
Development of machine learning-
based models for predicting 
sarcopenia risk in stroke patients 
and analysis of associated factors
Jianxiang Wang1,2, Maorong Mu1,2, Jiayue Zhang1,2, Xiaojiao Yin1,2 & Yun Gao2

This study aimed to develop and validate machine learning models to predict sarcopenia risk in 
stroke patients and to identify the most relevant clinical features associated with its occurrence. 
In this prospective study, 425 stroke patients were enrolled between October 2024 and April 2025. 
Patients from Kunming First People’s Hospital (n = 308) formed the training cohort, while those from 
Kunming Yan’an Hospital (n = 117) comprised the validation cohort. Feature selection was performed 
using a random forest algorithm. Five machine learning models—logistic regression, decision tree, 
random forest, naïve Bayes, and gradient boosting—were developed and evaluated using accuracy, 
recall, precision, specificity, F1 score, and area under the curve (AUC). SHapley Additive exPlanations 
(SHAP) were applied to the best-performing model to interpret key predictors. Of the 425 patients, 
145 (34.1%) were diagnosed with sarcopenia. Significant differences (P < 0.05) were observed between 
the sarcopenia and non-sarcopenia groups across multiple clinical variables. The random forest 
model demonstrated the best predictive performance across all metrics. SHAP analysis revealed 
BMI, serum albumin, age, uric acid, creatinine, hemoglobin, calcium, triglycerides, C-reactive 
protein, total protein, and urea as the most influential predictors, reflecting nutritional, metabolic, 
and inflammatory status. The random forest model achieved superior performance in predicting 
sarcopenia risk after stroke. Combining machine learning with SHAP interpretability offers a robust 
and explainable framework for early identification and personalized management of post-stroke 
sarcopenia, supporting precision geriatric care.
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Stroke remains one of the leading causes of long-term disability worldwide, with approximately 50% of survivors 
experiencing persistent functional impairment and 15–30% developing severe disabilities1. Growing attention 
has been directed toward the impact of stroke on skeletal muscle health, as neurological deficits and reduced 
mobility can accelerate muscle atrophy, impair strength, and decrease physical performance2. Sarcopenia, defined 
as the progressive and generalized loss of skeletal muscle mass, strength, and function, is highly prevalent among 
older adults3. Stroke-associated sarcopenia (SAS) represents a subtype of secondary sarcopenia characterized by 
muscle degeneration resulting from stroke-related neurological injury, inflammation3, and long-term physical 
inactivity4. SAS not only increases the risk of falls, fractures, and adverse clinical outcomes but also delays 
rehabilitation progress and imposes a substantial burden on healthcare systems5.

Currently, the clinical identification of SAS primarily relies on muscle strength testing and physical 
performance assessments. However, these approaches may fail to capture early or subtle muscle deterioration, 
limiting their utility for timely risk stratification and early interventions6. Consequently, accurate predictive tools 
are needed to facilitate early recognition of high-risk patients and guide individualized rehabilitation strategies.

In recent years, several studies have attempted to develop predictive models for stroke-related sarcopenia 
using traditional or basic machine-learning approaches. A Chinese study using a logistic regression model 
reported an AUC of 0.835. More recently, another study applying logistic regression, random forest, and 
XGBoost yielded only modest performance, with AUCs of 0.805, 0.796, and 0.780, respectively7. Although these 
studies provide preliminary evidence supporting the feasibility of predictive modeling, they consistently suffer 
from several limitations: most rely on a single modeling strategy, lack external validation, and provide limited 
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interpretability, making it difficult for clinicians to understand how individual predictors contribute to model 
outputs. These methodological constraints restrict the clinical applicability of current models. To address these 
gaps, our study systematically compares five mainstream machine-learning algorithms, incorporates external 
cohort validation, and applies SHAP interpretability analysis to enhance transparency and provide clinically 
meaningful insights for early risk identification of stroke-related sarcopenia. To address these gaps, the present 
study integrates five mainstream machine learning (ML) algorithms to construct predictive models for SAS 
risk, systematically compares their predictive performance, and—most importantly—incorporates SHAP-based 
interpretability to elucidate the relative contribution of each feature. By enhancing model transparency and 
generalizability, this approach aims to support early screening and tailored intervention strategies for stroke 
patients at high risk of developing sarcopenia.

