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The control of unmanned aerial vehicles (UAVs) has been an active area of research over the past 
decade, particularly for operations in complex environments. This paper addresses the finite-time fault-
tolerant control problem for UAV subjected to simultaneous actuator faults and wind disturbances. 
A novel adaptive finite-time disturbance observer-based fault-tolerant control (AFTDO-FTC) scheme 
is proposed. This scheme integrates a finite-time sliding surface, a nonlinear disturbance observer, 
and an adaptive controller to achieve accurate tracking of position and attitude. First, a nonlinear 
disturbance observer is designed to estimate the lumped uncertainty arising from combined faults 
and wind disturbances. Then, a finite-time sliding surface, formulated using weighted error vectors, 
is introduced to effectively mitigate the adverse effects of estimation errors from the disturbance 
observer. Furthermore, adaptive finite-time position and attitude controllers are developed based on 
the estimates provided by the adaptive disturbance observer. Finally, the effectiveness of the proposed 
method is verified through comparative simulations and Lyapunov stability analysis.
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In recent years, UAVs have gained widespread popularity in both civil and military applications. Owing to their 
versatile capabilities and broad applicability, UAVs have been widely adopted across numerous research domains, 
including tracking control, collision avoidance, aerial manipulation, swarm systems, image processing, and deep 
learning. The performance of UAVs has been extensively studied and improved in various research contexts1–3. 
However, many UAV accidents have occurred due to errors made by inexperienced operators, environmental 
disturbances, and failures of onboard components. To prevent secondary accidents and protect high-value 
research equipment, the development of fault-tolerant control (FTC) systems for robust UAV operation has 
become increasingly important. A number of multirotor UAVs are designed with actuator redundancy to handle 
potential faults. Nevertheless, in scenarios where multiple actuators fail during flight, UAVs lacking an FTC 
mechanism cannot compensate for the motor loss, which may lead to accidents.

Various control algorithms has been investigated to ensure reliable and high-performance flight both before 
and after the occurrence of a fault. Researchers have explored the development and application of diverse control 
techniques for UAVs, such as linear and adaptive proportional–integral–derivative (PID) control4, feedback 
linearization5, backstepping control6, sliding mode control7–9, model predictive control10, adaptive control11–13, 
and intelligent control strategies based on fuzzy logic and machine learning. It is thus essential to develop an 
FTC framework that can be complementarily integrated with existing flight controllers, thereby preserving the 
advantages of the control methods mentioned above.

When operating at high altitudes, UAVs are subject to adverse effects on attitude control due to factors such 
as wind gusts and variations in air pressure. Simultaneously, they may also encounter internal issues, such as 
onboard device failures. These combined challenges complicate the attitude control problem for quadcopters. 
To address disturbance signals, many researchers have developed compensation systems. In14, a Nussbaum gain 
was employed to adaptively compensate for sampling errors and actuator failures, thereby effectively mitigating 
the impact of such failures on flight performance. In15, a nonlinear harmonic disturbance observer and a robust 
controller were jointly applied to compensate for external disturbances, enabling the system’s attitude angle 
tracking error under disturbance to converge to an equilibrium point. Furthermore, robust control methods 
have been integrated with disturbance observer-based control (DOBC) in16 and with nonlinear disturbance 
observer techniques in17. A time-domain disturbance observer (DOB) was also combined with output feedback 
control and a sliding mode controller to achieve trajectory tracking control for quadcopter aircraft. These 
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disturbance observers typically exhibit long response times when estimating mismatched disturbances, which in 
turn increases the overall controller response time.

To address both actuator failures and external disturbances, the authors of18 constructed a novel state 
observer. By integrating full-loop control with terminal sliding mode control, they designed a finite-time fault-
tolerant controller that compensates for fault signals and ensures estimation error converges to zero within 
a fixed time. In19, a robust adaptive sliding mode Thau observer was proposed to estimate the time-varying 
amplitude of actuator failure. This observer was incorporated into the fault diagnosis process for each actuator, 
significantly improving estimation accuracy.

