering the impact of the extraction order 
on spatio-temporal dependencies is crucial for improving prediction accuracy.
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Furthermore, STICformer achieves competitive or superior results without relying on explicit graph 
modeling, a common requirement in many STGNNs such as AGCRN, GWNet, and DCRNN. For example, on 
PEMS07, STICformer achieves an MAE of 19.10, outperforming AGCRN (20.57) and DCRNN (21.16), while 
maintaining simplicity in its architecture by not requiring predefined graph structures.

Compared to graph-free models like STID and TSformer, STICformer achieves further improvement by 
addressing the limitations of feature extraction sequence. The incorporation of adaptive cross-attention layers 
enables STICformer to better integrate temporal and spatial information dynamically, leading to consistent 
improvements across datasets. On PEMS03, STICformer achieves the lowest RMSE (25.20) and a competitive 
MAPE (14.34%) underscoring its robustness and generalizability across varying data distributions.

In conclusion, the findings indicate that STICformer significantly improves spatio-temporal modeling 
by tackling the impact of extraction sequence. When compared to state-of-the-art methods, it demonstrates 
superior performance in predicting traffic flow. These enhancements validate the design of the two specialized 
cross-attention layers and highlight the importance of adaptively capturing spatio-temporal dependencies in 
varying sequences.

Ablation study
To evaluate the effectiveness of each component in TSformer, we conduct an ablation study, which includes four 
variants of our model:

•	 w/o Eplus: Removal of the embedding layer of periodic enhancement.
•	 w/o T: Removal of the temporal cross-attention layer.
•	 w/o S: Removing the spatial cross-attention layer.
•	 w/o C: Removing the cross-attention layer and replacing it with a self-attention layer.
•	 w/o TS: Removing both the temporal and spatial cross-attention layers.
•	 STICformer: The complete model.

As shown in Table 4, we evaluate the impact of different modules on the model’s performance.

Dataset PEMS03 PEMS04 PEMS08

Metric RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

w/o Eplus 25.80 15.28 14.85% 30.01 18.16 12.20% 23.25 13.37 8.88%

w/o T 26.07 15.41 15.01% 30.09 18.44 12.44% 23.37 13.46 9.05%

w/o S 26.03 15.35 14.99% 30.11 18.45 12.41% 23.32 13.54 9.10%

w/o C 25.65 15.30 14.90% 30.05 18.21 12.26% 23.30 13.41 8.99%

w/o TS 26.35 15.80 15.23% 30.21 18.69 12.61% 23.44 13.86 9.31%

STICformer 25.20 15.19 14.34% 29.80 18.07 11.96% 23.09 13.29 8.80%

Table 4.  Ablation Study on PEMS03, PEMS04, and PEMS08 with Metrics in the Order of RMSE, MAE, and 
MAPE.

 

Dataset PEMS03 PEMS04 PEMS07 PEMS08

Metric RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HI2021 49.89 32.62 30.60% 61.66 42.35 29.92% 71.18 49.03 22.75% 50.45 36.66 21.63%

GWNet2019 25.24 14.59 15.52% 32.95 18.53 12.89% 33.47 20.47 8.61% 23.39 14.40 9.21%

DCRNN2018 27.18 15.54 15.62% 31.26 19.63 13.59% 34.14 21.16 9.02% 24.17 15.22 10.21%

AGCRN2020 26.65 15.24 15.89% 31.25 19.38 13.40% 34.40 20.57 8.74% 24.41 15.32 10.03%

STGCN2018 27.51 15.83 16.13% 31.38 19.57 13.44% 35.27 21.74 9.24% 25.39 16.08 10.60%

GTS2021 26.15 15.41 15.39% 32.95 20.96 14.66% 35.10 22.15 9.38% 26.08 16.49 10.54%

MTGNN2020 25.23 14.85 14.55% 31.70 19.17 13.37% 34.06 20.89 9.00% 24.24 15.18 10.20%

STNorm2021 25.93 15.32 14.37% 30.98 18.96 12.69% 34.66 20.50 8.75% 24.77 15.41 9.76%

Cy2Mixer2024 x x x 30.02 18.14 11.93% 33.28 19.50 8.19% 23.22 13.53 8.86%

STPGNN2024 x 14.37 14.23% x 18.34 12.49% x 20.52 8.75% x 13.90 9.01%

GMAN2020 27.92 16.87 18.23% 31.60 19.14 13.19% 34.10 20.97 9.05% 24.92 15.31 10.13%

PDFormer2023 25.39 14.94 15.82% 30.03 18.36 12.00% 32.95 19.97 8.55% 23.41 13.58 9.05%