Methods
Study population
A convenience sampling method was used to recruit stroke patients from two tertiary hospitals in Kunming, 
China, between October 2024 and April 2025.The inclusion criteria were as follows: (1) Patients diagnosed 
with hemorrhagic or ischemic stroke, including both first-ever and recurrent cases; (2) Age ≥ 60  years; (3) 
Clinically stable condition; (4) Provision of written informed consent. Exclusion criteria included: (1) Pre-
existing sarcopenia before admission, defined by a SARC-F score > 48; (2) Severe coma, intellectual disability, 
psychiatric disorders, or cognitive impairment preventing cooperation with body composition analysis; (3) 
History of major psychiatric illness or severe systemic disease; (4) Severe comorbidities such as heart failure, 
renal failure, malignancy, or end-stage organ disease; (5) Severe upper limb spasticity or pain that interfered 
with grip strength testing.

Assessment tools
General information questionnaire
A self-designed questionnaire was developed by the research team based on study objectives. Data collected 
included age, sex, smoking status, alcohol use, duration of bed rest, body mass index (BMI), presence of 
anxiety or depression, stroke type (ischemic or hemorrhagic), history of stroke, comorbidities (e.g., diabetes, 
hypertension, coronary artery disease), pulmonary infections, fracture history, fall history, dysphagia, aphasia, 
muscle weakness, nasogastric tube use, and laboratory data serum albumin, total protein, C-reactive protein, 
serum calcium, urea, creatinine, uric acid, hemoglobin, triglycerides.

Diagnosis of sarcopenia
Sarcopenia was diagnosed according to the criteria proposed by the Asian Working Group for Sarcopenia9 
Diagnostic criteria included: (1)Low muscle mass: appendicular skeletal muscle mass index (SMI) ≤ 7.0 kg/m2 
for men and < 5.4 kg/m2 for women; (2) Low muscle strength: handgrip strength < 28 kg for men and < 18 kg for 
women; (3) Poor physical performance: 6-m gait speed < 1.0 m/s. A diagnosis of sarcopenia was made if criterion 
(1) was met, along with either (2), (3), or both.

National institutes of health stroke scale (NIHSS)
The NIHSS, developed by Brott et al. in 198910, was used to assess the severity of neurological impairment 
in stroke patients. The scale includes 11 items, covering level of consciousness, visual fields, facial palsy, limb 
movements, language, attention, and other domains. Each item is scored on a scale from 0 to 4, with a total 
possible score ranging from 0 to 42. Higher scores indicate more severe neurological deficits. In this study, the 
Cronbach’s α coefficient of the scale was 0.939, indicating high internal consistency. The NIHSS is widely used in 
both clinical and research settings for stroke assessment.

Glasgow coma scale (GCS)
The Glasgow Coma Scale (GCS), developed by Teasdale and Jennett in 1974, was used to assess consciousness 
and neurological function. The scale comprises three components: eye-opening, verbal response, and motor 
response. Each component is scored separately (eye-opening: 1–4, verbal response: 1–5, motor response: 
1–6), yielding a total score range of 3–15. Higher scores indicate a more alert state of consciousness. The GCS 
demonstrated good reliability and validity in the stroke population in this study11.

Activities of daily living (ADL) scale
The ADL scale, originally developed by Katz et al. in 1963, was employed to evaluate the basic self-care ability of 
participants. The scale includes six items: feeding, dressing, toileting, bathing, mobility, and transferring. Each 
item is scored based on the degree of independence: 1 (complete dependence), 2 (partial dependence), or 3 
(complete independence). The total score ranges from 6 to 18, with higher scores indicating greater functional 
independence. In this study, the Cronbach’s α coefficient was 0.978, suggesting excellent internal consistency12.