In the design of UAV controllers, finite-time control schemes enable high-precision tracking and rapid 
convergence performance under external disturbances. For instance, reference20 developed a finite-time fault-
tolerant control strategy using an integral terminal sliding mode controller driven by an adaptive fuzzy state 
observer. In21, adaptive backstepping control was integrated with a fuzzy logic system to accommodate known 
actuator faults within a finite time horizon. A non-singular fast terminal sliding mode control algorithm was 
proposed in22 to address trajectory tracking of UAVs subject to multi-source disturbances. Furthermore,21 
introduced a fully-connected layer recursive sliding mode fault-tolerant control strategy to achieve system 
convergence and chattering suppression within a limited time. This approach enhances the adjustment capability 
for parameter variations induced by external uncertainties and reduces the settling time of the controller. To 
tackle input saturation, the authors of23 presented a finite-time auxiliary system based on a backstepping control 
scheme. By incorporating auxiliary compensation signals, this method mitigates the effects of input saturation, 
thereby improving both the robustness of the UAVs against aggregated disturbances and the response speed of 
the controller.

To further enhance the capability of UAVs in handling actuator and system faults, several advanced control 
strategies have been proposed. In24, the authors introduced an adaptive incremental nonlinear dynamic inversion 
(INDI) control method, which enables high-performance nonlinear control without relying on an accurate 
system model. Meanwhile, the authors of25,26 developed an adaptive backstepping tracking control strategy 
capable of effectively compensating for external unknown disturbances while achieving precise attitude tracking. 
In27, a novel adaptive fuzzy terminal sliding mode control scheme was designed for uncertain nonlinear systems 
subject to external disturbances and successfully applied to a two-link robotic arm control system. Furthermore, 
the authors of28–30 integrated adaptive control techniques with neural networks to address partial failures and 
jamming of aircraft actuators. They designed an adaptive neural network-based fault-tolerant controller that 
ensures stable tracking performance under system parametric uncertainties and actuator faults.

Combined with the above research results, this paper combines the finite time strategy and adaptive control 
method into the design of the disturbance observer, which not only reduces the estimation error caused by 
external disturbances, but also shortens the response time of the disturbance observer. The main contributions 
of this paper are as follows: 

	(1)	 This work addresses combined fault conditions, including actuator efficiency loss, sensor biases, and un-
known external disturbances, within a unified framework.

	(2)	 The mathematical model of quadrotor UAVs under combined faults is established, and the method for 
calculating parameters is provided.

	(3)	 A new AFTDO observer is proposed, which can accurately and quickly compensate for actuator faults and 
external disturbances, enhancing the system’s responsiveness while maintaining robustness.

	(4)	 Designing position and attitude controllers based on AFTDO disturbance observers. The challenges of 
UAV flight in complex environments are further examined. Compared with traditional control methods, it 
has more practical significance.

The remaining sections of this paper are as follows. Section “Problem formulation and quadrotor dynamics” 
describes the combined faults and corresponding assumptions. In Section “Fault-tolerant control scheme”, the 
nonlinear disturbance observer and the Pose controller is designed based on the paper scheme, along with the 
proof process. In Section “Simulation”, simulation results are presented using MATLAB/Simulink based on the 
proposed control scheme. Finally, in Section “Conclusions”, conclusions and future work recommendations are 
provided.

Problem formulation and quadrotor dynamics
Quadrotor dynamics
To describe the quadrotor dynamic model, two coordinate systems are introduced, the quadrotor coordinate 
system and Earth-Centered Inertial coordinate system, which are denoted as {B} = {Ob, xb, yb, zb} and 
{A} = {Oe, xe, ye, ze}, shown in (Fig. 1).

We can know in Fig. 1, motors 1 and 3 rotate counterclockwise; motors 2 and 4 rotate clockwise. Motors 
are installed at the top diagonal of the quadcopter body, with a distance of  from the center of mass, The lift 
Fs(s = 1, ..., 4) generated by the propeller is opposite to the direction of gravity, The torque τs generated by 
the four propellers cancels each other out, Fig. 2 illustrates the lift characteristics under fault-free conditions.