STID2022 27.40 15.33 16.40% 29.95 18.38 12.04% 32.79 19.61 8.30% 23.28 14.21 9.27%

STAEformer2023 27.55 15.35 15.18% 30.18 18.22 11.98% 32.60 19.14 8.01% 23.25 13.46 8.88%

TSformer2024 25.75 14.75 15.02% 29.90 18.05 12.36% 32.36 19.11 7.96%% 23.11 13.34 8.75%

STICformer 25.20 15.19 14.34% 29.80 18.07 12.21% 32.30 19.10 7.99% 23.09 13.29 8.80%

Table 3.  Performance Comparison on the PEMS03, PEMS04, PEMS07, and PEMS08 Datasets.
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The results of the analysis reveal that removing either the temporal-first or spatial-first cross-attention layer 
leads to performance degradation, but the extent of the decline is not consistent. Specifically, the removal of the 
temporal cross-attention layer causes a more significant drop in performance on the PEMS03 dataset, whereas 
omitting the spatial cross-attention layer has a larger effect on the PEMS08 dataset. This discrepancy can be 
attributed to the varying distribution of spatio-temporal features across datasets. The model is able to more 
effectively capture the relationships between these features, which helps it handle non-uniformities in the data. 
These findings further support the validity of the STIC structural design.

Moreover, to further verify the model’s structural soundness, we replace the cross-attention layers in the 
model with self-attention layers. The results show a significant performance degradation, indicating that 
spatio-temporal data indeed have specific interdependencies across different dimensions. The cross-attention 
mechanism is better suited to capturing these dependencies, enhancing the model’s overall effectiveness.

Visualization of prediction results
In this study, we further validate the rationale of our model by comparing it visually with the high-performance 
model STID29 on the PEMS08 dataset. We concatenate the model predictions with the actual data in batches 
to enable a more comprehensive analysis of the model’s predictive performance. As shown in Fig. 4, the STIC 
model is closer to the true values at most time points, demonstrating higher prediction accuracy compared 
to STID, which indicates that STIC has a significant advantage in capturing the temporal features of the data. 
Moreover, the STIC model exhibits less fluctuation in its predictions, remaining smoother than the more volatile 
predictions from STID, suggesting that it is more robust in terms of data smoothing. This characteristic makes it 
more suitable for real-world applications where data stability is crucial.

More importantly, despite some prediction errors, the STIC model performs excellently in following the 
overall trend, especially in regions with large fluctuations, where it can more accurately reflect the change trend 
of the real data. In contrast, STID is somewhat lacking in trend tracking ability, further validating the superiority 
of the STIC model in handling temporal data.

In addition to prediction accuracy, we also compare the model complexity and computational efficiency 
of STICformer with recent graph-based spatio-temporal Transformer models, including STAEformer and 
STID, on the PEMS08 dataset. Table 5 summarizes the relative comparison in terms of parameter counts and 
training/inference efficiency. As shown, STICformer maintains a competitive model size while demonstrating 
faster training and inference speed compared to STAEformer and STID. These results indicate that STICformer 
achieves improved predictive performance without introducing significant computational overhead, highlighting 
its practical advantage for real-world traffic forecasting applications where both accuracy and efficiency are 
important.

Summary and conclusions
Through the integration of a temporal–spatial cross-attention fusion mechanism, we have successfully advanced 
traffic forecasting. Our study showcases significant improvements in handling intricate spatio-temporal dynamics, 
addressing the limitations of conventional neural network approaches. The experimental results indicate that 
our model outperforms existing techniques across four traffic prediction benchmarks, underscoring its superior 
capability to model complex temporal and spatial interdependencies. This innovative method provides a robust 
solution to the challenges of traffic prediction, delivering highly satisfactory performance in our experimental 
evaluations.

Despite these promising results, it is important to acknowledge that benchmark datasets are typically well-
curated and preprocessed. In real-world traffic prediction scenarios, data can be affected by unexpected events 
such as accidents and traffic control, as well as sensor failures and communication noise, which often introduce 
unknown anomalies and substantial noise. The robustness of the proposed model, including STICformer, under 
such noisy and unpredictable conditions has not yet been fully examined. In future work, we plan to investigate 
how to enhance the model’s resilience to unknown disturbances and noise, which we believe is a valuable and 
meaningful research direction for improving the practicality and reliability of traffic forecasting systems.
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Fig. 4.  Prediction Comparison of STICformer and STID on the PEMS08 Dataset: Observed Points 105 (Top), 
109 (Middle), and 111 (Bottom).
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Data availability
The datasets generated and analysed during the current study are not publicly available due to institutional re-
strictions but are available from the corresponding author on reasonable request.
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