Data collection and quality control
Data were collected through a combination of paper-based questionnaires and in-person clinical assessments 
conducted at participating hospitals. Each hospital designated a trained investigator responsible for overseeing the 
data collection process. The questionnaire included items assessing demographic characteristics, medical history, 
lifestyle factors, and relevant clinical symptoms. Clinical assessments involved standardized measurements 
such as blood pressure, height, weight, and other relevant parameters, depending on the study’s objectives. 
Standardized instructions were provided to all participants prior to questionnaire completion to ensure responses 
were informed, voluntary, and anonymous. Ethical approval was obtained from the institutional review boards of 
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all participating hospitals, and written informed consent was obtained from each participant. Upon completion, 
all questionnaires were returned to the central research team. Data were independently reviewed and double-
entered into a secured database to minimize input errors. Invalid or incomplete questionnaires—such as those 
with excessively short completion times, missing data, or patterned/duplicate responses—were identified and 
excluded from the final analysis.

Machine learning model parameters
To ensure reproducibility, the hyperparameters of all machine learning models used in this study (Logistic 
Regression, Decision Tree, Random Forest, Naive Bayes, and Gradient Boosting) were summarized in 
Supplementary Table 1. All models were implemented using scikit-learn with default settings unless otherwise 
specified. The max_iter parameter of Logistic Regression was set to 1000 to ensure convergence. Additionally, 
confusion matrices were generated for all five machine-learning models to evaluate the distribution of true 
positives, true negatives, false positives, and false negatives in both the training and external validation cohorts. 
To further examine potential multicollinearity among the selected predictors, pairwise correlations were 
evaluated, and no strong correlations were identified (all |r|< 0.7).

Results
General characteristics of participants and prevalence of sarcopenia
A total of 456 questionnaires were collected, of which 425 were deemed valid, yielding a valid response rate of 
93.2%. Among the 425 included stroke patients, 145 (34.1%) were diagnosed with stroke-related sarcopenia 
(SAS) based on the AWGS diagnostic criteria, while the remaining 280 were classified as non-sarcopenic. 
Detailed demographic and clinical characteristics are presented (Table 1).

For model development, the dataset was randomly divided into a modeling cohort and an external 
validation cohort using stratified sampling based on the outcome variable. The modeling cohort consisted 
of 280 participants, while the external validation cohort included 145 participants. Comparison of baseline 
demographic and clinical characteristics between the two cohorts showed no significant differences across major 
variables, indicating good balance and comparability between the training and validation sets (Table 2). This 
ensured that the subsequent evaluation of model performance was conducted on a representative and unbiased 
cohort.

Feature selection for stroke-related sarcopenia risk factors
To identify key predictors of stroke-related sarcopenia, a random forest (RF) algorithm was employed to rank 
the importance of all candidate variables. Features with importance scores exceeding the average threshold value 
(0.031) were selected for model inclusion. This cutoff was chosen to balance variable interpretability and model 
complexity in practical applications. Based on the importance ranking, 12 key features were retained for model 
development: BMI, serum albumin, age, uric acid, hemoglobin, creatinine, calcium ions, NIHSS score, total 
protein, triglycerides, CRP, and urea. The results of feature selection are illustrated (Fig. 1). Correlation analysis 
confirmed that no excessive multicollinearity existed among the selected predictors.

Development and evaluation of predictive models for stroke-related sarcopenia
In this study, five machine learning algorithms were applied to construct predictive models for assessing the 
risk of sarcopenia in stroke patients. All models were trained using the modeling cohort and evaluated in an 
independent validation cohort to assess generalizability. As shown Fig. 2, the RF and GB models demonstrated 
the best performance in the training set, with area under the ROC curve values of 0.967and 0.943, respectively—
both significantly outperforming the other models. Notably, the RF model achieved superior performance across 
several key classification metrics, including F1-score, accuracy, and recall, indicating strong overall predictive 
capability. Although the GB model exhibited a slightly higher AUC than RF in the validation set, the RF model 
demonstrated more consistent and robust performance across both datasets. Therefore, the Random Forest 
model was selected as the optimal predictive model for stroke-related sarcopenia in this study. The detailed 
performance metrics of all models are summarized (Table 3). In addition, to provide a more comprehensive 
evaluation of model performance, the confusion matrices for all five algorithms in both the modeling and 
external validation cohorts have been included in the Supplementary Materials (Figs. S1and S2). These matrices 
clearly illustrate the classification behavior of each model and help identify potential misclassification patterns.