Based on the model structure of the quadrotor, the coordinate transformation matrix from the ground 
coordinate system to the body coordinate system, denoted as Cb

g :

	
Cb

g =

[ cos θ cos ψ cosθsinψ - sinθ

sinθcosψsinθ − sinψcosϕ sinθsinψsinϕ + cosψcosϕ cosθsinψ

sinθcosψcosϕ + sinψsinϕ sinθsinψcosϕ − cos ψsinϕ cosθ cos ϕ

]
� (1)
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According to the theorem of momentum and moment of momentum, the system of dynamic differential 
equations can be obtained:

	 mξ̇g = Cg
b F T

b + Gg � (2)

	 Ibẇb + ω×
b (Ibωb) = τT

b +Γb� (3)

where m is the quadrotor’s weight;F T
b = [0, 0, −fT ]T  is the lift vector in the body coordinate system;fT  

denotes the total thrust magnitude of the rotors;Gg= [0, 0,mg]T  is the gravity vector in the body 
coordinate system;ξg = [u, v, w]T  represents the translation velocity vector in the ground coordinate 
system;τT

b = [τϕ, τθ, τψ]T  is the control torque vector in the body coordinate system;τϕ, τθ, τψ  represents the 
roll, pitch, and yaw control torques, respectively;ωb = [pb, qb, rb]T  is the angular velocity in the body coordinate 
system;Γb is the gyroscopic torque on the quadrotor caused by rotor rotation;Ib is the inertia tensor matrix of 
the quadrotor. In addition,

	
Ib =

[Ix 0 0
0 Iy 0
0 0 Iz

]
; w×

b =

[0 − rb qb

rb 0 − pb

−qb pb 0

]
; Γb = w×

b

[0
0
IrΩr

]
� (4)

where Ix, Iy, Iz  represent the roll, pitch, and yaw rotational inertias of the quadrotor, Ωr = Ω1 − Ω2 + Ω3 − Ω4 
denotes the sum of the rotational speeds of the four motors.Ir  is the polar moment of inertia of a single rotor.

The kinematic equations of the quadrotor can be expressed in the following form:

4 max
F F=

3 max
F F=

4
0F =

3
0F =

2
U

4
U

2 max
F F=

1 max
F F=

2
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1
U
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U

Fig. 2.  Operational thrust without fault.

 

Fig. 1.  Structural diagram of quadcopter.
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



η̇b = Q−1wb

Q−1 =

[1 sinϕtanθ cosϕtanθ

0 cosϕ - sinϕ

0 sinϕ sec θ cosϕ sec θ

]

ṗg = ξg = Cg
b ξb, Cg

b =
(
Cb

g

)T

� (5)

where ηb = [ϕ, θ, ψ]T  represents the attitude vector;Q is the transformation matrix relating the rate of change 
of the attitude angles to the body angular velocities;pg = [xg, yg, zg]T  is the position vector of the UAV. Taking 
the derivative of ηb with respect to time yields:

	

{
η̇b = [ϕ̇, θ̇, ψ̇]T

η̈b = [ϕ̈, θ̈, ψ̈]T
� (6)

Based on Eqs. (6) and (8), the differential equation for the Quadrotor attitude angles can be obtained as follows:

	





η̈b = αsτ̃b + D(·)
D(·) = Π−1C(ηb, η̇b)
C(ηb, η̇b) = −IbQ̇η̇b − (Qη̇b)×Πη̇b

� (7)

where Π = IbQ,τ̃b = Π−1τb,τb represents the actual control torque of the quadrotor, D(·) represents the 
system disturbances acting on the body.

Lemma 1  For a nonlinear system ẋ(t) = f(x(t)), if there exists a positive definite Lyapunov function V (x), its 
time derivative satisfies the following relation:

	 V̇ (x) ≤ −AV a(x) + B� (8)

where A > 0, B > 0, s ∈ (0, 1),the system converges to the set 
{

x|V 1−a(x) ≤ B
A(1−γ)

}
, γ ∈ (0, 1), and 

converge to T ≤ V 1−a(x(t0))
Aγ(1−a) .

Problem formulation
The quadcopter belongs to a typical underactuated system. When a quadcopter performs flight missions in 
unknown environments, it is very susceptible to various types of external interference, which can cause plane 
crashes. When studying the control algorithm of quadcopter unmanned aerial vehicles, the vector of uncertainty 
in the altitude and attitude modeling is:

	 ℓ(p, ν) = [ℓp(p, t), ℓv(v, t)]T ,� (9)

The design and analysis of finite-time fault-tolerant control algorithms require the following assumptions.

Assumption 1  Only consider the impact of constant wind on quadcopter drones, without taking into account 
turbulent wind.

Assumption 2  The flight control chip of quadcopter aircraft has sufficient computing power to meet control 
requirements.

Assumption 3  Each component of the uncertainty perturbation model ℓ(x, t) is unknown, but there are fixed 
boundaries.i.e., for i = 1 · · · 4,

	 |ℓi(x, t)| ≤ ℓi(x, t) ∀t ≥ 0,� (10)

where the bounding function ℓi(x, t) is known.

Assumption 4  Damage to propeller blades or decrease in rotational speed indicates actuator failure. For ex-
ample, damage to propeller blades can lead to a partial loss of thrust generated by the corresponding rotor5. 
Therefore, the actuator fault considered is modeled as follows. for s = 1 · · · 4,

	 w∗
s = αsws� (11)

where ws represents the propeller blade speed,w∗
s  is actual speed of the malfunctioning propeller, and αs ∈ (α, 1] 

is an unknown constant and represents the current propeller rotation reduction factor,α indicates the lower line 
of propeller speed required for quadcopter. For example,α = 0 indicates that the propeller is stuck or completely 
damaged, and αs = 1 indicates that the propeller is in normal operation, and 0 < α < αs < 1 represents a 
faulty rotor. Figure 3 illustrates the lift characteristics under actuator fault conditions.
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Assumption 5  Further considering bias faults and external disturbances, they are collectively referred to as 
lumped disturbances along with actuator faults.

	 d(t) = αsws + σi(t)ws + di(t)� (12)

where σi(t) is 0 indicate no bias or 1 indicate bias.|di(t)| ≤ Di indicate bounded external disturbance and Di 
is a constant.

Remark 1  The disturbances d∗(k) considered in this article mainly depend on unknown environmental distur-
bances and do not take into account disturbances from the body components themselves. Over a short sampling 
period, we define the lumped disturbance as remaining nearly constant or varying within an extremely small 
range, i.e.∆d∗(k + i) ≈ 0.

Fault-tolerant control scheme
In this section, a detailed derivation of the nonlinear disturbance observer for the quadrotor will be presented, 
and a corresponding fault-tolerant control strategy will be proposed to address combined faults.

Design of nonlinear disturbance observer
To enable the observer in this paper to better estimate the effects of combined faults, and following the design 
approach of the disturbance observer, the following nonlinear disturbance observer is obtained:

	 ê∗
d(kd) = r(kd) + q(x(kd), x(kd + 1))� (13)

	 r(kd + 1) = r(kd) − G(x(kd), x(kd + 1))êd(kd)� (14)

where r(kd) is the disturbance observer state vector,ê∗
d(k) is the estimator of the first component D(·) of 

ed(kd),q(x(kd), x(kd + 1)) and G(x(kd), x(kd + 1)) are the observer function vectors. In order to design of 
observer, we propose the following scheme.

Theorem 1  Design of the state observer satisfies assumption3. If the observer has accurate estimation, then 
the chosen function q(x(kd), x(kd + 1)) and Gob = diag {l1, l2, l3} needs to satisfy the following conditions:

	

G(·, ·)∆x(kd + 2) = ∆p(x(kd + 1), x(kd + 2))
0 < li < 2, i = 1, 2, 3 � (15)

Proof of Theorem 1  To demonstrate the stability of the DNDOB, we define:

	 eob(kd) = e∗
d(kd) − ê∗

d(kd)� (16)

The next moment eob(kd) can be represented as

	

eob(kd + 1) = e∗
d(kd + 1) − ê∗

d(kd + 1)
= e∗

d(kd + 1) − r(kd + 1) − q(x(kd + 1), x(kd + 2))
=e∗

d(kd + 1) − G(·, ·)ê∗
d(kd) − ∆q(x(kd + 1), x(kd + 2))

� (17)

According (14), the above error system can be rewritten as

Fig. 3.  Control output after fault.
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eob(kd + 1) = e∗
d(kd + 1) − ê∗

d(kd) − G(·, ·)e∗
d(kd)

= e∗
d(kd + 1) − e∗

d(kd) + (I − G(·, ·)(e∗
d(kd) − ê∗

d(kd)))
= (I − G(·, ·))eob(kd) + ∆e∗

d(kd + 1)
� (18)

According to Remark 1 and (14), we can obtain ∆e∗(kd + i) = 0,In addition,|1 − li| < 1, which implies 
selecting as G(·, ·) a Schur matrixthe nonlinear disturbance observer can asymptotically track the disturbance 
of system.