Interpretability analysis of the stroke-related sarcopenia prediction model
Contribution of key features to model prediction
To enhance the interpretability of the model, SHAP analysis was applied to the RF model to assess the importance 
and directional impact of each feature in predicting stroke-related sarcopenia. The distribution of SHAP values 
for the 12 selected features is presented (Fig.  3). The results indicated that lower values of BMI and serum 
albumin were consistently associated with higher SHAP values, highlighting the critical role of poor nutritional 
status in sarcopenia risk. Similarly, higher SHAP values were observed in older individuals, reinforcing age 
as a strong independent risk factor. While some variables exhibited relatively lower average contributions, 
they still demonstrated substantial SHAP values in certain individuals, suggesting their potential relevance in 
personalized risk assessment.

Relationships between key variables and model predictions
Figure 4 presents SHAP dependence plots for the top six continuous variables ranked by feature importance: 
BMI, serum albumin, age, uric acid, creatinine, and hemoglobin. The x-axis represents the actual observed 
values of each variable, while the y-axis indicates the corresponding SHAP values, which reflect each variable’s 
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Item Non-sarcopenia group (n = 280) Sarcopenia group (n = 145) Test statistic p-value

Age 72.00[67.00, 80.00] 75.00[69.00, 82.00] − 4.2871) 0.044

Sex 22.802)  < 0.001

Female 88(31.4) 81(55.9)

Male 192(68.6) 64 (44.1)

Alcohol consumption 1.842) 0.175

No 167(59.6) 97(66.9)

Yes 113(40.4) 48(33.1)

Smoking 4.552) 0.033

No 166(59.3) 102 (70.3)

Yes 114(40.7) 43 (29.7)

Anxiety 5.842) 0.947

No 207(73.9) 106(73.1)

Yes 73(26.1) 39(26.9)

Depression 0.382) 0.540

No 261(93.2) 132(91.0)

Yes 19(6.8) 13(9.0)

Stroke type 4.362) 0.037

Hemorrhagic stroke 108(38.6) 72(49.7)

Ischemic stroke 172(61.4) 73(50.3)

History of stroke 10.772) 0.016

No 224(80.0) 100(69.0)

Yes 56(20.0) 45(31.0)

NIHSS 8.00[5.00, 12.00] 9.00[5.00, 13.00] − 3.3031) 0.001

BMI 23.82[22.12, 25.70] 19.92[19.10, 21.48] 12.8911)  < 0.001

GLS 14.00[10.00, 15.00] 13.00[9.00, 15.00] 1.8991) 0.057

ADL 60.00[35.00, 80.00] 55.00[10.00, 70.00] 1.8961) 0.058

Bedridden duration 7.00[5.00, 8.00] 7.00[5.00, 9.00] − 0.0101) 0.992

Pulmonary infection 2.382) 0.123

No 151(53.9) 66(45.5)

Yes 129(46.1) 79(54.5)

Dysphagia 5.852) 0.016

No 248(88.6) 115(79.3)

Yes 32(11.4) 30(20.7)

Aphasia 8.812) 0.003

No 254(90.7) 116(80.0)

Yes 26(9.3) 29(20.0)

Fracture 3.482) 0.062

No 243(86.8) 115(79.3)

Yes 37(13.2) 30(20.7)

History of falls 0.012) 0.927

No 238(85.0) 122(84.1)

Yes 42(15.0) 23(15.9)

Muscle weakness 1.012) 0.315

No 172(61.4) 81(55.9)

Yes 108(38.6) 64(44.1)

Nasal cannula 24.012)  < 0.001

No 223(79.6) 82(56.6)

Yes 57(20.4) 63(43.4)

History of hypertension 1.832) 0.176

No 92(32.9) 58(40.0)

Yes 188(67.1) 87(60.0)

History of diabetes 1.522) 0.217

No 203(72.5) 96(66.2)

Yes 77(27.5) 49(33.8)

CAD 4.152) 0.042

No 210(75.0) 122(84.1)