According to Assumption 5 all disturbances as lumped disturbances, the observer primarily estimates the 
angular velocity ew  of the UAV and the disturbance estimation values eob(kd),so:

	

ėw = ged − k1sig(ew)α1

ėob(kd) = −k2sig(ew)α1 − ḋ
� (19)

Construct Lyapunov function as follows:

	
V = 1

2eT
wew + 1

2eob(kd)T P eob(kd)� (20)

where P is positive definite symmetric matrix.
Derivative of the above equation can obtain:

	

V̇ = eT
w ėw + eob(kd)T P ėob(kd)

= eT
w(geob(kd) − k1sig(ew)α1) + eT

ob(kd)P (−k2sig(ew)α2 − ḋ)
� (21)

Select Pk2 = gT , then:

	 eT
w(geob(kd) − eT

ob(kd)Pk2sig(ew)α2 = eT
wgeT

ob(kd) − eT
ob(kd)gT sig(ew)α2� (22)

Select k2 = ΓgT  can obtain:

	 V̇ = êT
ob(kd)gêob(kd) − êT

ob(kd)K1êob(kd)) − rT (kd + 1)Γ−1ṙ(−K2eT
ob(kd))� (23)

According to the finite time stability theorem, if there exists a constant c > 0 · γ ∈ (0, 1) such that V̇ ≤ −cV γ , 
the observer can converge in finite time, and the upper limit of convergence time is:

	
T ≤ V (0)1−γ

c(1 − γ)
� (24)

Select α1 = 0.5, α2 = 0 · sig(ew)α2 = sig(ew) then:

	

V̇ = êT
w(gêob(kd) − k1 |ew|

1/2 sig(ew) + eT
ob(kd)(−k2sig(ew) − ḋ)

≤ −k1 ∥ew∥
3/2 − (k2 − δmax) ∥eob(kd)∥ ∥ew∥

1/2
� (25)

According to the finite time stability theorem, the system can converge within a finite time and the upper limit of convergence time is:

	
T ≤ 4

c
V (0)

3/4� (26)

Adaptive finite-time fault-tolerant controller design
Based on the disturbance observer designed in the preceding section, a finite-time fault-tolerant control (FTC) 
strategy is developed in this section for a quadrotor system subject to combined faults. The overall control 
structure is illustrated in (Fig. 4). Due to the under-actuated nature of the quadrotor, decoupling computation 
is essential for coordinating the position and attitude subsystems. In this scheme, both subsystems compare the 
observed state estimates with the corresponding reference signals, while an Adaptive Finite-Time Fault-Tolerant 
Controller provides real-time compensation for the resulting tracking deviations.

Attitude controller design
Based on the model established in the Sect.   2, when the system is subject to combined fault disturbances, 
attitude tracking error is defined as

	 eΘ = e − eΘd� (27)

where Attitude tracking error eΘ = [eΘϕ, eΘθ, eΘφ]T .
Selected terminal sliding surface was:

	 Si = eΘ + δieΘ + σie
a
Θ� (28)
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where δi, σi > 0 and 0 < a = n
m

< 1, Since the solution process for the three attitude angles is similar, the 
pitch angle is used as an example.

The pitch subsystem of the quadcopter is represented as

	

{
ẋ1 = x2

ẋ2 = fθ(x) + (1 − αs)uθgθ(x) + d
� (29)

where uθ  is the expected control input that needs to be obtained,gθ(x) = I−1
y ,d represents external interference 

and is a component of D(·).
Pitch angle tracking error was

	 eθ = θ − θd� (30)

It immediately follows that:

	 ėθ = θ̇ − θ̇d� (31)

Select the terminal sliding surface as

	 sθ = ėθ + δ1eθ + σ1ea
θ � (32)

Derivative of t he above equation, we can obtain:

	

ṡθ = ëθ + δ1ėθ + σ1
d(ea

θ)
dt

=ë − ëθd + δ1ėθ + σ1
d(ea

θ)
dt

� (33)

The reaching law for the sliding mode surface is selected:

	 ṡθ1 = −k1sθ − η1sign(sθ)� (34)

Based on Eq. (29) and the sliding mode surface, the expression for controller uθ  is obtained as follows:

	
uθ = 1

1 − α3

[
(θ̈d − fθ(x) − δ3ėθ − σ3aea−1

θ − dsign(sθ))
]

� (35)

Theorem 2  Assume that there exists a positive definite and continuous function S(x), satisfies the inequality 
ṡx + δsx + σsa

x < 0, The initial state of system is s0,δ, σ > 0 and 0 < a < 1 Then the state S(x) will converge 
to the equilibrium point in a finite time.