Continued

Scientific Reports |         (2026) 16:1490 4| https://doi.org/10.1038/s41598-025-31600-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


magnitude and direction of influence on the model’s prediction. Figure  4A, B reveal a generally negative 
correlation between SHAP values and both BMI and serum albumin levels, suggesting that lower values of these 
variables significantly increase the predicted risk of sarcopenia—highlighting their close association with poor 
nutritional status. As shown (Fig. 4C), age exhibits a clear positive correlation with SHAP values, indicating that 
older age is a strong positive predictor of sarcopenia risk. In Fig. 4D, E, increases in uric acid and creatinine levels 
are associated with declining SHAP values, possibly reflecting underlying metabolic dysfunction or impaired 
muscle metabolism. Finally, Fig.  4F shows that lower hemoglobin levels correspond to higher SHAP values, 
implying that anemia may contribute to an elevated likelihood of sarcopenia in stroke patients.

SHAP-based interpretations of individual predictions
Figure 5 displays SHAP force plots for two individual stroke patients, illustrating the contribution and direction 
of each feature in the prediction of sarcopenia risk. These visualizations offer a detailed, patient-specific 
explanation of how the model arrives at its final output. In the left panel, the baseline prediction probability was 
0.347, which increased to 0.82 after accounting for multiple contributing factors, leading the model to classify 
the patient as high-risk. Among these features, BMI (17.8) emerged as the most influential positive contributor 
(SHAP + 0.37), followed by hemoglobin, age, and uric acid, all of which provided additional upward influence 
on the prediction. In contrast, creatinine and total protein had modest negative contributions, slightly lowering 
the risk score. In the right panel, the final prediction decreased from the baseline to 0.02, primarily due to 
negative contributions from BMI, age, uric acid, and creatinine, resulting in a low-risk classification. Overall, the 
SHAP force plots clearly illustrate how individual variables influence the model’s prediction trajectory, making 
explicit both the direction and magnitude of each variable’s effect. These findings highlight the model’s strong 
interpretability and clinical transparency at the individual patient level.

Discussion
Elevated risk of sarcopenia among stroke patients
The findings of this study revealed that 34.1% of stroke patients met the diagnostic criteria for sarcopenia, a 
prevalence notably higher than that observed in patients with cardiovascular disease13, diabetes14, respiratory 
system15. This suggests that stroke survivors represent a particularly high-risk population for sarcopenia, 
consistent with the findings reported by Yao16. The underlying mechanisms contributing to sarcopenia in stroke 
patients are multifactorial. They may include reduced physical activity due to motor dysfunction, acute-phase 
systemic inflammation, and inadequate nutritional intake. In addition, stroke predominantly affects the elderly, 
who typically have lower baseline muscle reserves and are more likely to suffer from comorbid chronic conditions 
such as coronary artery disease and hypertension, further accelerating muscle mass loss17,18.

Moreover, the lack of effective rehabilitation interventions during the post-stroke recovery period can 
exacerbate the progression of sarcopenia. Therefore, early identification of high-risk individuals is essential to 
improve rehabilitation outcomes and enhance quality of life. Against this background, our study aimed to apply 
machine learning algorithms to develop robust prediction models and to identify the key factors contributing 
to stroke-related sarcopenia, thereby providing a theoretical foundation for personalized risk stratification and 
targeted intervention strategies.

Performance of machine learning models in predicting stroke-related sarcopenia
To enhance model efficiency and minimize the influence of redundant variables, a RF algorithm was employed 
to perform initial feature selection19. Compared with traditional feature selection methods, RF is capable of 
capturing complex non-linear interactions among variables and demonstrates strong robustness to outliers and 
noise, while preserving model interpretability. Through this process, a total of 12 key variables were identified as 
strongly associated with sarcopenia: BMI, serum albumin, age, uric acid, serum creatinine, hemoglobin, calcium 
ion, NIHSS score, triglycerides, CRP, total protein, and urea. Based on these selected features, five machine 
learning models were developed: LR, DT, RF, NB, and GB. All models were trained using five-fold cross-
validation and subsequently evaluated on an independent validation set to assess their generalizability. Among 
the five models, the RF model demonstrated superior performance in both the training and validation cohorts, 

Item Non-sarcopenia group (n = 280) Sarcopenia group (n = 145) Test statistic p-value

Yes 70(25.0) 23(15.9)

Calcium ion 2.18[2.09, 2.28] 2.17[2.05, 2.26] 0.8191) 0.408

Urea 5.50[4.30, 7.10] 5.30[4.10, 6.50] 1.4131) 0.159

Creatinine 68.65[57.50, 87.82] 61.20[50.20, 75.90] 3.1661) 0.002

Uric acid 339.50[254.40, 421.70] 278.00[238.40, 326.00] 4.6081)  < 0.001

Albumin 41.55[38.95, 44.90] 38.20[30.40, 42.40] 6.1571)  < 0.001

Hemoglobin 136.00[121.00, 150.00] 128.00[113.00, 137.00] 4.8851)  < 0.001

CRP 3.23[1.26, 9.77] 4.57[1.48, 15.00] − 2.3281) 0.021

Total protein 65.45[61.27, 70.20] 63.20[59.10, 69.80] 1.8921) 0.055

Triglyceride 1.38[1.00, 2.01] 1.23[1.00, 1.87] 1.7371) 0.083

Table 1.  Comparison of general characteristics between sarcopenia and non-sarcopenia groups in stroke 
patients. 1) Z值; 2) χ2.
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Iterm Modeling group(n = 280) External validation group(n = 145) Test statistic p-value

Age 69.00 [63.00, 75.00] 74.00 [68.00, 81.00] 0.9071)  < 0.001

Sex 7.7242)  < 0.001

No 88 (31.4) 81 (55.9)

Yes 192 (68.6) 64 (44.1)

Alcohol consumption 0.6782) 0.175

No 167 (59.6) 97 (66.9)

Yes 113 (40.4) 48 (33.1)

Smoking 2.3272) 0.033

No 166 (59.3) 102 (70.3)

Yes 114 (40.7) 43 (29.7)

Anxiety 0.2492) 0.016

No 219 (78.2) 97 (66.9)

Yes 61 (21.8) 48 (33.1)

Depression 0.1112) 0.54

No 261 (93.2) 132 (91.0)

Yes 19 (6.8) 13 (9.0)

Stroke type 2.0082) 0.037

No 108 (38.6) 72 (49.7)

Yes 172 (61.4) 73 (50.3)

History of stroke 0.0552) 0.001

No 227 (81.1) 96 (66.2)

Yes 53 (18.9) 49 (33.8)

NIHSS 6.00 [4.00, 10.00] 9.00 [5.00, 13.00] 0.7041) 0.001

BMI 23.82 [22.12, 25.70] 20.03 [19.10, 21.48] 1.3281)  < 0.001

GLS 14.00 [10.00, 15.00] 13.00 [9.00, 15.00] 1.2241) 0.058

ADL 60.00 [35.00, 80.00] 55.00 [10.00, 70.00] − 0.5681) 0.058

Bedridden duration 7.00 [5.00, 8.00] 7.00 [5.00, 9.00] − 2.0471) 0.992

Pulmonary infection 0.8572) 0.123

No 151 (53.9) 66 (45.5)

Yes 129 (46.1) 79 (54.5)

Dysphagia 0.4052) 0.016

No 248 (88.6) 115 (79.3)

Yes 32 (11.4) 30 (20.7)

Aphasia 0.1362) 0.003

No 254 (90.7) 116 (80.0)

Yes 26 (9.3) 29 (20.0)

Fracture 1.0542) 0.062

No 243 (86.8) 115 (79.3)

Yes 37 (13.2) 30 (20.7)

History of falls 0.7632) 0.927

No 238 (85.0) 122 (84.1)

Yes 42 (15.0) 23 (15.9)

Muscle weakness 0.552) 0.315

No 172 (61.4) 81 (55.9)

Yes 108 (38.6) 64 (44.1)

Nasal cannula 0.9152)  < 0.001

No 223 (79.6) 82 (56.6)

Yes 57 (20.4) 63 (43.4)

History of hypertension 0.0042) 0.176

No 92 (32.9) 58 (40.0)

Yes 188 (67.1) 87 (60.0)

History of diabetes 0.6212) 0.217

No 203 (72.5) 96 (66.2)

Yes 77 (27.5) 49 (33.8)

CAD 0.1352) 0.042

No 210 (75.0) 122 (84.1)

Continued
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with higher accuracy, recall, and F1 scores, alongside better robustness and interpretability. As such, the RF 
model was selected as the optimal predictive tool in this study for identifying sarcopenia risk in stroke patients.