Fig. 4.  Control structure scheme.
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ts ≤ 1

δ(1 − a) ln(
δs1−a

θ (t) + σ

σ
)� (36)

Proof of Theorem 2  In order to verify that the unmanned aerial vehicle system can reach a convergence state 
within a finite time after being affected by actuator efficiency loss and sudden disturbances,When t → 0, then 
ϕ → ϕc, ψ → ψc, φ → φc.

The Lyapunov function is selected as follows:

	
V1 = 1

2s2
θ � (37)

Substituting Eqs. (34) and (35) into Eq. (33) to get:

	 ṡθ = −k1sθ − η1sign(sθ) − dsign(sθ) − α3sign(sθ)� (38)

Substituting the above expression into Eq. (37) and differentiating yields:

	

V̇1 = sθ ṡθ

= sθ(−k1sθ − η1sign(sθ) − d1sign(sθ) − α1sign(sθ))
= − k1s2

θ − (η1 + d1) |sθ|
� (39)

According to Assumption 3, it follows that:

	 V̇1= − k1s2
θ − (η1 + d) |sθ| ≤ 0� (40)

where k, η, d is a positive real number greater than 0, so can be obtained V̇1 < 0. According to the Lyapunov 
stability criterion, the designed sliding surface will gradually converge to a stable state, indicating that the yaw 
angle control process in the attitude controller can continue to reach a stable state after being disturbed and 
faulty, so that the attitude controller can satisfy convergence under global conditions. When t → ∞, then.

e → 0.
Therefore, pitch controller ensures pitch system remains asymptotically stable. by appropriately setting 

parameters, the sliding mode surface can converge to the equilibrium state within finite time, with the 
convergence time given as

	
ts ≤ 1

δ(1 − a) ln
(

δs1−a
θ (t) + σ1

σ1

)
� (41)

Based on the above analysis, the selected formula (41) can ensure that the subsystem converges quickly to the 
equilibrium point within a limited time.

Similarly, the tracking errors for the roll and yaw subsystems are given by:

	

eϕ = ϕ − ϕd

eφ = φ − φd
� (42)

Select the terminal sliding surface as:

	

sϕ = ėϕ + δ1eϕ + σ1ea2
ϕ

sφ = ėφ + δ1eφ + σ1ea3
φ

� (43)

The selected reaching law is:

	

ṡϕ1 = −k2 − η2sign(sϕ)
ṡφ1 = −k3 − η3sign(sφ)

� (44)

The controller for yaw and roll is designed as:

	

U̇ϕ = sϕṡϕ

= sϕ(−k1 − η2sign(sϕ) − d2sign(sϕ) − α3sign(sϕ))
= − k2sϕ − (η2 + d2) |sϕ|

� (45)

	

U̇φ = sφṡφ

= sφ(−k3 − η3sign(sφ) − d3sign(sφ) − α3sign(sφ))
= − k3sφ − (η3 + d3) |sφ|

� (46)
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It follows from the above that: the controller designed in this section ensures that the quadrotor control system 
ultimately reaches a stable state, and under the Lyapunov stability criterion, it converges asymptotically.

Position controller design
When the system is subject to combined fault disturbances, the position tracking errors in the three directions 
are defined as follows:

	 Ep = P − Pd� (47)

where Ep = [ex, ey, ez]T , The actual position P = [x, y, z]T , the desired position Pd = [xd, yd, zd]T .
The sliding mode surface for the position subsystem is selected as follows:

	 Si = Ėp + δjEp + σEb
p� (48)

The reaching law for the position controller is selected as follows:

	 Ṡx = k4Sx + η4sign(Sx)� (49)

	 Ṡz = k5Sz + η5sign(Sz)� (50)

	 Ṡy = k6Sy + η6sign(Sy)� (51)

Based on the selected sliding mode surface for the system, the input expression for the position control can be 
obtained as follows:

	

ux = 1
1 − α4

[
(ẍd − fx(x) − δ4ėx − σ4beb−1

x − d1sign(sx))
]

uy = 1
1 − α5

[
(ÿd − fy(x) − δ5ėy − σ5beb−1

y − d2sign(sy))
]

uz = 1
1 − α6

[
(z̈d − fz(x) − δ6ėz − σ6beb−1

z − d3sign(sz))
]

� (52)

For the designed controller, the derivative of Eq. (48) can be obtained:

	
Ṡi = Ëp + δiĖp + σi

1
1 − a

Ea−1
p Ėp� (53)

Theorem 3  Consider the augmented system in Eq. (7) and Assumptions 1, 2. and 3. If the finite time convergent 
position controller is designed as Eq. (48), then the estimated error (47) will converge to the equilibrium point 
in finite time.

Proof the Theorem 3  The Lyapunov function for the position controller is selected as:

	
V2 = 1

2(s2
x + s2

y + s2
z)� (54)

Substituting Eqs. (46) and (48) into the above expression and differentiating yields:

	

V̇2 = siṡi

= si(−klsi − ηlsign(si) − dlsign(si) − αlsign(si))
= − kls

2
i − (ηl + dl) |si|

� (55)

where i = x, y, z, and  is a positive constant. So we can obtain:

	 V̇2= − kls
2
i − (ηl + dl) |si| ≤ 0� (56)

where k, η, d is a positive real number greater than 0, so can be obtained V̇2 < 0.According to the Lyapunov 
stability criterion, the designed sliding surface will gradually converge to a stable state, indicating that the 
position controller can meet the required height for flight after being disturbed and faulty, so that the position 
controller can satisfy convergence under global conditions. When t → 0, then e → 0.

According to Theorem 2, the sliding mode surface can converge to the equilibrium point within finite-time, 
with the convergence time given as:

	
ts ≤ 1

δi(1 − a) ln(
δis

1−a
θ (t) + σi

σi
)(i = x, y, z)� (57)

In summary, the position controller designed in this section ensures that the UAV control system ultimately 
reaches a stable state and converges asymptotically under the Lyapunov stability criterion.
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Simulation
This section presents simulation results to validate the key contributions of this work. First, the fault estimation 
performance of the proposed AFTDO observer is evaluated. Subsequently, the designed position and attitude 
controllers are compared with sliding mode control (SMC) and active disturbance rejection control (ADRC) 
through numerical simulations, highlighting the importance of accounting for combined faults in the controller 
design.

Prior to the simulation experiments, the system parameters are initialized. Table 1 summarizes the dynamic 
model parameters of the quadrotor, while Table 2 lists the parameter values used in the fault-tolerant controller.

To evaluate the fault tolerance performance of the proposed algorithm under actuator faults, combined system 
faults, and external disturbances are simultaneously introduced into the system. As illustrated by the numerical 
simulation results in (Fig. 5), the disturbance observer developed in this work achieves shorter convergence time 
and reduced overshoot compared to conventional observers. In scenarios involving both combined faults and 
unknown disturbances, the proposed method converges to the equilibrium point more rapidly. These results 
confirm that the proposed strategy offers more effective compensation for aggregated disturbances and exhibits 
enhanced robustness.

This section evaluates the control performance of the proposed scheme in handling lumped disturbances 
under a scenario where the complete failure of Motor 1 coincides with a sensor fault at t = 8.5 s. As shown in 
Fig. 6, following the failure of Motor 1, the altitude of the UAV decreases rapidly. However, within 1 s, the height 
recovers. This behavior can be attributed to the controller’s detection of the fault in Motor 1, which triggers a 
compensatory speed increase in Motor 3, as depicted in (Fig. 7). Nevertheless, the thrust from Motor 3 alone is 
insufficient to fully counteract the disturbance caused by the failure of Motor 1, resulting in a net altitude loss of 
approximately 0.4 m.

The control performance was further evaluated under a more challenging scenario involving simultaneous 
partial failure of two motors (Motors 2 and 3) and a sensor fault within the lumped disturbance. In this case, the 
speeds of Motors 2 and 3 were reduced to 90% of their nominal values. As demonstrated in Fig. 11, the resulting 
degradation in motor efficiency is clearly observed. Figures 8 and 9 show a distinct descent in UAV altitude, 
which is primarily attributable to the loss of motor efficiency and the consequent reduction in total lift force. 
This initial altitude decrease is subsequently compensated by the controller, enabling the trajectory to gradually 

Fig. 5.  Disturbance observer estimation capability.