In addition, we observed inconsistent performance of the Naïve Bayes (NB) model, which showed relatively 
poor discrimination in the training cohort but performed noticeably better in the external validation cohort. 
This discrepancy is largely attributable to the class imbalance between the two datasets, as the modeling set 
contained a lower proportion of sarcopenia cases than the validation set. Because NB relies on prior probability 
estimation, its performance is more susceptible to shifts in class distribution. Furthermore, the selected predictors 
did not exhibit strong intercorrelations, indicating a low risk of multicollinearity and ensuring that the divergent 
performance of NB was not caused by feature redundancy. The confusion matrices generated for both the 
training and validation sets (Supplementary Fig. S1) provided additional insight into class-level errors. The NB 
model exhibited higher false-negative rates in the training cohort but yielded more balanced predictions in the 
external validation dataset. These findings highlight the importance of examining misclassification patterns—
rather than relying solely on global metrics such as accuracy or AUC—when assessing model robustness. In 
comparison with previously published models, the predictive performance of our machine-learning framework 
demonstrates several notable advantages. A Chinese study using a logistic regression model reported an AUC 
of 0.835, while another study applying both logistic regression and decision tree algorithms achieved AUCs 
of 0.959 and 0.892, respectively. Although these models demonstrated acceptable discriminative ability, they 
relied on single modeling approaches and lacked external validation. More recently, a study employing random 
forest and XGBoost reported relatively modest AUCs of 0.796 and 0.780, suggesting limited generalizability 
of these basic machine-learning applications7. In contrast, our RF model maintained consistently strong and 
balanced predictive performance in both the training and external validation cohorts, demonstrating improved 
robustness over existing models. Furthermore, by incorporating SHAP-based interpretability, our study provides 

Fig. 1.  Feature importance ranking of predictors in the random forest model for sarcopenia in stroke patients.

 

Iterm Modeling group(n = 280) External validation group(n = 145) Test statistic p-value

Yes 70 (25.0) 23 (15.9)

Calcium ion 2.18 [2.09, 2.28] 2.17 [2.05, 2.26] − 0.0021) 0.413

Urea 5.50 [4.30, 7.10] 5.30 [4.10, 6.50] − 0.8971) 0.158

Creatinine 68.80 [57.50, 88.20] 60.60 [50.20, 75.80] − 0.3611) 0.002

Uric acid 343.00 [265.02, 423.40] 287.00 [238.40, 344.00] − 0.0141)  < 0.001

Albumin 41.55 [38.95, 44.90] 38.20 [30.40, 42.40] 0.4191)  < 0.001

Hemoglobin 136.00 [121.00, 150.00] 128.00 [113.00, 137.00] 0.4261)  < 0.001

CRP 3.23 [1.26, 9.77] 4.57 [1.48, 15.00] − 1.0991) 0.02

Total protein 65.45 [61.27, 70.20] 63.20 [59.10, 69.80] 1.0261) 0.059

Triglyceride 1.38 [1.00, 2.01] 1.23 [1.00, 1.87] − 0.6491) 0.082

Table 2.  Comparison of baseline characteristics between the modeling cohort and the external validation 
cohort. 1) Z值; 2) χ2.
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transparent and clinically meaningful insights into feature contributions—an aspect largely absent in previous 
research—thereby reinforcing the novelty and practical applicability of our approach.

Analysis of key predictive factors for stroke-related sarcopenia
SHAP analysis based on the RF model identified BMI, serum albumin, age, uric acid, serum creatinine, 
hemoglobin, calcium ion, NIHSS score, triglycerides, CRP, total protein, and urea as the most important 
variables contributing to sarcopenia prediction. These features span multiple physiological domains, including 
nutritional status, metabolic function, inflammatory activity, and overall physiological condition.