 

Parameter Value Parameter Value

δx,y,z 1 kx,y,z 5

δϕ,φ,θ 15 k1,2,3 60

σϕ,φ,θ 10 ηi 0.1

Table 2.  Fault tolerant controller parameters.

 

Parameter Value Parameter Value

m 2 kg Ix,y 1.25 Ns2/rad

0.2 m Iz 2.50 Ns2/rad

Table 1.  UAV model parameters.
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converge toward the desired value. Quantitative results summarized in Table 3 confirm that the proposed control 
scheme exhibits superior stability and faster response compared to benchmark methods.

The reduction in propeller speed results in diminished thrust output, preventing the quadrotor from returning 
to its pre-fault altitude of approximately 5 m. Consequently, the altitude profile exhibits a descending segment, 
with the vehicle eventually stabilizing at around 4.6 m. As evidenced by the attitude and propeller speed variation 

Fig. 8.  Position variation curve.

 

Fig. 7.  Diagram of motor 1 failure speed.

 

Fig. 6.  Diagram of Motor 1 Failure.

 

Scientific Reports |         (2026) 16:2023 11| https://doi.org/10.1038/s41598-025-31619-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


curves, the roll angle undergoes a pronounced deviation. This is primarily attributable to the asymmetric thrust 
distribution among the propellers, which compromises the quadrotor’s lateral stability. Furthermore, speed-
induced torque variations generate oscillatory responses in both the pitch and yaw angles.

The attitude error comparison experiments in Figs. 10 and 11 demonstrate that the proposed algorithm 
achieves faster convergence with significantly suppressed airframe vibration. This improvement results from the 
controller’s effective compensation for faults and disturbances, which shortens the system response time and 
confirms its strong fault-tolerant capability.

As shown in Figs. 12 and 13, the amplitude variations in roll and pitch angles are smaller than those obtained 
using the active disturbance rejection control method. Furthermore, the yaw angle and altitude responses in 
Figs. 14 and 15 indicate that the proposed control algorithm reduces the descent magnitude of the UAV by 0.2 m. 
Figure 16 shows that after fault injection, the unaffected motors receive updated control signals, leading to a 
rapid increase in their rotational speeds. With the intervention of the proposed controller, the quadrotor regains 
stable operation by t = 13 s.

Fig. 10.  Position error curve.

 

Scheme Time of failure (s) Position overshoot percentage (%) Fault estimation error (%) Position fault recovery time(s)

AFTDO-FTC 8.5 8 2 10.4

SMC 8.5 18 8 11.6

ADRC 8.5 14 5 10.8

Table 3.  Comparison of simulation results value.

 

Fig. 9.  Attitude variation curve.
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Fig. 13.  Comparison of pitch angle variation curves.

 

Fig. 12.  Comparison of roll angle variation curves.

 

Fig. 11.  Attitude error curve.
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Fig. 16.  Propeller speed variation curve.

 

Fig. 15.  Comparison of height variation curve.

 

Fig. 14.  Comparison of yaw angle variation curve.
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Conclusions
This paper addresses the finite-time fault-tolerant control problem for quadrotor systems under simultaneous 
actuator faults and external disturbances. A disturbance observer is designed to estimate the composite 
uncertainties, followed by the development of a finite-time fault-tolerant controller grounded in finite-time 
stability theory. Rigorous stability analysis is provided using Lyapunov methods. The proposed controller not 
only compensates for faults and disturbances effectively but also suppresses system oscillations and guarantees 
global stability. Simulation results validate that the control scheme ensures global convergence of the quadrotor 
system, exhibits strong robustness against faults and disturbances, and delivers excellent trajectory tracking 
performance.

The control strategy presented in this work demonstrates effective performance in handling combined faults 
and disturbances in simulation environments. Future research will focus on further refinement of the method 
and its implementation on more complex UAV platforms through hardware-in-the-loop experiments and 
physical prototypes, thereby enhancing the practical applicability and scalability of the proposed approach.

Data availability
Some or all data, models, or codes that support the findings of this study are available from the corresponding 
author upon reasonable request.
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