In terms of nutrition-related factors, lower levels of serum albumin and total protein suggest a high likelihood 
of malnutrition, which is a well-established contributor to muscle wasting and sarcopenia20. A low BMI reflects 
underweight status, which is often accompanied by loss of both fat and lean muscle mass, ultimately impairing 
muscle strength and physical function21. Interestingly, the model also flagged some individuals with a high BMI 
as being at elevated risk for sarcopenia, suggesting the presence of sarcopenic obesity—a condition in which 
excess body fat may mask underlying skeletal muscle loss22. This highlights the limitation of using BMI alone 
for clinical risk assessment and underscores the need for integrating body composition analysis to improve 
diagnostic precision. From a metabolic perspective, lower cholesterol and triglyceride levels, both indicative 

Model

Accuracy Recall Precision Specificity F1Score

A set B set A set B set A set B set A set B set A set B set

LR 0.784 0.861 0.562 0.916 0.750 0.733 0.901 0.833 0.642 0.814

DT 0.827 0.833 0.718 0.833 0.766 0.714 0.885 0.833 0.741 0.769

RF 0.860 0.861 0.843 0.750 0.771 0.818 0.868 0.916 0.805 0.782

NB 0.688 0.916 0.125 0.916 0.800 0.846 0.983 0.916 0.216 0.880

GB 0.881 0.805 0.875 0.750 0.800 0.692 0.885 0.833 0.835 0.720

Table 3.  Comparison of performance metrics of five machine learning models in the training and validation 
sets. (1) A set = training set; (2) B set = validation set.

 

Fig. 2.  ROC curve comparison of five machine learning models for predicting stroke-related sarcopenia.
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of reduced energy reserves or disrupted lipid metabolism, may negatively impact muscle protein synthesis23. 
Inflammatory and metabolic markers such as CRP, urea, creatinine, and uric acid also ranked highly in model 
importance. Elevated CRP levels, a classical marker of systemic inflammation, are known to inhibit muscle 
protein synthesis and promote catabolism24. Uric acid, creatinine, and urea levels reflect renal and muscle 
metabolic by-products, suggesting possible impairment in muscle metabolism25,26.Among the hematological 
and electrolyte indicators, low hemoglobin levels were associated with increased sarcopenia risk, likely due 
to compromised oxygen delivery to muscle tissue and reduced endurance capacity27. Additionally, calcium, a 
critical mediator of neuromuscular signaling, may contribute to muscle dysfunction if depleted28. Age, a non-
modifiable risk factor, was identified as a strong positive predictor of sarcopenia in the model, reaffirming that 
older adults are particularly vulnerable29. This association may be linked to age-related declines in hormone 
levels, persistent low-grade inflammation, and reduced physical activity. Importantly, SHAP force plots revealed 
distinct variable contribution pathways between high-risk and low-risk individuals, reinforcing the model’s 
effectiveness in capturing personalized risk profiles30. This interpretability enhances clinical applicability and 
provides a foundation for tailoring targeted interventions.

In summary, the key variables identified in this study offer a multidimensional perspective on the pathogenesis 
of stroke-related sarcopenia and support the development of personalized risk stratification, early intervention, 
and rehabilitation strategies in clinical practice.

Conclusions
This study developed five machine learning models to predict the risk of sarcopenia among stroke patients. 
Among these, the RF model demonstrated superior performance across multiple evaluation metrics compared 
to traditional models such as LR, DT, NB, and GB. The application of machine learning offers a novel and 
efficient approach to identifying high-risk individuals for stroke-related sarcopenia and provides insights into 
the underlying pathophysiological mechanisms. These findings may support the development of personalized 
prevention strategies and precision rehabilitation plans.

However, several limitations should be acknowledged. First, the sample size was relatively limited, which may 
affect the generalizability of the model. Second, although the model incorporated a broad range of physiological 
and biochemical indicators, certain potentially relevant variables—such as body composition metrics, hormone 
levels, and physical activity data—were not included. Future research should focus on expanding the sample 

Fig. 3.  SHAP summary plot of key variables in the random forest model.
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size, enriching the feature set, and conducting external validation across multiple clinical centers and geographic 
regions. Such efforts will help to further enhance the model’s robustness, generalizability, and clinical utility.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.

Received: 2 August 2025; Accepted: 3 December 2025

Fig. 5.  SHAP force plots for individual prediction of stroke-related sarcopenia.

 

Fig. 4.  SHAP dependence plots of key features for predicting stroke-related sarcopenia.
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